Diff for /elwix/config/etc/uboot/hostapd.conf between versions 1.1 and 1.2

version 1.1, 2014/01/23 09:30:22 version 1.2, 2014/09/15 19:06:46
Line 0 Line 1
   ##### hostapd configuration file ##############################################
   # Empty lines and lines starting with # are ignored
   
   # AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for
   # management frames); ath0 for madwifi
   interface=wlan0
   
   # In case of madwifi and nl80211 driver interfaces, an additional configuration
   # parameter, bridge, must be used to notify hostapd if the interface is
   # included in a bridge. This parameter is not used with Host AP driver.
   #bridge=br0
   
   # Driver interface type (hostap/wired/madwifi/prism54/test/none/nl80211/bsd);
   # default: hostap). nl80211 is used with all Linux mac80211 drivers.
   # Use driver=none if building hostapd as a standalone RADIUS server that does
   # not control any wireless/wired driver.
   # driver=hostap
   
   # hostapd event logger configuration
   #
   # Two output method: syslog and stdout (only usable if not forking to
   # background).
   #
   # Module bitfield (ORed bitfield of modules that will be logged; -1 = all
   # modules):
   # bit 0 (1) = IEEE 802.11
   # bit 1 (2) = IEEE 802.1X
   # bit 2 (4) = RADIUS
   # bit 3 (8) = WPA
   # bit 4 (16) = driver interface
   # bit 5 (32) = IAPP
   # bit 6 (64) = MLME
   #
   # Levels (minimum value for logged events):
   #  0 = verbose debugging
   #  1 = debugging
   #  2 = informational messages
   #  3 = notification
   #  4 = warning
   #
   logger_syslog=-1
   logger_syslog_level=2
   logger_stdout=-1
   logger_stdout_level=2
   
   # Dump file for state information (on SIGUSR1)
   dump_file=/tmp/hostapd.dump
   
   # Interface for separate control program. If this is specified, hostapd
   # will create this directory and a UNIX domain socket for listening to requests
   # from external programs (CLI/GUI, etc.) for status information and
   # configuration. The socket file will be named based on the interface name, so
   # multiple hostapd processes/interfaces can be run at the same time if more
   # than one interface is used.
   # /var/run/hostapd is the recommended directory for sockets and by default,
   # hostapd_cli will use it when trying to connect with hostapd.
   ctrl_interface=/var/run/hostapd
   
   # Access control for the control interface can be configured by setting the
   # directory to allow only members of a group to use sockets. This way, it is
   # possible to run hostapd as root (since it needs to change network
   # configuration and open raw sockets) and still allow GUI/CLI components to be
   # run as non-root users. However, since the control interface can be used to
   # change the network configuration, this access needs to be protected in many
   # cases. By default, hostapd is configured to use gid 0 (root). If you
   # want to allow non-root users to use the contron interface, add a new group
   # and change this value to match with that group. Add users that should have
   # control interface access to this group.
   #
   # This variable can be a group name or gid.
   #ctrl_interface_group=wheel
   ctrl_interface_group=0
   
   
   ##### IEEE 802.11 related configuration #######################################
   
   # SSID to be used in IEEE 802.11 management frames
   ssid=test
   
   # Country code (ISO/IEC 3166-1). Used to set regulatory domain.
   # Set as needed to indicate country in which device is operating.
   # This can limit available channels and transmit power.
   #country_code=US
   
   # Enable IEEE 802.11d. This advertises the country_code and the set of allowed
   # channels and transmit power levels based on the regulatory limits. The
   # country_code setting must be configured with the correct country for
   # IEEE 802.11d functions.
   # (default: 0 = disabled)
   #ieee80211d=1
   
   # Operation mode (a = IEEE 802.11a, b = IEEE 802.11b, g = IEEE 802.11g,
   # Default: IEEE 802.11b
   hw_mode=a
   
   # Channel number (IEEE 802.11)
   # (default: 0, i.e., not set)
   # Please note that some drivers (e.g., madwifi) do not use this value from
   # hostapd and the channel will need to be configuration separately with
   # iwconfig.
   channel=60
   
   # Beacon interval in kus (1.024 ms) (default: 100; range 15..65535)
   beacon_int=100
   
   # DTIM (delivery trafic information message) period (range 1..255):
   # number of beacons between DTIMs (1 = every beacon includes DTIM element)
   # (default: 2)
   dtim_period=2
   
   # Maximum number of stations allowed in station table. New stations will be
   # rejected after the station table is full. IEEE 802.11 has a limit of 2007
   # different association IDs, so this number should not be larger than that.
   # (default: 2007)
   max_num_sta=255
   
   # RTS/CTS threshold; 2347 = disabled (default); range 0..2347
   # If this field is not included in hostapd.conf, hostapd will not control
   # RTS threshold and 'iwconfig wlan# rts <val>' can be used to set it.
   rts_threshold=2347
   
   # Fragmentation threshold; 2346 = disabled (default); range 256..2346
   # If this field is not included in hostapd.conf, hostapd will not control
   # fragmentation threshold and 'iwconfig wlan# frag <val>' can be used to set
   # it.
   fragm_threshold=2346
   
   # Rate configuration
   # Default is to enable all rates supported by the hardware. This configuration
   # item allows this list be filtered so that only the listed rates will be left
   # in the list. If the list is empty, all rates are used. This list can have
   # entries that are not in the list of rates the hardware supports (such entries
   # are ignored). The entries in this list are in 100 kbps, i.e., 11 Mbps = 110.
   # If this item is present, at least one rate have to be matching with the rates
   # hardware supports.
   # default: use the most common supported rate setting for the selected
   # hw_mode (i.e., this line can be removed from configuration file in most
   # cases)
   #supported_rates=10 20 55 110 60 90 120 180 240 360 480 540
   
