--- elwix/files/sqlite/dist/sqlite3.h 2012/10/12 08:22:47 1.2 +++ elwix/files/sqlite/dist/sqlite3.h 2017/02/13 16:52:50 1.4 @@ -23,15 +23,15 @@ ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source -** on how SQLite interfaces are suppose to operate. +** on how SQLite interfaces are supposed to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ -#ifndef _SQLITE3_H_ -#define _SQLITE3_H_ +#ifndef SQLITE3_H +#define SQLITE3_H #include /* Needed for the definition of va_list */ /* @@ -43,21 +43,34 @@ extern "C" { /* -** Add the ability to override 'extern' +** Provide the ability to override linkage features of the interface. */ #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif - #ifndef SQLITE_API # define SQLITE_API #endif +#ifndef SQLITE_CDECL +# define SQLITE_CDECL +#endif +#ifndef SQLITE_APICALL +# define SQLITE_APICALL +#endif +#ifndef SQLITE_STDCALL +# define SQLITE_STDCALL SQLITE_APICALL +#endif +#ifndef SQLITE_CALLBACK +# define SQLITE_CALLBACK +#endif +#ifndef SQLITE_SYSAPI +# define SQLITE_SYSAPI +#endif - /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications -** should not use deprecated interfaces - they are support for backwards +** should not use deprecated interfaces - they are supported for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** @@ -107,9 +120,9 @@ extern "C" { ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ -#define SQLITE_VERSION "3.7.10" -#define SQLITE_VERSION_NUMBER 3007010 -#define SQLITE_SOURCE_ID "2012-01-16 13:28:40 ebd01a8deffb5024a5d7494eef800d2366d97204" +#define SQLITE_VERSION "3.14.2" +#define SQLITE_VERSION_NUMBER 3014002 +#define SQLITE_SOURCE_ID "2016-09-12 18:50:49 29dbef4b8585f753861a36d6dd102ca634197bd6" /* ** CAPI3REF: Run-Time Library Version Numbers @@ -120,7 +133,7 @@ extern "C" { ** but are associated with the library instead of the header file. ^(Cautious ** programmers might include assert() statements in their application to ** verify that values returned by these interfaces match the macros in -** the header, and thus insure that the application is +** the header, and thus ensure that the application is ** compiled with matching library and header files. ** **
@@ -201,7 +214,7 @@ SQLITE_API const char *sqlite3_compileoption_get(int N
 ** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
 ** can be fully or partially disabled using a call to [sqlite3_config()]
 ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
-** or [SQLITE_CONFIG_MUTEX].  ^(The return value of the
+** or [SQLITE_CONFIG_SERIALIZED].  ^(The return value of the
 ** sqlite3_threadsafe() function shows only the compile-time setting of
 ** thread safety, not any run-time changes to that setting made by
 ** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
@@ -219,7 +232,8 @@ SQLITE_API int sqlite3_threadsafe(void);
 ** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
 ** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
 ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
-** is its destructor.  There are many other interfaces (such as
+** and [sqlite3_close_v2()] are its destructors.  There are many other
+** interfaces (such as
 ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
 ** [sqlite3_busy_timeout()] to name but three) that are methods on an
 ** sqlite3 object.
@@ -265,29 +279,48 @@ typedef sqlite_uint64 sqlite3_uint64;
 
 /*
 ** CAPI3REF: Closing A Database Connection
+** DESTRUCTOR: sqlite3
 **
-** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
-** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
-** successfully destroyed and all associated resources are deallocated.
+** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
+** for the [sqlite3] object.
+** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
+** the [sqlite3] object is successfully destroyed and all associated
+** resources are deallocated.
 **
-** Applications must [sqlite3_finalize | finalize] all [prepared statements]
-** and [sqlite3_blob_close | close] all [BLOB handles] associated with
-** the [sqlite3] object prior to attempting to close the object.  ^If
-** sqlite3_close() is called on a [database connection] that still has
-** outstanding [prepared statements] or [BLOB handles], then it returns
-** SQLITE_BUSY.
+** ^If the database connection is associated with unfinalized prepared
+** statements or unfinished sqlite3_backup objects then sqlite3_close()
+** will leave the database connection open and return [SQLITE_BUSY].
+** ^If sqlite3_close_v2() is called with unfinalized prepared statements
+** and/or unfinished sqlite3_backups, then the database connection becomes
+** an unusable "zombie" which will automatically be deallocated when the
+** last prepared statement is finalized or the last sqlite3_backup is
+** finished.  The sqlite3_close_v2() interface is intended for use with
+** host languages that are garbage collected, and where the order in which
+** destructors are called is arbitrary.
 **
-** ^If [sqlite3_close()] is invoked while a transaction is open,
+** Applications should [sqlite3_finalize | finalize] all [prepared statements],
+** [sqlite3_blob_close | close] all [BLOB handles], and 
+** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
+** with the [sqlite3] object prior to attempting to close the object.  ^If
+** sqlite3_close_v2() is called on a [database connection] that still has
+** outstanding [prepared statements], [BLOB handles], and/or
+** [sqlite3_backup] objects then it returns [SQLITE_OK] and the deallocation
+** of resources is deferred until all [prepared statements], [BLOB handles],
+** and [sqlite3_backup] objects are also destroyed.
+**
+** ^If an [sqlite3] object is destroyed while a transaction is open,
 ** the transaction is automatically rolled back.
 **
-** The C parameter to [sqlite3_close(C)] must be either a NULL
+** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
+** must be either a NULL
 ** pointer or an [sqlite3] object pointer obtained
 ** from [sqlite3_open()], [sqlite3_open16()], or
 ** [sqlite3_open_v2()], and not previously closed.
-** ^Calling sqlite3_close() with a NULL pointer argument is a 
-** harmless no-op.
+** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
+** argument is a harmless no-op.
 */
-SQLITE_API int sqlite3_close(sqlite3 *);
+SQLITE_API int sqlite3_close(sqlite3*);
+SQLITE_API int sqlite3_close_v2(sqlite3*);
 
 /*
 ** The type for a callback function.
@@ -298,6 +331,7 @@ typedef int (*sqlite3_callback)(void*,int,char**, char
 
 /*
 ** CAPI3REF: One-Step Query Execution Interface
+** METHOD: sqlite3
 **
 ** The sqlite3_exec() interface is a convenience wrapper around
 ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
@@ -322,7 +356,7 @@ typedef int (*sqlite3_callback)(void*,int,char**, char
 ** from [sqlite3_malloc()] and passed back through the 5th parameter.
 ** To avoid memory leaks, the application should invoke [sqlite3_free()]
 ** on error message strings returned through the 5th parameter of
-** of sqlite3_exec() after the error message string is no longer needed.
+** sqlite3_exec() after the error message string is no longer needed.
 ** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
 ** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
 ** NULL before returning.
@@ -349,9 +383,9 @@ typedef int (*sqlite3_callback)(void*,int,char**, char
 ** Restrictions:
 **
 ** 
    -**
  • The application must insure that the 1st parameter to sqlite3_exec() +**
  • The application must ensure that the 1st parameter to sqlite3_exec() ** is a valid and open [database connection]. -**
  • The application must not close [database connection] specified by +**
  • The application must not close the [database connection] specified by ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. **
  • The application must not modify the SQL statement text passed into ** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. @@ -367,16 +401,14 @@ SQLITE_API int sqlite3_exec( /* ** CAPI3REF: Result Codes -** KEYWORDS: SQLITE_OK {error code} {error codes} -** KEYWORDS: {result code} {result codes} +** KEYWORDS: {result code definitions} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicate success or failure. ** ** New error codes may be added in future versions of SQLite. ** -** See also: [SQLITE_IOERR_READ | extended result codes], -** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes]. +** See also: [extended result code definitions] */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ @@ -406,32 +438,27 @@ SQLITE_API int sqlite3_exec( #define SQLITE_FORMAT 24 /* Auxiliary database format error */ #define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ #define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */ +#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */ #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ /* end-of-error-codes */ /* ** CAPI3REF: Extended Result Codes -** KEYWORDS: {extended error code} {extended error codes} -** KEYWORDS: {extended result code} {extended result codes} +** KEYWORDS: {extended result code definitions} ** -** In its default configuration, SQLite API routines return one of 26 integer -** [SQLITE_OK | result codes]. However, experience has shown that many of +** In its default configuration, SQLite API routines return one of 30 integer +** [result codes]. However, experience has shown that many of ** these result codes are too coarse-grained. They do not provide as ** much information about problems as programmers might like. In an effort to ** address this, newer versions of SQLite (version 3.3.8 and later) include ** support for additional result codes that provide more detailed information -** about errors. The extended result codes are enabled or disabled +** about errors. These [extended result codes] are enabled or disabled ** on a per database connection basis using the -** [sqlite3_extended_result_codes()] API. -** -** Some of the available extended result codes are listed here. -** One may expect the number of extended result codes will be expand -** over time. Software that uses extended result codes should expect -** to see new result codes in future releases of SQLite. -** -** The SQLITE_OK result code will never be extended. It will always -** be exactly zero. +** [sqlite3_extended_result_codes()] API. Or, the extended code for +** the most recent error can be obtained using +** [sqlite3_extended_errcode()]. */ #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) #define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) @@ -455,12 +482,40 @@ SQLITE_API int sqlite3_exec( #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) +#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) +#define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) +#define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8)) +#define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) +#define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) +#define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) +#define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) +#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) +#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) +#define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) +#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) +#define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) +#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) +#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) +#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) +#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) +#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) +#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) +#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) +#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) +#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) +#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) +#define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) +#define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) +#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) +#define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) +#define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8)) +#define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8)) /* ** CAPI3REF: Flags For File Open Operations @@ -476,6 +531,7 @@ SQLITE_API int sqlite3_exec( #define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ #define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ #define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ #define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ @@ -495,7 +551,7 @@ SQLITE_API int sqlite3_exec( ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] -** object returns an integer which is a vector of the these +** object returns an integer which is a vector of these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] ** refers to. @@ -513,7 +569,11 @@ SQLITE_API int sqlite3_exec( ** after reboot following a crash or power loss, the only bytes in a ** file that were written at the application level might have changed ** and that adjacent bytes, even bytes within the same sector are -** guaranteed to be unchanged. +** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN +** flag indicate that a file cannot be deleted when open. The +** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on +** read-only media and cannot be changed even by processes with +** elevated privileges. */ #define SQLITE_IOCAP_ATOMIC 0x00000001 #define SQLITE_IOCAP_ATOMIC512 0x00000002 @@ -528,6 +588,7 @@ SQLITE_API int sqlite3_exec( #define SQLITE_IOCAP_SEQUENTIAL 0x00000400 #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 #define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000 +#define SQLITE_IOCAP_IMMUTABLE 0x00002000 /* ** CAPI3REF: File Locking Levels @@ -634,7 +695,7 @@ struct sqlite3_file { ** locking strategy (for example to use dot-file locks), to inquire ** about the status of a lock, or to break stale locks. The SQLite ** core reserves all opcodes less than 100 for its own use. -** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** A [file control opcodes | list of opcodes] less than 100 is available. ** Applications that define a custom xFileControl method should use opcodes ** greater than 100 to avoid conflicts. VFS implementations should ** return [SQLITE_NOTFOUND] for file control opcodes that they do not @@ -699,24 +760,31 @@ struct sqlite3_io_methods { void (*xShmBarrier)(sqlite3_file*); int (*xShmUnmap)(sqlite3_file*, int deleteFlag); /* Methods above are valid for version 2 */ + int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); + int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p); + /* Methods above are valid for version 3 */ /* Additional methods may be added in future releases */ }; /* ** CAPI3REF: Standard File Control Opcodes +** KEYWORDS: {file control opcodes} {file control opcode} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] ** interface. ** +**
      +**
    • [[SQLITE_FCNTL_LOCKSTATE]] ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This ** opcode causes the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) ** into an integer that the pArg argument points to. This capability -** is used during testing and only needs to be supported when SQLITE_TEST -** is defined. +** is used during testing and is only available when the SQLITE_TEST +** compile-time option is used. ** +**
    • [[SQLITE_FCNTL_SIZE_HINT]] ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS ** layer a hint of how large the database file will grow to be during the ** current transaction. This hint is not guaranteed to be accurate but it @@ -724,6 +792,7 @@ struct sqlite3_io_methods { ** file space based on this hint in order to help writes to the database ** file run faster. ** +**
    • [[SQLITE_FCNTL_CHUNK_SIZE]] ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS ** extends and truncates the database file in chunks of a size specified ** by the user. The fourth argument to [sqlite3_file_control()] should @@ -732,21 +801,43 @@ struct sqlite3_io_methods { ** chunks (say 1MB at a time), may reduce file-system fragmentation and ** improve performance on some systems. ** +**
    • [[SQLITE_FCNTL_FILE_POINTER]] ** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer ** to the [sqlite3_file] object associated with a particular database -** connection. See the [sqlite3_file_control()] documentation for -** additional information. +** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER]. ** -** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by -** SQLite and sent to all VFSes in place of a call to the xSync method -** when the database connection has [PRAGMA synchronous] set to OFF.)^ -** Some specialized VFSes need this signal in order to operate correctly -** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most -** VFSes do not need this signal and should silently ignore this opcode. -** Applications should not call [sqlite3_file_control()] with this -** opcode as doing so may disrupt the operation of the specialized VFSes -** that do require it. +**
    • [[SQLITE_FCNTL_JOURNAL_POINTER]] +** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer +** to the [sqlite3_file] object associated with the journal file (either +** the [rollback journal] or the [write-ahead log]) for a particular database +** connection. See also [SQLITE_FCNTL_FILE_POINTER]. ** +**
    • [[SQLITE_FCNTL_SYNC_OMITTED]] +** No longer in use. +** +**
    • [[SQLITE_FCNTL_SYNC]] +** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and +** sent to the VFS immediately before the xSync method is invoked on a +** database file descriptor. Or, if the xSync method is not invoked +** because the user has configured SQLite with +** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place +** of the xSync method. In most cases, the pointer argument passed with +** this file-control is NULL. However, if the database file is being synced +** as part of a multi-database commit, the argument points to a nul-terminated +** string containing the transactions master-journal file name. VFSes that +** do not need this signal should silently ignore this opcode. Applications +** should not call [sqlite3_file_control()] with this opcode as doing so may +** disrupt the operation of the specialized VFSes that do require it. +** +**
    • [[SQLITE_FCNTL_COMMIT_PHASETWO]] +** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite +** and sent to the VFS after a transaction has been committed immediately +** but before the database is unlocked. VFSes that do not need this signal +** should silently ignore this opcode. Applications should not call +** [sqlite3_file_control()] with this opcode as doing so may disrupt the +** operation of the specialized VFSes that do require it. +** +**
    • [[SQLITE_FCNTL_WIN32_AV_RETRY]] ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic ** retry counts and intervals for certain disk I/O operations for the ** windows [VFS] in order to provide robustness in the presence of @@ -763,8 +854,9 @@ struct sqlite3_io_methods { ** into the array entry, allowing the current retry settings to be ** interrogated. The zDbName parameter is ignored. ** +**
    • [[SQLITE_FCNTL_PERSIST_WAL]] ** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the -** persistent [WAL | Write AHead Log] setting. By default, the auxiliary +** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary ** write ahead log and shared memory files used for transaction control ** are automatically deleted when the latest connection to the database ** closes. Setting persistent WAL mode causes those files to persist after @@ -777,6 +869,7 @@ struct sqlite3_io_methods { ** WAL mode. If the integer is -1, then it is overwritten with the current ** WAL persistence setting. ** +**
    • [[SQLITE_FCNTL_POWERSAFE_OVERWRITE]] ** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the ** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting ** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the @@ -786,11 +879,13 @@ struct sqlite3_io_methods { ** mode. If the integer is -1, then it is overwritten with the current ** zero-damage mode setting. ** +**
    • [[SQLITE_FCNTL_OVERWRITE]] ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening ** a write transaction to indicate that, unless it is rolled back for some ** reason, the entire database file will be overwritten by the current ** transaction. This is used by VACUUM operations. ** +**
    • [[SQLITE_FCNTL_VFSNAME]] ** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of ** all [VFSes] in the VFS stack. The names are of all VFS shims and the ** final bottom-level VFS are written into memory obtained from @@ -801,11 +896,113 @@ struct sqlite3_io_methods { ** do anything. Callers should initialize the char* variable to a NULL ** pointer in case this file-control is not implemented. This file-control ** is intended for diagnostic use only. +** +**
    • [[SQLITE_FCNTL_VFS_POINTER]] +** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level +** [VFSes] currently in use. ^(The argument X in +** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be +** of type "[sqlite3_vfs] **". This opcodes will set *X +** to a pointer to the top-level VFS.)^ +** ^When there are multiple VFS shims in the stack, this opcode finds the +** upper-most shim only. +** +**
    • [[SQLITE_FCNTL_PRAGMA]] +** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] +** file control is sent to the open [sqlite3_file] object corresponding +** to the database file to which the pragma statement refers. ^The argument +** to the [SQLITE_FCNTL_PRAGMA] file control is an array of +** pointers to strings (char**) in which the second element of the array +** is the name of the pragma and the third element is the argument to the +** pragma or NULL if the pragma has no argument. ^The handler for an +** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element +** of the char** argument point to a string obtained from [sqlite3_mprintf()] +** or the equivalent and that string will become the result of the pragma or +** the error message if the pragma fails. ^If the +** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal +** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] +** file control returns [SQLITE_OK], then the parser assumes that the +** VFS has handled the PRAGMA itself and the parser generates a no-op +** prepared statement if result string is NULL, or that returns a copy +** of the result string if the string is non-NULL. +** ^If the [SQLITE_FCNTL_PRAGMA] file control returns +** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means +** that the VFS encountered an error while handling the [PRAGMA] and the +** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] +** file control occurs at the beginning of pragma statement analysis and so +** it is able to override built-in [PRAGMA] statements. +** +**
    • [[SQLITE_FCNTL_BUSYHANDLER]] +** ^The [SQLITE_FCNTL_BUSYHANDLER] +** file-control may be invoked by SQLite on the database file handle +** shortly after it is opened in order to provide a custom VFS with access +** to the connections busy-handler callback. The argument is of type (void **) +** - an array of two (void *) values. The first (void *) actually points +** to a function of type (int (*)(void *)). In order to invoke the connections +** busy-handler, this function should be invoked with the second (void *) in +** the array as the only argument. If it returns non-zero, then the operation +** should be retried. If it returns zero, the custom VFS should abandon the +** current operation. +** +**
    • [[SQLITE_FCNTL_TEMPFILENAME]] +** ^Application can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control +** to have SQLite generate a +** temporary filename using the same algorithm that is followed to generate +** temporary filenames for TEMP tables and other internal uses. The +** argument should be a char** which will be filled with the filename +** written into memory obtained from [sqlite3_malloc()]. The caller should +** invoke [sqlite3_free()] on the result to avoid a memory leak. +** +**
    • [[SQLITE_FCNTL_MMAP_SIZE]] +** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the +** maximum number of bytes that will be used for memory-mapped I/O. +** The argument is a pointer to a value of type sqlite3_int64 that +** is an advisory maximum number of bytes in the file to memory map. The +** pointer is overwritten with the old value. The limit is not changed if +** the value originally pointed to is negative, and so the current limit +** can be queried by passing in a pointer to a negative number. This +** file-control is used internally to implement [PRAGMA mmap_size]. +** +**
    • [[SQLITE_FCNTL_TRACE]] +** The [SQLITE_FCNTL_TRACE] file control provides advisory information +** to the VFS about what the higher layers of the SQLite stack are doing. +** This file control is used by some VFS activity tracing [shims]. +** The argument is a zero-terminated string. Higher layers in the +** SQLite stack may generate instances of this file control if +** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled. +** +**
    • [[SQLITE_FCNTL_HAS_MOVED]] +** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a +** pointer to an integer and it writes a boolean into that integer depending +** on whether or not the file has been renamed, moved, or deleted since it +** was first opened. +** +**
    • [[SQLITE_FCNTL_WIN32_SET_HANDLE]] +** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This +** opcode causes the xFileControl method to swap the file handle with the one +** pointed to by the pArg argument. This capability is used during testing +** and only needs to be supported when SQLITE_TEST is defined. +** +**
    • [[SQLITE_FCNTL_WAL_BLOCK]] +** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might +** be advantageous to block on the next WAL lock if the lock is not immediately +** available. The WAL subsystem issues this signal during rare +** circumstances in order to fix a problem with priority inversion. +** Applications should not use this file-control. +** +**
    • [[SQLITE_FCNTL_ZIPVFS]] +** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other +** VFS should return SQLITE_NOTFOUND for this opcode. +** +**
    • [[SQLITE_FCNTL_RBU]] +** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by +** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for +** this opcode. +**
    */ #define SQLITE_FCNTL_LOCKSTATE 1 -#define SQLITE_GET_LOCKPROXYFILE 2 -#define SQLITE_SET_LOCKPROXYFILE 3 -#define SQLITE_LAST_ERRNO 4 +#define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 +#define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 +#define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 @@ -815,7 +1012,27 @@ struct sqlite3_io_methods { #define SQLITE_FCNTL_OVERWRITE 11 #define SQLITE_FCNTL_VFSNAME 12 #define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 +#define SQLITE_FCNTL_PRAGMA 14 +#define SQLITE_FCNTL_BUSYHANDLER 15 +#define SQLITE_FCNTL_TEMPFILENAME 16 +#define SQLITE_FCNTL_MMAP_SIZE 18 +#define SQLITE_FCNTL_TRACE 19 +#define SQLITE_FCNTL_HAS_MOVED 20 +#define SQLITE_FCNTL_SYNC 21 +#define SQLITE_FCNTL_COMMIT_PHASETWO 22 +#define SQLITE_FCNTL_WIN32_SET_HANDLE 23 +#define SQLITE_FCNTL_WAL_BLOCK 24 +#define SQLITE_FCNTL_ZIPVFS 25 +#define SQLITE_FCNTL_RBU 26 +#define SQLITE_FCNTL_VFS_POINTER 27 +#define SQLITE_FCNTL_JOURNAL_POINTER 28 +/* deprecated names */ +#define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE +#define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE +#define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO + + /* ** CAPI3REF: Mutex Handle ** @@ -829,6 +1046,16 @@ struct sqlite3_io_methods { typedef struct sqlite3_mutex sqlite3_mutex; /* +** CAPI3REF: Loadable Extension Thunk +** +** A pointer to the opaque sqlite3_api_routines structure is passed as +** the third parameter to entry points of [loadable extensions]. This +** structure must be typedefed in order to work around compiler warnings +** on some platforms. +*/ +typedef struct sqlite3_api_routines sqlite3_api_routines; + +/* ** CAPI3REF: OS Interface Object ** ** An instance of the sqlite3_vfs object defines the interface between @@ -1021,7 +1248,7 @@ struct sqlite3_vfs { const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); /* ** The methods above are in versions 1 through 3 of the sqlite_vfs object. - ** New fields may be appended in figure versions. The iVersion + ** New fields may be appended in future versions. The iVersion ** value will increment whenever this happens. */ }; @@ -1066,7 +1293,7 @@ struct sqlite3_vfs { **
** ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as -** was given no the corresponding lock. +** was given on the corresponding lock. ** ** The xShmLock method can transition between unlocked and SHARED or ** between unlocked and EXCLUSIVE. It cannot transition between SHARED @@ -1177,9 +1404,11 @@ SQLITE_API int sqlite3_os_end(void); ** applications and so this routine is usually not necessary. It is ** provided to support rare applications with unusual needs. ** -** The sqlite3_config() interface is not threadsafe. The application -** must insure that no other SQLite interfaces are invoked by other -** threads while sqlite3_config() is running. Furthermore, sqlite3_config() +** The sqlite3_config() interface is not threadsafe. The application +** must ensure that no other SQLite interfaces are invoked by other +** threads while sqlite3_config() is running. +** +** The sqlite3_config() interface ** may only be invoked prior to library initialization using ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before @@ -1201,6 +1430,7 @@ SQLITE_API int sqlite3_config(int, ...); /* ** CAPI3REF: Configure database connections +** METHOD: sqlite3 ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to @@ -1259,7 +1489,7 @@ SQLITE_API int sqlite3_db_config(sqlite3*, int op, ... ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** -** The xInit method initializes the memory allocator. (For example, +** The xInit method initializes the memory allocator. For example, ** it might allocate any require mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired @@ -1349,31 +1579,33 @@ struct sqlite3_mem_methods { ** SQLITE_CONFIG_SERIALIZED configuration option. ** ** [[SQLITE_CONFIG_MALLOC]]
SQLITE_CONFIG_MALLOC
-**
^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mem_methods] structure. The argument specifies +**
^(The SQLITE_CONFIG_MALLOC option takes a single argument which is +** a pointer to an instance of the [sqlite3_mem_methods] structure. +** The argument specifies ** alternative low-level memory allocation routines to be used in place of ** the memory allocation routines built into SQLite.)^ ^SQLite makes ** its own private copy of the content of the [sqlite3_mem_methods] structure ** before the [sqlite3_config()] call returns.
