File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / bird / doc / prog-2.html
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Aug 22 12:33:54 2017 UTC (6 years, 11 months ago) by misho
Branches: bird, MAIN
CVS tags: v1_6_3p0, v1_6_3, HEAD
bird 1.6.3

    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
    2: <HTML>
    3: <HEAD>
    4:  <META NAME="GENERATOR" CONTENT="LinuxDoc-Tools 1.0.9">
    5:  <TITLE>BIRD Programmer's Documentation: Core</TITLE>
    6:  <LINK HREF="prog-3.html" REL=next>
    7:  <LINK HREF="prog-1.html" REL=previous>
    8:  <LINK HREF="prog.html#toc2" REL=contents>
    9: </HEAD>
   10: <BODY>
   11: <A HREF="prog-3.html">Next</A>
   12: <A HREF="prog-1.html">Previous</A>
   13: <A HREF="prog.html#toc2">Contents</A>
   14: <HR>
   15: <H2><A NAME="s2">2.</A> <A HREF="prog.html#toc2">Core</A></H2>
   16: 
   17: <H2><A NAME="ss2.1">2.1</A> <A HREF="prog.html#toc2.1">Forwarding Information Base</A>
   18: </H2>
   19: 
   20: <P>
   21: <P>FIB is a data structure designed for storage of routes indexed by their
   22: network prefixes. It supports insertion, deletion, searching by prefix,
   23: `routing' (in CIDR sense, that is searching for a longest prefix matching
   24: a given IP address) and (which makes the structure very tricky to implement)
   25: asynchronous reading, that is enumerating the contents of a FIB while other
   26: modules add, modify or remove entries.
   27: <P>Internally, each FIB is represented as a collection of nodes of type <I>fib_node</I>
   28: indexed using a sophisticated hashing mechanism.
   29: We use two-stage hashing where we calculate a 16-bit primary hash key independent
   30: on hash table size and then we just divide the primary keys modulo table size
   31: to get a real hash key used for determining the bucket containing the node.
   32: The lists of nodes in each bucket are sorted according to the primary hash
   33: key, hence if we keep the total number of buckets to be a power of two,
   34: re-hashing of the structure keeps the relative order of the nodes.
   35: <P>To get the asynchronous reading consistent over node deletions, we need to
   36: keep a list of readers for each node. When a node gets deleted, its readers
   37: are automatically moved to the next node in the table.
   38: <P>Basic FIB operations are performed by functions defined by this module,
   39: enumerating of FIB contents is accomplished by using the <B>FIB_WALK()</B> macro
   40: or <B>FIB_ITERATE_START()</B> if you want to do it asynchronously.
   41: <P>
   42: <P><HR><H3>Function</H3>
   43: <P><I>void</I>
   44: <B>fib_init</B>
   45: (<I>struct fib *</I> <B>f</B>, <I>pool *</I> <B>p</B>, <I>unsigned</I> <B>node_size</B>, <I>unsigned</I> <B>hash_order</B>, <I>fib_init_func</I> <B>init</B>) --     initialize a new FIB
   46: <P>
   47: <H3>Arguments</H3>
   48: <P>
   49: <DL>
   50: <DT><I>struct fib *</I> <B>f</B><DD><P>the FIB to be initialized (the structure itself being allocated by the caller)
   51: <DT><I>pool *</I> <B>p</B><DD><P>pool to allocate the nodes in
   52: <DT><I>unsigned</I> <B>node_size</B><DD><P>node size to be used (each node consists of a standard header <I>fib_node</I>
   53: followed by user data)
   54: <DT><I>unsigned</I> <B>hash_order</B><DD><P>initial hash order (a binary logarithm of hash table size), 0 to use default order
   55: (recommended)
   56: <DT><I>fib_init_func</I> <B>init</B><DD><P>pointer a function to be called to initialize a newly created node
   57: </DL>
   58: <H3>Description</H3>
   59: <P>This function initializes a newly allocated FIB and prepares it for use.
   60: 
   61: 
   62: <HR><H3>Function</H3>
   63: <P><I>void *</I>
   64: <B>fib_find</B>
   65: (<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) --     search for FIB node by prefix
   66: <P>
   67: <H3>Arguments</H3>
   68: <P>
   69: <DL>
   70: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
   71: <DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
   72: <DT><I>int</I> <B>len</B><DD><P>prefix length
   73: </DL>
   74: <H3>Description</H3>
   75: <P>Search for a FIB node corresponding to the given prefix, return
   76: a pointer to it or <I>NULL</I> if no such node exists.