   # Basic rate set configuration
   # List of rates (in 100 kbps) that are included in the basic rate set.
   # If this item is not included, usually reasonable default set is used.
   #basic_rates=10 20
   #basic_rates=10 20 55 110
   #basic_rates=60 120 240
   
   # Short Preamble
   # This parameter can be used to enable optional use of short preamble for
   # frames sent at 2 Mbps, 5.5 Mbps, and 11 Mbps to improve network performance.
   # This applies only to IEEE 802.11b-compatible networks and this should only be
   # enabled if the local hardware supports use of short preamble. If any of the
   # associated STAs do not support short preamble, use of short preamble will be
   # disabled (and enabled when such STAs disassociate) dynamically.
   # 0 = do not allow use of short preamble (default)
   # 1 = allow use of short preamble
   #preamble=1
   
   # Station MAC address -based authentication
   # Please note that this kind of access control requires a driver that uses
   # hostapd to take care of management frame processing and as such, this can be
   # used with driver=hostap or driver=nl80211, but not with driver=madwifi.
   # 0 = accept unless in deny list
   # 1 = deny unless in accept list
   # 2 = use external RADIUS server (accept/deny lists are searched first)
   macaddr_acl=0
   
   # Accept/deny lists are read from separate files (containing list of
   # MAC addresses, one per line). Use absolute path name to make sure that the
   # files can be read on SIGHUP configuration reloads.
   #accept_mac_file=/etc/hostapd.accept
   #deny_mac_file=/etc/hostapd.deny
   
   # IEEE 802.11 specifies two authentication algorithms. hostapd can be
   # configured to allow both of these or only one. Open system authentication
   # should be used with IEEE 802.1X.
   # Bit fields of allowed authentication algorithms:
   # bit 0 = Open System Authentication
   # bit 1 = Shared Key Authentication (requires WEP)
   auth_algs=3
   
   # Send empty SSID in beacons and ignore probe request frames that do not
   # specify full SSID, i.e., require stations to know SSID.
   # default: disabled (0)
   # 1 = send empty (length=0) SSID in beacon and ignore probe request for
   #     broadcast SSID
   # 2 = clear SSID (ASCII 0), but keep the original length (this may be required
   #     with some clients that do not support empty SSID) and ignore probe
   #     requests for broadcast SSID
   ignore_broadcast_ssid=0
   
   # TX queue parameters (EDCF / bursting)
   # default for all these fields: not set, use hardware defaults
   # tx_queue_<queue name>_<param>
   # queues: data0, data1, data2, data3, after_beacon, beacon
   #               (data0 is the highest priority queue)
   # parameters:
   #   aifs: AIFS (default 2)
   #   cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023)
   #   cwmax: cwMax (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023); cwMax >= cwMin
   #   burst: maximum length (in milliseconds with precision of up to 0.1 ms) for
   #          bursting
   #
   # Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
   # These parameters are used by the access point when transmitting frames
   # to the clients.
   #
   # Low priority / AC_BK = background
   #tx_queue_data3_aifs=7
   #tx_queue_data3_cwmin=15
   #tx_queue_data3_cwmax=1023
   #tx_queue_data3_burst=0
   # Note: for IEEE 802.11b mode: cWmin=31 cWmax=1023 burst=0
   #
   # Normal priority / AC_BE = best effort
   #tx_queue_data2_aifs=3
   #tx_queue_data2_cwmin=15
   #tx_queue_data2_cwmax=63
   #tx_queue_data2_burst=0
   # Note: for IEEE 802.11b mode: cWmin=31 cWmax=127 burst=0
   #
   # High priority / AC_VI = video
   #tx_queue_data1_aifs=1
   #tx_queue_data1_cwmin=7
   #tx_queue_data1_cwmax=15
   #tx_queue_data1_burst=3.0
   # Note: for IEEE 802.11b mode: cWmin=15 cWmax=31 burst=6.0
   #
   # Highest priority / AC_VO = voice
   #tx_queue_data0_aifs=1
   #tx_queue_data0_cwmin=3
   #tx_queue_data0_cwmax=7
   #tx_queue_data0_burst=1.5
   # Note: for IEEE 802.11b mode: cWmin=7 cWmax=15 burst=3.3
   #
   # Special queues; normally not user configurable
   #
   #tx_queue_after_beacon_aifs=2
   #tx_queue_after_beacon_cwmin=15
   #tx_queue_after_beacon_cwmax=1023
   #tx_queue_after_beacon_burst=0
   #
   #tx_queue_beacon_aifs=2
   #tx_queue_beacon_cwmin=3
   #tx_queue_beacon_cwmax=7
   #tx_queue_beacon_burst=1.5
   
   # 802.1D Tag to AC mappings
   # WMM specifies following mapping of data frames to different ACs. This mapping
   # can be configured using Linux QoS/tc and sch_pktpri.o module.
   # 802.1D Tag    802.1D Designation      Access Category WMM Designation
   # 1             BK                      AC_BK           Background
   # 2             -                       AC_BK           Background
   # 0             BE                      AC_BE           Best Effort
   # 3             EE                      AC_VI           Video
   # 4             CL                      AC_VI           Video
   # 5             VI                      AC_VI           Video
   # 6             VO                      AC_VO           Voice
   # 7             NC                      AC_VO           Voice
   # Data frames with no priority information: AC_BE
   # Management frames: AC_VO
   # PS-Poll frames: AC_BE
   
   # Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
   # for 802.11a or 802.11g networks
   # These parameters are sent to WMM clients when they associate.
   # The parameters will be used by WMM clients for frames transmitted to the
   # access point.
   #
   # note - txop_limit is in units of 32microseconds
   # note - acm is admission control mandatory flag. 0 = admission control not
   # required, 1 = mandatory
   # note - here cwMin and cmMax are in exponent form. the actual cw value used
   # will be (2^n)-1 where n is the value given here
   #
   wme_enabled=1
   #
   # Low priority / AC_BK = background
   wme_ac_bk_cwmin=4
   wme_ac_bk_cwmax=10
   wme_ac_bk_aifs=7
   wme_ac_bk_txop_limit=0
   wme_ac_bk_acm=0
   # Note: for IEEE 802.11b mode: cWmin=5 cWmax=10
   #
   # Normal priority / AC_BE = best effort
   wme_ac_be_aifs=3
   wme_ac_be_cwmin=4
   wme_ac_be_cwmax=10
   wme_ac_be_txop_limit=0
   wme_ac_be_acm=0
   # Note: for IEEE 802.11b mode: cWmin=5 cWmax=7
   #
   # High priority / AC_VI = video
   wme_ac_vi_aifs=2
   wme_ac_vi_cwmin=3
   wme_ac_vi_cwmax=4
   wme_ac_vi_txop_limit=94
   wme_ac_vi_acm=0
   # Note: for IEEE 802.11b mode: cWmin=4 cWmax=5 txop_limit=188
   #
   # Highest priority / AC_VO = voice
   wme_ac_vo_aifs=2
   wme_ac_vo_cwmin=2
   wme_ac_vo_cwmax=3
   wme_ac_vo_txop_limit=47
   wme_ac_vo_acm=0
   # Note: for IEEE 802.11b mode: cWmin=3 cWmax=4 burst=102
   
   # Static WEP key configuration
   #
   # The key number to use when transmitting.
   # It must be between 0 and 3, and the corresponding key must be set.
   # default: not set
   #wep_default_key=0
   # The WEP keys to use.
   # A key may be a quoted string or unquoted hexadecimal digits.
   # The key length should be 5, 13, or 16 characters, or 10, 26, or 32
   # digits, depending on whether 40-bit (64-bit), 104-bit (128-bit), or
   # 128-bit (152-bit) WEP is used.
   # Only the default key must be supplied; the others are optional.
   # default: not set
   #wep_key0=123456789a
   #wep_key1="vwxyz"
   #wep_key2=0102030405060708090a0b0c0d
   #wep_key3=".2.4.6.8.0.23"
   
   # Station inactivity limit
   #
   # If a station does not send anything in ap_max_inactivity seconds, an
   # empty data frame is sent to it in order to verify whether it is
   # still in range. If this frame is not ACKed, the station will be
   # disassociated and then deauthenticated. This feature is used to
   # clear station table of old entries when the STAs move out of the
   # range.
   #
   # The station can associate again with the AP if it is still in range;
   # this inactivity poll is just used as a nicer way of verifying
   # inactivity; i.e., client will not report broken connection because
   # disassociation frame is not sent immediately without first polling
   # the STA with a data frame.
   # default: 300 (i.e., 5 minutes)
   #ap_max_inactivity=300
   
   # Enable/disable internal bridge for packets between associated stations.
   #
   # When IEEE 802.11 is used in managed mode, packets are usually send through
   # the AP even if they are from a wireless station to another wireless station.
   # This functionality requires that the AP has a bridge functionality that sends
   # frames back to the same interface if their destination is another associated
   # station. In addition, broadcast/multicast frames from wireless stations will
   # be sent both to the host system net stack (e.g., to eventually wired network)
   # and back to the wireless interface.
   #
   # The internal bridge is implemented within the wireless kernel module and it
   # bypasses kernel filtering (netfilter/iptables/ebtables). If direct
   # communication between the stations needs to be prevented, the internal
   # bridge can be disabled by setting bridge_packets=0.
   #
   # Note: If this variable is not included in hostapd.conf, hostapd does not
   # change the configuration and iwpriv can be used to set the value with
   # 'iwpriv wlan# param 10 0' command. If the variable is in hostapd.conf,
   # hostapd will override possible iwpriv configuration whenever configuration
   # file is reloaded.
   #
   # default: do not control from hostapd (80211.o defaults to 1=enabled)
   #bridge_packets=1
   
   # Maximum allowed Listen Interval (how many Beacon periods STAs are allowed to
   # remain asleep). Default: 65535 (no limit apart from field size)
   #max_listen_interval=100
   