** ** [[SQLITE_CONFIG_GETMALLOC]]
SQLITE_CONFIG_GETMALLOC
-**
^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods] +**
^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which +** is a pointer to an instance of the [sqlite3_mem_methods] structure. +** The [sqlite3_mem_methods] ** structure is filled with the currently defined memory allocation routines.)^ ** This option can be used to overload the default memory allocation ** routines with a wrapper that simulations memory allocation failure or ** tracks memory usage, for example.
** ** [[SQLITE_CONFIG_MEMSTATUS]]
SQLITE_CONFIG_MEMSTATUS
-**
^This option takes single argument of type int, interpreted as a -** boolean, which enables or disables the collection of memory allocation -** statistics. ^(When memory allocation statistics are disabled, the -** following SQLite interfaces become non-operational: +**
^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int, +** interpreted as a boolean, which enables or disables the collection of +** memory allocation statistics. ^(When memory allocation statistics are +** disabled, the following SQLite interfaces become non-operational: **
    **
  • [sqlite3_memory_used()] **
  • [sqlite3_memory_highwater()] **
  • [sqlite3_soft_heap_limit64()] -**
  • [sqlite3_status()] +**
  • [sqlite3_status64()] **
)^ ** ^Memory allocation statistics are enabled by default unless SQLite is ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory @@ -1381,53 +1613,72 @@ struct sqlite3_mem_methods { **
** ** [[SQLITE_CONFIG_SCRATCH]]
SQLITE_CONFIG_SCRATCH
-**
^This option specifies a static memory buffer that SQLite can use for -** scratch memory. There are three arguments: A pointer an 8-byte +**
^The SQLITE_CONFIG_SCRATCH option specifies a static memory buffer +** that SQLite can use for scratch memory. ^(There are three arguments +** to SQLITE_CONFIG_SCRATCH: A pointer an 8-byte ** aligned memory buffer from which the scratch allocations will be ** drawn, the size of each scratch allocation (sz), -** and the maximum number of scratch allocations (N). The sz -** argument must be a multiple of 16. +** and the maximum number of scratch allocations (N).)^ ** The first argument must be a pointer to an 8-byte aligned buffer ** of at least sz*N bytes of memory. -** ^SQLite will use no more than two scratch buffers per thread. So -** N should be set to twice the expected maximum number of threads. -** ^SQLite will never require a scratch buffer that is more than 6 -** times the database page size. ^If SQLite needs needs additional +** ^SQLite will not use more than one scratch buffers per thread. +** ^SQLite will never request a scratch buffer that is more than 6 +** times the database page size. +** ^If SQLite needs needs additional ** scratch memory beyond what is provided by this configuration option, then -** [sqlite3_malloc()] will be used to obtain the memory needed.
+** [sqlite3_malloc()] will be used to obtain the memory needed.

+** ^When the application provides any amount of scratch memory using +** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large +** [sqlite3_malloc|heap allocations]. +** This can help [Robson proof|prevent memory allocation failures] due to heap +** fragmentation in low-memory embedded systems. +** ** ** [[SQLITE_CONFIG_PAGECACHE]]

SQLITE_CONFIG_PAGECACHE
-**
^This option specifies a static memory buffer that SQLite can use for -** the database page cache with the default page cache implementation. -** This configuration should not be used if an application-define page -** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option. -** There are three arguments to this option: A pointer to 8-byte aligned -** memory, the size of each page buffer (sz), and the number of pages (N). +**
^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool +** that SQLite can use for the database page cache with the default page +** cache implementation. +** This configuration option is a no-op if an application-define page +** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]. +** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to +** 8-byte aligned memory (pMem), the size of each page cache line (sz), +** and the number of cache lines (N). ** The sz argument should be the size of the largest database page -** (a power of two between 512 and 32768) plus a little extra for each -** page header. ^The page header size is 20 to 40 bytes depending on -** the host architecture. ^It is harmless, apart from the wasted memory, -** to make sz a little too large. The first -** argument should point to an allocation of at least sz*N bytes of memory. -** ^SQLite will use the memory provided by the first argument to satisfy its -** memory needs for the first N pages that it adds to cache. ^If additional -** page cache memory is needed beyond what is provided by this option, then -** SQLite goes to [sqlite3_malloc()] for the additional storage space. -** The pointer in the first argument must -** be aligned to an 8-byte boundary or subsequent behavior of SQLite -** will be undefined.
+** (a power of two between 512 and 65536) plus some extra bytes for each +** page header. ^The number of extra bytes needed by the page header +** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ]. +** ^It is harmless, apart from the wasted memory, +** for the sz parameter to be larger than necessary. The pMem +** argument must be either a NULL pointer or a pointer to an 8-byte +** aligned block of memory of at least sz*N bytes, otherwise +** subsequent behavior is undefined. +** ^When pMem is not NULL, SQLite will strive to use the memory provided +** to satisfy page cache needs, falling back to [sqlite3_malloc()] if +** a page cache line is larger than sz bytes or if all of the pMem buffer +** is exhausted. +** ^If pMem is NULL and N is non-zero, then each database connection +** does an initial bulk allocation for page cache memory +** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or +** of -1024*N bytes if N is negative, . ^If additional +** page cache memory is needed beyond what is provided by the initial +** allocation, then SQLite goes to [sqlite3_malloc()] separately for each +** additional cache line. ** ** [[SQLITE_CONFIG_HEAP]]
SQLITE_CONFIG_HEAP
-**
^This option specifies a static memory buffer that SQLite will use -** for all of its dynamic memory allocation needs beyond those provided -** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. -** There are three arguments: An 8-byte aligned pointer to the memory, +**
^The SQLITE_CONFIG_HEAP option specifies a static memory buffer +** that SQLite will use for all of its dynamic memory allocation needs +** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and +** [SQLITE_CONFIG_PAGECACHE]. +** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled +** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns +** [SQLITE_ERROR] if invoked otherwise. +** ^There are three arguments to SQLITE_CONFIG_HEAP: +** An 8-byte aligned pointer to the memory, ** the number of bytes in the memory buffer, and the minimum allocation size. ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the -** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or -** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory +** memory pointer is not NULL then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte ** boundary or subsequent behavior of SQLite will be undefined. @@ -1435,11 +1686,11 @@ struct sqlite3_mem_methods { ** for the minimum allocation size are 2**5 through 2**8.
** ** [[SQLITE_CONFIG_MUTEX]]
SQLITE_CONFIG_MUTEX
-**
^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mutex_methods] structure. The argument specifies -** alternative low-level mutex routines to be used in place -** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the -** content of the [sqlite3_mutex_methods] structure before the call to +**
^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a +** pointer to an instance of the [sqlite3_mutex_methods] structure. +** The argument specifies alternative low-level mutex routines to be used +** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of +** the content of the [sqlite3_mutex_methods] structure before the call to ** [sqlite3_config()] returns. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to @@ -1447,8 +1698,8 @@ struct sqlite3_mem_methods { ** return [SQLITE_ERROR].
** ** [[SQLITE_CONFIG_GETMUTEX]]
SQLITE_CONFIG_GETMUTEX
-**
^(This option takes a single argument which is a pointer to an -** instance of the [sqlite3_mutex_methods] structure. The +**
^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which +** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The ** [sqlite3_mutex_methods] ** structure is filled with the currently defined mutex routines.)^ ** This option can be used to overload the default mutex allocation @@ -1460,28 +1711,30 @@ struct sqlite3_mem_methods { ** return [SQLITE_ERROR].
** ** [[SQLITE_CONFIG_LOOKASIDE]]
SQLITE_CONFIG_LOOKASIDE
-**
^(This option takes two arguments that determine the default -** memory allocation for the lookaside memory allocator on each -** [database connection]. The first argument is the +**
^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine +** the default size of lookaside memory on each [database connection]. +** The first argument is the ** size of each lookaside buffer slot and the second is the number of -** slots allocated to each database connection.)^ ^(This option sets the -** default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] -** verb to [sqlite3_db_config()] can be used to change the lookaside +** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE +** sets the default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] +** option to [sqlite3_db_config()] can be used to change the lookaside ** configuration on individual connections.)^
** ** [[SQLITE_CONFIG_PCACHE2]]
SQLITE_CONFIG_PCACHE2
-**
^(This option takes a single argument which is a pointer to -** an [sqlite3_pcache_methods2] object. This object specifies the interface -** to a custom page cache implementation.)^ ^SQLite makes a copy of the -** object and uses it for page cache memory allocations.
+**
^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is +** a pointer to an [sqlite3_pcache_methods2] object. This object specifies +** the interface to a custom page cache implementation.)^ +** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.
** ** [[SQLITE_CONFIG_GETPCACHE2]]
SQLITE_CONFIG_GETPCACHE2
-**
^(This option takes a single argument which is a pointer to an -** [sqlite3_pcache_methods2] object. SQLite copies of the current -** page cache implementation into that object.)^
+**
^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which +** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of +** the current page cache implementation into that object.)^
** ** [[SQLITE_CONFIG_LOG]]
SQLITE_CONFIG_LOG
-**
^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a +**
The SQLITE_CONFIG_LOG option is used to configure the SQLite +** global [error log]. +** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a ** function with a call signature of void(*)(void*,int,const char*), ** and a pointer to void. ^If the function pointer is not NULL, it is ** invoked by [sqlite3_log()] to process each logging event. ^If the @@ -1499,22 +1752,108 @@ struct sqlite3_mem_methods { ** function must be threadsafe.
** ** [[SQLITE_CONFIG_URI]]
SQLITE_CONFIG_URI -**
This option takes a single argument of type int. If non-zero, then -** URI handling is globally enabled. If the parameter is zero, then URI handling -** is globally disabled. If URI handling is globally enabled, all filenames -** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or +**
^(The SQLITE_CONFIG_URI option takes a single argument of type int. +** If non-zero, then URI handling is globally enabled. If the parameter is zero, +** then URI handling is globally disabled.)^ ^If URI handling is globally +** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], +** [sqlite3_open16()] or ** specified as part of [ATTACH] commands are interpreted as URIs, regardless ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database -** connection is opened. If it is globally disabled, filenames are +** connection is opened. ^If it is globally disabled, filenames are ** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the -** database connection is opened. By default, URI handling is globally +** database connection is opened. ^(By default, URI handling is globally ** disabled. The default value may be changed by compiling with the -** [SQLITE_USE_URI] symbol defined. +** [SQLITE_USE_URI] symbol defined.)^ ** +** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]]
SQLITE_CONFIG_COVERING_INDEX_SCAN +**
^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer +** argument which is interpreted as a boolean in order to enable or disable +** the use of covering indices for full table scans in the query optimizer. +** ^The default setting is determined +** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on" +** if that compile-time option is omitted. +** The ability to disable the use of covering indices for full table scans +** is because some incorrectly coded legacy applications might malfunction +** when the optimization is enabled. Providing the ability to +** disable the optimization allows the older, buggy application code to work +** without change even with newer versions of SQLite. +** ** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]] -**
SQLITE_CONFIG_PCACHE and SQLITE_CONFNIG_GETPCACHE +**
SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE **
These options are obsolete and should not be used by new code. ** They are retained for backwards compatibility but are now no-ops. +**
+** +** [[SQLITE_CONFIG_SQLLOG]] +**
SQLITE_CONFIG_SQLLOG +**
This option is only available if sqlite is compiled with the +** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should +** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int). +** The second should be of type (void*). The callback is invoked by the library +** in three separate circumstances, identified by the value passed as the +** fourth parameter. If the fourth parameter is 0, then the database connection +** passed as the second argument has just been opened. The third argument +** points to a buffer containing the name of the main database file. If the +** fourth parameter is 1, then the SQL statement that the third parameter +** points to has just been executed. Or, if the fourth parameter is 2, then +** the connection being passed as the second parameter is being closed. The +** third parameter is passed NULL In this case. An example of using this +** configuration option can be seen in the "test_sqllog.c" source file in +** the canonical SQLite source tree.
+** +** [[SQLITE_CONFIG_MMAP_SIZE]] +**
SQLITE_CONFIG_MMAP_SIZE +**
^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values +** that are the default mmap size limit (the default setting for +** [PRAGMA mmap_size]) and the maximum allowed mmap size limit. +** ^The default setting can be overridden by each database connection using +** either the [PRAGMA mmap_size] command, or by using the +** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size +** will be silently truncated if necessary so that it does not exceed the +** compile-time maximum mmap size set by the +** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ +** ^If either argument to this option is negative, then that argument is +** changed to its compile-time default. +** +** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] +**
SQLITE_CONFIG_WIN32_HEAPSIZE +**
^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is +** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro +** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value +** that specifies the maximum size of the created heap. +** +** [[SQLITE_CONFIG_PCACHE_HDRSZ]] +**
SQLITE_CONFIG_PCACHE_HDRSZ +**
^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which +** is a pointer to an integer and writes into that integer the number of extra +** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. +** The amount of extra space required can change depending on the compiler, +** target platform, and SQLite version. +** +** [[SQLITE_CONFIG_PMASZ]] +**
SQLITE_CONFIG_PMASZ +**
^The SQLITE_CONFIG_PMASZ option takes a single parameter which +** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded +** sorter to that integer. The default minimum PMA Size is set by the +** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched +** to help with sort operations when multithreaded sorting +** is enabled (using the [PRAGMA threads] command) and the amount of content +** to be sorted exceeds the page size times the minimum of the +** [PRAGMA cache_size] setting and this value. +** +** [[SQLITE_CONFIG_STMTJRNL_SPILL]] +**
SQLITE_CONFIG_STMTJRNL_SPILL +**
^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which +** becomes the [statement journal] spill-to-disk threshold. +** [Statement journals] are held in memory until their size (in bytes) +** exceeds this threshold, at which point they are written to disk. +** Or if the threshold is -1, statement journals are always held +** exclusively in memory. +** Since many statement journals never become large, setting the spill +** threshold to a value such as 64KiB can greatly reduce the amount of +** I/O required to support statement rollback. +** The default value for this setting is controlled by the +** [SQLITE_STMTJRNL_SPILL] compile-time option. ** */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ @@ -1536,6 +1875,13 @@ struct sqlite3_mem_methods { #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ +#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ +#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ +#define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ +#define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ +#define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */ +#define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */ +#define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */ /* ** CAPI3REF: Database Connection Configuration Options @@ -1593,15 +1939,48 @@ struct sqlite3_mem_methods { ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back.
** +**
SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER
+**
^This option is used to enable or disable the two-argument +** version of the [fts3_tokenizer()] function which is part of the +** [FTS3] full-text search engine extension. +** There should be two additional arguments. +** The first argument is an integer which is 0 to disable fts3_tokenizer() or +** positive to enable fts3_tokenizer() or negative to leave the setting +** unchanged. +** The second parameter is a pointer to an integer into which +** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled +** following this call. The second parameter may be a NULL pointer, in +** which case the new setting is not reported back.
+** +**
SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION
+**
^This option is used to enable or disable the [sqlite3_load_extension()] +** interface independently of the [load_extension()] SQL function. +** The [sqlite3_enable_load_extension()] API enables or disables both the +** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. +** There should be two additional arguments. +** When the first argument to this interface is 1, then only the C-API is +** enabled and the SQL function remains disabled. If the first argument to +** this interface is 0, then both the C-API and the SQL function are disabled. +** If the first argument is -1, then no changes are made to state of either the +** C-API or the SQL function. +** The second parameter is a pointer to an integer into which +** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface +** is disabled or enabled following this call. The second parameter may +** be a NULL pointer, in which case the new setting is not reported back. +**
+** ** */ -#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ -#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ -#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ +#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ +#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ +#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ +#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ +#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes +** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result @@ -1611,20 +1990,23 @@ SQLITE_API int sqlite3_extended_result_codes(sqlite3*, /* ** CAPI3REF: Last Insert Rowid +** METHOD: sqlite3 ** -** ^Each entry in an SQLite table has a unique 64-bit signed +** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables) +** has a unique 64-bit signed ** integer key called the [ROWID | "rowid"]. ^The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those ** names are not also used by explicitly declared columns. ^If ** the table has a column of type [INTEGER PRIMARY KEY] then that column ** is another alias for the rowid. ** -** ^This routine returns the [rowid] of the most recent -** successful [INSERT] into the database from the [database connection] -** in the first argument. ^As of SQLite version 3.7.7, this routines -** records the last insert rowid of both ordinary tables and [virtual tables]. -** ^If no successful [INSERT]s -** have ever occurred on that database connection, zero is returned. +** ^The sqlite3_last_insert_rowid(D) interface returns the [rowid] of the +** most recent successful [INSERT] into a rowid table or [virtual table] +** on database connection D. +** ^Inserts into [WITHOUT ROWID] tables are not recorded. +** ^If no successful [INSERT]s into rowid tables +** have ever occurred on the database connection D, +** then sqlite3_last_insert_rowid(D) returns zero. ** ** ^(If an [INSERT] occurs within a trigger or within a [virtual table] ** method, then this routine will return the [rowid] of the inserted @@ -1660,49 +2042,48 @@ SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sql /* ** CAPI3REF: Count The Number Of Rows Modified +** METHOD: sqlite3 ** -** ^This function returns the number of database rows that were changed -** or inserted or deleted by the most recently completed SQL statement -** on the [database connection] specified by the first parameter. -** ^(Only changes that are directly specified by the [INSERT], [UPDATE], -** or [DELETE] statement are counted. Auxiliary changes caused by -** triggers or [foreign key actions] are not counted.)^ Use the -** [sqlite3_total_changes()] function to find the total number of changes -** including changes caused by triggers and foreign key actions. +** ^This function returns the number of rows modified, inserted or +** deleted by the most recently completed INSERT, UPDATE or DELETE +** statement on the database connection specified by the only parameter. +** ^Executing any other type of SQL statement does not modify the value +** returned by this function. ** -** ^Changes to a view that are simulated by an [INSTEAD OF trigger] -** are not counted. Only real table changes are counted. +** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are +** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], +** [foreign key actions] or [REPLACE] constraint resolution are not counted. +** +** Changes to a view that are intercepted by +** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value +** returned by sqlite3_changes() immediately after an INSERT, UPDATE or +** DELETE statement run on a view is always zero. Only changes made to real +** tables are counted. ** -** ^(A "row change" is a change to a single row of a single table -** caused by an INSERT, DELETE, or UPDATE statement. Rows that -** are changed as side effects of [REPLACE] constraint resolution, -** rollback, ABORT processing, [DROP TABLE], or by any other -** mechanisms do not count as direct row changes.)^ +** Things are more complicated if the sqlite3_changes() function is +** executed while a trigger program is running. This may happen if the +** program uses the [changes() SQL function], or if some other callback +** function invokes sqlite3_changes() directly. Essentially: +** +**
    +**
  • ^(Before entering a trigger program the value returned by +** sqlite3_changes() function is saved. After the trigger program +** has finished, the original value is restored.)^ +** +**
  • ^(Within a trigger program each INSERT, UPDATE and DELETE +** statement sets the value returned by sqlite3_changes() +** upon completion as normal. Of course, this value will not include +** any changes performed by sub-triggers, as the sqlite3_changes() +** value will be saved and restored after each sub-trigger has run.)^ +**
+** +** ^This means that if the changes() SQL function (or similar) is used +** by the first INSERT, UPDATE or DELETE statement within a trigger, it +** returns the value as set when the calling statement began executing. +** ^If it is used by the second or subsequent such statement within a trigger +** program, the value returned reflects the number of rows modified by the +** previous INSERT, UPDATE or DELETE statement within the same trigger. ** -** A "trigger context" is a scope of execution that begins and -** ends with the script of a [CREATE TRIGGER | trigger]. -** Most SQL statements are -** evaluated outside of any trigger. This is the "top level" -** trigger context. If a trigger fires from the top level, a -** new trigger context is entered for the duration of that one -** trigger. Subtriggers create subcontexts for their duration. -** -** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does -** not create a new trigger context. -** -** ^This function returns the number of direct row changes in the -** most recent INSERT, UPDATE, or DELETE statement within the same -** trigger context. -** -** ^Thus, when called from the top level, this function returns the -** number of changes in the most recent INSERT, UPDATE, or DELETE -** that also occurred at the top level. ^(Within the body of a trigger, -** the sqlite3_changes() interface can be called to find the number of -** changes in the most recently completed INSERT, UPDATE, or DELETE -** statement within the body of the same trigger. -** However, the number returned does not include changes -** caused by subtriggers since those have their own context.)^ -** ** See also the [sqlite3_total_changes()] interface, the ** [count_changes pragma], and the [changes() SQL function]. ** @@ -1714,21 +2095,19 @@ SQLITE_API int sqlite3_changes(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified +** METHOD: sqlite3 ** -** ^This function returns the number of row changes caused by [INSERT], -** [UPDATE] or [DELETE] statements since the [database connection] was opened. -** ^(The count returned by sqlite3_total_changes() includes all changes -** from all [CREATE TRIGGER | trigger] contexts and changes made by -** [foreign key actions]. However, -** the count does not include changes used to implement [REPLACE] constraints, -** do rollbacks or ABORT processing, or [DROP TABLE] processing. The -** count does not include rows of views that fire an [INSTEAD OF trigger], -** though if the INSTEAD OF trigger makes changes of its own, those changes -** are counted.)