   77: 
   78: 
   79: <HR><H3>Function</H3>
   80: <P><I>void *</I>
   81: <B>fib_get</B>
   82: (<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) --     find or create a FIB node
   83: <P>
   84: <H3>Arguments</H3>
   85: <P>
   86: <DL>
   87: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to work with
   88: <DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
   89: <DT><I>int</I> <B>len</B><DD><P>prefix length
   90: </DL>
   91: <H3>Description</H3>
   92: <P>Search for a FIB node corresponding to the given prefix and
   93: return a pointer to it. If no such node exists, create it.
   94: 
   95: 
   96: <HR><H3>Function</H3>
   97: <P><I>void *</I>
   98: <B>fib_route</B>
   99: (<I>struct fib *</I> <B>f</B>, <I>ip_addr</I> <B>a</B>, <I>int</I> <B>len</B>) --     CIDR routing lookup
  100: <P>
  101: <H3>Arguments</H3>
  102: <P>
  103: <DL>
  104: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
  105: <DT><I>ip_addr</I> <B>a</B><DD><P>pointer to IP address of the prefix
  106: <DT><I>int</I> <B>len</B><DD><P>prefix length
  107: </DL>
  108: <H3>Description</H3>
  109: <P>Search for a FIB node with longest prefix matching the given
  110: network, that is a node which a CIDR router would use for routing
  111: that network.
  112: 
  113: 
  114: <HR><H3>Function</H3>
  115: <P><I>void</I>
  116: <B>fib_delete</B>
  117: (<I>struct fib *</I> <B>f</B>, <I>void *</I> <B>E</B>) --     delete a FIB node
  118: <P>
  119: <H3>Arguments</H3>
  120: <P>
  121: <DL>
  122: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to delete from
  123: <DT><I>void *</I> <B>E</B><DD><P>entry to delete
  124: </DL>
  125: <H3>Description</H3>
  126: <P>This function removes the given entry from the FIB,
  127: taking care of all the asynchronous readers by shifting
  128: them to the next node in the canonical reading order.
  129: 
  130: 
  131: <HR><H3>Function</H3>
  132: <P><I>void</I>
  133: <B>fib_free</B>
  134: (<I>struct fib *</I> <B>f</B>) --     delete a FIB
  135: <P>
  136: <H3>Arguments</H3>
  137: <P>
  138: <DL>
  139: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be deleted
  140: </DL>
  141: <H3>Description</H3>
  142: <P>This function deletes a FIB -- it frees all memory associated
  143: with it and all its entries.
  144: 
  145: 
  146: <HR><H3>Function</H3>
  147: <P><I>void</I>
  148: <B>fib_check</B>
  149: (<I>struct fib *</I> <B>f</B>) --     audit a FIB
  150: <P>
  151: <H3>Arguments</H3>
  152: <P>
  153: <DL>
  154: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be checked
  155: </DL>
  156: <H3>Description</H3>
  157: <P>This debugging function audits a FIB by checking its internal consistency.
  158: Use when you suspect somebody of corrupting innocent data structures.
  159: 
  160: <H2><A NAME="ss2.2">2.2</A> <A HREF="prog.html#toc2.2">Routing tables</A>
  161: </H2>
  162: 
  163: <P>
  164: <P>Routing tables are probably the most important structures BIRD uses. They
  165: hold all the information about known networks, the associated routes and
  166: their attributes.
  167: <P>There are multiple routing tables (a primary one together with any
  168: number of secondary ones if requested by the configuration). Each table
  169: is basically a FIB containing entries describing the individual
  170: destination networks. For each network (represented by structure <I>net</I>),
  171: there is a one-way linked list of route entries (<I>rte</I>), the first entry
  172: on the list being the best one (i.e., the one we currently use
  173: for routing), the order of the other ones is undetermined.
  174: <P>The <I>rte</I> contains information specific to the route (preference, protocol
  175: metrics, time of last modification etc.) and a pointer to a <I>rta</I> structure
  176: (see the route attribute module for a precise explanation) holding the
  177: remaining route attributes which are expected to be shared by multiple
  178: routes in order to conserve memory.
  179: <P>
  180: <P><HR><H3>Function</H3>
  181: <P><I>rte *</I>
  182: <B>rte_find</B>
  183: (<I>net *</I> <B>net</B>, <I>struct rte_src *</I> <B>src</B>) --     find a route
  184: <P>
  185: <H3>Arguments</H3>
  186: <P>
  187: <DL>
  188: <DT><I>net *</I> <B>net</B><DD><P>network node
  189: <DT><I>struct rte_src *</I> <B>src</B><DD><P>route source
  190: </DL>
  191: <H3>Description</H3>
  192: <P>The <B>rte_find()</B> function returns a route for destination <B>net</B>
  193: which is from route source <B>src</B>.
