File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / axTLS / crypto / aes.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Fri Sep 28 11:55:55 2012 UTC (11 years, 8 months ago) by misho
Branches: v1_4_8, MAIN
CVS tags: datecs, HEAD
axTLS

    1: /*
    2:  * Copyright (c) 2007, Cameron Rich
    3:  * 
    4:  * All rights reserved.
    5:  * 
    6:  * Redistribution and use in source and binary forms, with or without 
    7:  * modification, are permitted provided that the following conditions are met:
    8:  *
    9:  * * Redistributions of source code must retain the above copyright notice, 
   10:  *   this list of conditions and the following disclaimer.
   11:  * * Redistributions in binary form must reproduce the above copyright notice, 
   12:  *   this list of conditions and the following disclaimer in the documentation 
   13:  *   and/or other materials provided with the distribution.
   14:  * * Neither the name of the axTLS project nor the names of its contributors 
   15:  *   may be used to endorse or promote products derived from this software 
   16:  *   without specific prior written permission.
   17:  *
   18:  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19:  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20:  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21:  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   22:  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   23:  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   24:  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   25:  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   26:  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   27:  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   28:  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29:  */
   30: 
   31: /**
   32:  * AES implementation - this is a small code version. There are much faster
   33:  * versions around but they are much larger in size (i.e. they use large 
   34:  * submix tables).
   35:  */
   36: 
   37: #include <string.h>
   38: #include "os_port.h"
   39: #include "crypto.h"
   40: 
   41: /* all commented out in skeleton mode */
   42: #ifndef CONFIG_SSL_SKELETON_MODE
   43: 
   44: #define rot1(x) (((x) << 24) | ((x) >> 8))
   45: #define rot2(x) (((x) << 16) | ((x) >> 16))
   46: #define rot3(x) (((x) <<  8) | ((x) >> 24))
   47: 
   48: /* 
   49:  * This cute trick does 4 'mul by two' at once.  Stolen from
   50:  * Dr B. R. Gladman <brg@gladman.uk.net> but I'm sure the u-(u>>7) is
   51:  * a standard graphics trick
   52:  * The key to this is that we need to xor with 0x1b if the top bit is set.
   53:  * a 1xxx xxxx   0xxx 0xxx First we mask the 7bit,
   54:  * b 1000 0000   0000 0000 then we shift right by 7 putting the 7bit in 0bit,
   55:  * c 0000 0001   0000 0000 we then subtract (c) from (b)
   56:  * d 0111 1111   0000 0000 and now we and with our mask
   57:  * e 0001 1011   0000 0000
   58:  */
   59: #define mt  0x80808080
   60: #define ml  0x7f7f7f7f
   61: #define mh  0xfefefefe
   62: #define mm  0x1b1b1b1b
   63: #define mul2(x,t)	((t)=((x)&mt), \
   64: 			((((x)+(x))&mh)^(((t)-((t)>>7))&mm)))
   65: 
   66: #define inv_mix_col(x,f2,f4,f8,f9) (\
   67: 			(f2)=mul2(x,f2), \
   68: 			(f4)=mul2(f2,f4), \
   69: 			(f8)=mul2(f4,f8), \
   70: 			(f9)=(x)^(f8), \
   71: 			(f8)=((f2)^(f4)^(f8)), \
   72: 			(f2)^=(f9), \
   73: 			(f4)^=(f9), \
   74: 			(f8)^=rot3(f2), \
   75: 			(f8)^=rot2(f4), \
   76: 			(f8)^rot1(f9))
   77: 
   78: /*
   79:  * AES S-box
   80:  */
   81: static const uint8_t aes_sbox[256] =
   82: {
   83: 	0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,
   84: 	0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
   85: 	0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,
   86: 	0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
   87: 	0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,
   88: 	0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
   89: 	0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,
   90: 	0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
   91: 	0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,
   92: 	0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
   93: 	0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,
   94: 	0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
   95: 	0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,
   96: 	0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
   97: 	0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,
   98: 	0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
   99: 	0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,
  100: 	0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
  101: 	0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,
  102: 	0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
  103: 	0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,
  104: 	0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
  105: 	0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,
  106: 	0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
  107: 	0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,
  108: 	0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
  109: 	0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,
  110: 	0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
  111: 	0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,
  112: 	0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