   ##### IEEE 802.11n related configuration ######################################
   
   # ieee80211n: Whether IEEE 802.11n (HT) is enabled
   # 0 = disabled (default)
   # 1 = enabled
   #ieee80211n=1
   
   # ht_capab: HT capabilities (list of flags)
   # LDPC coding capability: [LDPC] = supported
   # Supported channel width set: [HT40-] = both 20 MHz and 40 MHz with secondary
   #       channel below the primary channel; [HT40+] = both 20 MHz and 40 MHz
   #       with secondary channel below the primary channel
   #       (20 MHz only if neither is set)
   #       Note: There are limits on which channels can be used with HT40- and
   #       HT40+. Following table shows the channels that may be available for
   #       HT40- and HT40+ use per IEEE 802.11n Annex J:
   #       freq            HT40-           HT40+
   #       2.4 GHz         5-13            1-7 (1-9 in Europe/Japan)
   #       5 GHz           40,48,56,64     36,44,52,60
   #       (depending on the location, not all of these channels may be available
   #       for use)
   # Spatial Multiplexing (SM) Power Save: [SMPS-STATIC] or [SMPS-DYNAMIC]
   #       (SMPS disabled if neither is set)
   # HT-greenfield: [GF] (disabled if not set)
   # Short GI for 20 MHz: [SHORT-GI-20] (disabled if not set)
   # Short GI for 40 MHz: [SHORT-GI-40] (disabled if not set)
   # Tx STBC: [TX-STBC] (disabled if not set)
   # Rx STBC: [RX-STBC1] (one spatial stream), [RX-STBC12] (one or two spatial
   #       streams), or [RX-STBC123] (one, two, or three spatial streams); Rx STBC
   #       disabled if none of these set
   # HT-delayed Block Ack: [DELAYED-BA] (disabled if not set)
   # Maximum A-MSDU length: [MAX-AMSDU-7935] for 7935 octets (3839 octets if not
   #       set)
   # DSSS/CCK Mode in 40 MHz: [DSSS_CCK-40] = allowed (not allowed if not set)
   # PSMP support: [PSMP] (disabled if not set)
   # L-SIG TXOP protection support: [LSIG-TXOP-PROT] (disabled if not set)
   #ht_capab=[HT40-][SHORT-GI-20][SHORT-GI-40]
   
   ##### IEEE 802.1X-2004 related configuration ##################################
   
   # Require IEEE 802.1X authorization
   #ieee8021x=1
   
   # IEEE 802.1X/EAPOL version
   # hostapd is implemented based on IEEE Std 802.1X-2004 which defines EAPOL
   # version 2. However, there are many client implementations that do not handle
   # the new version number correctly (they seem to drop the frames completely).
   # In order to make hostapd interoperate with these clients, the version number
   # can be set to the older version (1) with this configuration value.
   #eapol_version=2
   
   # Optional displayable message sent with EAP Request-Identity. The first \0
   # in this string will be converted to ASCII-0 (nul). This can be used to
   # separate network info (comma separated list of attribute=value pairs); see,
   # e.g., RFC 4284.
   #eap_message=hello
   #eap_message=hello\0networkid=netw,nasid=foo,portid=0,NAIRealms=example.com
   
   # WEP rekeying (disabled if key lengths are not set or are set to 0)
   # Key lengths for default/broadcast and individual/unicast keys:
   # 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
   # 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
   #wep_key_len_broadcast=5
   #wep_key_len_unicast=5
   # Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once)
   #wep_rekey_period=300
   
   # EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if
   # only broadcast keys are used)
   eapol_key_index_workaround=0
   
   # EAP reauthentication period in seconds (default: 3600 seconds; 0 = disable
   # reauthentication).
   #eap_reauth_period=3600
   
   # Use PAE group address (01:80:c2:00:00:03) instead of individual target
   # address when sending EAPOL frames with driver=wired. This is the most common
   # mechanism used in wired authentication, but it also requires that the port
   # is only used by one station.
   #use_pae_group_addr=1
   
   ##### Integrated EAP server ###################################################
   
   # Optionally, hostapd can be configured to use an integrated EAP server
   # to process EAP authentication locally without need for an external RADIUS
   # server. This functionality can be used both as a local authentication server
   # for IEEE 802.1X/EAPOL and as a RADIUS server for other devices.
   
   # Use integrated EAP server instead of external RADIUS authentication
   # server. This is also needed if hostapd is configured to act as a RADIUS
   # authentication server.
   eap_server=0
   
   # Path for EAP server user database
   #eap_user_file=/etc/hostapd.eap_user
   
   # CA certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
   #ca_cert=/etc/hostapd.ca.pem
   
   # Server certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
   #server_cert=/etc/hostapd.server.pem
   
   # Private key matching with the server certificate for EAP-TLS/PEAP/TTLS
   # This may point to the same file as server_cert if both certificate and key
   # are included in a single file. PKCS#12 (PFX) file (.p12/.pfx) can also be
   # used by commenting out server_cert and specifying the PFX file as the
   # private_key.
   #private_key=/etc/hostapd.server.prv
   
   # Passphrase for private key
   #private_key_passwd=secret passphrase
   
   # Enable CRL verification.
   # Note: hostapd does not yet support CRL downloading based on CDP. Thus, a
   # valid CRL signed by the CA is required to be included in the ca_cert file.
   # This can be done by using PEM format for CA certificate and CRL and
   # concatenating these into one file. Whenever CRL changes, hostapd needs to be
   # restarted to take the new CRL into use.
   # 0 = do not verify CRLs (default)
   # 1 = check the CRL of the user certificate
   # 2 = check all CRLs in the certificate path
   #check_crl=1
   
   # dh_file: File path to DH/DSA parameters file (in PEM format)
   # This is an optional configuration file for setting parameters for an
   # ephemeral DH key exchange. In most cases, the default RSA authentication does
   # not use this configuration. However, it is possible setup RSA to use
   # ephemeral DH key exchange. In addition, ciphers with DSA keys always use
   # ephemeral DH keys. This can be used to achieve forward secrecy. If the file
   # is in DSA parameters format, it will be automatically converted into DH
   # params. This parameter is required if anonymous EAP-FAST is used.
   # You can generate DH parameters file with OpenSSL, e.g.,
   # "openssl dhparam -out /etc/hostapd.dh.pem 1024"
   #dh_file=/etc/hostapd.dh.pem
   
   # Configuration data for EAP-SIM database/authentication gateway interface.
   # This is a text string in implementation specific format. The example
   # implementation in eap_sim_db.c uses this as the UNIX domain socket name for
   # the HLR/AuC gateway (e.g., hlr_auc_gw). In this case, the path uses "unix:"
   # prefix.
   #eap_sim_db=unix:/tmp/hlr_auc_gw.sock
   