  194: 
  195: 
  196: <HR><H3>Function</H3>
  197: <P><I>rte *</I>
  198: <B>rte_get_temp</B>
  199: (<I>rta *</I> <B>a</B>) --     get a temporary <I>rte</I>
  200: <P>
  201: <H3>Arguments</H3>
  202: <P>
  203: <DL>
  204: <DT><I>rta *</I> <B>a</B><DD><P>attributes to assign to the new route (a <I>rta</I>; in case it's
  205: un-cached, <B>rte_update()</B> will create a cached copy automatically)
  206: </DL>
  207: <H3>Description</H3>
  208: <P>Create a temporary <I>rte</I> and bind it with the attributes <B>a</B>.
  209: Also set route preference to the default preference set for
  210: the protocol.
  211: 
  212: 
  213: <HR><H3>Function</H3>
  214: <P><I>rte *</I>
  215: <B>rte_cow_rta</B>
  216: (<I>rte *</I> <B>r</B>, <I>linpool *</I> <B>lp</B>) --     get a private writable copy of <I>rte</I> with writable <I>rta</I>
  217: <P>
  218: <H3>Arguments</H3>
  219: <P>
  220: <DL>
  221: <DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
  222: <DT><I>linpool *</I> <B>lp</B><DD><P>a linpool from which to allocate <I>rta</I>
  223: </DL>
  224: <H3>Description</H3>
  225: <P><B>rte_cow_rta()</B> takes a <I>rte</I> and prepares it and associated <I>rta</I> for
  226: modification. There are three possibilities: First, both <I>rte</I> and <I>rta</I> are
  227: private copies, in that case they are returned unchanged.  Second, <I>rte</I> is
  228: private copy, but <I>rta</I> is cached, in that case <I>rta</I> is duplicated using
  229: <B>rta_do_cow()</B>. Third, both <I>rte</I> is shared and <I>rta</I> is cached, in that case
  230: both structures are duplicated by <B>rte_do_cow()</B> and <B>rta_do_cow()</B>.
  231: <P>Note that in the second case, cached <I>rta</I> loses one reference, while private
  232: copy created by <B>rta_do_cow()</B> is a shallow copy sharing indirect data (eattrs,
  233: nexthops, ...) with it. To work properly, original shared <I>rta</I> should have
  234: another reference during the life of created private copy.
  235: <H3>Result</H3>
  236: <P>a pointer to the new writable <I>rte</I> with writable <I>rta</I>.
  237: 
  238: 
  239: <HR><H3>Function</H3>
  240: <P><I>void</I>
  241: <B>rte_announce</B>
  242: (<I>rtable *</I> <B>tab</B>, <I>unsigned</I> <B>type</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>rte *</I> <B>new_best</B>, <I>rte *</I> <B>old_best</B>, <I>rte *</I> <B>before_old</B>) --     announce a routing table change
  243: <P>
  244: <H3>Arguments</H3>
  245: <P>
  246: <DL>
  247: <DT><I>rtable *</I> <B>tab</B><DD><P>table the route has been added to
  248: <DT><I>unsigned</I> <B>type</B><DD><P>type of route announcement (RA_OPTIMAL or RA_ANY)
  249: <DT><I>net *</I> <B>net</B><DD><P>network in question
  250: <DT><I>rte *</I> <B>new</B><DD><P>the new route to be announced
  251: <DT><I>rte *</I> <B>old</B><DD><P>the previous route for the same network
  252: <DT><I>rte *</I> <B>new_best</B><DD><P>the new best route for the same network
  253: <DT><I>rte *</I> <B>old_best</B><DD><P>the previous best route for the same network
  254: <DT><I>rte *</I> <B>before_old</B><DD><P>The previous route before <B>old</B> for the same network.
  255: If <B>before_old</B> is NULL <B>old</B> was the first.
  256: </DL>
  257: <H3>Description</H3>
  258: <P>This function gets a routing table update and announces it
  259: to all protocols that acccepts given type of route announcement
  260: and are connected to the same table by their announcement hooks.
  261: <P>Route announcement of type <I>RA_OPTIMAL</I> si generated when optimal
  262: route (in routing table <B>tab</B>) changes. In that case <B>old</B> stores the
  263: old optimal route.
  264: <P>Route announcement of type <I>RA_ANY</I> si generated when any route (in
  265: routing table <B>tab</B>) changes In that case <B>old</B> stores the old route
  266: from the same protocol.
  267: <P>For each appropriate protocol, we first call its <B>import_control()</B>
  268: hook which performs basic checks on the route (each protocol has a
  269: right to veto or force accept of the route before any filter is
  270: asked) and adds default values of attributes specific to the new
  271: protocol (metrics, tags etc.).  Then it consults the protocol's
  272: export filter and if it accepts the route, the <B>rt_notify()</B> hook of
  273: the protocol gets called.