^ -** ^The sqlite3_total_changes() function counts the changes as soon as -** the statement that makes them is completed (when the statement handle -** is passed to [sqlite3_reset()] or [sqlite3_finalize()]). -** +** ^This function returns the total number of rows inserted, modified or +** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed +** since the database connection was opened, including those executed as +** part of trigger programs. ^Executing any other type of SQL statement +** does not affect the value returned by sqlite3_total_changes(). +** +** ^Changes made as part of [foreign key actions] are included in the +** count, but those made as part of REPLACE constraint resolution are +** not. ^Changes to a view that are intercepted by INSTEAD OF triggers +** are not counted. +** ** See also the [sqlite3_changes()] interface, the ** [count_changes pragma], and the [total_changes() SQL function]. ** @@ -1740,6 +2119,7 @@ SQLITE_API int sqlite3_total_changes(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query +** METHOD: sqlite3 ** ** ^This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically @@ -1815,28 +2195,36 @@ SQLITE_API int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors +** KEYWORDS: {busy-handler callback} {busy handler} +** METHOD: sqlite3 ** -** ^This routine sets a callback function that might be invoked whenever -** an attempt is made to open a database table that another thread -** or process has locked. +** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X +** that might be invoked with argument P whenever +** an attempt is made to access a database table associated with +** [database connection] D when another thread +** or process has the table locked. +** The sqlite3_busy_handler() interface is used to implement +** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout]. ** -** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] +** ^If the busy callback is NULL, then [SQLITE_BUSY] ** is returned immediately upon encountering the lock. ^If the busy callback ** is not NULL, then the callback might be invoked with two arguments. ** ** ^The first argument to the busy handler is a copy of the void* pointer which ** is the third argument to sqlite3_busy_handler(). ^The second argument to ** the busy handler callback is the number of times that the busy handler has -** been invoked for this locking event. ^If the +** been invoked previously for the same locking event. ^If the ** busy callback returns 0, then no additional attempts are made to -** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** access the database and [SQLITE_BUSY] is returned +** to the application. ** ^If the callback returns non-zero, then another attempt -** is made to open the database for reading and the cycle repeats. +** is made to access the database and the cycle repeats. ** ** The presence of a busy handler does not guarantee that it will be invoked ** when there is lock contention. ^If SQLite determines that invoking the busy ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] -** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler. +** to the application instead of invoking the +** busy handler. ** Consider a scenario where one process is holding a read lock that ** it is trying to promote to a reserved lock and ** a second process is holding a reserved lock that it is trying @@ -1850,57 +2238,48 @@ SQLITE_API int sqlite3_complete16(const void *sql); ** ** ^The default busy callback is NULL. ** -** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] -** when SQLite is in the middle of a large transaction where all the -** changes will not fit into the in-memory cache. SQLite will -** already hold a RESERVED lock on the database file, but it needs -** to promote this lock to EXCLUSIVE so that it can spill cache -** pages into the database file without harm to concurrent -** readers. ^If it is unable to promote the lock, then the in-memory -** cache will be left in an inconsistent state and so the error -** code is promoted from the relatively benign [SQLITE_BUSY] to -** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion -** forces an automatic rollback of the changes. See the -** -** CorruptionFollowingBusyError wiki page for a discussion of why -** this is important. -** ** ^(There can only be a single busy handler defined for each ** [database connection]. Setting a new busy handler clears any ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] -** will also set or clear the busy handler. +** or evaluating [PRAGMA busy_timeout=N] will change the +** busy handler and thus clear any previously set busy handler. ** ** The busy callback should not take any actions which modify the -** database connection that invoked the busy handler. Any such actions +** database connection that invoked the busy handler. In other words, +** the busy handler is not reentrant. Any such actions ** result in undefined behavior. ** ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ -SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); +SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*); /* ** CAPI3REF: Set A Busy Timeout +** METHOD: sqlite3 ** ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps ** for a specified amount of time when a table is locked. ^The handler ** will sleep multiple times until at least "ms" milliseconds of sleeping ** have accumulated. ^After at least "ms" milliseconds of sleeping, ** the handler returns 0 which causes [sqlite3_step()] to return -** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** [SQLITE_BUSY]. ** ** ^Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** ** ^(There can only be a single busy handler for a particular -** [database connection] any any given moment. If another busy handler +** [database connection] at any given moment. If another busy handler ** was defined (using [sqlite3_busy_handler()]) prior to calling ** this routine, that other busy handler is cleared.)^ +** +** See also: [PRAGMA busy_timeout] */ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); /* ** CAPI3REF: Convenience Routines For Running Queries +** METHOD: sqlite3 ** ** This is a legacy interface that is preserved for backwards compatibility. ** Use of this interface is not recommended. @@ -1986,6 +2365,10 @@ SQLITE_API void sqlite3_free_table(char **result); ** ** These routines are work-alikes of the "printf()" family of functions ** from the standard C library. +** These routines understand most of the common K&R formatting options, +** plus some additional non-standard formats, detailed below. +** Note that some of the more obscure formatting options from recent +** C-library standards are omitted from this implementation. ** ** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc()]. @@ -2018,7 +2401,7 @@ SQLITE_API void sqlite3_free_table(char **result); ** These routines all implement some additional formatting ** options that are useful for constructing SQL statements. ** All of the usual printf() formatting options apply. In addition, there -** is are "%q", "%Q", and "%z" options. +** is are "%q", "%Q", "%w" and "%z" options. ** ** ^(The %q option works like %s in that it substitutes a nul-terminated ** string from the argument list. But %q also doubles every '\'' character. @@ -2071,6 +2454,12 @@ SQLITE_API void sqlite3_free_table(char **result); ** The code above will render a correct SQL statement in the zSQL ** variable even if the zText variable is a NULL pointer. ** +** ^(The "%w" formatting option is like "%q" except that it expects to +** be contained within double-quotes instead of single quotes, and it +** escapes the double-quote character instead of the single-quote +** character.)^ The "%w" formatting option is intended for safely inserting +** table and column names into a constructed SQL statement. +** ** ^(The "%z" formatting option works like "%s" but with the ** addition that after the string has been read and copied into ** the result, [sqlite3_free()] is called on the input string.)^ @@ -2095,6 +2484,10 @@ SQLITE_API char *sqlite3_vsnprintf(int,char*,const cha ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns ** a NULL pointer. ** +** ^The sqlite3_malloc64(N) routine works just like +** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead +** of a signed 32-bit integer. +** ** ^Calling sqlite3_free() with a pointer previously returned ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so ** that it might be reused. ^The sqlite3_free() routine is @@ -2106,24 +2499,38 @@ SQLITE_API char *sqlite3_vsnprintf(int,char*,const cha ** might result if sqlite3_free() is called with a non-NULL pointer that ** was not obtained from sqlite3_malloc() or sqlite3_realloc(). ** -** ^(The sqlite3_realloc() interface attempts to resize a -** prior memory allocation to be at least N bytes, where N is the -** second parameter. The memory allocation to be resized is the first -** parameter.)^ ^ If the first parameter to sqlite3_realloc() +** ^The sqlite3_realloc(X,N) interface attempts to resize a +** prior memory allocation X to be at least N bytes. +** ^If the X parameter to sqlite3_realloc(X,N) ** is a NULL pointer then its behavior is identical to calling -** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). -** ^If the second parameter to sqlite3_realloc() is zero or +** sqlite3_malloc(N). +** ^If the N parameter to sqlite3_realloc(X,N) is zero or ** negative then the behavior is exactly the same as calling -** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). -** ^sqlite3_realloc() returns a pointer to a memory allocation -** of at least N bytes in size or NULL if sufficient memory is unavailable. +** sqlite3_free(X). +** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation +** of at least N bytes in size or NULL if insufficient memory is available. ** ^If M is the size of the prior allocation, then min(N,M) bytes ** of the prior allocation are copied into the beginning of buffer returned -** by sqlite3_realloc() and the prior allocation is freed. -** ^If sqlite3_realloc() returns NULL, then the prior allocation -** is not freed. +** by sqlite3_realloc(X,N) and the prior allocation is freed. +** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the +** prior allocation is not freed. ** -** ^The memory returned by sqlite3_malloc() and sqlite3_realloc() +** ^The sqlite3_realloc64(X,N) interfaces works the same as +** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead +** of a 32-bit signed integer. +** +** ^If X is a memory allocation previously obtained from sqlite3_malloc(), +** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then +** sqlite3_msize(X) returns the size of that memory allocation in bytes. +** ^The value returned by sqlite3_msize(X) might be larger than the number +** of bytes requested when X was allocated. ^If X is a NULL pointer then +** sqlite3_msize(X) returns zero. If X points to something that is not +** the beginning of memory allocation, or if it points to a formerly +** valid memory allocation that has now been freed, then the behavior +** of sqlite3_msize(X) is undefined and possibly harmful. +** +** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(), +** sqlite3_malloc64(), and sqlite3_realloc64() ** is always aligned to at least an 8 byte boundary, or to a ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time ** option is used. @@ -2133,12 +2540,12 @@ SQLITE_API char *sqlite3_vsnprintf(int,char*,const cha ** implementation of these routines to be omitted. That capability ** is no longer provided. Only built-in memory allocators can be used. ** -** The Windows OS interface layer calls +** Prior to SQLite version 3.7.10, the Windows OS interface layer called ** the system malloc() and free() directly when converting ** filenames between the UTF-8 encoding used by SQLite ** and whatever filename encoding is used by the particular Windows -** installation. Memory allocation errors are detected, but -** they are reported back as [SQLITE_CANTOPEN] or +** installation. Memory allocation errors were detected, but +** they were reported back as [SQLITE_CANTOPEN] or ** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. ** ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] @@ -2151,8 +2558,11 @@ SQLITE_API char *sqlite3_vsnprintf(int,char*,const cha ** [sqlite3_free()] or [sqlite3_realloc()]. */ SQLITE_API void *sqlite3_malloc(int); +SQLITE_API void *sqlite3_malloc64(sqlite3_uint64); SQLITE_API void *sqlite3_realloc(void*, int); +SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64); SQLITE_API void sqlite3_free(void*); +SQLITE_API sqlite3_uint64 sqlite3_msize(void*); /* ** CAPI3REF: Memory Allocator Statistics @@ -2190,11 +2600,14 @@ SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int ** applications to access the same PRNG for other purposes. ** ** ^A call to this routine stores N bytes of randomness into buffer P. +** ^The P parameter can be a NULL pointer. ** -** ^The first time this routine is invoked (either internally or by -** the application) the PRNG is seeded using randomness obtained -** from the xRandomness method of the default [sqlite3_vfs] object. -** ^On all subsequent invocations, the pseudo-randomness is generated +** ^If this routine has not been previously called or if the previous +** call had N less than one or a NULL pointer for P, then the PRNG is +** seeded using randomness obtained from the xRandomness method of +** the default [sqlite3_vfs] object. +** ^If the previous call to this routine had an N of 1 or more and a +** non-NULL P then the pseudo-randomness is generated ** internally and without recourse to the [sqlite3_vfs] xRandomness ** method. */ @@ -2202,6 +2615,7 @@ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks +** METHOD: sqlite3 ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. @@ -2295,8 +2709,8 @@ SQLITE_API int sqlite3_set_authorizer( ** [sqlite3_set_authorizer | authorizer documentation] for additional ** information. ** -** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code] -** from the [sqlite3_vtab_on_conflict()] interface. +** Note that SQLITE_IGNORE is also used as a [conflict resolution mode] +** returned from the [sqlite3_vtab_on_conflict()] interface. */ #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ @@ -2354,10 +2768,15 @@ SQLITE_API int sqlite3_set_authorizer( #define SQLITE_FUNCTION 31 /* NULL Function Name */ #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ #define SQLITE_COPY 0 /* No longer used */ +#define SQLITE_RECURSIVE 33 /* NULL NULL */ /* ** CAPI3REF: Tracing And Profiling Functions +** METHOD: sqlite3 ** +** These routines are deprecated. Use the [sqlite3_trace_v2()] interface +** instead of the routines described here. +** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** @@ -2369,6 +2788,9 @@ SQLITE_API int sqlite3_set_authorizer( ** as each triggered subprogram is entered. The callbacks for triggers ** contain a UTF-8 SQL comment that identifies the trigger.)^ ** +** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit +** the length of [bound parameter] expansion in the output of sqlite3_trace(). +** ** ^The callback function registered by sqlite3_profile() is invoked ** as each SQL statement finishes. ^The profile callback contains ** the original statement text and an estimate of wall-clock time @@ -2380,12 +2802,107 @@ SQLITE_API int sqlite3_set_authorizer( ** sqlite3_profile() function is considered experimental and is ** subject to change in future versions of SQLite. */ -SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); -SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, +SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*, + void(*xTrace)(void*,const char*), void*); +SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* +** CAPI3REF: SQL Trace Event Codes +** KEYWORDS: SQLITE_TRACE +** +** These constants identify classes of events that can be monitored +** using the [sqlite3_trace_v2()] tracing logic. The third argument +** to [sqlite3_trace_v2()] is an OR-ed combination of one or more of +** the following constants. ^The first argument to the trace callback +** is one of the following constants. +** +** New tracing constants may be added in future releases. +** +** ^A trace callback has four arguments: xCallback(T,C,P,X). +** ^The T argument is one of the integer type codes above. +** ^The C argument is a copy of the context pointer passed in as the +** fourth argument to [sqlite3_trace_v2()]. +** The P and X arguments are pointers whose meanings depend on T. +** +**
+** [[SQLITE_TRACE_STMT]]
SQLITE_TRACE_STMT
+**
^An SQLITE_TRACE_STMT callback is invoked when a prepared statement +** first begins running and possibly at other times during the +** execution of the prepared statement, such as at the start of each +** trigger subprogram. ^The P argument is a pointer to the +** [prepared statement]. ^The X argument is a pointer to a string which +** is the unexpanded SQL text of the prepared statement or an SQL comment +** that indicates the invocation of a trigger. ^The callback can compute +** the same text that would have been returned by the legacy [sqlite3_trace()] +** interface by using the X argument when X begins with "--" and invoking +** [sqlite3_expanded_sql(P)] otherwise. +** +** [[SQLITE_TRACE_PROFILE]]
SQLITE_TRACE_PROFILE
+**
^An SQLITE_TRACE_PROFILE callback provides approximately the same +** information as is provided by the [sqlite3_profile()] callback. +** ^The P argument is a pointer to the [prepared statement] and the +** X argument points to a 64-bit integer which is the estimated of +** the number of nanosecond that the prepared statement took to run. +** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes. +** +** [[SQLITE_TRACE_ROW]]
SQLITE_TRACE_ROW
+**
^An SQLITE_TRACE_ROW callback is invoked whenever a prepared +** statement generates a single row of result. +** ^The P argument is a pointer to the [prepared statement] and the +** X argument is unused. +** +** [[SQLITE_TRACE_CLOSE]]
SQLITE_TRACE_CLOSE
+**
^An SQLITE_TRACE_CLOSE callback is invoked when a database +** connection closes. +** ^The P argument is a pointer to the [database connection] object +** and the X argument is unused. +**
+*/ +#define SQLITE_TRACE_STMT 0x01 +#define SQLITE_TRACE_PROFILE 0x02 +#define SQLITE_TRACE_ROW 0x04 +#define SQLITE_TRACE_CLOSE 0x08 + +/* +** CAPI3REF: SQL Trace Hook +** METHOD: sqlite3 +** +** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback +** function X against [database connection] D, using property mask M +** and context pointer P. ^If the X callback is +** NULL or if the M mask is zero, then tracing is disabled. The +** M argument should be the bitwise OR-ed combination of +** zero or more [SQLITE_TRACE] constants. +** +** ^Each call to either sqlite3_trace() or sqlite3_trace_v2() overrides +** (cancels) any prior calls to sqlite3_trace() or sqlite3_trace_v2(). +** +** ^The X callback is invoked whenever any of the events identified by +** mask M occur. ^The integer return value from the callback is currently +** ignored, though this may change in future releases. Callback +** implementations should return zero to ensure future compatibility. +** +** ^A trace callback is invoked with four arguments: callback(T,C,P,X). +** ^The T argument is one of the [SQLITE_TRACE] +** constants to indicate why the callback was invoked. +** ^The C argument is a copy of the context pointer. +** The P and X arguments are pointers whose meanings depend on T. +** +** The sqlite3_trace_v2() interface is intended to replace the legacy +** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which +** are deprecated. +*/ +SQLITE_API int sqlite3_trace_v2( + sqlite3*, + unsigned uMask, + int(*xCallback)(unsigned,void*,void*,void*), + void *pCtx +); + +/* ** CAPI3REF: Query Progress Callbacks +** METHOD: sqlite3 ** ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to @@ -2394,9 +2911,10 @@ SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(s ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the -** callback function X. ^The parameter N is the number of +** callback function X. ^The parameter N is the approximate number of ** [virtual machine instructions] that are evaluated between successive -** invocations of the callback X. +** invocations of the callback X. ^If N is less than one then the progress +** handler is disabled. ** ** ^Only a single progress handler may be defined at one time per ** [database connection]; setting a new progress handler cancels the @@ -2418,6 +2936,7 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int /* ** CAPI3REF: Opening A New Database Connection +** CONSTRUCTOR: sqlite3 ** ** ^These routines open an SQLite database file as specified by the ** filename argument. ^The filename argument is interpreted as UTF-8 for @@ -2432,9 +2951,9 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int ** an English language description of the error following a failure of any ** of the sqlite3_open() routines. ** -** ^The default encoding for the database will be UTF-8 if -** sqlite3_open() or sqlite3_open_v2() is called and -** UTF-16 in the native byte order if sqlite3_open16() is used. +** ^The default encoding will be UTF-8 for databases created using +** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases +** created using sqlite3_open16() will be UTF-16 in the native byte order. ** ** Whether or not an error occurs when it is opened, resources ** associated with the [database connection] handle should be released by @@ -2522,13 +3041,14 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int ** then it is interpreted as an absolute path. ^If the path does not begin ** with a '/' (meaning that the authority section is omitted from the URI) ** then the path is interpreted as a relative path. -** ^On windows, the first component of an absolute path -** is a drive specification (e.g. "C:"). +** ^(On windows, the first component of an absolute path +** is a drive specification (e.g. "C:").)^ ** ** [[core URI query parameters]] ** The query component of a URI may contain parameters that are interpreted ** either by SQLite itself, or by a [VFS | custom VFS implementation]. -** SQLite interprets the following three query parameters: +** SQLite and its built-in [VFSes] interpret the +** following query parameters: ** **
    **
  • vfs: ^The "vfs" parameter may be used to specify the name of @@ -2539,18 +3059,20 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int ** present, then the VFS specified by the option takes precedence over ** the value passed as the fourth parameter to sqlite3_open_v2(). ** -**
  • mode: ^(The mode parameter may be set to either "ro", "rw" or -** "rwc". Attempting to set it to any other value is an error)^. +**
  • mode: ^(The mode parameter may be set to either "ro", "rw", +** "rwc", or "memory". Attempting to set it to any other value is +** an error)^. ** ^If "ro" is specified, then the database is opened for read-only ** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the -** third argument to sqlite3_prepare_v2(). ^If the mode option is set to +** third argument to sqlite3_open_v2(). ^If the mode option is set to ** "rw", then the database is opened for read-write (but not create) ** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had ** been set. ^Value "rwc" is equivalent to setting both -** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If sqlite3_open_v2() is -** used, it is an error to specify a value for the mode parameter that is -** less restrictive than that specified by the flags passed as the third -** parameter. +** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is +** set to "memory" then a pure [in-memory database] that never reads +** or writes from disk is used. ^It is an error to specify a value for +** the mode parameter that is less restrictive than that specified by +** the flags passed in the third parameter to sqlite3_open_v2(). ** **
  • cache: ^The cache parameter may be set to either "shared" or ** "private". ^Setting it to "shared" is equivalent to setting the @@ -2558,8 +3080,30 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int ** sqlite3_open_v2(). ^Setting the cache parameter to "private" is ** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit. ** ^If sqlite3_open_v2() is used and the "cache" parameter is present in -** a URI filename, its value overrides any behaviour requested by setting +** a URI filename, its value overrides any behavior requested by setting ** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag. +** +**
  • psow: ^The psow parameter indicates whether or not the +** [powersafe overwrite] property does or does not apply to the +** storage media on which the database file resides. +** +**
  • nolock: ^The nolock parameter is a boolean query parameter +** which if set disables file locking in rollback journal modes. This +** is useful for accessing a database on a filesystem that does not +** support locking. Caution: Database corruption might result if two +** or more processes write to the same database and any one of those +** processes uses nolock=1. +** +**
  • immutable: ^The immutable parameter is a boolean query +** parameter that indicates that the database file is stored on +** read-only media. ^When immutable is set, SQLite assumes that the +** database file cannot be changed, even by a process with higher +** privilege, and so the database is opened read-only and all locking +** and change detection is disabled. Caution: Setting the immutable +** property on a database file that does in fact change can result +** in incorrect query results and/or [SQLITE_CORRUPT] errors. +** See also: [SQLITE_IOCAP_IMMUTABLE]. +** **
** ** ^Specifying an unknown parameter in the query component of a URI is not an @@ -2589,8 +3133,9 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int ** Open file "data.db" in the current directory for read-only access. ** Regardless of whether or not shared-cache mode is enabled by ** default, use a private cache. -** file:/home/fred/data.db?vfs=unix-nolock -** Open file "/home/fred/data.db". Use the special VFS "unix-nolock". +** file:/home/fred/data.db?vfs=unix-dotfile +** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile" +** that uses dot-files in place of posix advisory locking. ** file:data.db?mode=readonly ** An error. "readonly" is not a valid option for the "mode" parameter. ** @@ -2609,6 +3154,12 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int ** codepage is currently defined. Filenames containing international ** characters must be converted to UTF-8 prior to passing them into ** sqlite3_open() or sqlite3_open_v2(). +** +** Note to Windows Runtime users: The temporary directory must be set +** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various +** features that require the use of temporary files may fail. +** +** See also: [sqlite3_temp_directory] */ SQLITE_API int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ @@ -2644,9 +3195,14 @@ SQLITE_API int sqlite3_open_v2( ** ** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean ** parameter and returns true (1) or false (0) according to the value -** of P. The value of P is true if it is "yes" or "true" or "on" or -** a non-zero number and is false otherwise. If P is not a query parameter -** on F then sqlite3_uri_boolean(F,P,B) returns (B!=0). +** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the +** value of query parameter P is one of "yes", "true", or "on" in any +** case or if the value begins with a non-zero number. The +** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of +** query parameter P is one of "no", "false", or "off" in any case or +** if the value begins with a numeric zero. If P is not a query +** parameter on F or if the value of P is does not match any of the +** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0). ** ** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a ** 64-bit signed integer and returns that integer, or D if P does not @@ -2666,12 +3222,15 @@ SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char* /* ** CAPI3REF: Error Codes And Messages +** METHOD: sqlite3 ** -** ^The sqlite3_errcode() interface returns the numeric [result code] or -** [extended result code] for the most recent failed sqlite3_* API call -** associated with a [database connection]. If a prior API call failed -** but the most recent API call succeeded, the return value from -** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode() +** ^If the most recent sqlite3_* API call associated with +** [database connection] D failed, then the sqlite3_errcode(D) interface +** returns the numeric [result code] or [extended result code] for that +** API call. +** If the most recent API call was successful, +** then the return value from sqlite3_errcode() is undefined. +** ^The sqlite3_extended_errcode() ** interface is the same except that it always returns the ** [extended result code] even when extended result codes are ** disabled. @@ -2683,6 +3242,11 @@ SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char* ** However, the error string might be overwritten or deallocated by ** subsequent calls to other SQLite interface functions.)^ ** +** ^The sqlite3_errstr() interface returns the English-language text +** that describes the [result code], as UTF-8. +** ^(Memory to hold the error message string is managed internally +** and must not be freed by the application)^. +** ** When the serialized [threading mode] is in use, it might be the ** case that a second error occurs on a separate thread in between ** the time of the first error and the call to these interfaces. @@ -2701,35 +3265,37 @@ SQLITE_API int sqlite3_errcode(sqlite3 *db); SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); SQLITE_API const char *sqlite3_errmsg(sqlite3*); SQLITE_API const void *sqlite3_errmsg16(sqlite3*); +SQLITE_API const char *sqlite3_errstr(int); /* -** CAPI3REF: SQL Statement Object +** CAPI3REF: Prepared Statement Object ** KEYWORDS: {prepared statement} {prepared statements} ** -** An instance of this object represents a single SQL statement. -** This object is variously known as a "prepared statement" or a -** "compiled SQL statement" or simply as a "statement". +** An instance of this object represents a single SQL statement that +** has been compiled into binary form and is ready to be evaluated. ** -** The life of a statement object goes something like this: +** Think of each SQL statement as a separate computer program. The +** original SQL text is source code. A prepared statement object +** is the compiled object code. All SQL must be converted into a +** prepared statement before it can be run. ** +** The life-cycle of a prepared statement object usually goes like this: +** **
    -**
  1. Create the object using [sqlite3_prepare_v2()] or a related -** function. -**
  2. Bind values to [host parameters] using the sqlite3_bind_*() +**
  3. Create the prepared statement object using [sqlite3_prepare_v2()]. +**
  4. Bind values to [parameters] using the sqlite3_bind_*() ** interfaces. **
  5. Run the SQL by calling [sqlite3_step()] one or more times. -**
  6. Reset the statement using [sqlite3_reset()] then go back +**
  7. Reset the prepared statement using [sqlite3_reset()] then go back ** to step 2. Do this zero or more times. **
  8. Destroy the object using [sqlite3_finalize()]. **
-** -** Refer to documentation on individual methods above for additional -** information. */ typedef struct sqlite3_stmt sqlite3_stmt; /* ** CAPI3REF: Run-time Limits +** METHOD: sqlite3 ** ** ^(This interface allows the size of various constructs to be limited ** on a connection by connection basis. The first parameter is the @@ -2819,6 +3385,10 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int new ** ** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(
SQLITE_LIMIT_TRIGGER_DEPTH
**
The maximum depth of recursion for triggers.