   # Encryption key for EAP-FAST PAC-Opaque values. This key must be a secret,
   # random value. It is configured as a 16-octet value in hex format. It can be
   # generated, e.g., with the following command:
   # od -tx1 -v -N16 /dev/random | colrm 1 8 | tr -d ' '
   #pac_opaque_encr_key=000102030405060708090a0b0c0d0e0f
   
   # EAP-FAST authority identity (A-ID)
   # A-ID indicates the identity of the authority that issues PACs. The A-ID
   # should be unique across all issuing servers. In theory, this is a variable
   # length field, but due to some existing implementations required A-ID to be
   # 16 octets in length, it is strongly recommended to use that length for the
   # field to provided interoperability with deployed peer implementation. This
   # field is configured in hex format.
   #eap_fast_a_id=101112131415161718191a1b1c1d1e1f
   
   # EAP-FAST authority identifier information (A-ID-Info)
   # This is a user-friendly name for the A-ID. For example, the enterprise name
   # and server name in a human-readable format. This field is encoded as UTF-8.
   #eap_fast_a_id_info=test server
   
   # Enable/disable different EAP-FAST provisioning modes:
   #0 = provisioning disabled
   #1 = only anonymous provisioning allowed
   #2 = only authenticated provisioning allowed
   #3 = both provisioning modes allowed (default)
   #eap_fast_prov=3
   
   # EAP-FAST PAC-Key lifetime in seconds (hard limit)
   #pac_key_lifetime=604800
   
   # EAP-FAST PAC-Key refresh time in seconds (soft limit on remaining hard
   # limit). The server will generate a new PAC-Key when this number of seconds
   # (or fewer) of the lifetime remains.
   #pac_key_refresh_time=86400
   
   # EAP-SIM and EAP-AKA protected success/failure indication using AT_RESULT_IND
   # (default: 0 = disabled).
   #eap_sim_aka_result_ind=1
   
   # Trusted Network Connect (TNC)
   # If enabled, TNC validation will be required before the peer is allowed to
   # connect. Note: This is only used with EAP-TTLS and EAP-FAST. If any other
   # EAP method is enabled, the peer will be allowed to connect without TNC.
   #tnc=1
   
   
   ##### IEEE 802.11f - Inter-Access Point Protocol (IAPP) #######################
   
   # Interface to be used for IAPP broadcast packets
   #iapp_interface=eth0
   
   
   ##### RADIUS client configuration #############################################
   # for IEEE 802.1X with external Authentication Server, IEEE 802.11
   # authentication with external ACL for MAC addresses, and accounting
   
   # The own IP address of the access point (used as NAS-IP-Address)
   own_ip_addr=127.0.0.1
   
   # Optional NAS-Identifier string for RADIUS messages. When used, this should be
   # a unique to the NAS within the scope of the RADIUS server. For example, a
   # fully qualified domain name can be used here.
   # When using IEEE 802.11r, nas_identifier must be set and must be between 1 and
   # 48 octets long.
   #nas_identifier=ap.example.com
   
   # RADIUS authentication server
   #auth_server_addr=127.0.0.1
   #auth_server_port=1812
   #auth_server_shared_secret=secret
   
   # RADIUS accounting server
   #acct_server_addr=127.0.0.1
   #acct_server_port=1813
   #acct_server_shared_secret=secret
   
   # Secondary RADIUS servers; to be used if primary one does not reply to
   # RADIUS packets. These are optional and there can be more than one secondary
   # server listed.
   #auth_server_addr=127.0.0.2
   #auth_server_port=1812
   #auth_server_shared_secret=secret2
   #
   #acct_server_addr=127.0.0.2
   #acct_server_port=1813
   #acct_server_shared_secret=secret2
   
   # Retry interval for trying to return to the primary RADIUS server (in
   # seconds). RADIUS client code will automatically try to use the next server
   # when the current server is not replying to requests. If this interval is set,
   # primary server will be retried after configured amount of time even if the
   # currently used secondary server is still working.
   #radius_retry_primary_interval=600
   
   
   # Interim accounting update interval
   # If this is set (larger than 0) and acct_server is configured, hostapd will
   # send interim accounting updates every N seconds. Note: if set, this overrides
   # possible Acct-Interim-Interval attribute in Access-Accept message. Thus, this
   # value should not be configured in hostapd.conf, if RADIUS server is used to
   # control the interim interval.
   # This value should not be less 600 (10 minutes) and must not be less than
   # 60 (1 minute).
   #radius_acct_interim_interval=600
   
   # Dynamic VLAN mode; allow RADIUS authentication server to decide which VLAN
   # is used for the stations. This information is parsed from following RADIUS
   # attributes based on RFC 3580 and RFC 2868: Tunnel-Type (value 13 = VLAN),
   # Tunnel-Medium-Type (value 6 = IEEE 802), Tunnel-Private-Group-ID (value
   # VLANID as a string). vlan_file option below must be configured if dynamic
   # VLANs are used. Optionally, the local MAC ACL list (accept_mac_file) can be
   # used to set static client MAC address to VLAN ID mapping.
   # 0 = disabled (default)
   # 1 = option; use default interface if RADIUS server does not include VLAN ID
   # 2 = required; reject authentication if RADIUS server does not include VLAN ID
   #dynamic_vlan=0
   
   # VLAN interface list for dynamic VLAN mode is read from a separate text file.
   # This list is used to map VLAN ID from the RADIUS server to a network
   # interface. Each station is bound to one interface in the same way as with
   # multiple BSSIDs or SSIDs. Each line in this text file is defining a new
   # interface and the line must include VLAN ID and interface name separated by
   # white space (space or tab).
   #vlan_file=/etc/hostapd.vlan
   
   # Interface where 802.1q tagged packets should appear when a RADIUS server is
   # used to determine which VLAN a station is on.  hostapd creates a bridge for
   # each VLAN.  Then hostapd adds a VLAN interface (associated with the interface
   # indicated by 'vlan_tagged_interface') and the appropriate wireless interface
   # to the bridge.
   #vlan_tagged_interface=eth0
   
   
   ##### RADIUS authentication server configuration ##############################
   
   # hostapd can be used as a RADIUS authentication server for other hosts. This
   # requires that the integrated EAP server is also enabled and both
   # authentication services are sharing the same configuration.
   