  274: 
  275: 
  276: <HR><H3>Function</H3>
  277: <P><I>void</I>
  278: <B>rte_free</B>
  279: (<I>rte *</I> <B>e</B>) --     delete a <I>rte</I>
  280: <P>
  281: <H3>Arguments</H3>
  282: <P>
  283: <DL>
  284: <DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be deleted
  285: </DL>
  286: <H3>Description</H3>
  287: <P><B>rte_free()</B> deletes the given <I>rte</I> from the routing table it's linked to.
  288: 
  289: 
  290: <HR><H3>Function</H3>
  291: <P><I>void</I>
  292: <B>rte_update2</B>
  293: (<I>struct announce_hook *</I> <B>ah</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>struct rte_src *</I> <B>src</B>) --     enter a new update to a routing table
  294: <P>
  295: <H3>Arguments</H3>
  296: <P>
  297: <DL>
  298: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>pointer to table announce hook
  299: <DT><I>net *</I> <B>net</B><DD><P>network node
  300: <DT><I>rte *</I> <B>new</B><DD><P>a <I>rte</I> representing the new route or <I>NULL</I> for route removal.
  301: <DT><I>struct rte_src *</I> <B>src</B><DD><P>protocol originating the update
  302: </DL>
  303: <H3>Description</H3>
  304: <P>This function is called by the routing protocols whenever they discover
  305: a new route or wish to update/remove an existing route. The right announcement
  306: sequence is to build route attributes first (either un-cached with <B>aflags</B> set
  307: to zero or a cached one using <B>rta_lookup()</B>; in this case please note that
  308: you need to increase the use count of the attributes yourself by calling
  309: <B>rta_clone()</B>), call <B>rte_get_temp()</B> to obtain a temporary <I>rte</I>, fill in all
  310: the appropriate data and finally submit the new <I>rte</I> by calling <B>rte_update()</B>.
  311: <P><B>src</B> specifies the protocol that originally created the route and the meaning
  312: of protocol-dependent data of <B>new</B>. If <B>new</B> is not <I>NULL</I>, <B>src</B> have to be the
  313: same value as <B>new</B>-&gt;attrs-&gt;proto. <B>p</B> specifies the protocol that called
  314: <B>rte_update()</B>. In most cases it is the same protocol as <B>src</B>. <B>rte_update()</B>
  315: stores <B>p</B> in <B>new</B>-&gt;sender;
  316: <P>When <B>rte_update()</B> gets any route, it automatically validates it (checks,
  317: whether the network and next hop address are valid IP addresses and also
  318: whether a normal routing protocol doesn't try to smuggle a host or link
  319: scope route to the table), converts all protocol dependent attributes stored
  320: in the <I>rte</I> to temporary extended attributes, consults import filters of the
  321: protocol to see if the route should be accepted and/or its attributes modified,
  322: stores the temporary attributes back to the <I>rte</I>.
  323: <P>Now, having a "public" version of the route, we
  324: automatically find any old route defined by the protocol <B>src</B>
  325: for network <B>n</B>, replace it by the new one (or removing it if <B>new</B> is <I>NULL</I>),
  326: recalculate the optimal route for this destination and finally broadcast
  327: the change (if any) to all routing protocols by calling <B>rte_announce()</B>.
  328: <P>All memory used for attribute lists and other temporary allocations is taken
  329: from a special linear pool <B>rte_update_pool</B> and freed when <B>rte_update()</B>
  330: finishes.
  331: 
  332: 
  333: <HR><H3>Function</H3>
  334: <P><I>void</I>
  335: <B>rt_refresh_begin</B>
  336: (<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) --     start a refresh cycle
  337: <P>
  338: <H3>Arguments</H3>
  339: <P>
  340: <DL>
  341: <DT><I>rtable *</I> <B>t</B><DD><P>related routing table
  342: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook 
  343: </DL>
  344: <H3>Description</H3>
  345: <P>This function starts a refresh cycle for given routing table and announce
  346: hook. The refresh cycle is a sequence where the protocol sends all its valid
  347: routes to the routing table (by <B>rte_update()</B>). After that, all protocol
  348: routes (more precisely routes with <B>ah</B> as <B>sender</B>) not sent during the
  349: refresh cycle but still in the table from the past are pruned. This is
  350: implemented by marking all related routes as stale by REF_STALE flag in
  351: <B>rt_refresh_begin()</B>, then marking all related stale routes with REF_DISCARD
  352: flag in <B>rt_refresh_end()</B> and then removing such routes in the prune loop.
  353: 
  354: 
  355: <HR><H3>Function</H3>
  356: <P><I>void</I>
  357: <B>rt_refresh_end</B>
  358: (<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) --     end a refresh cycle
  359: <P>
  360: <H3>Arguments</H3>
  361: <P>
  362: <DL>
  363: <DT><I>rtable *</I> <B>t</B><DD><P>related routing table
  364: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook 
  365: </DL>
  366: <H3>Description</H3>
  367: <P>This function starts a refresh cycle for given routing table and announce
  368: hook. See <B>rt_refresh_begin()</B> for description of refresh cycles.