)^ +** +** [[SQLITE_LIMIT_WORKER_THREADS]] ^(
SQLITE_LIMIT_WORKER_THREADS
+**
The maximum number of auxiliary worker threads that a single +** [prepared statement] may start.
)^ ** */ #define SQLITE_LIMIT_LENGTH 0 @@ -2832,10 +3402,13 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int new #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 +#define SQLITE_LIMIT_WORKER_THREADS 11 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} +** METHOD: sqlite3 +** CONSTRUCTOR: sqlite3_stmt ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. @@ -2849,16 +3422,14 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int new ** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2() ** use UTF-16. ** -** ^If the nByte argument is less than zero, then zSql is read up to the -** first zero terminator. ^If nByte is non-negative, then it is the maximum -** number of bytes read from zSql. ^When nByte is non-negative, the -** zSql string ends at either the first '\000' or '\u0000' character or -** the nByte-th byte, whichever comes first. If the caller knows -** that the supplied string is nul-terminated, then there is a small -** performance advantage to be gained by passing an nByte parameter that -** is equal to the number of bytes in the input string including -** the nul-terminator bytes as this saves SQLite from having to -** make a copy of the input string. +** ^If the nByte argument is negative, then zSql is read up to the +** first zero terminator. ^If nByte is positive, then it is the +** number of bytes read from zSql. ^If nByte is zero, then no prepared +** statement is generated. +** If the caller knows that the supplied string is nul-terminated, then +** there is a small performance advantage to passing an nByte parameter that +** is the number of bytes in the input string including +** the nul-terminator. ** ** ^If pzTail is not NULL then *pzTail is made to point to the first byte ** past the end of the first SQL statement in zSql. These routines only @@ -2888,7 +3459,8 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int new **
  • ** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it ** always used to do, [sqlite3_step()] will automatically recompile the SQL -** statement and try to run it again. +** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY] +** retries will occur before sqlite3_step() gives up and returns an error. **
  • ** **
  • @@ -2910,7 +3482,6 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int new ** choice of query plan if the parameter is the left-hand side of a [LIKE] ** or [GLOB] operator or if the parameter is compared to an indexed column ** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled. -** the **
  • ** */ @@ -2945,15 +3516,41 @@ SQLITE_API int sqlite3_prepare16_v2( /* ** CAPI3REF: Retrieving Statement SQL +** METHOD: sqlite3_stmt ** -** ^This interface can be used to retrieve a saved copy of the original -** SQL text used to create a [prepared statement] if that statement was -** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. +** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 +** SQL text used to create [prepared statement] P if P was +** created by either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. +** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 +** string containing the SQL text of prepared statement P with +** [bound parameters] expanded. +** +** ^(For example, if a prepared statement is created using the SQL +** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 +** and parameter :xyz is unbound, then sqlite3_sql() will return +** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() +** will return "SELECT 2345,NULL".)^ +** +** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory +** is available to hold the result, or if the result would exceed the +** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. +** +** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of +** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time +** option causes sqlite3_expanded_sql() to always return NULL. +** +** ^The string returned by sqlite3_sql(P) is managed by SQLite and is +** automatically freed when the prepared statement is finalized. +** ^The string returned by sqlite3_expanded_sql(P), on the other hand, +** is obtained from [sqlite3_malloc()] and must be free by the application +** by passing it to [sqlite3_free()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); +SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database +** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to @@ -2985,10 +3582,12 @@ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pSt /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset +** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using -** [sqlite3_step(S)] but has not run to completion and/or has not +** [sqlite3_step(S)] but has neither run to completion (returned +** [SQLITE_DONE] from [sqlite3_step(S)]) nor ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) ** interface returns false if S is a NULL pointer. If S is not a ** NULL pointer and is not a pointer to a valid [prepared statement] @@ -3015,7 +3614,9 @@ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*); ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies -** whether or not it requires a protected sqlite3_value. +** whether or not it requires a protected sqlite3_value. The +** [sqlite3_value_dup()] interface can be used to construct a new +** protected sqlite3_value from an unprotected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not ** a mutex is held. An internal mutex is held for a protected @@ -3059,6 +3660,7 @@ typedef struct sqlite3_context sqlite3_context; ** CAPI3REF: Binding Values To Prepared Statements ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} +** METHOD: sqlite3_stmt ** ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following @@ -3092,25 +3694,31 @@ typedef struct sqlite3_context sqlite3_context; ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999). ** ** ^The third argument is the value to bind to the parameter. +** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16() +** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter +** is ignored and the end result is the same as sqlite3_bind_null(). ** ** ^(In those routines that have a fourth argument, its value is the ** number of bytes in the parameter. To be clear: the value is the ** number of bytes in the value, not the number of characters.)^ -** ^If the fourth parameter is negative, the length of the string is +** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() +** is negative, then the length of the string is ** the number of bytes up to the first zero terminator. +** If the fourth parameter to sqlite3_bind_blob() is negative, then +** the behavior is undefined. ** If a non-negative fourth parameter is provided to sqlite3_bind_text() -** or sqlite3_bind_text16() then that parameter must be the byte offset +** or sqlite3_bind_text16() or sqlite3_bind_text64() then +** that parameter must be the byte offset ** where the NUL terminator would occur assuming the string were NUL ** terminated. If any NUL characters occur at byte offsets less than ** the value of the fourth parameter then the resulting string value will ** contain embedded NULs. The result of expressions involving strings ** with embedded NULs is undefined. ** -** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and -** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** ^The fifth argument to the BLOB and string binding interfaces +** is a destructor used to dispose of the BLOB or ** string after SQLite has finished with it. ^The destructor is called -** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(), -** sqlite3_bind_text(), or sqlite3_bind_text16() fails. +** to dispose of the BLOB or string even if the call to bind API fails. ** ^If the fifth argument is ** the special value [SQLITE_STATIC], then SQLite assumes that the ** information is in static, unmanaged space and does not need to be freed. @@ -3118,6 +3726,14 @@ typedef struct sqlite3_context sqlite3_context; ** SQLite makes its own private copy of the data immediately, before ** the sqlite3_bind_*() routine returns. ** +** ^The sixth argument to sqlite3_bind_text64() must be one of +** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE] +** to specify the encoding of the text in the third parameter. If +** the sixth argument to sqlite3_bind_text64() is not one of the +** allowed values shown above, or if the text encoding is different +** from the encoding specified by the sixth parameter, then the behavior +** is undefined. +** ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that ** is filled with zeroes. ^A zeroblob uses a fixed amount of memory ** (just an integer to hold its size) while it is being processed. @@ -3138,6 +3754,9 @@ typedef struct sqlite3_context sqlite3_context; ** ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an ** [error code] if anything goes wrong. +** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB +** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or +** [SQLITE_MAX_LENGTH]. ** ^[SQLITE_RANGE] is returned if the parameter ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. ** @@ -3145,17 +3764,23 @@ typedef struct sqlite3_context sqlite3_context; ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. */ SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64, + void(*)(void*)); SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int); SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int); -SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*)); SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, + void(*)(void*), unsigned char encoding); SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); +SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64); /* ** CAPI3REF: Number Of SQL Parameters +** METHOD: sqlite3_stmt ** ** ^This routine can be used to find the number of [SQL parameters] ** in a [prepared statement]. SQL parameters are tokens of the @@ -3176,6 +3801,7 @@ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_st /* ** CAPI3REF: Name Of A Host Parameter +** METHOD: sqlite3_stmt ** ** ^The sqlite3_bind_parameter_name(P,N) interface returns ** the name of the N-th [SQL parameter] in the [prepared statement] P. @@ -3203,6 +3829,7 @@ SQLITE_API const char *sqlite3_bind_parameter_name(sql /* ** CAPI3REF: Index Of A Parameter With A Given Name +** METHOD: sqlite3_stmt ** ** ^Return the index of an SQL parameter given its name. ^The ** index value returned is suitable for use as the second @@ -3213,12 +3840,13 @@ SQLITE_API const char *sqlite3_bind_parameter_name(sql ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and -** [sqlite3_bind_parameter_index()]. +** [sqlite3_bind_parameter_name()]. */ SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* ** CAPI3REF: Reset All Bindings On A Prepared Statement +** METHOD: sqlite3_stmt ** ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset ** the [sqlite3_bind_blob | bindings] on a [prepared statement]. @@ -3228,6 +3856,7 @@ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); /* ** CAPI3REF: Number Of Columns In A Result Set +** METHOD: sqlite3_stmt ** ** ^Return the number of columns in the result set returned by the ** [prepared statement]. ^This routine returns 0 if pStmt is an SQL @@ -3239,6 +3868,7 @@ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStm /* ** CAPI3REF: Column Names In A Result Set +** METHOD: sqlite3_stmt ** ** ^These routines return the name assigned to a particular column ** in the result set of a [SELECT] statement. ^The sqlite3_column_name() @@ -3268,6 +3898,7 @@ SQLITE_API const void *sqlite3_column_name16(sqlite3_s /* ** CAPI3REF: Source Of Data In A Query Result +** METHOD: sqlite3_stmt ** ** ^These routines provide a means to determine the database, table, and ** table column that is the origin of a particular result column in @@ -3320,6 +3951,7 @@ SQLITE_API const void *sqlite3_column_origin_name16(sq /* ** CAPI3REF: Declared Datatype Of A Query Result +** METHOD: sqlite3_stmt ** ** ^(The first parameter is a [prepared statement]. ** If this statement is a [SELECT] statement and the Nth column of the @@ -3352,6 +3984,7 @@ SQLITE_API const void *sqlite3_column_decltype16(sqlit /* ** CAPI3REF: Evaluate An SQL Statement +** METHOD: sqlite3_stmt ** ** After a [prepared statement] has been prepared using either ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy @@ -3431,6 +4064,7 @@ SQLITE_API int sqlite3_step(sqlite3_stmt*); /* ** CAPI3REF: Number of columns in a result set +** METHOD: sqlite3_stmt ** ** ^The sqlite3_data_count(P) interface returns the number of columns in the ** current row of the result set of [prepared statement] P. @@ -3484,9 +4118,8 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt) /* ** CAPI3REF: Result Values From A Query ** KEYWORDS: {column access functions} +** METHOD: sqlite3_stmt ** -** These routines form the "result set" interface. -** ** ^These routines return information about a single column of the current ** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] @@ -3546,13 +4179,14 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt) ** even empty strings, are always zero-terminated. ^The return ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** -** ^The object returned by [sqlite3_column_value()] is an -** [unprotected sqlite3_value] object. An unprotected sqlite3_value object -** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. +** Warning: ^The object returned by [sqlite3_column_value()] is an +** [unprotected sqlite3_value] object. In a multithreaded environment, +** an unprotected sqlite3_value object may only be used safely with +** [sqlite3_bind_value()] and [sqlite3_result_value()]. ** If the [unprotected sqlite3_value] object returned by ** [sqlite3_column_value()] is used in any other way, including calls ** to routines like [sqlite3_value_int()], [sqlite3_value_text()], -** or [sqlite3_value_bytes()], then the behavior is undefined. +** or [sqlite3_value_bytes()], the behavior is not threadsafe. ** ** These routines attempt to convert the value where appropriate. ^For ** example, if the internal representation is FLOAT and a text result @@ -3566,29 +4200,23 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt) ** ** NULL INTEGER Result is 0 ** NULL FLOAT Result is 0.0 -** NULL TEXT Result is NULL pointer -** NULL BLOB Result is NULL pointer +** NULL TEXT Result is a NULL pointer +** NULL BLOB Result is a NULL pointer ** INTEGER FLOAT Convert from integer to float ** INTEGER TEXT ASCII rendering of the integer ** INTEGER BLOB Same as INTEGER->TEXT -** FLOAT INTEGER Convert from float to integer +** FLOAT INTEGER [CAST] to INTEGER ** FLOAT TEXT ASCII rendering of the float -** FLOAT BLOB Same as FLOAT->TEXT -** TEXT INTEGER Use atoi() -** TEXT FLOAT Use atof() +** FLOAT BLOB [CAST] to BLOB +** TEXT INTEGER [CAST] to INTEGER +** TEXT FLOAT [CAST] to REAL ** TEXT BLOB No change -** BLOB INTEGER Convert to TEXT then use atoi() -** BLOB FLOAT Convert to TEXT then use atof() +** BLOB INTEGER [CAST] to INTEGER +** BLOB FLOAT [CAST] to REAL ** BLOB TEXT Add a zero terminator if needed ** **
    )^ ** -** The table above makes reference to standard C library functions atoi() -** and atof(). SQLite does not really use these functions. It has its -** own equivalent internal routines. The atoi() and atof() names are -** used in the table for brevity and because they are familiar to most -** C programmers. -** ** Note that when type conversions occur, pointers returned by prior ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or ** sqlite3_column_text16() may be invalidated. @@ -3613,7 +4241,7 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt) ** of conversion are done in place when it is possible, but sometimes they ** are not possible and in those cases prior pointers are invalidated. ** -** The safest and easiest to remember policy is to invoke these routines +** The safest policy is to invoke these routines ** in one of the following ways: ** ** ** -** ^The SQLITE_MUTEX_NOOP implementation is a set of routines +** The SQLITE_MUTEX_NOOP implementation is a set of routines ** that does no real locking and is appropriate for use in -** a single-threaded application. ^The SQLITE_MUTEX_OS2, -** SQLITE_MUTEX_PTHREADS, and SQLITE_MUTEX_W32 implementations -** are appropriate for use on OS/2, Unix, and Windows. +** a single-threaded application. The SQLITE_MUTEX_PTHREADS and +** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix +** and Windows. ** -** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex ** implementation is included with the library. In this case the ** application must supply a custom mutex implementation using the ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function ** before calling sqlite3_initialize() or any other public sqlite3_ -** function that calls sqlite3_initialize().)^ +** function that calls sqlite3_initialize(). ** ** ^The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. ^If it returns NULL -** that means that a mutex could not be allocated. ^SQLite -** will unwind its stack and return an error. ^(The argument -** to sqlite3_mutex_alloc() is one of these integer constants: +** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc() +** routine returns NULL if it is unable to allocate the requested +** mutex. The argument to sqlite3_mutex_alloc() must one of these +** integer constants: ** ** )^ +**
  • SQLITE_MUTEX_STATIC_PMEM +**
  • SQLITE_MUTEX_STATIC_APP1 +**
  • SQLITE_MUTEX_STATIC_APP2 +**
  • SQLITE_MUTEX_STATIC_APP3 +**
  • SQLITE_MUTEX_STATIC_VFS1 +**
  • SQLITE_MUTEX_STATIC_VFS2 +**
  • SQLITE_MUTEX_STATIC_VFS3 +** ** ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) ** cause sqlite3_mutex_alloc() to create @@ -5448,14 +6410,14 @@ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does -** not want to. ^SQLite will only request a recursive mutex in -** cases where it really needs one. ^If a faster non-recursive mutex +** not want to. SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return -** a pointer to a static preexisting mutex. ^Six static mutexes are +** a pointer to a static preexisting mutex. ^Nine static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should @@ -5464,16 +6426,13 @@ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); ** ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() -** returns a different mutex on every call. ^But for the static +** returns a different mutex on every call. ^For the static ** mutex types, the same mutex is returned on every call that has ** the same type number. ** ** ^The sqlite3_mutex_free() routine deallocates a previously -** allocated dynamic mutex. ^SQLite is careful to deallocate every -** dynamic mutex that it allocates. The dynamic mutexes must not be in -** use when they are deallocated. Attempting to deallocate a static -** mutex results in undefined behavior. ^SQLite never deallocates -** a static mutex. +** allocated dynamic mutex. Attempting to deallocate a static +** mutex results in undefined behavior. ** ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. ^If another thread is already within the mutex, @@ -5481,23 +6440,21 @@ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); ** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] ** upon successful entry. ^(Mutexes created using ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. -** In such cases the, +** In such cases, the ** mutex must be exited an equal number of times before another thread -** can enter.)^ ^(If the same thread tries to enter any other -** kind of mutex more than once, the behavior is undefined. -** SQLite will never exhibit -** such behavior in its own use of mutexes.)^ +** can enter.)^ If the same thread tries to enter any mutex other +** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined. ** ** ^(Some systems (for example, Windows 95) do not support the operation ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() -** will always return SQLITE_BUSY. The SQLite core only ever uses -** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^ +** will always return SQLITE_BUSY. The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable +** behavior.)^ ** ** ^The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. ^(The behavior +** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered by the -** calling thread or is not currently allocated. SQLite will -** never do either.)^ +** calling thread or is not currently allocated. ** ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or ** sqlite3_mutex_leave() is a NULL pointer, then all three routines @@ -5518,9 +6475,9 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); ** used to allocate and use mutexes. ** ** Usually, the default mutex implementations provided by SQLite are -** sufficient, however the user has the option of substituting a custom +** sufficient, however the application has the option of substituting a custom ** implementation for specialized deployments or systems for which SQLite -** does not provide a suitable implementation. In this case, the user +** does not provide a suitable implementation. In this case, the application ** creates and populates an instance of this structure to pass ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. ** Additionally, an instance of this structure can be used as an @@ -5561,13 +6518,13 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** -** The xMutexInit() method must be threadsafe. ^It must be harmless to +** The xMutexInit() method must be threadsafe. It must be harmless to ** invoke xMutexInit() multiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** -** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] -** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory +** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] +** and its associates). Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. ** @@ -5593,29 +6550,29 @@ struct sqlite3_mutex_methods { ** CAPI3REF: Mutex Verification Routines ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines -** are intended for use inside assert() statements. ^The SQLite core +** are intended for use inside assert() statements. The SQLite core ** never uses these routines except inside an assert() and applications -** are advised to follow the lead of the core. ^The SQLite core only +** are advised to follow the lead of the core. The SQLite core only ** provides implementations for these routines when it is compiled -** with the SQLITE_DEBUG flag. ^External mutex implementations +** with the SQLITE_DEBUG flag. External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** -** ^These routines should return true if the mutex in their argument +** These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** -** ^The implementation is not required to provide versions of these +** The implementation is not required to provide versions of these ** routines that actually work. If the implementation does not provide working ** versions of these routines, it should at least provide stubs that always ** return true so that one does not get spurious assertion failures. ** -** ^If the argument to sqlite3_mutex_held() is a NULL pointer then +** If the argument to sqlite3_mutex_held() is a NULL pointer then ** the routine should return 1. This seems counter-intuitive since ** clearly the mutex cannot be held if it does not exist. But ** the reason the mutex does not exist is because the build is not ** using mutexes. And we do not want the assert() containing the ** call to sqlite3_mutex_held() to fail, so a non-zero return is -** the appropriate thing to do. ^The sqlite3_mutex_notheld() +** the appropriate thing to do. The sqlite3_mutex_notheld() ** interface should also return 1 when given a NULL pointer. */ #ifndef NDEBUG @@ -5643,9 +6600,16 @@ SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ +#define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ +#define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ +#define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ +#define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */ +#define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */ +#define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */ /* ** CAPI3REF: Retrieve the mutex for a database connection +** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument @@ -5657,6 +6621,7 @@ SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*); /* ** CAPI3REF: Low-Level Control Of Database Files +** METHOD: sqlite3 ** ** ^The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated @@ -5734,13 +6699,19 @@ SQLITE_API int sqlite3_test_control(int op, ...); #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 -#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 -#define SQLITE_TESTCTRL_LAST 19 +#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ +#define SQLITE_TESTCTRL_NEVER_CORRUPT 20 +#define SQLITE_TESTCTRL_VDBE_COVERAGE 21 +#define SQLITE_TESTCTRL_BYTEORDER 22 +#define SQLITE_TESTCTRL_ISINIT 23 +#define SQLITE_TESTCTRL_SORTER_MMAP 24 +#define SQLITE_TESTCTRL_IMPOSTER 25 +#define SQLITE_TESTCTRL_LAST 25 /* ** CAPI3REF: SQLite Runtime Status ** -** ^This interface is used to retrieve runtime status information +** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes @@ -5754,19 +6725,22 @@ SQLITE_API int sqlite3_test_control(int op, ...); ** ^(Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent.)^ ** -** ^The sqlite3_status() routine returns SQLITE_OK on success and a -** non-zero [error code] on failure. +** ^The sqlite3_status() and sqlite3_status64() routines return +** SQLITE_OK on success and a non-zero [error code] on failure. ** -** This routine is threadsafe but is not atomic. This routine can be -** called while other threads are running the same or different SQLite -** interfaces. However the values returned in *pCurrent and -** *pHighwater reflect the status of SQLite at different points in time -** and it is possible that another thread might change the parameter -** in between the times when *pCurrent and *pHighwater are written. +** If either the current value or the highwater mark is too large to +** be represented by a 32-bit integer, then the values returned by +** sqlite3_status() are undefined. ** ** See also: [sqlite3_db_status()] */ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); +SQLITE_API int sqlite3_status64( + int op, + sqlite3_int64 *pCurrent, + sqlite3_int64 *pHighwater, + int resetFlag +); /* @@ -5845,7 +6819,8 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, i ** The value written into the *pCurrent parameter is undefined.)^ ** ** [[SQLITE_STATUS_PARSER_STACK]] ^(
    SQLITE_STATUS_PARSER_STACK
    -**
    This parameter records the deepest parser stack. It is only +**
    The *pHighwater parameter records the deepest parser stack. +** The *pCurrent value is undefined. The *pHighwater value is only ** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
    )^ ** ** @@ -5864,6 +6839,7 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, i /* ** CAPI3REF: Database Connection Status +** METHOD: sqlite3 ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the @@ -5926,12 +6902,24 @@ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(
    SQLITE_DBSTATUS_CACHE_USED
    -**
    This parameter returns the approximate number of of bytes of heap +**
    This parameter returns the approximate number of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** +** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]] +** ^(
    SQLITE_DBSTATUS_CACHE_USED_SHARED
    +**
    This parameter is similar to DBSTATUS_CACHE_USED, except that if a +** pager cache is shared between two or more connections the bytes of heap +** memory used by that pager cache is divided evenly between the attached +** connections.)^ In other words, if none of the pager caches associated +** with the database connection are shared, this request returns the same +** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are +** shared, the value returned by this call will be smaller than that returned +** by DBSTATUS_CACHE_USED. ^The highwater mark associated with +** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0. +** ** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(
    SQLITE_DBSTATUS_SCHEMA_USED
    -**
    This parameter returns the approximate number of of bytes of heap +**
    This parameter returns the approximate number of bytes of heap ** memory used to store the schema for all databases associated ** with the connection - main, temp, and any [ATTACH]-ed databases.)^ ** ^The full amount of memory used by the schemas is reported, even if the @@ -5940,7 +6928,7 @@ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. ** ** [[SQLITE_DBSTATUS_STMT_USED]] ^(
    SQLITE_DBSTATUS_STMT_USED
    -**
    This parameter returns the approximate number of of bytes of heap +**
    This parameter returns the approximate number of bytes of heap ** and lookaside memory used by all prepared statements associated with ** the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. @@ -5957,6 +6945,23 @@ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS ** is always 0. **
    +** +** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(
    SQLITE_DBSTATUS_CACHE_WRITE
    +**
    This parameter returns the number of dirty cache entries that have +** been written to disk. Specifically, the number of pages written to the +** wal file in wal mode databases, or the number of pages written to the +** database file in rollback mode databases. Any pages written as part of +** transaction rollback or database recovery operations are not included. +** If an IO or other error occurs while writing a page to disk, the effect +** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The +** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. +**
    +** +** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(