   # File name of the RADIUS clients configuration for the RADIUS server. If this
   # commented out, RADIUS server is disabled.
   #radius_server_clients=/etc/hostapd.radius_clients
   
   # The UDP port number for the RADIUS authentication server
   #radius_server_auth_port=1812
   
   # Use IPv6 with RADIUS server (IPv4 will also be supported using IPv6 API)
   #radius_server_ipv6=1
   
   
   ##### WPA/IEEE 802.11i configuration ##########################################
   
   # Enable WPA. Setting this variable configures the AP to require WPA (either
   # WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
   # wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
   # For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
   # RADIUS authentication server must be configured, and WPA-EAP must be included
   # in wpa_key_mgmt.
   # This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
   # and/or WPA2 (full IEEE 802.11i/RSN):
   # bit0 = WPA
   # bit1 = IEEE 802.11i/RSN (WPA2) (dot11RSNAEnabled)
   #wpa=1
   
   # WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
   # secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
   # (8..63 characters) that will be converted to PSK. This conversion uses SSID
   # so the PSK changes when ASCII passphrase is used and the SSID is changed.
   # wpa_psk (dot11RSNAConfigPSKValue)
   # wpa_passphrase (dot11RSNAConfigPSKPassPhrase)
   #wpa_psk=0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
   #wpa_passphrase=secret passphrase
   
   # Optionally, WPA PSKs can be read from a separate text file (containing list
   # of (PSK,MAC address) pairs. This allows more than one PSK to be configured.
   # Use absolute path name to make sure that the files can be read on SIGHUP
   # configuration reloads.
   #wpa_psk_file=/etc/hostapd.wpa_psk
   
   # Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
   # entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be
   # added to enable SHA256-based stronger algorithms.
   # (dot11RSNAConfigAuthenticationSuitesTable)
   #wpa_key_mgmt=WPA-PSK WPA-EAP
   
   # Set of accepted cipher suites (encryption algorithms) for pairwise keys
   # (unicast packets). This is a space separated list of algorithms:
   # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
   # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
   # Group cipher suite (encryption algorithm for broadcast and multicast frames)
   # is automatically selected based on this configuration. If only CCMP is
   # allowed as the pairwise cipher, group cipher will also be CCMP. Otherwise,
   # TKIP will be used as the group cipher.
   # (dot11RSNAConfigPairwiseCiphersTable)
   # Pairwise cipher for WPA (v1) (default: TKIP)
   #wpa_pairwise=TKIP CCMP
   # Pairwise cipher for RSN/WPA2 (default: use wpa_pairwise value)
   #rsn_pairwise=CCMP
   
   # Time interval for rekeying GTK (broadcast/multicast encryption keys) in
   # seconds. (dot11RSNAConfigGroupRekeyTime)
   #wpa_group_rekey=600
   
   # Rekey GTK when any STA that possesses the current GTK is leaving the BSS.
   # (dot11RSNAConfigGroupRekeyStrict)
   #wpa_strict_rekey=1
   
   # Time interval for rekeying GMK (master key used internally to generate GTKs
   # (in seconds).
   #wpa_gmk_rekey=86400
   
   # Maximum lifetime for PTK in seconds. This can be used to enforce rekeying of
   # PTK to mitigate some attacks against TKIP deficiencies.
   #wpa_ptk_rekey=600
   
   # Enable IEEE 802.11i/RSN/WPA2 pre-authentication. This is used to speed up
   # roaming be pre-authenticating IEEE 802.1X/EAP part of the full RSN
   # authentication and key handshake before actually associating with a new AP.
   # (dot11RSNAPreauthenticationEnabled)
   #rsn_preauth=1
   #
   # Space separated list of interfaces from which pre-authentication frames are
   # accepted (e.g., 'eth0' or 'eth0 wlan0wds0'. This list should include all
   # interface that are used for connections to other APs. This could include
   # wired interfaces and WDS links. The normal wireless data interface towards
   # associated stations (e.g., wlan0) should not be added, since
   # pre-authentication is only used with APs other than the currently associated
   # one.
   #rsn_preauth_interfaces=eth0
   
   # peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e) is
   # allowed. This is only used with RSN/WPA2.
   # 0 = disabled (default)
   # 1 = enabled
   #peerkey=1
   
   # ieee80211w: Whether management frame protection (MFP) is enabled
   # 0 = disabled (default)
   # 1 = optional
   # 2 = required
   #ieee80211w=0
   
   # Association SA Query maximum timeout (in TU = 1.024 ms; for MFP)
   # (maximum time to wait for a SA Query response)
   # dot11AssociationSAQueryMaximumTimeout, 1...4294967295
   #assoc_sa_query_max_timeout=1000
   
   # Association SA Query retry timeout (in TU = 1.024 ms; for MFP)
   # (time between two subsequent SA Query requests)
   # dot11AssociationSAQueryRetryTimeout, 1...4294967295
   #assoc_sa_query_retry_timeout=201
   