  369: 
  370: 
  371: <HR><H3>Function</H3>
  372: <P><I>void</I>
  373: <B>rte_dump</B>
  374: (<I>rte *</I> <B>e</B>) --     dump a route
  375: <P>
  376: <H3>Arguments</H3>
  377: <P>
  378: <DL>
  379: <DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be dumped
  380: </DL>
  381: <H3>Description</H3>
  382: <P>This functions dumps contents of a <I>rte</I> to debug output.
  383: 
  384: 
  385: <HR><H3>Function</H3>
  386: <P><I>void</I>
  387: <B>rt_dump</B>
  388: (<I>rtable *</I> <B>t</B>) --     dump a routing table
  389: <P>
  390: <H3>Arguments</H3>
  391: <P>
  392: <DL>
  393: <DT><I>rtable *</I> <B>t</B><DD><P>routing table to be dumped
  394: </DL>
  395: <H3>Description</H3>
  396: <P>This function dumps contents of a given routing table to debug output.
  397: 
  398: 
  399: <HR><H3>Function</H3>
  400: <P><I>void</I>
  401: <B>rt_dump_all</B>
  402: (<B>void</B>) --     dump all routing tables
  403: <P>
  404: <H3>Description</H3>
  405: <P>
  406: <P>This function dumps contents of all routing tables to debug output.
  407: 
  408: 
  409: <HR><H3>Function</H3>
  410: <P><I>void</I>
  411: <B>rt_init</B>
  412: (<B>void</B>) --     initialize routing tables
  413: <P>
  414: <H3>Description</H3>
  415: <P>
  416: <P>This function is called during BIRD startup. It initializes the
  417: routing table module.
  418: 
  419: 
  420: <HR><H3>Function</H3>
  421: <P><I>int</I>
  422: <B>rt_prune_table</B>
  423: (<I>rtable *</I> <B>tab</B>) --     prune a routing table
  424: <P>
  425: <H3>Arguments</H3>
  426: <P>
  427: <DL>
  428: <DT><I>rtable *</I> <B>tab</B><DD><P>a routing table for pruning
  429: </DL>
  430: <H3>Description</H3>
  431: <P>This function scans the routing table <B>tab</B> and removes routes belonging to
  432: flushing protocols, discarded routes and also stale network entries, in a
  433: similar fashion like <B>rt_prune_loop()</B>. Returns 1 when all such routes are
  434: pruned. Contrary to <B>rt_prune_loop()</B>, this function is not a part of the
  435: protocol flushing loop, but it is called from <B>rt_event()</B> for just one routing
  436: table.
  437: <P>Note that <B>rt_prune_table()</B> and <B>rt_prune_loop()</B> share (for each table) the
  438: prune state (<B>prune_state</B>) and also the pruning iterator (<B>prune_fit</B>).
  439: 
  440: 
  441: <HR><H3>Function</H3>
  442: <P><I>int</I>
  443: <B>rt_prune_loop</B>
  444: (<B>void</B>) --     prune routing tables
  445: <P>
  446: <H3>Description</H3>
  447: <P>
  448: <P>The prune loop scans routing tables and removes routes belonging to flushing
  449: protocols, discarded routes and also stale network entries. Returns 1 when
  450: all such routes are pruned. It is a part of the protocol flushing loop.
  451: 
  452: 
  453: <HR><H3>Function</H3>
  454: <P><I>void</I>
  455: <B>rt_lock_table</B>
  456: (<I>rtable *</I> <B>r</B>) --     lock a routing table
  457: <P>
  458: <H3>Arguments</H3>
  459: <P>
  460: <DL>
  461: <DT><I>rtable *</I> <B>r</B><DD><P>routing table to be locked
  462: </DL>
  463: <H3>Description</H3>
  464: <P>Lock a routing table, because it's in use by a protocol,
  465: preventing it from being freed when it gets undefined in a new
  466: configuration.
  467: 
  468: 
  469: <HR><H3>Function</H3>
  470: <P><I>void</I>
  471: <B>rt_unlock_table</B>
  472: (<I>rtable *</I> <B>r</B>) --     unlock a routing table
  473: <P>
  474: <H3>Arguments</H3>
  475: <P>
  476: <DL>
  477: <DT><I>rtable *</I> <B>r</B><DD><P>routing table to be unlocked
  478: </DL>
  479: <H3>Description</H3>
  480: <P>Unlock a routing table formerly locked by <B>rt_lock_table()</B>,
  481: that is decrease its use count and delete it if it's scheduled
  482: for deletion by configuration changes.