    SQLITE_DBSTATUS_DEFERRED_FKS
    +**
    This parameter returns zero for the current value if and only if +** all foreign key constraints (deferred or immediate) have been +** resolved.)^ ^The highwater mark is always 0. +**
    ** */ #define SQLITE_DBSTATUS_LOOKASIDE_USED 0 @@ -5968,11 +6973,15 @@ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 #define SQLITE_DBSTATUS_CACHE_HIT 7 #define SQLITE_DBSTATUS_CACHE_MISS 8 -#define SQLITE_DBSTATUS_MAX 8 /* Largest defined DBSTATUS */ +#define SQLITE_DBSTATUS_CACHE_WRITE 9 +#define SQLITE_DBSTATUS_DEFERRED_FKS 10 +#define SQLITE_DBSTATUS_CACHE_USED_SHARED 11 +#define SQLITE_DBSTATUS_MAX 11 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status +** METHOD: sqlite3_stmt ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number @@ -6022,11 +7031,21 @@ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run. +** +** [[SQLITE_STMTSTATUS_VM_STEP]]
    SQLITE_STMTSTATUS_VM_STEP
    +**
    ^This is the number of virtual machine operations executed +** by the prepared statement if that number is less than or equal +** to 2147483647. The number of virtual machine operations can be +** used as a proxy for the total work done by the prepared statement. +** If the number of virtual machine operations exceeds 2147483647 +** then the value returned by this statement status code is undefined. +**
    ** */ #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 #define SQLITE_STMTSTATUS_SORT 2 #define SQLITE_STMTSTATUS_AUTOINDEX 3 +#define SQLITE_STMTSTATUS_VM_STEP 4 /* ** CAPI3REF: Custom Page Cache Object @@ -6163,7 +7182,7 @@ struct sqlite3_pcache_page { ** parameter to help it determined what action to take: ** ** -**
    createFlag Behaviour when page is not already in cache +**
    createFlag Behavior when page is not already in cache **
    0 Do not allocate a new page. Return NULL. **
    1 Allocate a new page if it easy and convenient to do so. ** Otherwise return NULL. @@ -6311,6 +7330,10 @@ typedef struct sqlite3_backup sqlite3_backup; ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with ** an error. ** +** ^A call to sqlite3_backup_init() will fail, returning NULL, if +** there is already a read or read-write transaction open on the +** destination database. +** ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is ** returned and an error code and error message are stored in the ** destination [database connection] D. @@ -6403,21 +7426,21 @@ typedef struct sqlite3_backup sqlite3_backup; ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** -** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]] +** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]] ** sqlite3_backup_remaining() and sqlite3_backup_pagecount() ** -** ^Each call to sqlite3_backup_step() sets two values inside -** the [sqlite3_backup] object: the number of pages still to be backed -** up and the total number of pages in the source database file. -** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces -** retrieve these two values, respectively. +** ^The sqlite3_backup_remaining() routine returns the number of pages still +** to be backed up at the conclusion of the most recent sqlite3_backup_step(). +** ^The sqlite3_backup_pagecount() routine returns the total number of pages +** in the source database at the conclusion of the most recent +** sqlite3_backup_step(). +** ^(The values returned by these functions are only updated by +** sqlite3_backup_step(). If the source database is modified in a way that +** changes the size of the source database or the number of pages remaining, +** those changes are not reflected in the output of sqlite3_backup_pagecount() +** and sqlite3_backup_remaining() until after the next +** sqlite3_backup_step().)^ ** -** ^The values returned by these functions are only updated by -** sqlite3_backup_step(). ^If the source database is modified during a backup -** operation, then the values are not updated to account for any extra -** pages that need to be updated or the size of the source database file -** changing. -** ** Concurrent Usage of Database Handles ** ** ^The source [database connection] may be used by the application for other @@ -6462,6 +7485,7 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup /* ** CAPI3REF: Unlock Notification +** METHOD: sqlite3 ** ** ^When running in shared-cache mode, a database operation may fail with ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or @@ -6584,17 +7608,58 @@ SQLITE_API int sqlite3_unlock_notify( /* ** CAPI3REF: String Comparison ** -** ^The [sqlite3_strnicmp()] API allows applications and extensions to -** compare the contents of two buffers containing UTF-8 strings in a -** case-independent fashion, using the same definition of case independence -** that SQLite uses internally when comparing identifiers. +** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications +** and extensions to compare the contents of two buffers containing UTF-8 +** strings in a case-independent fashion, using the same definition of "case +** independence" that SQLite uses internally when comparing identifiers. */ +SQLITE_API int sqlite3_stricmp(const char *, const char *); SQLITE_API int sqlite3_strnicmp(const char *, const char *, int); /* +** CAPI3REF: String Globbing +* +** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if +** string X matches the [GLOB] pattern P. +** ^The definition of [GLOB] pattern matching used in +** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the +** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function +** is case sensitive. +** +** Note that this routine returns zero on a match and non-zero if the strings +** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. +** +** See also: [sqlite3_strlike()]. +*/ +SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr); + +/* +** CAPI3REF: String LIKE Matching +* +** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if +** string X matches the [LIKE] pattern P with escape character E. +** ^The definition of [LIKE] pattern matching used in +** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E" +** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without +** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0. +** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case +** insensitive - equivalent upper and lower case ASCII characters match +** one another. +** +** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though +** only ASCII characters are case folded. +** +** Note that this routine returns zero on a match and non-zero if the strings +** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. +** +** See also: [sqlite3_strglob()]. +*/ +SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc); + +/* ** CAPI3REF: Error Logging Interface ** -** ^The [sqlite3_log()] interface writes a message into the error log +** ^The [sqlite3_log()] interface writes a message into the [error log] ** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. ** ^If logging is enabled, the zFormat string and subsequent arguments are ** used with [sqlite3_snprintf()] to generate the final output string. @@ -6616,14 +7681,13 @@ SQLITE_API void sqlite3_log(int iErrCode, const char * /* ** CAPI3REF: Write-Ahead Log Commit Hook +** METHOD: sqlite3 ** ** ^The [sqlite3_wal_hook()] function is used to register a callback that -** will be invoked each time a database connection commits data to a -** [write-ahead log] (i.e. whenever a transaction is committed in -** [journal_mode | journal_mode=WAL mode]). +** is invoked each time data is committed to a database in wal mode. ** -** ^The callback is invoked by SQLite after the commit has taken place and -** the associated write-lock on the database released, so the implementation +** ^(The callback is invoked by SQLite after the commit has taken place and +** the associated write-lock on the database released)^, so the implementation ** may read, write or [checkpoint] the database as required. ** ** ^The first parameter passed to the callback function when it is invoked @@ -6647,7 +7711,7 @@ SQLITE_API void sqlite3_log(int iErrCode, const char * ** previously registered write-ahead log callback. ^Note that the ** [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will -** those overwrite any prior [sqlite3_wal_hook()] settings. +** overwrite any prior [sqlite3_wal_hook()] settings. */ SQLITE_API void *sqlite3_wal_hook( sqlite3*, @@ -6657,6 +7721,7 @@ SQLITE_API void *sqlite3_wal_hook( /* ** CAPI3REF: Configure an auto-checkpoint +** METHOD: sqlite3 ** ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around ** [sqlite3_wal_hook()] that causes any database on [database connection] D @@ -6674,6 +7739,9 @@ SQLITE_API void *sqlite3_wal_hook( ** ^The [wal_autocheckpoint pragma] can be used to invoke this interface ** from SQL. ** +** ^Checkpoints initiated by this mechanism are +** [sqlite3_wal_checkpoint_v2|PASSIVE]. +** ** ^Every new [database connection] defaults to having the auto-checkpoint ** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT] ** pages. The use of this interface @@ -6684,91 +7752,117 @@ SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, /* ** CAPI3REF: Checkpoint a database +** METHOD: sqlite3 ** -** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X -** on [database connection] D to be [checkpointed]. ^If X is NULL or an -** empty string, then a checkpoint is run on all databases of -** connection D. ^If the database connection D is not in -** [WAL | write-ahead log mode] then this interface is a harmless no-op. +** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to +** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^ ** -** ^The [wal_checkpoint pragma] can be used to invoke this interface -** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the -** [wal_autocheckpoint pragma] can be used to cause this interface to be -** run whenever the WAL reaches a certain size threshold. +** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the +** [write-ahead log] for database X on [database connection] D to be +** transferred into the database file and for the write-ahead log to +** be reset. See the [checkpointing] documentation for addition +** information. ** -** See also: [sqlite3_wal_checkpoint_v2()] +** This interface used to be the only way to cause a checkpoint to +** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()] +** interface was added. This interface is retained for backwards +** compatibility and as a convenience for applications that need to manually +** start a callback but which do not need the full power (and corresponding +** complication) of [sqlite3_wal_checkpoint_v2()]. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database +** METHOD: sqlite3 ** -** Run a checkpoint operation on WAL database zDb attached to database -** handle db. The specific operation is determined by the value of the -** eMode parameter: +** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint +** operation on database X of [database connection] D in mode M. Status +** information is written back into integers pointed to by L and C.)^ +** ^(The M parameter must be a valid [checkpoint mode]:)^ ** **
    **
    SQLITE_CHECKPOINT_PASSIVE
    -** Checkpoint as many frames as possible without waiting for any database -** readers or writers to finish. Sync the db file if all frames in the log -** are checkpointed. This mode is the same as calling -** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked. +** ^Checkpoint as many frames as possible without waiting for any database +** readers or writers to finish, then sync the database file if all frames +** in the log were checkpointed. ^The [busy-handler callback] +** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode. +** ^On the other hand, passive mode might leave the checkpoint unfinished +** if there are concurrent readers or writers. ** **
    SQLITE_CHECKPOINT_FULL
    -** This mode blocks (calls the busy-handler callback) until there is no +** ^This mode blocks (it invokes the +** [sqlite3_busy_handler|busy-handler callback]) until there is no ** database writer and all readers are reading from the most recent database -** snapshot. It then checkpoints all frames in the log file and syncs the -** database file. This call blocks database writers while it is running, -** but not database readers. +** snapshot. ^It then checkpoints all frames in the log file and syncs the +** database file. ^This mode blocks new database writers while it is pending, +** but new database readers are allowed to continue unimpeded. ** **
    SQLITE_CHECKPOINT_RESTART
    -** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after -** checkpointing the log file it blocks (calls the busy-handler callback) -** until all readers are reading from the database file only. This ensures -** that the next client to write to the database file restarts the log file -** from the beginning. This call blocks database writers while it is running, -** but not database readers. +** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition +** that after checkpointing the log file it blocks (calls the +** [busy-handler callback]) +** until all readers are reading from the database file only. ^This ensures +** that the next writer will restart the log file from the beginning. +** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new +** database writer attempts while it is pending, but does not impede readers. +** +**
    SQLITE_CHECKPOINT_TRUNCATE
    +** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the +** addition that it also truncates the log file to zero bytes just prior +** to a successful return. **
    ** -** If pnLog is not NULL, then *pnLog is set to the total number of frames in -** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to -** the total number of checkpointed frames (including any that were already -** checkpointed when this function is called). *pnLog and *pnCkpt may be -** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. -** If no values are available because of an error, they are both set to -1 -** before returning to communicate this to the caller. +** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in +** the log file or to -1 if the checkpoint could not run because +** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not +** NULL,then *pnCkpt is set to the total number of checkpointed frames in the +** log file (including any that were already checkpointed before the function +** was called) or to -1 if the checkpoint could not run due to an error or +** because the database is not in WAL mode. ^Note that upon successful +** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been +** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero. ** -** All calls obtain an exclusive "checkpoint" lock on the database file. If +** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If ** any other process is running a checkpoint operation at the same time, the -** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a +** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a ** busy-handler configured, it will not be invoked in this case. ** -** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive -** "writer" lock on the database file. If the writer lock cannot be obtained -** immediately, and a busy-handler is configured, it is invoked and the writer -** lock retried until either the busy-handler returns 0 or the lock is -** successfully obtained. The busy-handler is also invoked while waiting for -** database readers as described above. If the busy-handler returns 0 before +** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the +** exclusive "writer" lock on the database file. ^If the writer lock cannot be +** obtained immediately, and a busy-handler is configured, it is invoked and +** the writer lock retried until either the busy-handler returns 0 or the lock +** is successfully obtained. ^The busy-handler is also invoked while waiting for +** database readers as described above. ^If the busy-handler returns 0 before ** the writer lock is obtained or while waiting for database readers, the ** checkpoint operation proceeds from that point in the same way as ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible -** without blocking any further. SQLITE_BUSY is returned in this case. +** without blocking any further. ^SQLITE_BUSY is returned in this case. ** -** If parameter zDb is NULL or points to a zero length string, then the -** specified operation is attempted on all WAL databases. In this case the -** values written to output parameters *pnLog and *pnCkpt are undefined. If +** ^If parameter zDb is NULL or points to a zero length string, then the +** specified operation is attempted on all WAL databases [attached] to +** [database connection] db. In this case the +** values written to output parameters *pnLog and *pnCkpt are undefined. ^If ** an SQLITE_BUSY error is encountered when processing one or more of the ** attached WAL databases, the operation is still attempted on any remaining -** attached databases and SQLITE_BUSY is returned to the caller. If any other +** attached databases and SQLITE_BUSY is returned at the end. ^If any other ** error occurs while processing an attached database, processing is abandoned -** and the error code returned to the caller immediately. If no error +** and the error code is returned to the caller immediately. ^If no error ** (SQLITE_BUSY or otherwise) is encountered while processing the attached ** databases, SQLITE_OK is returned. ** -** If database zDb is the name of an attached database that is not in WAL -** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If +** ^If database zDb is the name of an attached database that is not in WAL +** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If ** zDb is not NULL (or a zero length string) and is not the name of any ** attached database, SQLITE_ERROR is returned to the caller. +** +** ^Unless it returns SQLITE_MISUSE, +** the sqlite3_wal_checkpoint_v2() interface +** sets the error information that is queried by +** [sqlite3_errcode()] and [sqlite3_errmsg()]. +** +** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface +** from SQL. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ @@ -6779,16 +7873,18 @@ SQLITE_API int sqlite3_wal_checkpoint_v2( ); /* -** CAPI3REF: Checkpoint operation parameters +** CAPI3REF: Checkpoint Mode Values +** KEYWORDS: {checkpoint mode} ** -** These constants can be used as the 3rd parameter to -** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] -** documentation for additional information about the meaning and use of -** each of these values. +** These constants define all valid values for the "checkpoint mode" passed +** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface. +** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the +** meaning of each of these checkpoint modes. */ -#define SQLITE_CHECKPOINT_PASSIVE 0 -#define SQLITE_CHECKPOINT_FULL 1 -#define SQLITE_CHECKPOINT_RESTART 2 +#define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */ +#define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */ +#define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for for readers */ +#define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */ /* ** CAPI3REF: Virtual Table Interface Configuration @@ -6861,6 +7957,7 @@ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); /* ** CAPI3REF: Conflict resolution modes +** KEYWORDS: {conflict resolution mode} ** ** These constants are returned by [sqlite3_vtab_on_conflict()] to ** inform a [virtual table] implementation what the [ON CONFLICT] mode @@ -6876,9 +7973,382 @@ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); /* #define SQLITE_ABORT 4 // Also an error code */ #define SQLITE_REPLACE 5 +/* +** CAPI3REF: Prepared Statement Scan Status Opcodes +** KEYWORDS: {scanstatus options} +** +** The following constants can be used for the T parameter to the +** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a +** different metric for sqlite3_stmt_scanstatus() to return. +** +** When the value returned to V is a string, space to hold that string is +** managed by the prepared statement S and will be automatically freed when +** S is finalized. +** +**
    +** [[SQLITE_SCANSTAT_NLOOP]]
    SQLITE_SCANSTAT_NLOOP
    +**
    ^The [sqlite3_int64] variable pointed to by the T parameter will be +** set to the total number of times that the X-th loop has run.
    +** +** [[SQLITE_SCANSTAT_NVISIT]]
    SQLITE_SCANSTAT_NVISIT
    +**
    ^The [sqlite3_int64] variable pointed to by the T parameter will be set +** to the total number of rows examined by all iterations of the X-th loop.
    +** +** [[SQLITE_SCANSTAT_EST]]
    SQLITE_SCANSTAT_EST
    +**
    ^The "double" variable pointed to by the T parameter will be set to the +** query planner's estimate for the average number of rows output from each +** iteration of the X-th loop. If the query planner's estimates was accurate, +** then this value will approximate the quotient NVISIT/NLOOP and the +** product of this value for all prior loops with the same SELECTID will +** be the NLOOP value for the current loop. +** +** [[SQLITE_SCANSTAT_NAME]]
    SQLITE_SCANSTAT_NAME
    +**
    ^The "const char *" variable pointed to by the T parameter will be set +** to a zero-terminated UTF-8 string containing the name of the index or table +** used for the X-th loop. +** +** [[SQLITE_SCANSTAT_EXPLAIN]]
    SQLITE_SCANSTAT_EXPLAIN
    +**
    ^The "const char *" variable pointed to by the T parameter will be set +** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] +** description for the X-th loop. +** +** [[SQLITE_SCANSTAT_SELECTID]]
    SQLITE_SCANSTAT_SELECT
    +**
    ^The "int" variable pointed to by the T parameter will be set to the +** "select-id" for the X-th loop. The select-id identifies which query or +** subquery the loop is part of. The main query has a select-id of zero. +** The select-id is the same value as is output in the first column +** of an [EXPLAIN QUERY PLAN] query. +**
    +*/ +#define SQLITE_SCANSTAT_NLOOP 0 +#define SQLITE_SCANSTAT_NVISIT 1 +#define SQLITE_SCANSTAT_EST 2 +#define SQLITE_SCANSTAT_NAME 3 +#define SQLITE_SCANSTAT_EXPLAIN 4 +#define SQLITE_SCANSTAT_SELECTID 5 +/* +** CAPI3REF: Prepared Statement Scan Status +** METHOD: sqlite3_stmt +** +** This interface returns information about the predicted and measured +** performance for pStmt. Advanced applications can use this +** interface to compare the predicted and the measured performance and +** issue warnings and/or rerun [ANALYZE] if discrepancies are found. +** +** Since this interface is expected to be rarely used, it is only +** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS] +** compile-time option. +** +** The "iScanStatusOp" parameter determines which status information to return. +** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior +** of this interface is undefined. +** ^The requested measurement is written into a variable pointed to by +** the "pOut" parameter. +** Parameter "idx" identifies the specific loop to retrieve statistics for. +** Loops are numbered starting from zero. ^If idx is out of range - less than +** zero or greater than or equal to the total number of loops used to implement +** the statement - a non-zero value is returned and the variable that pOut +** points to is unchanged. +** +** ^Statistics might not be available for all loops in all statements. ^In cases +** where there exist loops with no available statistics, this function behaves +** as if the loop did not exist - it returns non-zero and leave the variable +** that pOut points to unchanged. +** +** See also: [sqlite3_stmt_scanstatus_reset()] +*/ +SQLITE_API int sqlite3_stmt_scanstatus( + sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ + int idx, /* Index of loop to report on */ + int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ + void *pOut /* Result written here */ +); /* +** CAPI3REF: Zero Scan-Status Counters +** METHOD: sqlite3_stmt +** +** ^Zero all [sqlite3_stmt_scanstatus()] related event counters. +** +** This API is only available if the library is built with pre-processor +** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. +*/ +SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); + +/* +** CAPI3REF: Flush caches to disk mid-transaction +** +** ^If a write-transaction is open on [database connection] D when the +** [sqlite3_db_cacheflush(D)] interface invoked, any dirty +** pages in the pager-cache that are not currently in use are written out +** to disk. A dirty page may be in use if a database cursor created by an +** active SQL statement is reading from it, or if it is page 1 of a database +** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)] +** interface flushes caches for all schemas - "main", "temp", and +** any [attached] databases. +** +** ^If this function needs to obtain extra database locks before dirty pages +** can be flushed to disk, it does so. ^If those locks cannot be obtained +** immediately and there is a busy-handler callback configured, it is invoked +** in the usual manner. ^If the required lock still cannot be obtained, then +** the database is skipped and an attempt made to flush any dirty pages +** belonging to the next (if any) database. ^If any databases are skipped +** because locks cannot be obtained, but no other error occurs, this +** function returns SQLITE_BUSY. +** +** ^If any other error occurs while flushing dirty pages to disk (for +** example an IO error or out-of-memory condition), then processing is +** abandoned and an SQLite [error code] is returned to the caller immediately. +** +** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK. +** +** ^This function does not set the database handle error code or message +** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions. +*/ +SQLITE_API int sqlite3_db_cacheflush(sqlite3*); + +/* +** CAPI3REF: The pre-update hook. +** +** ^These interfaces are only available if SQLite is compiled using the +** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option. +** +** ^The [sqlite3_preupdate_hook()] interface registers a callback function +** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation +** on a [rowid table]. +** ^At most one preupdate hook may be registered at a time on a single +** [database connection]; each call to [sqlite3_preupdate_hook()] overrides +** the previous setting. +** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()] +** with a NULL pointer as the second parameter. +** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as +** the first parameter to callbacks. +** +** ^The preupdate hook only fires for changes to [rowid tables]; the preupdate +** hook is not invoked for changes to [virtual tables] or [WITHOUT ROWID] +** tables. +** +** ^The second parameter to the preupdate callback is a pointer to +** the [database connection] that registered the preupdate hook. +** ^The third parameter to the preupdate callback is one of the constants +** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the +** kind of update operation that is about to occur. +** ^(The fourth parameter to the preupdate callback is the name of the +** database within the database connection that is being modified. This +** will be "main" for the main database or "temp" for TEMP tables or +** the name given after the AS keyword in the [ATTACH] statement for attached +** databases.)