   
   # okc: Opportunistic Key Caching (aka Proactive Key Caching)
   # Allow PMK cache to be shared opportunistically among configured interfaces
   # and BSSes (i.e., all configurations within a single hostapd process).
   # 0 = disabled (default)
   # 1 = enabled
   #okc=1
   
   
   ##### IEEE 802.11r configuration ##############################################
   
   # Mobility Domain identifier (dot11FTMobilityDomainID, MDID)
   # MDID is used to indicate a group of APs (within an ESS, i.e., sharing the
   # same SSID) between which a STA can use Fast BSS Transition.
   # 2-octet identifier as a hex string.
   #mobility_domain=a1b2
   
   # PMK-R0 Key Holder identifier (dot11FTR0KeyHolderID)
   # 1 to 48 octet identifier.
   # This is configured with nas_identifier (see RADIUS client section above).
   
   # Default lifetime of the PMK-RO in minutes; range 1..65535
   # (dot11FTR0KeyLifetime)
   #r0_key_lifetime=10000
   
   # PMK-R1 Key Holder identifier (dot11FTR1KeyHolderID)
   # 6-octet identifier as a hex string.
   #r1_key_holder=000102030405
   
   # Reassociation deadline in time units (TUs / 1.024 ms; range 1000..65535)
   # (dot11FTReassociationDeadline)
   #reassociation_deadline=1000
   
   # List of R0KHs in the same Mobility Domain
   # format: <MAC address> <NAS Identifier> <128-bit key as hex string>
   # This list is used to map R0KH-ID (NAS Identifier) to a destination MAC
   # address when requesting PMK-R1 key from the R0KH that the STA used during the
   # Initial Mobility Domain Association.
   #r0kh=02:01:02:03:04:05 r0kh-1.example.com 000102030405060708090a0b0c0d0e0f
   #r0kh=02:01:02:03:04:06 r0kh-2.example.com 00112233445566778899aabbccddeeff
   # And so on.. One line per R0KH.
   
   # List of R1KHs in the same Mobility Domain
   # format: <MAC address> <R0KH-ID> <128-bit key as hex string>
   # This list is used to map R1KH-ID to a destination MAC address when sending
   # PMK-R1 key from the R0KH. This is also the list of authorized R1KHs in the MD
   # that can request PMK-R1 keys.
   #r1kh=02:01:02:03:04:05 02:11:22:33:44:55 000102030405060708090a0b0c0d0e0f
   #r1kh=02:01:02:03:04:06 02:11:22:33:44:66 00112233445566778899aabbccddeeff
   # And so on.. One line per R1KH.
   
   # Whether PMK-R1 push is enabled at R0KH
   # 0 = do not push PMK-R1 to all configured R1KHs (default)
   # 1 = push PMK-R1 to all configured R1KHs whenever a new PMK-R0 is derived
   #pmk_r1_push=1
   
   ##### Passive scanning ########################################################
   # Scan different channels every N seconds. 0 = disable passive scanning.
   #passive_scan_interval=60
   
   # Listen N usecs on each channel when doing passive scanning.
   # This value plus the time needed for changing channels should be less than
   # 32 milliseconds (i.e. 32000 usec) to avoid interruptions to normal
   # operations. Time needed for channel changing varies based on the used wlan
   # hardware.
   # default: disabled (0)
   #passive_scan_listen=10000
   
   # Passive scanning mode:
   # 0 = scan all supported modes (802.11a/b/g/Turbo) (default)
   # 1 = scan only the mode that is currently used for normal operations
   #passive_scan_mode=1
   
   # Maximum number of entries kept in AP table (either for passive scanning or
   # for detecting Overlapping Legacy BSS Condition). The oldest entry will be
   # removed when adding a new entry that would make the list grow over this
   # limit. Note! Wi-Fi certification for IEEE 802.11g requires that OLBC is
   # enabled, so this field should not be set to 0 when using IEEE 802.11g.
   # default: 255
   #ap_table_max_size=255
   
   # Number of seconds of no frames received after which entries may be deleted
   # from the AP table. Since passive scanning is not usually performed frequently
   # this should not be set to very small value. In addition, there is no
   # guarantee that every scan cycle will receive beacon frames from the
   # neighboring APs.
   # default: 60
   #ap_table_expiration_time=3600
   
   
   ##### Wi-Fi Protected Setup (WPS) #############################################
   
   # WPS state
   # 0 = WPS disabled (default)
   # 1 = WPS enabled, not configured
   # 2 = WPS enabled, configured
   #wps_state=2
   
   # AP can be configured into a locked state where new WPS Registrar are not
   # accepted, but previously authorized Registrars (including the internal one)
   # can continue to add new Enrollees.
   #ap_setup_locked=1
   
   # Universally Unique IDentifier (UUID; see RFC 4122) of the device
   # This value is used as the UUID for the internal WPS Registrar. If the AP
   # is also using UPnP, this value should be set to the device's UPnP UUID.
   # If not configured, UUID will be generated based on the local MAC address.
   #uuid=12345678-9abc-def0-1234-56789abcdef0
   
   # Note: If wpa_psk_file is set, WPS is used to generate random, per-device PSKs
   # that will be appended to the wpa_psk_file. If wpa_psk_file is not set, the
   # default PSK (wpa_psk/wpa_passphrase) will be delivered to Enrollees. Use of
   # per-device PSKs is recommended as the more secure option (i.e., make sure to
   # set wpa_psk_file when using WPS with WPA-PSK).
   