  483: 
  484: 
  485: <HR><H3>Function</H3>
  486: <P><I>void</I>
  487: <B>rt_commit</B>
  488: (<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>) --     commit new routing table configuration
  489: <P>
  490: <H3>Arguments</H3>
  491: <P>
  492: <DL>
  493: <DT><I>struct config *</I> <B>new</B><DD><P>new configuration
  494: <DT><I>struct config *</I> <B>old</B><DD><P>original configuration or <I>NULL</I> if it's boot time config
  495: </DL>
  496: <H3>Description</H3>
  497: <P>Scan differences between <B>old</B> and <B>new</B> configuration and modify
  498: the routing tables according to these changes. If <B>new</B> defines a
  499: previously unknown table, create it, if it omits a table existing
  500: in <B>old</B>, schedule it for deletion (it gets deleted when all protocols
  501: disconnect from it by calling <B>rt_unlock_table()</B>), if it exists
  502: in both configurations, leave it unchanged.
  503: 
  504: 
  505: <HR><H3>Function</H3>
  506: <P><I>int</I>
  507: <B>rt_feed_baby</B>
  508: (<I>struct proto *</I> <B>p</B>) --     advertise routes to a new protocol
  509: <P>
  510: <H3>Arguments</H3>
  511: <P>
  512: <DL>
  513: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol to be fed
  514: </DL>
  515: <H3>Description</H3>
  516: <P>This function performs one pass of advertisement of routes to a newly
  517: initialized protocol. It's called by the protocol code as long as it
  518: has something to do. (We avoid transferring all the routes in single
  519: pass in order not to monopolize CPU time.)
  520: 
  521: 
  522: <HR><H3>Function</H3>
  523: <P><I>void</I>
  524: <B>rt_feed_baby_abort</B>
  525: (<I>struct proto *</I> <B>p</B>) --     abort protocol feeding
  526: <P>
  527: <H3>Arguments</H3>
  528: <P>
  529: <DL>
  530: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol
  531: </DL>
  532: <H3>Description</H3>
  533: <P>This function is called by the protocol code when the protocol
  534: stops or ceases to exist before the last iteration of <B>rt_feed_baby()</B>
  535: has finished.
  536: 
  537: 
  538: <HR><H3>Function</H3>
  539: <P><I>net *</I>
  540: <B>net_find</B>
  541: (<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) --     find a network entry
  542: <P>
  543: <H3>Arguments</H3>
  544: <P>
  545: <DL>
  546: <DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
  547: <DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
  548: <DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
  549: </DL>
  550: <H3>Description</H3>
  551: <P><B>net_find()</B> looks up the given network in routing table <B>tab</B> and
  552: returns a pointer to its <I>net</I> entry or <I>NULL</I> if no such network
  553: exists.
  554: 
  555: 
  556: <HR><H3>Function</H3>
  557: <P><I>net *</I>
  558: <B>net_get</B>
  559: (<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) --     obtain a network entry
  560: <P>
  561: <H3>Arguments</H3>
  562: <P>
  563: <DL>
  564: <DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
  565: <DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
  566: <DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
  567: </DL>
  568: <H3>Description</H3>
  569: <P><B>net_get()</B> looks up the given network in routing table <B>tab</B> and
  570: returns a pointer to its <I>net</I> entry. If no such entry exists, it's
  571: created.
  572: 
  573: 
  574: <HR><H3>Function</H3>
  575: <P><I>rte *</I>
  576: <B>rte_cow</B>
  577: (<I>rte *</I> <B>r</B>) --     copy a route for writing
  578: <P>
  579: <H3>Arguments</H3>
  580: <P>
  581: <DL>
  582: <DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
  583: </DL>
  584: <H3>Description</H3>
  585: <P><B>rte_cow()</B> takes a <I>rte</I> and prepares it for modification. The exact action
  586: taken depends on the flags of the <I>rte</I> -- if it's a temporary entry, it's
  587: just returned unchanged, else a new temporary entry with the same contents
  588: is created.
  589: <P>The primary use of this function is inside the filter machinery -- when
  590: a filter wants to modify <I>rte</I> contents (to change the preference or to
  591: attach another set of attributes), it must ensure that the <I>rte</I> is not
  592: shared with anyone else (and especially that it isn't stored in any routing
  593: table).
  594: <H3>Result</H3>
  595: <P>a pointer to the new writable <I>rte</I>.
  596: 
  597: <H2><A NAME="ss2.3">2.3</A> <A HREF="prog.html#toc2.3">Route attribute cache</A>
  598: </H2>
  599: 
  600: <P>
  601: <P>Each route entry carries a set of route attributes. Several of them
  602: vary from route to route, but most attributes are usually common
  603: for a large number of routes. To conserve memory, we've decided to
  604: store only the varying ones directly in the <I>rte</I> and hold the rest
  605: in a special structure called <I>rta</I> which is shared among all the
  606: <I>rte</I>'s with these attributes.