^ +** ^The fifth parameter to the preupdate callback is the name of the +** table that is being modified. +** ^The sixth parameter to the preupdate callback is the initial [rowid] of the +** row being changes for SQLITE_UPDATE and SQLITE_DELETE changes and is +** undefined for SQLITE_INSERT changes. +** ^The seventh parameter to the preupdate callback is the final [rowid] of +** the row being changed for SQLITE_UPDATE and SQLITE_INSERT changes and is +** undefined for SQLITE_DELETE changes. +** +** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()], +** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces +** provide additional information about a preupdate event. These routines +** may only be called from within a preupdate callback. Invoking any of +** these routines from outside of a preupdate callback or with a +** [database connection] pointer that is different from the one supplied +** to the preupdate callback results in undefined and probably undesirable +** behavior. +** +** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns +** in the row that is being inserted, updated, or deleted. +** +** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to +** a [protected sqlite3_value] that contains the value of the Nth column of +** the table row before it is updated. The N parameter must be between 0 +** and one less than the number of columns or the behavior will be +** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE +** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the +** behavior is undefined. The [sqlite3_value] that P points to +** will be destroyed when the preupdate callback returns. +** +** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to +** a [protected sqlite3_value] that contains the value of the Nth column of +** the table row after it is updated. The N parameter must be between 0 +** and one less than the number of columns or the behavior will be +** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE +** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the +** behavior is undefined. The [sqlite3_value] that P points to +** will be destroyed when the preupdate callback returns. +** +** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate +** callback was invoked as a result of a direct insert, update, or delete +** operation; or 1 for inserts, updates, or deletes invoked by top-level +** triggers; or 2 for changes resulting from triggers called by top-level +** triggers; and so forth. +** +** See also: [sqlite3_update_hook()] +*/ +SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_preupdate_hook( + sqlite3 *db, + void(*xPreUpdate)( + void *pCtx, /* Copy of third arg to preupdate_hook() */ + sqlite3 *db, /* Database handle */ + int op, /* SQLITE_UPDATE, DELETE or INSERT */ + char const *zDb, /* Database name */ + char const *zName, /* Table name */ + sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ + sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ + ), + void* +); +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **); +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_preupdate_count(sqlite3 *); +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_preupdate_depth(sqlite3 *); +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **); + +/* +** CAPI3REF: Low-level system error code +** +** ^Attempt to return the underlying operating system error code or error +** number that caused the most recent I/O error or failure to open a file. +** The return value is OS-dependent. For example, on unix systems, after +** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be +** called to get back the underlying "errno" that caused the problem, such +** as ENOSPC, EAUTH, EISDIR, and so forth. +*/ +SQLITE_API int sqlite3_system_errno(sqlite3*); + +/* +** CAPI3REF: Database Snapshot +** KEYWORDS: {snapshot} +** EXPERIMENTAL +** +** An instance of the snapshot object records the state of a [WAL mode] +** database for some specific point in history. +** +** In [WAL mode], multiple [database connections] that are open on the +** same database file can each be reading a different historical version +** of the database file. When a [database connection] begins a read +** transaction, that connection sees an unchanging copy of the database +** as it existed for the point in time when the transaction first started. +** Subsequent changes to the database from other connections are not seen +** by the reader until a new read transaction is started. +** +** The sqlite3_snapshot object records state information about an historical +** version of the database file so that it is possible to later open a new read +** transaction that sees that historical version of the database rather than +** the most recent version. +** +** The constructor for this object is [sqlite3_snapshot_get()]. The +** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer +** to an historical snapshot (if possible). The destructor for +** sqlite3_snapshot objects is [sqlite3_snapshot_free()]. +*/ +typedef struct sqlite3_snapshot sqlite3_snapshot; + +/* +** CAPI3REF: Record A Database Snapshot +** EXPERIMENTAL +** +** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a +** new [sqlite3_snapshot] object that records the current state of +** schema S in database connection D. ^On success, the +** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly +** created [sqlite3_snapshot] object into *P and returns SQLITE_OK. +** ^If schema S of [database connection] D is not a [WAL mode] database +** that is in a read transaction, then [sqlite3_snapshot_get(D,S,P)] +** leaves the *P value unchanged and returns an appropriate [error code]. +** +** The [sqlite3_snapshot] object returned from a successful call to +** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()] +** to avoid a memory leak. +** +** The [sqlite3_snapshot_get()] interface is only available when the +** SQLITE_ENABLE_SNAPSHOT compile-time option is used. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get( + sqlite3 *db, + const char *zSchema, + sqlite3_snapshot **ppSnapshot +); + +/* +** CAPI3REF: Start a read transaction on an historical snapshot +** EXPERIMENTAL +** +** ^The [sqlite3_snapshot_open(D,S,P)] interface starts a +** read transaction for schema S of +** [database connection] D such that the read transaction +** refers to historical [snapshot] P, rather than the most +** recent change to the database. +** ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK on success +** or an appropriate [error code] if it fails. +** +** ^In order to succeed, a call to [sqlite3_snapshot_open(D,S,P)] must be +** the first operation following the [BEGIN] that takes the schema S +** out of [autocommit mode]. +** ^In other words, schema S must not currently be in +** a transaction for [sqlite3_snapshot_open(D,S,P)] to work, but the +** database connection D must be out of [autocommit mode]. +** ^A [snapshot] will fail to open if it has been overwritten by a +** [checkpoint]. +** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the +** database connection D does not know that the database file for +** schema S is in [WAL mode]. A database connection might not know +** that the database file is in [WAL mode] if there has been no prior +** I/O on that database connection, or if the database entered [WAL mode] +** after the most recent I/O on the database connection.)^ +** (Hint: Run "[PRAGMA application_id]" against a newly opened +** database connection in order to make it ready to use snapshots.) +** +** The [sqlite3_snapshot_open()] interface is only available when the +** SQLITE_ENABLE_SNAPSHOT compile-time option is used. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open( + sqlite3 *db, + const char *zSchema, + sqlite3_snapshot *pSnapshot +); + +/* +** CAPI3REF: Destroy a snapshot +** EXPERIMENTAL +** +** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P. +** The application must eventually free every [sqlite3_snapshot] object +** using this routine to avoid a memory leak. +** +** The [sqlite3_snapshot_free()] interface is only available when the +** SQLITE_ENABLE_SNAPSHOT compile-time option is used. +*/ +SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*); + +/* +** CAPI3REF: Compare the ages of two snapshot handles. +** EXPERIMENTAL +** +** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages +** of two valid snapshot handles. +** +** If the two snapshot handles are not associated with the same database +** file, the result of the comparison is undefined. +** +** Additionally, the result of the comparison is only valid if both of the +** snapshot handles were obtained by calling sqlite3_snapshot_get() since the +** last time the wal file was deleted. The wal file is deleted when the +** database is changed back to rollback mode or when the number of database +** clients drops to zero. If either snapshot handle was obtained before the +** wal file was last deleted, the value returned by this function +** is undefined. +** +** Otherwise, this API returns a negative value if P1 refers to an older +** snapshot than P2, zero if the two handles refer to the same database +** snapshot, and a positive value if P1 is a newer snapshot than P2. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( + sqlite3_snapshot *p1, + sqlite3_snapshot *p2 +); + +/* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ @@ -6889,8 +8359,9 @@ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif -#endif +#endif /* SQLITE3_H */ +/******** Begin file sqlite3rtree.h *********/ /* ** 2010 August 30 ** @@ -6913,7 +8384,17 @@ extern "C" { #endif typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry; +typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info; +/* The double-precision datatype used by RTree depends on the +** SQLITE_RTREE_INT_ONLY compile-time option. +*/ +#ifdef SQLITE_RTREE_INT_ONLY + typedef sqlite3_int64 sqlite3_rtree_dbl; +#else + typedef double sqlite3_rtree_dbl; +#endif + /* ** Register a geometry callback named zGeom that can be used as part of an ** R-Tree geometry query as follows: @@ -6923,7 +8404,7 @@ typedef struct sqlite3_rtree_geometry sqlite3_rtree_ge SQLITE_API int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, - int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes), + int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*), void *pContext ); @@ -6935,15 +8416,1927 @@ SQLITE_API int sqlite3_rtree_geometry_callback( struct sqlite3_rtree_geometry { void *pContext; /* Copy of pContext passed to s_r_g_c() */ int nParam; /* Size of array aParam[] */ - double *aParam; /* Parameters passed to SQL geom function */ + sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */ void *pUser; /* Callback implementation user data */ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */ }; +/* +** Register a 2nd-generation geometry callback named zScore that can be +** used as part of an R-Tree geometry query as follows: +** +** SELECT ... FROM WHERE MATCH $zQueryFunc(... params ...) +*/ +SQLITE_API int sqlite3_rtree_query_callback( + sqlite3 *db, + const char *zQueryFunc, + int (*xQueryFunc)(sqlite3_rtree_query_info*), + void *pContext, + void (*xDestructor)(void*) +); + +/* +** A pointer to a structure of the following type is passed as the +** argument to scored geometry callback registered using +** sqlite3_rtree_query_callback(). +** +** Note that the first 5 fields of this structure are identical to +** sqlite3_rtree_geometry. This structure is a subclass of +** sqlite3_rtree_geometry. +*/ +struct sqlite3_rtree_query_info { + void *pContext; /* pContext from when function registered */ + int nParam; /* Number of function parameters */ + sqlite3_rtree_dbl *aParam; /* value of function parameters */ + void *pUser; /* callback can use this, if desired */ + void (*xDelUser)(void*); /* function to free pUser */ + sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */ + unsigned int *anQueue; /* Number of pending entries in the queue */ + int nCoord; /* Number of coordinates */ + int iLevel; /* Level of current node or entry */ + int mxLevel; /* The largest iLevel value in the tree */ + sqlite3_int64 iRowid; /* Rowid for current entry */ + sqlite3_rtree_dbl rParentScore; /* Score of parent node */ + int eParentWithin; /* Visibility of parent node */ + int eWithin; /* OUT: Visiblity */ + sqlite3_rtree_dbl rScore; /* OUT: Write the score here */ + /* The following fields are only available in 3.8.11 and later */ + sqlite3_value **apSqlParam; /* Original SQL values of parameters */ +}; + +/* +** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin. +*/ +#define NOT_WITHIN 0 /* Object completely outside of query region */ +#define PARTLY_WITHIN 1 /* Object partially overlaps query region */ +#define FULLY_WITHIN 2 /* Object fully contained within query region */ + + #ifdef __cplusplus } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE3RTREE_H_ */ +/******** End of sqlite3rtree.h *********/ +/******** Begin file sqlite3session.h *********/ + +#if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) +#define __SQLITESESSION_H_ 1 + +/* +** Make sure we can call this stuff from C++. +*/ +#ifdef __cplusplus +extern "C" { +#endif + + +/* +** CAPI3REF: Session Object Handle +*/ +typedef struct sqlite3_session sqlite3_session; + +/* +** CAPI3REF: Changeset Iterator Handle +*/ +typedef struct sqlite3_changeset_iter sqlite3_changeset_iter; + +/* +** CAPI3REF: Create A New Session Object +** +** Create a new session object attached to database handle db. If successful, +** a pointer to the new object is written to *ppSession and SQLITE_OK is +** returned. If an error occurs, *ppSession is set to NULL and an SQLite +** error code (e.g. SQLITE_NOMEM) is returned. +** +** It is possible to create multiple session objects attached to a single +** database handle. +** +** Session objects created using this function should be deleted using the +** [sqlite3session_delete()] function before the database handle that they +** are attached to is itself closed. If the database handle is closed before +** the session object is deleted, then the results of calling any session +** module function, including [sqlite3session_delete()] on the session object +** are undefined. +** +** Because the session module uses the [sqlite3_preupdate_hook()] API, it +** is not possible for an application to register a pre-update hook on a +** database handle that has one or more session objects attached. Nor is +** it possible to create a session object attached to a database handle for +** which a pre-update hook is already defined. The results of attempting +** either of these things are undefined. +** +** The session object will be used to create changesets for tables in +** database zDb, where zDb is either "main", or "temp", or the name of an +** attached database. It is not an error if database zDb is not attached +** to the database when the session object is created. +*/ +int sqlite3session_create( + sqlite3 *db, /* Database handle */ + const char *zDb, /* Name of db (e.g. "main") */ + sqlite3_session **ppSession /* OUT: New session object */ +); + +/* +** CAPI3REF: Delete A Session Object +** +** Delete a session object previously allocated using +** [sqlite3session_create()]. Once a session object has been deleted, the +** results of attempting to use pSession with any other session module +** function are undefined. +** +** Session objects must be deleted before the database handle to which they +** are attached is closed. Refer to the documentation for +** [sqlite3session_create()] for details. +*/ +void sqlite3session_delete(sqlite3_session *pSession); + + +/* +** CAPI3REF: Enable Or Disable A Session Object +** +** Enable or disable the recording of changes by a session object. When +** enabled, a session object records changes made to the database. When +** disabled - it does not. A newly created session object is enabled. +** Refer to the documentation for [sqlite3session_changeset()] for further +** details regarding how enabling and disabling a session object affects +** the eventual changesets. +** +** Passing zero to this function disables the session. Passing a value +** greater than zero enables it. Passing a value less than zero is a +** no-op, and may be used to query the current state of the session. +** +** The return value indicates the final state of the session object: 0 if +** the session is disabled, or 1 if it is enabled. +*/ +int sqlite3session_enable(sqlite3_session *pSession, int bEnable); + +/* +** CAPI3REF: Set Or Clear the Indirect Change Flag +** +** Each change recorded by a session object is marked as either direct or +** indirect. A change is marked as indirect if either: +** +**
      +**
    • The session object "indirect" flag is set when the change is +** made, or +**
    • The change is made by an SQL trigger or foreign key action +** instead of directly as a result of a users SQL statement. +**
    +** +** If a single row is affected by more than one operation within a session, +** then the change is considered indirect if all operations meet the criteria +** for an indirect change above, or direct otherwise. +** +** This function is used to set, clear or query the session object indirect +** flag. If the second argument passed to this function is zero, then the +** indirect flag is cleared. If it is greater than zero, the indirect flag +** is set. Passing a value less than zero does not modify the current value +** of the indirect flag, and may be used to query the current state of the +** indirect flag for the specified session object. +** +** The return value indicates the final state of the indirect flag: 0 if +** it is clear, or 1 if it is set. +*/ +int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect); + +/* +** CAPI3REF: Attach A Table To A Session Object +** +** If argument zTab is not NULL, then it is the name of a table to attach +** to the session object passed as the first argument. All subsequent changes +** made to the table while the session object is enabled will be recorded. See +** documentation for [sqlite3session_changeset()] for further details. +** +** Or, if argument zTab is NULL, then changes are recorded for all tables +** in the database. If additional tables are added to the database (by +** executing "CREATE TABLE" statements) after this call is made, changes for +** the new tables are also recorded. +** +** Changes can only be recorded for tables that have a PRIMARY KEY explicitly +** defined as part of their CREATE TABLE statement. It does not matter if the +** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY +** KEY may consist of a single column, or may be a composite key. +** +** It is not an error if the named table does not exist in the database. Nor +** is it an error if the named table does not have a PRIMARY KEY. However, +** no changes will be recorded in either of these scenarios. +** +** Changes are not recorded for individual rows that have NULL values stored +** in one or more of their PRIMARY KEY columns. +** +** SQLITE_OK is returned if the call completes without error. Or, if an error +** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. +*/ +int sqlite3session_attach( + sqlite3_session *pSession, /* Session object */ + const char *zTab /* Table name */ +); + +/* +** CAPI3REF: Set a table filter on a Session Object. +** +** The second argument (xFilter) is the "filter callback". For changes to rows +** in tables that are not attached to the Session oject, the filter is called +** to determine whether changes to the table's rows should be tracked or not. +** If xFilter returns 0, changes is not tracked. Note that once a table is +** attached, xFilter will not be called again. +*/ +void sqlite3session_table_filter( + sqlite3_session *pSession, /* Session object */ + int(*xFilter)( + void *pCtx, /* Copy of third arg to _filter_table() */ + const char *zTab /* Table name */ + ), + void *pCtx /* First argument passed to xFilter */ +); + +/* +** CAPI3REF: Generate A Changeset From A Session Object +** +** Obtain a changeset containing changes to the tables attached to the +** session object passed as the first argument. If successful, +** set *ppChangeset to point to a buffer containing the changeset +** and *pnChangeset to the size of the changeset in bytes before returning +** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to +** zero and return an SQLite error code. +** +** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes, +** each representing a change to a single row of an attached table. An INSERT +** change contains the values of each field of a new database row. A DELETE +** contains the original values of each field of a deleted database row. An +** UPDATE change contains the original values of each field of an updated +** database row along with the updated values for each updated non-primary-key +** column. It is not possible for an UPDATE change to represent a change that +** modifies the values of primary key columns. If such a change is made, it +** is represented in a changeset as a DELETE followed by an INSERT. +** +** Changes are not recorded for rows that have NULL values stored in one or +** more of their PRIMARY KEY columns. If such a row is inserted or deleted, +** no corresponding change is present in the changesets returned by this +** function. If an existing row with one or more NULL values stored in +** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL, +** only an INSERT is appears in the changeset. Similarly, if an existing row +** with non-NULL PRIMARY KEY values is updated so that one or more of its +** PRIMARY KEY columns are set to NULL, the resulting changeset contains a +** DELETE change only. +** +** The contents of a changeset may be traversed using an iterator created +** using the [sqlite3changeset_start()] API. A changeset may be applied to +** a database with a compatible schema using the [sqlite3changeset_apply()] +** API. +** +** Within a changeset generated by this function, all changes related to a +** single table are grouped together. In other words, when iterating through +** a changeset or when applying a changeset to a database, all changes related +** to a single table are processed before moving on to the next table. Tables +** are sorted in the same order in which they were attached (or auto-attached) +** to the sqlite3_session object. The order in which the changes related to +** a single table are stored is undefined. +** +** Following a successful call to this function, it is the responsibility of +** the caller to eventually free the buffer that *ppChangeset points to using +** [sqlite3_free()]. +** +**

    Changeset Generation

    +** +** Once a table has been attached to a session object, the session object +** records the primary key values of all new rows inserted into the table. +** It also records the original primary key and other column values of any +** deleted or updated rows. For each unique primary key value, data is only +** recorded once - the first time a row with said primary key is inserted, +** updated or deleted in the lifetime of the session. +** +** There is one exception to the previous paragraph: when a row is inserted, +** updated or deleted, if one or more of its primary key columns contain a +** NULL value, no record of the change is made. +** +** The session object therefore accumulates two types of records - those +** that consist of primary key values only (created when the user inserts +** a new record) and those that consist of the primary key values and the +** original values of other table columns (created when the users deletes +** or updates a record). +** +** When this function is called, the requested changeset is created using +** both the accumulated records and the current contents of the database +** file. Specifically: +** +**
      +**
    • For each record generated by an insert, the database is queried +** for a row with a matching primary key. If one is found, an INSERT +** change is added to the changeset. If no such row is found, no change +** is added to the changeset. +** +**
    • For each record generated by an update or delete, the database is +** queried for a row with a matching primary key. If such a row is +** found and one or more of the non-primary key fields have been +** modified from their original values, an UPDATE change is added to +** the changeset. Or, if no such row is found in the table, a DELETE +** change is added to the changeset. If there is a row with a matching +** primary key in the database, but all fields contain their original +** values, no change is added to the changeset. +**
    +** +** This means, amongst other things, that if a row is inserted and then later +** deleted while a session object is active, neither the insert nor the delete +** will be present in the changeset. Or if a row is deleted and then later a +** row with the same primary key values inserted while a session object is +** active, the resulting changeset will contain an UPDATE change instead of +** a DELETE and an INSERT. +** +** When a session object is disabled (see the [sqlite3session_enable()] API), +** it does not accumulate records when rows are inserted, updated or deleted. +** This may appear to have some counter-intuitive effects if a single row +** is written to more than once during a session. For example, if a row +** is inserted while a session object is enabled, then later deleted while +** the same session object is disabled, no INSERT record will appear in the +** changeset, even though the delete took place while the session was disabled. +** Or, if one field of a row is updated while a session is disabled, and +** another field of the same row is updated while the session is enabled, the +** resulting changeset will contain an UPDATE change that updates both fields. +*/ +int sqlite3session_changeset( + sqlite3_session *pSession, /* Session object */ + int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ + void **ppChangeset /* OUT: Buffer containing changeset */ +); + +/* +** CAPI3REF: Load The Difference Between Tables Into A Session +** +** If it is not already attached to the session object passed as the first +** argument, this function attaches table zTbl in the same manner as the +** [sqlite3session_attach()] function. If zTbl does not exist, or if it +** does not have a primary key, this function is a no-op (but does not return +** an error). +** +** Argument zFromDb must be the name of a database ("main", "temp" etc.) +** attached to the same database handle as the session object that contains +** a table compatible with the table attached to the session by this function. +** A table is considered compatible if it: +** +**
      +**
    • Has the same name, +**
    • Has the same set of columns declared in the same order, and +**
    • Has the same PRIMARY KEY definition. +**
    +** +** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables +** are compatible but do not have any PRIMARY KEY columns, it is not an error +** but no changes are added to the session object. As with other session +** APIs, tables without PRIMARY KEYs are simply ignored. +** +** This function adds a set of changes to the session object that could be +** used to update the table in database zFrom (call this the "from-table") +** so that its content is the same as the table attached to the session +** object (call this the "to-table"). Specifically: +** +**
      +**
    • For each row (primary key) that exists in the to-table but not in +** the from-table, an INSERT record is added to the session object. +** +**
    • For each row (primary key) that exists in the to-table but not in +** the from-table, a DELETE record is added to the session object. +** +**
    • For each row (primary key) that exists in both tables, but features +** different in each, an UPDATE record is added to the session. +**
    +** +** To clarify, if this function is called and then a changeset constructed +** using [sqlite3session_changeset()], then after applying that changeset to +** database zFrom the contents of the two compatible tables would be +** identical. +** +** It an error if database zFrom does not exist or does not contain the +** required compatible table. +** +** If the operation successful, SQLITE_OK is returned. Otherwise, an SQLite +** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg +** may be set to point to a buffer containing an English language error +** message. It is the responsibility of the caller to free this buffer using +** sqlite3_free(). +*/ +int sqlite3session_diff( + sqlite3_session *pSession, + const char *zFromDb, + const char *zTbl, + char **pzErrMsg +); + + +/* +** CAPI3REF: Generate A Patchset From A Session Object +** +** The differences between a patchset and a changeset are that: +** +**
      +**
    • DELETE records consist of the primary key fields only. The +** original values of other fields are omitted. +**
    • The original values of any modified fields are omitted from +** UPDATE records. +**
    +** +** A patchset blob may be used with up to date versions of all +** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(), +** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly, +** attempting to use a patchset blob with old versions of the +** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error. +** +** Because the non-primary key "old.*" fields are omitted, no +** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset +** is passed to the sqlite3changeset_apply() API. Other conflict types work +** in the same way as for changesets. +** +** Changes within a patchset are ordered in the same way as for changesets +** generated by the sqlite3session_changeset() function (i.e. all changes for +** a single table are grouped together, tables appear in the order in which +** they were attached to the session object). +*/ +int sqlite3session_patchset( + sqlite3_session *pSession, /* Session object */ + int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ + void **ppPatchset /* OUT: Buffer containing changeset */ +); + +/* +** CAPI3REF: Test if a changeset has recorded any changes. +** +** Return non-zero if no changes to attached tables have been recorded by +** the session object passed as the first argument. Otherwise, if one or +** more changes have been recorded, return zero. +** +** Even if this function returns zero, it is possible that calling +** [sqlite3session_changeset()] on the session handle may still return a +** changeset that contains no changes. This can happen when a row in +** an attached table is modified and then later on the original values +** are restored. However, if this function returns non-zero, then it is +** guaranteed that a call to sqlite3session_changeset() will return a +** changeset containing zero changes. +*/ +int sqlite3session_isempty(sqlite3_session *pSession); + +/* +** CAPI3REF: Create An Iterator To Traverse A Changeset +** +** Create an iterator used to iterate through the contents of a changeset. +** If successful, *pp is set to point to the iterator handle and SQLITE_OK +** is returned. Otherwise, if an error occurs, *pp is set to zero and an +** SQLite error code is returned. +** +** The following functions can be used to advance and query a changeset +** iterator created by this function: +** +**
      +**
    • [sqlite3changeset_next()] +**
    • [sqlite3changeset_op()] +**
    • [sqlite3changeset_new()] +**
    • [sqlite3changeset_old()] +**