   # When an Enrollee requests access to the network with PIN method, the Enrollee
   # PIN will need to be entered for the Registrar. PIN request notifications are
   # sent to hostapd ctrl_iface monitor. In addition, they can be written to a
   # text file that could be used, e.g., to populate the AP administration UI with
   # pending PIN requests. If the following variable is set, the PIN requests will
   # be written to the configured file.
   #wps_pin_requests=/var/run/hostapd_wps_pin_requests
   
   # Device Name
   # User-friendly description of device; up to 32 octets encoded in UTF-8
   #device_name=Wireless AP
   
   # Manufacturer
   # The manufacturer of the device (up to 64 ASCII characters)
   #manufacturer=Company
   
   # Model Name
   # Model of the device (up to 32 ASCII characters)
   #model_name=WAP
   
   # Model Number
   # Additional device description (up to 32 ASCII characters)
   #model_number=123
   
   # Serial Number
   # Serial number of the device (up to 32 characters)
   #serial_number=12345
   
   # Primary Device Type
   # Used format: <categ>-<OUI>-<subcateg>
   # categ = Category as an integer value
   # OUI = OUI and type octet as a 4-octet hex-encoded value; 0050F204 for
   #       default WPS OUI
   # subcateg = OUI-specific Sub Category as an integer value
   # Examples:
   #   1-0050F204-1 (Computer / PC)
   #   1-0050F204-2 (Computer / Server)
   #   5-0050F204-1 (Storage / NAS)
   #   6-0050F204-1 (Network Infrastructure / AP)
   #device_type=6-0050F204-1
   
   # OS Version
   # 4-octet operating system version number (hex string)
   #os_version=01020300
   
   # Config Methods
   # List of the supported configuration methods
   #config_methods=label display push_button keypad
   
   # Access point PIN for initial configuration and adding Registrars
   # If not set, hostapd will not allow external WPS Registrars to control the
   # access point.
   #ap_pin=12345670
   
   # Skip building of automatic WPS credential
   # This can be used to allow the automatically generated Credential attribute to
   # be replaced with pre-configured Credential(s).
   #skip_cred_build=1
   
   # Additional Credential attribute(s)
   # This option can be used to add pre-configured Credential attributes into M8
   # message when acting as a Registrar. If skip_cred_build=1, this data will also
   # be able to override the Credential attribute that would have otherwise been
   # automatically generated based on network configuration. This configuration
   # option points to an external file that much contain the WPS Credential
   # attribute(s) as binary data.
   #extra_cred=hostapd.cred
   
   # Credential processing
   #   0 = process received credentials internally (default)
   #   1 = do not process received credentials; just pass them over ctrl_iface to
   #       external program(s)
   #   2 = process received credentials internally and pass them over ctrl_iface
   #       to external program(s)
   # Note: With wps_cred_processing=1, skip_cred_build should be set to 1 and
   # extra_cred be used to provide the Credential data for Enrollees.
   #
   # wps_cred_processing=1 will disabled automatic updates of hostapd.conf file
   # both for Credential processing and for marking AP Setup Locked based on
   # validation failures of AP PIN. An external program is responsible on updating
   # the configuration appropriately in this case.
   #wps_cred_processing=0
   
   # AP Settings Attributes for M7
   # By default, hostapd generates the AP Settings Attributes for M7 based on the
   # current configuration. It is possible to override this by providing a file
   # with pre-configured attributes. This is similar to extra_cred file format,
   # but the AP Settings attributes are not encapsulated in a Credential
   # attribute.
   #ap_settings=hostapd.ap_settings
   
   # WPS UPnP interface
   # If set, support for external Registrars is enabled.
   #upnp_iface=br0
   
   # Friendly Name (required for UPnP)
   # Short description for end use. Should be less than 64 characters.
   #friendly_name=WPS Access Point
   
   # Manufacturer URL (optional for UPnP)
   #manufacturer_url=http://www.example.com/
   
   # Model Description (recommended for UPnP)
   # Long description for end user. Should be less than 128 characters.
   #model_description=Wireless Access Point
   
   # Model URL (optional for UPnP)
   #model_url=http://www.example.com/model/
   
   # Universal Product Code (optional for UPnP)
   # 12-digit, all-numeric code that identifies the consumer package.
   #upc=123456789012
   
   ##### Multiple BSSID support ##################################################
   #
   # Above configuration is using the default interface (wlan#, or multi-SSID VLAN
   # interfaces). Other BSSIDs can be added by using separator 'bss' with
   # default interface name to be allocated for the data packets of the new BSS.
   #
   # hostapd will generate BSSID mask based on the BSSIDs that are
   # configured. hostapd will verify that dev_addr & MASK == dev_addr. If this is
   # not the case, the MAC address of the radio must be changed before starting
   # hostapd (ifconfig wlan0 hw ether <MAC addr>).
   #
   # BSSIDs are assigned in order to each BSS, unless an explicit BSSID is
   # specified using the 'bssid' parameter.
   # If an explicit BSSID is specified, it must be chosen such that it:
   # - results in a valid MASK that covers it and the dev_addr
   # - is not the same as the MAC address of the radio
   # - is not the same as any other explicitly specified BSSID
   #
   # Please note that hostapd uses some of the values configured for the first BSS
   # as the defaults for the following BSSes. However, it is recommended that all
   # BSSes include explicit configuration of all relevant configuration items.
   #
   #bss=wlan0_0
   #ssid=test2
   # most of the above items can be used here (apart from radio interface specific
   # items, like channel)
   
   #bss=wlan0_1
   #bssid=00:13:10:95:fe:0b
   # ...

Removed from v.1.1  
changed lines
  Added in v.1.2


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>