  113: 	0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,
  114: 	0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16,
  115: };
  116: 
  117: /*
  118:  * AES is-box
  119:  */
  120: static const uint8_t aes_isbox[256] = 
  121: {
  122:     0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
  123:     0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
  124:     0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
  125:     0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
  126:     0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
  127:     0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
  128:     0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
  129:     0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
  130:     0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
  131:     0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
  132:     0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
  133:     0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
  134:     0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
  135:     0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
  136:     0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
  137:     0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
  138:     0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
  139:     0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
  140:     0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,
  141:     0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
  142:     0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
  143:     0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
  144:     0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
  145:     0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
  146:     0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
  147:     0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
  148:     0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
  149:     0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
  150:     0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
  151:     0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
  152:     0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
  153:     0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d
  154: };
  155: 
  156: static const unsigned char Rcon[30]=
  157: {
  158: 	0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,
  159: 	0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,
  160: 	0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,
  161: 	0xb3,0x7d,0xfa,0xef,0xc5,0x91,
  162: };
  163: 
  164: /* ----- static functions ----- */
  165: static void AES_encrypt(const AES_CTX *ctx, uint32_t *data);
  166: static void AES_decrypt(const AES_CTX *ctx, uint32_t *data);
  167: 
  168: /* Perform doubling in Galois Field GF(2^8) using the irreducible polynomial
  169:    x^8+x^4+x^3+x+1 */
  170: static unsigned char AES_xtime(uint32_t x)
  171: {
  172: 	return (x&0x80) ? (x<<1)^0x1b : x<<1;
  173: }
  174: 
  175: /**
  176:  * Set up AES with the key/iv and cipher size.
  177:  */
  178: void AES_set_key(AES_CTX *ctx, const uint8_t *key, 
  179:         const uint8_t *iv, AES_MODE mode)
  180: {
  181:     int i, ii;
  182:     uint32_t *W, tmp, tmp2;
  183:     const unsigned char *ip;
  184:     int words;
  185: 
  186:     switch (mode)
  187:     {
  188:         case AES_MODE_128:
  189:             i = 10;
  190:             words = 4;
  191:             break;
  192: 
  193:         case AES_MODE_256:
  194:             i = 14;
  195:             words = 8;
  196:             break;
  197: 
  198:         default:        /* fail silently */
  199:             return;
  200:     }
  201: 
  202:     ctx->rounds = i;
  203:     ctx->key_size = words;
  204:     W = ctx->ks;
  205:     for (i = 0; i < words; i+=2)
  206:     {
  207:         W[i+0]=	((uint32_t)key[ 0]<<24)|
  208:             ((uint32_t)key[ 1]<<16)|
  209:             ((uint32_t)key[ 2]<< 8)|
  210:             ((uint32_t)key[ 3]    );
  211:         W[i+1]=	((uint32_t)key[ 4]<<24)|
  212:             ((uint32_t)key[ 5]<<16)|
  213:             ((uint32_t)key[ 6]<< 8)|
  214:             ((uint32_t)key[ 7]    );
  215:         key += 8;
  216:     }
  217: 
  218:     ip = Rcon;
  219:     ii = 4 * (ctx->rounds+1);
  220:     for (i = words; i<ii; i++)
  221:     {
  222:         tmp = W[i-1];
  223: 
  224:         if ((i % words) == 0)
  225:         {
  226:             tmp2 =(uint32_t)aes_sbox[(tmp    )&0xff]<< 8;
  227:             tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<<16;
  228:             tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<24;
  229:             tmp2|=(uint32_t)aes_sbox[(tmp>>24)     ];
  230:             tmp=tmp2^(((unsigned int)*ip)<<24);
  231:             ip++;
  232:         }
  233: 
  234:         if ((words == 8) && ((i % words) == 4))
  235:         {
  236:             tmp2 =(uint32_t)aes_sbox[(tmp    )&0xff]    ;
  237:             tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<< 8;
  238:             tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<16;
  239:             tmp2|=(uint32_t)aes_sbox[(tmp>>24)     ]<<24;
  240:             tmp=tmp2;
  241:         }
  242: 
  243:         W[i]=W[i-words]^tmp;
  244:     }
  245: 
  246:     /* copy the iv across */
  247:     memcpy(ctx->iv, iv, 16);
  248: }
  249: 
  250: /**
  251:  * Change a key for decryption.