    +** +** It is the responsibility of the caller to eventually destroy the iterator +** by passing it to [sqlite3changeset_finalize()]. The buffer containing the +** changeset (pChangeset) must remain valid until after the iterator is +** destroyed. +** +** Assuming the changeset blob was created by one of the +** [sqlite3session_changeset()], [sqlite3changeset_concat()] or +** [sqlite3changeset_invert()] functions, all changes within the changeset +** that apply to a single table are grouped together. This means that when +** an application iterates through a changeset using an iterator created by +** this function, all changes that relate to a single table are visted +** consecutively. There is no chance that the iterator will visit a change +** the applies to table X, then one for table Y, and then later on visit +** another change for table X. +*/ +int sqlite3changeset_start( + sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ + int nChangeset, /* Size of changeset blob in bytes */ + void *pChangeset /* Pointer to blob containing changeset */ +); + + +/* +** CAPI3REF: Advance A Changeset Iterator +** +** This function may only be used with iterators created by function +** [sqlite3changeset_start()]. If it is called on an iterator passed to +** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE +** is returned and the call has no effect. +** +** Immediately after an iterator is created by sqlite3changeset_start(), it +** does not point to any change in the changeset. Assuming the changeset +** is not empty, the first call to this function advances the iterator to +** point to the first change in the changeset. Each subsequent call advances +** the iterator to point to the next change in the changeset (if any). If +** no error occurs and the iterator points to a valid change after a call +** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned. +** Otherwise, if all changes in the changeset have already been visited, +** SQLITE_DONE is returned. +** +** If an error occurs, an SQLite error code is returned. Possible error +** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or +** SQLITE_NOMEM. +*/ +int sqlite3changeset_next(sqlite3_changeset_iter *pIter); + +/* +** CAPI3REF: Obtain The Current Operation From A Changeset Iterator +** +** The pIter argument passed to this function may either be an iterator +** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator +** created by [sqlite3changeset_start()]. In the latter case, the most recent +** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this +** is not the case, this function returns [SQLITE_MISUSE]. +** +** If argument pzTab is not NULL, then *pzTab is set to point to a +** nul-terminated utf-8 encoded string containing the name of the table +** affected by the current change. The buffer remains valid until either +** sqlite3changeset_next() is called on the iterator or until the +** conflict-handler function returns. If pnCol is not NULL, then *pnCol is +** set to the number of columns in the table affected by the change. If +** pbIncorrect is not NULL, then *pbIndirect is set to true (1) if the change +** is an indirect change, or false (0) otherwise. See the documentation for +** [sqlite3session_indirect()] for a description of direct and indirect +** changes. Finally, if pOp is not NULL, then *pOp is set to one of +** [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], depending on the +** type of change that the iterator currently points to. +** +** If no error occurs, SQLITE_OK is returned. If an error does occur, an +** SQLite error code is returned. The values of the output variables may not +** be trusted in this case. +*/ +int sqlite3changeset_op( + sqlite3_changeset_iter *pIter, /* Iterator object */ + const char **pzTab, /* OUT: Pointer to table name */ + int *pnCol, /* OUT: Number of columns in table */ + int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ + int *pbIndirect /* OUT: True for an 'indirect' change */ +); + +/* +** CAPI3REF: Obtain The Primary Key Definition Of A Table +** +** For each modified table, a changeset includes the following: +** +**
      +**
    • The number of columns in the table, and +**
    • Which of those columns make up the tables PRIMARY KEY. +**
    +** +** This function is used to find which columns comprise the PRIMARY KEY of +** the table modified by the change that iterator pIter currently points to. +** If successful, *pabPK is set to point to an array of nCol entries, where +** nCol is the number of columns in the table. Elements of *pabPK are set to +** 0x01 if the corresponding column is part of the tables primary key, or +** 0x00 if it is not. +** +** If argumet pnCol is not NULL, then *pnCol is set to the number of columns +** in the table. +** +** If this function is called when the iterator does not point to a valid +** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise, +** SQLITE_OK is returned and the output variables populated as described +** above. +*/ +int sqlite3changeset_pk( + sqlite3_changeset_iter *pIter, /* Iterator object */ + unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ + int *pnCol /* OUT: Number of entries in output array */ +); + +/* +** CAPI3REF: Obtain old.* Values From A Changeset Iterator +** +** The pIter argument passed to this function may either be an iterator +** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator +** created by [sqlite3changeset_start()]. In the latter case, the most recent +** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. +** Furthermore, it may only be called if the type of change that the iterator +** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise, +** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. +** +** Argument iVal must be greater than or equal to 0, and less than the number +** of columns in the table affected by the current change. Otherwise, +** [SQLITE_RANGE] is returned and *ppValue is set to NULL. +** +** If successful, this function sets *ppValue to point to a protected +** sqlite3_value object containing the iVal'th value from the vector of +** original row values stored as part of the UPDATE or DELETE change and +** returns SQLITE_OK. The name of the function comes from the fact that this +** is similar to the "old.*" columns available to update or delete triggers. +** +** If some other error occurs (e.g. an OOM condition), an SQLite error code +** is returned and *ppValue is set to NULL. +*/ +int sqlite3changeset_old( + sqlite3_changeset_iter *pIter, /* Changeset iterator */ + int iVal, /* Column number */ + sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ +); + +/* +** CAPI3REF: Obtain new.* Values From A Changeset Iterator +** +** The pIter argument passed to this function may either be an iterator +** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator +** created by [sqlite3changeset_start()]. In the latter case, the most recent +** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. +** Furthermore, it may only be called if the type of change that the iterator +** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise, +** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. +** +** Argument iVal must be greater than or equal to 0, and less than the number +** of columns in the table affected by the current change. Otherwise, +** [SQLITE_RANGE] is returned and *ppValue is set to NULL. +** +** If successful, this function sets *ppValue to point to a protected +** sqlite3_value object containing the iVal'th value from the vector of +** new row values stored as part of the UPDATE or INSERT change and +** returns SQLITE_OK. If the change is an UPDATE and does not include +** a new value for the requested column, *ppValue is set to NULL and +** SQLITE_OK returned. The name of the function comes from the fact that +** this is similar to the "new.*" columns available to update or delete +** triggers. +** +** If some other error occurs (e.g. an OOM condition), an SQLite error code +** is returned and *ppValue is set to NULL. +*/ +int sqlite3changeset_new( + sqlite3_changeset_iter *pIter, /* Changeset iterator */ + int iVal, /* Column number */ + sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ +); + +/* +** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator +** +** This function should only be used with iterator objects passed to a +** conflict-handler callback by [sqlite3changeset_apply()] with either +** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function +** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue +** is set to NULL. +** +** Argument iVal must be greater than or equal to 0, and less than the number +** of columns in the table affected by the current change. Otherwise, +** [SQLITE_RANGE] is returned and *ppValue is set to NULL. +** +** If successful, this function sets *ppValue to point to a protected +** sqlite3_value object containing the iVal'th value from the +** "conflicting row" associated with the current conflict-handler callback +** and returns SQLITE_OK. +** +** If some other error occurs (e.g. an OOM condition), an SQLite error code +** is returned and *ppValue is set to NULL. +*/ +int sqlite3changeset_conflict( + sqlite3_changeset_iter *pIter, /* Changeset iterator */ + int iVal, /* Column number */ + sqlite3_value **ppValue /* OUT: Value from conflicting row */ +); + +/* +** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations +** +** This function may only be called with an iterator passed to an +** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case +** it sets the output variable to the total number of known foreign key +** violations in the destination database and returns SQLITE_OK. +** +** In all other cases this function returns SQLITE_MISUSE. +*/ +int sqlite3changeset_fk_conflicts( + sqlite3_changeset_iter *pIter, /* Changeset iterator */ + int *pnOut /* OUT: Number of FK violations */ +); + + +/* +** CAPI3REF: Finalize A Changeset Iterator +** +** This function is used to finalize an iterator allocated with +** [sqlite3changeset_start()]. +** +** This function should only be called on iterators created using the +** [sqlite3changeset_start()] function. If an application calls this +** function with an iterator passed to a conflict-handler by +** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the +** call has no effect. +** +** If an error was encountered within a call to an sqlite3changeset_xxx() +** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an +** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding +** to that error is returned by this function. Otherwise, SQLITE_OK is +** returned. This is to allow the following pattern (pseudo-code): +** +** sqlite3changeset_start(); +** while( SQLITE_ROW==sqlite3changeset_next() ){ +** // Do something with change. +** } +** rc = sqlite3changeset_finalize(); +** if( rc!=SQLITE_OK ){ +** // An error has occurred +** } +*/ +int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter); + +/* +** CAPI3REF: Invert A Changeset +** +** This function is used to "invert" a changeset object. Applying an inverted +** changeset to a database reverses the effects of applying the uninverted +** changeset. Specifically: +** +**
      +**
    • Each DELETE change is changed to an INSERT, and +**
    • Each INSERT change is changed to a DELETE, and +**
    • For each UPDATE change, the old.* and new.* values are exchanged. +**
    +** +** This function does not change the order in which changes appear within +** the changeset. It merely reverses the sense of each individual change. +** +** If successful, a pointer to a buffer containing the inverted changeset +** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and +** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are +** zeroed and an SQLite error code returned. +** +** It is the responsibility of the caller to eventually call sqlite3_free() +** on the *ppOut pointer to free the buffer allocation following a successful +** call to this function. +** +** WARNING/TODO: This function currently assumes that the input is a valid +** changeset. If it is not, the results are undefined. +*/ +int sqlite3changeset_invert( + int nIn, const void *pIn, /* Input changeset */ + int *pnOut, void **ppOut /* OUT: Inverse of input */ +); + +/* +** CAPI3REF: Concatenate Two Changeset Objects +** +** This function is used to concatenate two changesets, A and B, into a +** single changeset. The result is a changeset equivalent to applying +** changeset A followed by changeset B. +** +** This function combines the two input changesets using an +** sqlite3_changegroup object. Calling it produces similar results as the +** following code fragment: +** +** sqlite3_changegroup *pGrp; +** rc = sqlite3_changegroup_new(&pGrp); +** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA); +** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB); +** if( rc==SQLITE_OK ){ +** rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); +** }else{ +** *ppOut = 0; +** *pnOut = 0; +** } +** +** Refer to the sqlite3_changegroup documentation below for details. +*/ +int sqlite3changeset_concat( + int nA, /* Number of bytes in buffer pA */ + void *pA, /* Pointer to buffer containing changeset A */ + int nB, /* Number of bytes in buffer pB */ + void *pB, /* Pointer to buffer containing changeset B */ + int *pnOut, /* OUT: Number of bytes in output changeset */ + void **ppOut /* OUT: Buffer containing output changeset */ +); + + +/* +** Changegroup handle. +*/ +typedef struct sqlite3_changegroup sqlite3_changegroup; + +/* +** CAPI3REF: Combine two or more changesets into a single changeset. +** +** An sqlite3_changegroup object is used to combine two or more changesets +** (or patchsets) into a single changeset (or patchset). A single changegroup +** object may combine changesets or patchsets, but not both. The output is +** always in the same format as the input. +** +** If successful, this function returns SQLITE_OK and populates (*pp) with +** a pointer to a new sqlite3_changegroup object before returning. The caller +** should eventually free the returned object using a call to +** sqlite3changegroup_delete(). If an error occurs, an SQLite error code +** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL. +** +** The usual usage pattern for an sqlite3_changegroup object is as follows: +** +**
      +**
    • It is created using a call to sqlite3changegroup_new(). +** +**
    • Zero or more changesets (or patchsets) are added to the object +** by calling sqlite3changegroup_add(). +** +**
    • The result of combining all input changesets together is obtained +** by the application via a call to sqlite3changegroup_output(). +** +**
    • The object is deleted using a call to sqlite3changegroup_delete(). +**
    +** +** Any number of calls to add() and output() may be made between the calls to +** new() and delete(), and in any order. +** +** As well as the regular sqlite3changegroup_add() and +** sqlite3changegroup_output() functions, also available are the streaming +** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm(). +*/ +int sqlite3changegroup_new(sqlite3_changegroup **pp); + +/* +** Add all changes within the changeset (or patchset) in buffer pData (size +** nData bytes) to the changegroup. +** +** If the buffer contains a patchset, then all prior calls to this function +** on the same changegroup object must also have specified patchsets. Or, if +** the buffer contains a changeset, so must have the earlier calls to this +** function. Otherwise, SQLITE_ERROR is returned and no changes are added +** to the changegroup. +** +** Rows within the changeset and changegroup are identified by the values in +** their PRIMARY KEY columns. A change in the changeset is considered to +** apply to the same row as a change already present in the changegroup if +** the two rows have the same primary key. +** +** Changes to rows that that do not already appear in the changegroup are +** simply copied into it. Or, if both the new changeset and the changegroup +** contain changes that apply to a single row, the final contents of the +** changegroup depends on the type of each change, as follows: +** +** +** +** +**
    Existing Change New Change Output Change +**
    INSERT INSERT +** The new change is ignored. This case does not occur if the new +** changeset was recorded immediately after the changesets already +** added to the changegroup. +**
    INSERT UPDATE +** The INSERT change remains in the changegroup. The values in the +** INSERT change are modified as if the row was inserted by the +** existing change and then updated according to the new change. +**
    INSERT DELETE +** The existing INSERT is removed from the changegroup. The DELETE is +** not added. +**
    UPDATE INSERT +** The new change is ignored. This case does not occur if the new +** changeset was recorded immediately after the changesets already +** added to the changegroup. +**
    UPDATE UPDATE +** The existing UPDATE remains within the changegroup. It is amended +** so that the accompanying values are as if the row was updated once +** by the existing change and then again by the new change. +**
    UPDATE DELETE +** The existing UPDATE is replaced by the new DELETE within the +** changegroup. +**
    DELETE INSERT +** If one or more of the column values in the row inserted by the +** new change differ from those in the row deleted by the existing +** change, the existing DELETE is replaced by an UPDATE within the +** changegroup. Otherwise, if the inserted row is exactly the same +** as the deleted row, the existing DELETE is simply discarded. +**
    DELETE UPDATE +** The new change is ignored. This case does not occur if the new +** changeset was recorded immediately after the changesets already +** added to the changegroup. +**
    DELETE DELETE +** The new change is ignored. This case does not occur if the new +** changeset was recorded immediately after the changesets already +** added to the changegroup. +**
    +** +** If the new changeset contains changes to a table that is already present +** in the changegroup, then the number of columns and the position of the +** primary key columns for the table must be consistent. If this is not the +** case, this function fails with SQLITE_SCHEMA. If the input changeset +** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is +** returned. Or, if an out-of-memory condition occurs during processing, this +** function returns SQLITE_NOMEM. In all cases, if an error occurs the +** final contents of the changegroup is undefined. +** +** If no error occurs, SQLITE_OK is returned. +*/ +int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData); + +/* +** Obtain a buffer containing a changeset (or patchset) representing the +** current contents of the changegroup. If the inputs to the changegroup +** were themselves changesets, the output is a changeset. Or, if the +** inputs were patchsets, the output is also a patchset. +** +** As with the output of the sqlite3session_changeset() and +** sqlite3session_patchset() functions, all changes related to a single +** table are grouped together in the output of this function. Tables appear +** in the same order as for the very first changeset added to the changegroup. +** If the second or subsequent changesets added to the changegroup contain +** changes for tables that do not appear in the first changeset, they are +** appended onto the end of the output changeset, again in the order in +** which they are first encountered. +** +** If an error occurs, an SQLite error code is returned and the output +** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK +** is returned and the output variables are set to the size of and a +** pointer to the output buffer, respectively. In this case it is the +** responsibility of the caller to eventually free the buffer using a +** call to sqlite3_free(). +*/ +int sqlite3changegroup_output( + sqlite3_changegroup*, + int *pnData, /* OUT: Size of output buffer in bytes */ + void **ppData /* OUT: Pointer to output buffer */ +); + +/* +** Delete a changegroup object. +*/ +void sqlite3changegroup_delete(sqlite3_changegroup*); + +/* +** CAPI3REF: Apply A Changeset To A Database +** +** Apply a changeset to a database. This function attempts to update the +** "main" database attached to handle db with the changes found in the +** changeset passed via the second and third arguments. +** +** The fourth argument (xFilter) passed to this function is the "filter +** callback". If it is not NULL, then for each table affected by at least one +** change in the changeset, the filter callback is invoked with +** the table name as the second argument, and a copy of the context pointer +** passed as the sixth argument to this function as the first. If the "filter +** callback" returns zero, then no attempt is made to apply any changes to +** the table. Otherwise, if the return value is non-zero or the xFilter +** argument to this function is NULL, all changes related to the table are +** attempted. +** +** For each table that is not excluded by the filter callback, this function +** tests that the target database contains a compatible table. A table is +** considered compatible if all of the following are true: +** +**
      +**
    • The table has the same name as the name recorded in the +** changeset, and +**
    • The table has the same number of columns as recorded in the +** changeset, and +**
    • The table has primary key columns in the same position as +** recorded in the changeset. +**
    +** +** If there is no compatible table, it is not an error, but none of the +** changes associated with the table are applied. A warning message is issued +** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most +** one such warning is issued for each table in the changeset. +** +** For each change for which there is a compatible table, an attempt is made +** to modify the table contents according to the UPDATE, INSERT or DELETE +** change. If a change cannot be applied cleanly, the conflict handler +** function passed as the fifth argument to sqlite3changeset_apply() may be +** invoked. A description of exactly when the conflict handler is invoked for +** each type of change is below. +** +** Unlike the xFilter argument, xConflict may not be passed NULL. The results +** of passing anything other than a valid function pointer as the xConflict +** argument are undefined. +** +** Each time the conflict handler function is invoked, it must return one +** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or +** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned +** if the second argument passed to the conflict handler is either +** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler +** returns an illegal value, any changes already made are rolled back and +** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different +** actions are taken by sqlite3changeset_apply() depending on the value +** returned by each invocation of the conflict-handler function. Refer to +** the documentation for the three +** [SQLITE_CHANGESET_OMIT|available return values] for details. +** +**
    +**
    DELETE Changes
    +** For each DELETE change, this function checks if the target database +** contains a row with the same primary key value (or values) as the +** original row values stored in the changeset. If it does, and the values +** stored in all non-primary key columns also match the values stored in +** the changeset the row is deleted from the target database. +** +** If a row with matching primary key values is found, but one or more of +** the non-primary key fields contains a value different from the original +** row value stored in the changeset, the conflict-handler function is +** invoked with [SQLITE_CHANGESET_DATA] as the second argument. +** +** If no row with matching primary key values is found in the database, +** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] +** passed as the second argument. +** +** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT +** (which can only happen if a foreign key constraint is violated), the +** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT] +** passed as the second argument. This includes the case where the DELETE +** operation is attempted because an earlier call to the conflict handler +** function returned [SQLITE_CHANGESET_REPLACE]. +** +**
    INSERT Changes
    +** For each INSERT change, an attempt is made to insert the new row into +** the database. +** +** If the attempt to insert the row fails because the database already +** contains a row with the same primary key values, the conflict handler +** function is invoked with the second argument set to +** [SQLITE_CHANGESET_CONFLICT]. +** +** If the attempt to insert the row fails because of some other constraint +** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is +** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT]. +** This includes the case where the INSERT operation is re-attempted because +** an earlier call to the conflict handler function returned +** [SQLITE_CHANGESET_REPLACE]. +** +**
    UPDATE Changes
    +** For each UPDATE change, this function checks if the target database +** contains a row with the same primary key value (or values) as the +** original row values stored in the changeset. If it does, and the values +** stored in all non-primary key columns also match the values stored in +** the changeset the row is updated within the target database. +** +** If a row with matching primary key values is found, but one or more of +** the non-primary key fields contains a value different from an original +** row value stored in the changeset, the conflict-handler function is +** invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since +** UPDATE changes only contain values for non-primary key fields that are +** to be modified, only those fields need to match the original values to +** avoid the SQLITE_CHANGESET_DATA conflict-handler callback. +** +** If no row with matching primary key values is found in the database, +** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] +** passed as the second argument. +** +** If the UPDATE operation is attempted, but SQLite returns +** SQLITE_CONSTRAINT, the conflict-handler function is invoked with +** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument. +** This includes the case where the UPDATE operation is attempted after +** an earlier call to the conflict handler function returned +** [SQLITE_CHANGESET_REPLACE]. +**
    +** +** It is safe to execute SQL statements, including those that write to the +** table that the callback related to, from within the xConflict callback. +** This can be used to further customize the applications conflict +** resolution strategy. +** +** All changes made by this function are enclosed in a savepoint transaction. +** If any other error (aside from a constraint failure when attempting to +** write to the target database) occurs, then the savepoint transaction is +** rolled back, restoring the target database to its original state, and an +** SQLite error code returned. +*/ +int sqlite3changeset_apply( + sqlite3 *db, /* Apply change to "main" db of this handle */ + int nChangeset, /* Size of changeset in bytes */ + void *pChangeset, /* Changeset blob */ + int(*xFilter)( + void *pCtx, /* Copy of sixth arg to _apply() */ + const char *zTab /* Table name */ + ), + int(*xConflict)( + void *pCtx, /* Copy of sixth arg to _apply() */ + int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ + sqlite3_changeset_iter *p /* Handle describing change and conflict */ + ), + void *pCtx /* First argument passed to xConflict */ +); + +/* +** CAPI3REF: Constants Passed To The Conflict Handler +** +** Values that may be passed as the second argument to a conflict-handler. +** +**
    +**
    SQLITE_CHANGESET_DATA
    +** The conflict handler is invoked with CHANGESET_DATA as the second argument +** when processing a DELETE or UPDATE change if a row with the required +** PRIMARY KEY fields is present in the database, but one or more other +** (non primary-key) fields modified by the update do not contain the +** expected "before" values. +** +** The conflicting row, in this case, is the database row with the matching +** primary key. +** +**
    SQLITE_CHANGESET_NOTFOUND
    +** The conflict handler is invoked with CHANGESET_NOTFOUND as the second +** argument when processing a DELETE or UPDATE change if a row with the +** required PRIMARY KEY fields is not present in the database. +** +** There is no conflicting row in this case. The results of invoking the +** sqlite3changeset_conflict() API are undefined. +** +**
    SQLITE_CHANGESET_CONFLICT
    +** CHANGESET_CONFLICT is passed as the second argument to the conflict +** handler while processing an INSERT change if the operation would result +** in duplicate primary key values. +** +** The conflicting row in this case is the database row with the matching +** primary key. +** +**
    SQLITE_CHANGESET_FOREIGN_KEY
    +** If foreign key handling is enabled, and applying a changeset leaves the +** database in a state containing foreign key violations, the conflict +** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument +** exactly once before the changeset is committed. If the conflict handler +** returns CHANGESET_OMIT, the changes, including those that caused the +** foreign key constraint violation, are committed. Or, if it returns +** CHANGESET_ABORT, the changeset is rolled back. +** +** No current or conflicting row information is provided. The only function +** it is possible to call on the supplied sqlite3_changeset_iter handle +** is sqlite3changeset_fk_conflicts(). +** +**
    SQLITE_CHANGESET_CONSTRAINT
    +** If any other constraint violation occurs while applying a change (i.e. +** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is +** invoked with CHANGESET_CONSTRAINT as the second argument. +** +** There is no conflicting row in this case. The results of invoking the +** sqlite3changeset_conflict() API are undefined. +** +**
    +*/ +#define SQLITE_CHANGESET_DATA 1 +#define SQLITE_CHANGESET_NOTFOUND 2 +#define SQLITE_CHANGESET_CONFLICT 3 +#define SQLITE_CHANGESET_CONSTRAINT 4 +#define SQLITE_CHANGESET_FOREIGN_KEY 5 + +/* +** CAPI3REF: Constants Returned By The Conflict Handler +** +** A conflict handler callback must return one of the following three values. +** +**
    +**
    SQLITE_CHANGESET_OMIT
    +** If a conflict handler returns this value no special action is taken. The +** change that caused the conflict is not applied. The session module +** continues to the next change in the changeset. +** +**
    SQLITE_CHANGESET_REPLACE
    +** This value may only be returned if the second argument to the conflict +** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this +** is not the case, any changes applied so far are rolled back and the +** call to sqlite3changeset_apply() returns SQLITE_MISUSE. +** +** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict +** handler, then the conflicting row is either updated or deleted, depending +** on the type of change. +** +** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict +** handler, then the conflicting row is removed from the database and a +** second attempt to apply the change is made. If this second attempt fails, +** the original row is restored to the database before continuing. +** +**