  607: <P>Each <I>rta</I> contains all the static attributes of the route (i.e.,
  608: those which are always present) as structure members and a list of
  609: dynamic attributes represented by a linked list of <I>ea_list</I>
  610: structures, each of them consisting of an array of <I>eattr</I>'s containing
  611: the individual attributes. An attribute can be specified more than once
  612: in the <I>ea_list</I> chain and in such case the first occurrence overrides
  613: the others. This semantics is used especially when someone (for example
  614: a filter) wishes to alter values of several dynamic attributes, but
  615: it wants to preserve the original attribute lists maintained by
  616: another module.
  617: <P>Each <I>eattr</I> contains an attribute identifier (split to protocol ID and
  618: per-protocol attribute ID), protocol dependent flags, a type code (consisting
  619: of several bit fields describing attribute characteristics) and either an
  620: embedded 32-bit value or a pointer to a <I>adata</I> structure holding attribute
  621: contents.
  622: <P>There exist two variants of <I>rta</I>'s -- cached and un-cached ones. Un-cached
  623: <I>rta</I>'s can have arbitrarily complex structure of <I>ea_list</I>'s and they
  624: can be modified by any module in the route processing chain. Cached
  625: <I>rta</I>'s have their attribute lists normalized (that means at most one
  626: <I>ea_list</I> is present and its values are sorted in order to speed up
  627: searching), they are stored in a hash table to make fast lookup possible
  628: and they are provided with a use count to allow sharing.
  629: <P>Routing tables always contain only cached <I>rta</I>'s.
  630: <P>
  631: <P><HR><H3>Function</H3>
  632: <P><I>struct mpnh *</I>
  633: <B>mpnh_merge</B>
  634: (<I>struct mpnh *</I> <B>x</B>, <I>struct mpnh *</I> <B>y</B>, <I>int</I> <B>rx</B>, <I>int</I> <B>ry</B>, <I>int</I> <B>max</B>, <I>linpool *</I> <B>lp</B>) --     merge nexthop lists
  635: <P>
  636: <H3>Arguments</H3>
  637: <P>
  638: <DL>
  639: <DT><I>struct mpnh *</I> <B>x</B><DD><P>list 1
  640: <DT><I>struct mpnh *</I> <B>y</B><DD><P>list 2
  641: <DT><I>int</I> <B>rx</B><DD><P>reusability of list <B>x</B>
  642: <DT><I>int</I> <B>ry</B><DD><P>reusability of list <B>y</B>
  643: <DT><I>int</I> <B>max</B><DD><P>max number of nexthops
  644: <DT><I>linpool *</I> <B>lp</B><DD><P>linpool for allocating nexthops
  645: </DL>
  646: <H3>Description</H3>
  647: <P>The <B>mpnh_merge()</B> function takes two nexthop lists <B>x</B> and <B>y</B> and merges them,
  648: eliminating possible duplicates. The input lists must be sorted and the
  649: result is sorted too. The number of nexthops in result is limited by <B>max</B>.
  650: New nodes are allocated from linpool <B>lp</B>.
  651: <P>The arguments <B>rx</B> and <B>ry</B> specify whether corresponding input lists may be
  652: consumed by the function (i.e. their nodes reused in the resulting list), in
  653: that case the caller should not access these lists after that. To eliminate
  654: issues with deallocation of these lists, the caller should use some form of
  655: bulk deallocation (e.g. stack or linpool) to free these nodes when the
  656: resulting list is no longer needed. When reusability is not set, the
  657: corresponding lists are not modified nor linked from the resulting list.
  658: 
  659: 
  660: <HR><H3>Function</H3>
  661: <P><I>eattr *</I>
  662: <B>ea_find</B>
  663: (<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>) --     find an extended attribute
  664: <P>
  665: <H3>Arguments</H3>
  666: <P>
  667: <DL>
  668: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list to search in
  669: <DT><I>unsigned</I> <B>id</B><DD><P>attribute ID to search for
  670: </DL>
  671: <H3>Description</H3>
  672: <P>Given an extended attribute list, <B>ea_find()</B> searches for a first
  673: occurrence of an attribute with specified ID, returning either a pointer
  674: to its <I>eattr</I> structure or <I>NULL</I> if no such attribute exists.