  252:  */
  253: void AES_convert_key(AES_CTX *ctx)
  254: {
  255:     int i;
  256:     uint32_t *k,w,t1,t2,t3,t4;
  257: 
  258:     k = ctx->ks;
  259:     k += 4;
  260: 
  261:     for (i= ctx->rounds*4; i > 4; i--)
  262:     {
  263:         w= *k;
  264:         w = inv_mix_col(w,t1,t2,t3,t4);
  265:         *k++ =w;
  266:     }
  267: }
  268: 
  269: /**
  270:  * Encrypt a byte sequence (with a block size 16) using the AES cipher.
  271:  */
  272: void AES_cbc_encrypt(AES_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
  273: {
  274:     int i;
  275:     uint32_t tin[4], tout[4], iv[4];
  276: 
  277:     memcpy(iv, ctx->iv, AES_IV_SIZE);
  278:     for (i = 0; i < 4; i++)
  279:         tout[i] = ntohl(iv[i]);
  280: 
  281:     for (length -= AES_BLOCKSIZE; length >= 0; length -= AES_BLOCKSIZE)
  282:     {
  283:         uint32_t msg_32[4];
  284:         uint32_t out_32[4];
  285:         memcpy(msg_32, msg, AES_BLOCKSIZE);
  286:         msg += AES_BLOCKSIZE;
  287: 
  288:         for (i = 0; i < 4; i++)
  289:             tin[i] = ntohl(msg_32[i])^tout[i];
  290: 
  291:         AES_encrypt(ctx, tin);
  292: 
  293:         for (i = 0; i < 4; i++)
  294:         {
  295:             tout[i] = tin[i]; 
  296:             out_32[i] = htonl(tout[i]);
  297:         }
  298: 
  299:         memcpy(out, out_32, AES_BLOCKSIZE);
  300:         out += AES_BLOCKSIZE;
  301:     }
  302: 
  303:     for (i = 0; i < 4; i++)
  304:         iv[i] = htonl(tout[i]);
  305:     memcpy(ctx->iv, iv, AES_IV_SIZE);
  306: }
  307: 
  308: /**
  309:  * Decrypt a byte sequence (with a block size 16) using the AES cipher.
  310:  */
  311: void AES_cbc_decrypt(AES_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
  312: {
  313:     int i;
  314:     uint32_t tin[4], xor[4], tout[4], data[4], iv[4];
  315: 
  316:     memcpy(iv, ctx->iv, AES_IV_SIZE);
  317:     for (i = 0; i < 4; i++)
  318:         xor[i] = ntohl(iv[i]);
  319: 
  320:     for (length -= 16; length >= 0; length -= 16)
  321:     {
  322:         uint32_t msg_32[4];
  323:         uint32_t out_32[4];
  324:         memcpy(msg_32, msg, AES_BLOCKSIZE);
  325:         msg += AES_BLOCKSIZE;
  326: 
  327:         for (i = 0; i < 4; i++)
  328:         {
  329:             tin[i] = ntohl(msg_32[i]);
  330:             data[i] = tin[i];
  331:         }
  332: 
  333:         AES_decrypt(ctx, data);
  334: 
  335:         for (i = 0; i < 4; i++)
  336:         {
  337:             tout[i] = data[i]^xor[i];
  338:             xor[i] = tin[i];
  339:             out_32[i] = htonl(tout[i]);
  340:         }
  341: 
  342:         memcpy(out, out_32, AES_BLOCKSIZE);
  343:         out += AES_BLOCKSIZE;
  344:     }
  345: 
  346:     for (i = 0; i < 4; i++)
  347:         iv[i] = htonl(xor[i]);
  348:     memcpy(ctx->iv, iv, AES_IV_SIZE);
  349: }
  350: 
  351: /**
  352:  * Encrypt a single block (16 bytes) of data
  353:  */
  354: static void AES_encrypt(const AES_CTX *ctx, uint32_t *data)
  355: {
  356:     /* To make this code smaller, generate the sbox entries on the fly.
  357:      * This will have a really heavy effect upon performance.