    SQLITE_CHANGESET_ABORT
    +** If this value is returned, any changes applied so far are rolled back +** and the call to sqlite3changeset_apply() returns SQLITE_ABORT. +**
    +*/ +#define SQLITE_CHANGESET_OMIT 0 +#define SQLITE_CHANGESET_REPLACE 1 +#define SQLITE_CHANGESET_ABORT 2 + +/* +** CAPI3REF: Streaming Versions of API functions. +** +** The six streaming API xxx_strm() functions serve similar purposes to the +** corresponding non-streaming API functions: +** +** +** +**
    Streaming functionNon-streaming equivalent
    sqlite3changeset_apply_str[sqlite3changeset_apply] +**
    sqlite3changeset_concat_str[sqlite3changeset_concat] +**
    sqlite3changeset_invert_str[sqlite3changeset_invert] +**
    sqlite3changeset_start_str[sqlite3changeset_start] +**
    sqlite3session_changeset_str[sqlite3session_changeset] +**
    sqlite3session_patchset_str[sqlite3session_patchset] +**
    +** +** Non-streaming functions that accept changesets (or patchsets) as input +** require that the entire changeset be stored in a single buffer in memory. +** Similarly, those that return a changeset or patchset do so by returning +** a pointer to a single large buffer allocated using sqlite3_malloc(). +** Normally this is convenient. However, if an application running in a +** low-memory environment is required to handle very large changesets, the +** large contiguous memory allocations required can become onerous. +** +** In order to avoid this problem, instead of a single large buffer, input +** is passed to a streaming API functions by way of a callback function that +** the sessions module invokes to incrementally request input data as it is +** required. In all cases, a pair of API function parameters such as +** +**
    +**        int nChangeset,
    +**        void *pChangeset,
    +**  
    +** +** Is replaced by: +** +**
    +**        int (*xInput)(void *pIn, void *pData, int *pnData),
    +**        void *pIn,
    +**  
    +** +** Each time the xInput callback is invoked by the sessions module, the first +** argument passed is a copy of the supplied pIn context pointer. The second +** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no +** error occurs the xInput method should copy up to (*pnData) bytes of data +** into the buffer and set (*pnData) to the actual number of bytes copied +** before returning SQLITE_OK. If the input is completely exhausted, (*pnData) +** should be set to zero to indicate this. Or, if an error occurs, an SQLite +** error code should be returned. In all cases, if an xInput callback returns +** an error, all processing is abandoned and the streaming API function +** returns a copy of the error code to the caller. +** +** In the case of sqlite3changeset_start_strm(), the xInput callback may be +** invoked by the sessions module at any point during the lifetime of the +** iterator. If such an xInput callback returns an error, the iterator enters +** an error state, whereby all subsequent calls to iterator functions +** immediately fail with the same error code as returned by xInput. +** +** Similarly, streaming API functions that return changesets (or patchsets) +** return them in chunks by way of a callback function instead of via a +** pointer to a single large buffer. In this case, a pair of parameters such +** as: +** +**
    +**        int *pnChangeset,
    +**        void **ppChangeset,
    +**  
    +** +** Is replaced by: +** +**
    +**        int (*xOutput)(void *pOut, const void *pData, int nData),
    +**        void *pOut
    +**  
    +** +** The xOutput callback is invoked zero or more times to return data to +** the application. The first parameter passed to each call is a copy of the +** pOut pointer supplied by the application. The second parameter, pData, +** points to a buffer nData bytes in size containing the chunk of output +** data being returned. If the xOutput callback successfully processes the +** supplied data, it should return SQLITE_OK to indicate success. Otherwise, +** it should return some other SQLite error code. In this case processing +** is immediately abandoned and the streaming API function returns a copy +** of the xOutput error code to the application. +** +** The sessions module never invokes an xOutput callback with the third +** parameter set to a value less than or equal to zero. Other than this, +** no guarantees are made as to the size of the chunks of data returned. +*/ +int sqlite3changeset_apply_strm( + sqlite3 *db, /* Apply change to "main" db of this handle */ + int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ + void *pIn, /* First arg for xInput */ + int(*xFilter)( + void *pCtx, /* Copy of sixth arg to _apply() */ + const char *zTab /* Table name */ + ), + int(*xConflict)( + void *pCtx, /* Copy of sixth arg to _apply() */ + int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ + sqlite3_changeset_iter *p /* Handle describing change and conflict */ + ), + void *pCtx /* First argument passed to xConflict */ +); +int sqlite3changeset_concat_strm( + int (*xInputA)(void *pIn, void *pData, int *pnData), + void *pInA, + int (*xInputB)(void *pIn, void *pData, int *pnData), + void *pInB, + int (*xOutput)(void *pOut, const void *pData, int nData), + void *pOut +); +int sqlite3changeset_invert_strm( + int (*xInput)(void *pIn, void *pData, int *pnData), + void *pIn, + int (*xOutput)(void *pOut, const void *pData, int nData), + void *pOut +); +int sqlite3changeset_start_strm( + sqlite3_changeset_iter **pp, + int (*xInput)(void *pIn, void *pData, int *pnData), + void *pIn +); +int sqlite3session_changeset_strm( + sqlite3_session *pSession, + int (*xOutput)(void *pOut, const void *pData, int nData), + void *pOut +); +int sqlite3session_patchset_strm( + sqlite3_session *pSession, + int (*xOutput)(void *pOut, const void *pData, int nData), + void *pOut +); +int sqlite3changegroup_add_strm(sqlite3_changegroup*, + int (*xInput)(void *pIn, void *pData, int *pnData), + void *pIn +); +int sqlite3changegroup_output_strm(sqlite3_changegroup*, + int (*xOutput)(void *pOut, const void *pData, int nData), + void *pOut +); + + +/* +** Make sure we can call this stuff from C++. +*/ +#ifdef __cplusplus +} +#endif + +#endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */ + +/******** End of sqlite3session.h *********/ +/******** Begin file fts5.h *********/ +/* +** 2014 May 31 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** Interfaces to extend FTS5. Using the interfaces defined in this file, +** FTS5 may be extended with: +** +** * custom tokenizers, and +** * custom auxiliary functions. +*/ + + +#ifndef _FTS5_H +#define _FTS5_H + + +#ifdef __cplusplus +extern "C" { +#endif + +/************************************************************************* +** CUSTOM AUXILIARY FUNCTIONS +** +** Virtual table implementations may overload SQL functions by implementing +** the sqlite3_module.xFindFunction() method. +*/ + +typedef struct Fts5ExtensionApi Fts5ExtensionApi; +typedef struct Fts5Context Fts5Context; +typedef struct Fts5PhraseIter Fts5PhraseIter; + +typedef void (*fts5_extension_function)( + const Fts5ExtensionApi *pApi, /* API offered by current FTS version */ + Fts5Context *pFts, /* First arg to pass to pApi functions */ + sqlite3_context *pCtx, /* Context for returning result/error */ + int nVal, /* Number of values in apVal[] array */ + sqlite3_value **apVal /* Array of trailing arguments */ +); + +struct Fts5PhraseIter { + const unsigned char *a; + const unsigned char *b; +}; + +/* +** EXTENSION API FUNCTIONS +** +** xUserData(pFts): +** Return a copy of the context pointer the extension function was +** registered with. +** +** xColumnTotalSize(pFts, iCol, pnToken): +** If parameter iCol is less than zero, set output variable *pnToken +** to the total number of tokens in the FTS5 table. Or, if iCol is +** non-negative but less than the number of columns in the table, return +** the total number of tokens in column iCol, considering all rows in +** the FTS5 table. +** +** If parameter iCol is greater than or equal to the number of columns +** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. +** an OOM condition or IO error), an appropriate SQLite error code is +** returned. +** +** xColumnCount(pFts): +** Return the number of columns in the table. +** +** xColumnSize(pFts, iCol, pnToken): +** If parameter iCol is less than zero, set output variable *pnToken +** to the total number of tokens in the current row. Or, if iCol is +** non-negative but less than the number of columns in the table, set +** *pnToken to the number of tokens in column iCol of the current row. +** +** If parameter iCol is greater than or equal to the number of columns +** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. +** an OOM condition or IO error), an appropriate SQLite error code is +** returned. +** +** This function may be quite inefficient if used with an FTS5 table +** created with the "columnsize=0" option. +** +** xColumnText: +** This function attempts to retrieve the text of column iCol of the +** current document. If successful, (*pz) is set to point to a buffer +** containing the text in utf-8 encoding, (*pn) is set to the size in bytes +** (not characters) of the buffer and SQLITE_OK is returned. Otherwise, +** if an error occurs, an SQLite error code is returned and the final values +** of (*pz) and (*pn) are undefined. +** +** xPhraseCount: +** Returns the number of phrases in the current query expression. +** +** xPhraseSize: +** Returns the number of tokens in phrase iPhrase of the query. Phrases +** are numbered starting from zero. +** +** xInstCount: +** Set *pnInst to the total number of occurrences of all phrases within +** the query within the current row. Return SQLITE_OK if successful, or +** an error code (i.e. SQLITE_NOMEM) if an error occurs. +** +** This API can be quite slow if used with an FTS5 table created with the +** "detail=none" or "detail=column" option. If the FTS5 table is created +** with either "detail=none" or "detail=column" and "content=" option +** (i.e. if it is a contentless table), then this API always returns 0. +** +** xInst: +** Query for the details of phrase match iIdx within the current row. +** Phrase matches are numbered starting from zero, so the iIdx argument +** should be greater than or equal to zero and smaller than the value +** output by xInstCount(). +** +** Usually, output parameter *piPhrase is set to the phrase number, *piCol +** to the column in which it occurs and *piOff the token offset of the +** first token of the phrase. The exception is if the table was created +** with the offsets=0 option specified. In this case *piOff is always +** set to -1. +** +** Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) +** if an error occurs. +** +** This API can be quite slow if used with an FTS5 table created with the +** "detail=none" or "detail=column" option. +** +** xRowid: +** Returns the rowid of the current row. +** +** xTokenize: +** Tokenize text using the tokenizer belonging to the FTS5 table. +** +** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback): +** This API function is used to query the FTS table for phrase iPhrase +** of the current query. Specifically, a query equivalent to: +** +** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid +** +** with $p set to a phrase equivalent to the phrase iPhrase of the +** current query is executed. Any column filter that applies to +** phrase iPhrase of the current query is included in $p. For each +** row visited, the callback function passed as the fourth argument +** is invoked. The context and API objects passed to the callback +** function may be used to access the properties of each matched row. +** Invoking Api.xUserData() returns a copy of the pointer passed as +** the third argument to pUserData. +** +** If the callback function returns any value other than SQLITE_OK, the +** query is abandoned and the xQueryPhrase function returns immediately. +** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK. +** Otherwise, the error code is propagated upwards. +** +** If the query runs to completion without incident, SQLITE_OK is returned. +** Or, if some error occurs before the query completes or is aborted by +** the callback, an SQLite error code is returned. +** +** +** xSetAuxdata(pFts5, pAux, xDelete) +** +** Save the pointer passed as the second argument as the extension functions +** "auxiliary data". The pointer may then be retrieved by the current or any +** future invocation of the same fts5 extension function made as part of +** of the same MATCH query using the xGetAuxdata() API. +** +** Each extension function is allocated a single auxiliary data slot for +** each FTS query (MATCH expression). If the extension function is invoked +** more than once for a single FTS query, then all invocations share a +** single auxiliary data context. +** +** If there is already an auxiliary data pointer when this function is +** invoked, then it is replaced by the new pointer. If an xDelete callback +** was specified along with the original pointer, it is invoked at this +** point. +** +** The xDelete callback, if one is specified, is also invoked on the +** auxiliary data pointer after the FTS5 query has finished. +** +** If an error (e.g. an OOM condition) occurs within this function, an +** the auxiliary data is set to NULL and an error code returned. If the +** xDelete parameter was not NULL, it is invoked on the auxiliary data +** pointer before returning. +** +** +** xGetAuxdata(pFts5, bClear) +** +** Returns the current auxiliary data pointer for the fts5 extension +** function. See the xSetAuxdata() method for details. +** +** If the bClear argument is non-zero, then the auxiliary data is cleared +** (set to NULL) before this function returns. In this case the xDelete, +** if any, is not invoked. +** +** +** xRowCount(pFts5, pnRow) +** +** This function is used to retrieve the total number of rows in the table. +** In other words, the same value that would be returned by: +** +** SELECT count(*) FROM ftstable; +** +** xPhraseFirst() +** This function is used, along with type Fts5PhraseIter and the xPhraseNext +** method, to iterate through all instances of a single query phrase within +** the current row. This is the same information as is accessible via the +** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient +** to use, this API may be faster under some circumstances. To iterate +** through instances of phrase iPhrase, use the following code: +** +** Fts5PhraseIter iter; +** int iCol, iOff; +** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff); +** iCol>=0; +** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff) +** ){ +** // An instance of phrase iPhrase at offset iOff of column iCol +** } +** +** The Fts5PhraseIter structure is defined above. Applications should not +** modify this structure directly - it should only be used as shown above +** with the xPhraseFirst() and xPhraseNext() API methods (and by +** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below). +** +** This API can be quite slow if used with an FTS5 table created with the +** "detail=none" or "detail=column" option. If the FTS5 table is created +** with either "detail=none" or "detail=column" and "content=" option +** (i.e. if it is a contentless table), then this API always iterates +** through an empty set (all calls to xPhraseFirst() set iCol to -1). +** +** xPhraseNext() +** See xPhraseFirst above. +** +** xPhraseFirstColumn() +** This function and xPhraseNextColumn() are similar to the xPhraseFirst() +** and xPhraseNext() APIs described above. The difference is that instead +** of iterating through all instances of a phrase in the current row, these +** APIs are used to iterate through the set of columns in the current row +** that contain one or more instances of a specified phrase. For example: +** +** Fts5PhraseIter iter; +** int iCol; +** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol); +** iCol>=0; +** pApi->xPhraseNextColumn(pFts, &iter, &iCol) +** ){ +** // Column iCol contains at least one instance of phrase iPhrase +** } +** +** This API can be quite slow if used with an FTS5 table created with the +** "detail=none" option. If the FTS5 table is created with either +** "detail=none" "content=" option (i.e. if it is a contentless table), +** then this API always iterates through an empty set (all calls to +** xPhraseFirstColumn() set iCol to -1). +** +** The information accessed using this API and its companion +** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext +** (or xInst/xInstCount). The chief advantage of this API is that it is +** significantly more efficient than those alternatives when used with +** "detail=column" tables. +** +** xPhraseNextColumn() +** See xPhraseFirstColumn above. +*/ +struct Fts5ExtensionApi { + int iVersion; /* Currently always set to 3 */ + + void *(*xUserData)(Fts5Context*); + + int (*xColumnCount)(Fts5Context*); + int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow); + int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken); + + int (*xTokenize)(Fts5Context*, + const char *pText, int nText, /* Text to tokenize */ + void *pCtx, /* Context passed to xToken() */ + int (*xToken)(void*, int, const char*, int, int, int) /* Callback */ + ); + + int (*xPhraseCount)(Fts5Context*); + int (*xPhraseSize)(Fts5Context*, int iPhrase); + + int (*xInstCount)(Fts5Context*, int *pnInst); + int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff); + + sqlite3_int64 (*xRowid)(Fts5Context*); + int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn); + int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken); + + int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData, + int(*)(const Fts5ExtensionApi*,Fts5Context*,void*) + ); + int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*)); + void *(*xGetAuxdata)(Fts5Context*, int bClear); + + int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*); + void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff); + + int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*); + void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol); +}; + +/* +** CUSTOM AUXILIARY FUNCTIONS +*************************************************************************/ + +/************************************************************************* +** CUSTOM TOKENIZERS +** +** Applications may also register custom tokenizer types. A tokenizer +** is registered by providing fts5 with a populated instance of the +** following structure. All structure methods must be defined, setting +** any member of the fts5_tokenizer struct to NULL leads to undefined +** behaviour. The structure methods are expected to function as follows: +** +** xCreate: +** This function is used to allocate and initialize a tokenizer instance. +** A tokenizer instance is required to actually tokenize text. +** +** The first argument passed to this function is a copy of the (void*) +** pointer provided by the application when the fts5_tokenizer object +** was registered with FTS5 (the third argument to xCreateTokenizer()). +** The second and third arguments are an array of nul-terminated strings +** containing the tokenizer arguments, if any, specified following the +** tokenizer name as part of the CREATE VIRTUAL TABLE statement used +** to create the FTS5 table. +** +** The final argument is an output variable. If successful, (*ppOut) +** should be set to point to the new tokenizer handle and SQLITE_OK +** returned. If an error occurs, some value other than SQLITE_OK should +** be returned. In this case, fts5 assumes that the final value of *ppOut +** is undefined. +** +** xDelete: +** This function is invoked to delete a tokenizer handle previously +** allocated using xCreate(). Fts5 guarantees that this function will +** be invoked exactly once for each successful call to xCreate(). +** +** xTokenize: +** This function is expected to tokenize the nText byte string indicated +** by argument pText. pText may or may not be nul-terminated. The first +** argument passed to this function is a pointer to an Fts5Tokenizer object +** returned by an earlier call to xCreate(). +** +** The second argument indicates the reason that FTS5 is requesting +** tokenization of the supplied text. This is always one of the following +** four values: +** +**
    • FTS5_TOKENIZE_DOCUMENT - A document is being inserted into +** or removed from the FTS table. The tokenizer is being invoked to +** determine the set of tokens to add to (or delete from) the +** FTS index. +** +**
    • FTS5_TOKENIZE_QUERY - A MATCH query is being executed +** against the FTS index. The tokenizer is being called to tokenize +** a bareword or quoted string specified as part of the query. +** +**
    • (FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX) - Same as +** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is +** followed by a "*" character, indicating that the last token +** returned by the tokenizer will be treated as a token prefix. +** +**
    • FTS5_TOKENIZE_AUX - The tokenizer is being invoked to +** satisfy an fts5_api.xTokenize() request made by an auxiliary +** function. Or an fts5_api.xColumnSize() request made by the same +** on a columnsize=0 database. +**
    +** +** For each token in the input string, the supplied callback xToken() must +** be invoked. The first argument to it should be a copy of the pointer +** passed as the second argument to xTokenize(). The third and fourth +** arguments are a pointer to a buffer containing the token text, and the +** size of the token in bytes. The 4th and 5th arguments are the byte offsets +** of the first byte of and first byte immediately following the text from +** which the token is derived within the input. +** +** The second argument passed to the xToken() callback ("tflags") should +** normally be set to 0. The exception is if the tokenizer supports +** synonyms. In this case see the discussion below for details. +** +** FTS5 assumes the xToken() callback is invoked for each token in the +** order that they occur within the input text. +** +** If an xToken() callback returns any value other than SQLITE_OK, then +** the tokenization should be abandoned and the xTokenize() method should +** immediately return a copy of the xToken() return value. Or, if the +** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally, +** if an error occurs with the xTokenize() implementation itself, it +** may abandon the tokenization and return any error code other than +** SQLITE_OK or SQLITE_DONE. +** +** SYNONYM SUPPORT +** +** Custom tokenizers may also support synonyms. Consider a case in which a +** user wishes to query for a phrase such as "first place". Using the +** built-in tokenizers, the FTS5 query 'first + place' will match instances +** of "first place" within the document set, but not alternative forms +** such as "1st place". In some applications, it would be better to match +** all instances of "first place" or "1st place" regardless of which form +** the user specified in the MATCH query text. +** +** There are several ways to approach this in FTS5: +** +**
    1. By mapping all synonyms to a single token. In this case, the +** In the above example, this means that the tokenizer returns the +** same token for inputs "first" and "1st". Say that token is in +** fact "first", so that when the user inserts the document "I won +** 1st place" entries are added to the index for tokens "i", "won", +** "first" and "place". If the user then queries for '1st + place', +** the tokenizer substitutes "first" for "1st" and the query works +** as expected. +** +**
    2. By adding multiple synonyms for a single term to the FTS index. +** In this case, when tokenizing query text, the tokenizer may +** provide multiple synonyms for a single term within the document. +** FTS5 then queries the index for each synonym individually. For +** example, faced with the query: +** +** +** ... MATCH 'first place' +** +** the tokenizer offers both "1st" and "first" as synonyms for the +** first token in the MATCH query and FTS5 effectively runs a query +** similar to: +** +** +** ... MATCH '(first OR 1st) place' +** +** except that, for the purposes of auxiliary functions, the query +** still appears to contain just two phrases - "(first OR 1st)" +** being treated as a single phrase. +** +**
    3. By adding multiple synonyms for a single term to the FTS index. +** Using this method, when tokenizing document text, the tokenizer +** provides multiple synonyms for each token. So that when a +** document such as "I won first place" is tokenized, entries are +** added to the FTS index for "i", "won", "first", "1st" and +** "place". +** +** This way, even if the tokenizer does not provide synonyms +** when tokenizing query text (it should not - to do would be +** inefficient), it doesn't matter if the user queries for +** 'first + place' or '1st + place', as there are entires in the +** FTS index corresponding to both forms of the first token. +**
    +** +** Whether it is parsing document or query text, any call to xToken that +** specifies a tflags argument with the FTS5_TOKEN_COLOCATED bit +** is considered to supply a synonym for the previous token. For example, +** when parsing the document "I won first place", a tokenizer that supports +** synonyms would call xToken() 5 times, as follows: +** +** +** xToken(pCtx, 0, "i", 1, 0, 1); +** xToken(pCtx, 0, "won", 3, 2, 5); +** xToken(pCtx, 0, "first", 5, 6, 11); +** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11); +** xToken(pCtx, 0, "place", 5, 12, 17); +** +** +** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time +** xToken() is called. Multiple synonyms may be specified for a single token +** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence. +** There is no limit to the number of synonyms that may be provided for a +** single token. +** +** In many cases, method (1) above is the best approach. It does not add +** extra data to the FTS index or require FTS5 to query for multiple terms, +** so it is efficient in terms of disk space and query speed. However, it +** does not support prefix queries very well. If, as suggested above, the +** token "first" is subsituted for "1st" by the tokenizer, then the query: +** +** +** ... MATCH '1s*' +** +** will not match documents that contain the token "1st" (as the tokenizer +** will probably not map "1s" to any prefix of "first"). +** +** For full prefix support, method (3) may be preferred. In this case, +** because the index contains entries for both "first" and "1st", prefix +** queries such as 'fi*' or '1s*' will match correctly. However, because +** extra entries are added to the FTS index, this method uses more space +** within the database. +** +** Method (2) offers a midpoint between (1) and (3). Using this method, +** a query such as '1s*' will match documents that contain the literal +** token "1st", but not "first" (assuming the tokenizer is not able to +** provide synonyms for prefixes). However, a non-prefix query like '1st' +** will match against "1st" and "first". This method does not require +** extra disk space, as no extra entries are added to the FTS index. +** On the other hand, it may require more CPU cycles to run MATCH queries, +** as separate queries of the FTS index are required for each synonym. +** +** When using methods (2) or (3), it is important that the tokenizer only +** provide synonyms when tokenizing document text (method (2)) or query +** text (method (3)), not both. Doing so will not cause any errors, but is +** inefficient. +*/ +typedef struct Fts5Tokenizer Fts5Tokenizer; +typedef struct fts5_tokenizer fts5_tokenizer; +struct fts5_tokenizer { + int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut); + void (*xDelete)(Fts5Tokenizer*); + int (*xTokenize)(Fts5Tokenizer*, + void *pCtx, + int flags, /* Mask of FTS5_TOKENIZE_* flags */ + const char *pText, int nText, + int (*xToken)( + void *pCtx, /* Copy of 2nd argument to xTokenize() */ + int tflags, /* Mask of FTS5_TOKEN_* flags */ + const char *pToken, /* Pointer to buffer containing token */ + int nToken, /* Size of token in bytes */ + int iStart, /* Byte offset of token within input text */ + int iEnd /* Byte offset of end of token within input text */ + ) + ); +}; + +/* Flags that may be passed as the third argument to xTokenize() */ +#define FTS5_TOKENIZE_QUERY 0x0001 +#define FTS5_TOKENIZE_PREFIX 0x0002 +#define FTS5_TOKENIZE_DOCUMENT 0x0004 +#define FTS5_TOKENIZE_AUX 0x0008 + +/* Flags that may be passed by the tokenizer implementation back to FTS5 +** as the third argument to the supplied xToken callback. */ +#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */ + +/* +** END OF CUSTOM TOKENIZERS +*************************************************************************/ + +/************************************************************************* +** FTS5 EXTENSION REGISTRATION API +*/ +typedef struct fts5_api fts5_api; +struct fts5_api { + int iVersion; /* Currently always set to 2 */ + + /* Create a new tokenizer */ + int (*xCreateTokenizer)( + fts5_api *pApi, + const char *zName, + void *pContext, + fts5_tokenizer *pTokenizer, + void (*xDestroy)(void*) + ); + + /* Find an existing tokenizer */ + int (*xFindTokenizer)( + fts5_api *pApi, + const char *zName, + void **ppContext, + fts5_tokenizer *pTokenizer + ); + + /* Create a new auxiliary function */ + int (*xCreateFunction)( + fts5_api *pApi, + const char *zName, + void *pContext, + fts5_extension_function xFunction, + void (*xDestroy)(void*) + ); +}; + +/* +** END OF REGISTRATION API +*************************************************************************/ + +#ifdef __cplusplus +} /* end of the 'extern "C"' block */ +#endif + +#endif /* _FTS5_H */ + +/******** End of fts5.h *********/