  358:      */
  359:     uint32_t tmp[4];
  360:     uint32_t tmp1, old_a0, a0, a1, a2, a3, row;
  361:     int curr_rnd;
  362:     int rounds = ctx->rounds; 
  363:     const uint32_t *k = ctx->ks;
  364: 
  365:     /* Pre-round key addition */
  366:     for (row = 0; row < 4; row++)
  367:         data[row] ^= *(k++);
  368: 
  369:     /* Encrypt one block. */
  370:     for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
  371:     {
  372:         /* Perform ByteSub and ShiftRow operations together */
  373:         for (row = 0; row < 4; row++)
  374:         {
  375:             a0 = (uint32_t)aes_sbox[(data[row%4]>>24)&0xFF];
  376:             a1 = (uint32_t)aes_sbox[(data[(row+1)%4]>>16)&0xFF];
  377:             a2 = (uint32_t)aes_sbox[(data[(row+2)%4]>>8)&0xFF]; 
  378:             a3 = (uint32_t)aes_sbox[(data[(row+3)%4])&0xFF];
  379: 
  380:             /* Perform MixColumn iff not last round */
  381:             if (curr_rnd < (rounds - 1))
  382:             {
  383:                 tmp1 = a0 ^ a1 ^ a2 ^ a3;
  384:                 old_a0 = a0;
  385:                 a0 ^= tmp1 ^ AES_xtime(a0 ^ a1);
  386:                 a1 ^= tmp1 ^ AES_xtime(a1 ^ a2);
  387:                 a2 ^= tmp1 ^ AES_xtime(a2 ^ a3);
  388:                 a3 ^= tmp1 ^ AES_xtime(a3 ^ old_a0);
  389:             }
  390: 
  391:             tmp[row] = ((a0 << 24) | (a1 << 16) | (a2 << 8) | a3);
  392:         }
  393: 
  394:         /* KeyAddition - note that it is vital that this loop is separate from
  395:            the MixColumn operation, which must be atomic...*/ 
  396:         for (row = 0; row < 4; row++)
  397:             data[row] = tmp[row] ^ *(k++);
  398:     }
  399: }
  400: 
  401: /**
  402:  * Decrypt a single block (16 bytes) of data
  403:  */
  404: static void AES_decrypt(const AES_CTX *ctx, uint32_t *data)
  405: { 
  406:     uint32_t tmp[4];
  407:     uint32_t xt0,xt1,xt2,xt3,xt4,xt5,xt6;
  408:     uint32_t a0, a1, a2, a3, row;
  409:     int curr_rnd;
  410:     int rounds = ctx->rounds;
  411:     const uint32_t *k = ctx->ks + ((rounds+1)*4);
  412: 
  413:     /* pre-round key addition */
  414:     for (row=4; row > 0;row--)
  415:         data[row-1] ^= *(--k);
  416: 
  417:     /* Decrypt one block */
  418:     for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
  419:     {
  420:         /* Perform ByteSub and ShiftRow operations together */
  421:         for (row = 4; row > 0; row--)
  422:         {
  423:             a0 = aes_isbox[(data[(row+3)%4]>>24)&0xFF];
  424:             a1 = aes_isbox[(data[(row+2)%4]>>16)&0xFF];
  425:             a2 = aes_isbox[(data[(row+1)%4]>>8)&0xFF];
  426:             a3 = aes_isbox[(data[row%4])&0xFF];
  427: 
  428:             /* Perform MixColumn iff not last round */
  429:             if (curr_rnd<(rounds-1))
  430:             {
  431:                 /* The MDS cofefficients (0x09, 0x0B, 0x0D, 0x0E)
  432:                    are quite large compared to encryption; this 
  433:                    operation slows decryption down noticeably. */
  434:                 xt0 = AES_xtime(a0^a1);
  435:                 xt1 = AES_xtime(a1^a2);
  436:                 xt2 = AES_xtime(a2^a3);
  437:                 xt3 = AES_xtime(a3^a0);
  438:                 xt4 = AES_xtime(xt0^xt1);
  439:                 xt5 = AES_xtime(xt1^xt2);
  440:                 xt6 = AES_xtime(xt4^xt5);
  441: 
  442:                 xt0 ^= a1^a2^a3^xt4^xt6;
  443:                 xt1 ^= a0^a2^a3^xt5^xt6;
  444:                 xt2 ^= a0^a1^a3^xt4^xt6;
  445:                 xt3 ^= a0^a1^a2^xt5^xt6;
  446:                 tmp[row-1] = ((xt0<<24)|(xt1<<16)|(xt2<<8)|xt3);
  447:             }
  448:             else
  449:                 tmp[row-1] = ((a0<<24)|(a1<<16)|(a2<<8)|a3);
  450:         }
  451: 
  452:         for (row = 4; row > 0; row--)
  453:             data[row-1] = tmp[row-1] ^ *(--k);
  454:     }
  455: }
  456: 
  457: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>