  675: 
  676: 
  677: <HR><H3>Function</H3>
  678: <P><I>eattr *</I>
  679: <B>ea_walk</B>
  680: (<I>struct ea_walk_state *</I> <B>s</B>, <I>uint</I> <B>id</B>, <I>uint</I> <B>max</B>) --     walk through extended attributes
  681: <P>
  682: <H3>Arguments</H3>
  683: <P>
  684: <DL>
  685: <DT><I>struct ea_walk_state *</I> <B>s</B><DD><P>walk state structure
  686: <DT><I>uint</I> <B>id</B><DD><P>start of attribute ID interval
  687: <DT><I>uint</I> <B>max</B><DD><P>length of attribute ID interval
  688: </DL>
  689: <H3>Description</H3>
  690: <P>Given an extended attribute list, <B>ea_walk()</B> walks through the list looking
  691: for first occurrences of attributes with ID in specified interval from <B>id</B> to
  692: (<B>id</B> + <B>max</B> - 1), returning pointers to found <I>eattr</I> structures, storing its
  693: walk state in <B>s</B> for subsequent calls.
  694: <P>The function <B>ea_walk()</B> is supposed to be called in a loop, with initially
  695: zeroed walk state structure <B>s</B> with filled the initial extended attribute
  696: list, returning one found attribute in each call or <I>NULL</I> when no other
  697: attribute exists. The extended attribute list or the arguments should not be
  698: modified between calls. The maximum value of <B>max</B> is 128.
  699: 
  700: 
  701: <HR><H3>Function</H3>
  702: <P><I>int</I>
  703: <B>ea_get_int</B>
  704: (<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>, <I>int</I> <B>def</B>) --     fetch an integer attribute
  705: <P>
  706: <H3>Arguments</H3>
  707: <P>
  708: <DL>
  709: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  710: <DT><I>unsigned</I> <B>id</B><DD><P>attribute ID
  711: <DT><I>int</I> <B>def</B><DD><P>default value
  712: </DL>
  713: <H3>Description</H3>
  714: <P>This function is a shortcut for retrieving a value of an integer attribute
  715: by calling <B>ea_find()</B> to find the attribute, extracting its value or returning
  716: a provided default if no such attribute is present.
  717: 
  718: 
  719: <HR><H3>Function</H3>
  720: <P><I>void</I>
  721: <B>ea_sort</B>
  722: (<I>ea_list *</I> <B>e</B>) --     sort an attribute list
  723: <P>
  724: <H3>Arguments</H3>
  725: <P>
  726: <DL>
  727: <DT><I>ea_list *</I> <B>e</B><DD><P>list to be sorted
  728: </DL>
  729: <H3>Description</H3>
  730: <P>This function takes a <I>ea_list</I> chain and sorts the attributes
  731: within each of its entries.
  732: <P>If an attribute occurs multiple times in a single <I>ea_list</I>,
  733: <B>ea_sort()</B> leaves only the first (the only significant) occurrence.
  734: 
  735: 
  736: <HR><H3>Function</H3>
  737: <P><I>unsigned</I>
  738: <B>ea_scan</B>
  739: (<I>ea_list *</I> <B>e</B>) --     estimate attribute list size
  740: <P>
  741: <H3>Arguments</H3>
  742: <P>
  743: <DL>
  744: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  745: </DL>
  746: <H3>Description</H3>
  747: <P>This function calculates an upper bound of the size of
  748: a given <I>ea_list</I> after merging with <B>ea_merge()</B>.
  749: 
  750: 
  751: <HR><H3>Function</H3>
  752: <P><I>void</I>
  753: <B>ea_merge</B>
  754: (<I>ea_list *</I> <B>e</B>, <I>ea_list *</I> <B>t</B>) --     merge segments of an attribute list
  755: <P>
  756: <H3>Arguments</H3>
  757: <P>
  758: <DL>
  759: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  760: <DT><I>ea_list *</I> <B>t</B><DD><P>buffer to store the result to
  761: </DL>
  762: <H3>Description</H3>
  763: <P>This function takes a possibly multi-segment attribute list
  764: and merges all of its segments to one.
  765: <P>The primary use of this function is for <I>ea_list</I> normalization:
  766: first call <B>ea_scan()</B> to determine how much memory will the result
  767: take, then allocate a buffer (usually using <B>alloca()</B>), merge the
  768: segments with <B>ea_merge()</B> and finally sort and prune the result
  769: by calling <B>ea_sort()</B>.
  770: 
  771: 
  772: <HR><H3>Function</H3>
  773: <P><I>int</I>
  774: <B>ea_same</B>
  775: (<I>ea_list *</I> <B>x</B>, <I>ea_list *</I> <B>y</B>) --     compare two <I>ea_list</I>'s
  776: <P>
  777: <H3>Arguments</H3>
  778: <P>
  779: <DL>
  780: <DT><I>ea_list *</I> <B>x</B><DD><P>attribute list
  781: <DT><I>ea_list *</I> <B>y</B><DD><P>attribute list
  782: </DL>
  783: <H3>Description</H3>
  784: <P><B>ea_same()</B> compares two normalized attribute lists <B>x</B> and <B>y</B> and returns
  785: 1 if they contain the same attributes, 0 otherwise.
  786: 
  787: 
  788: <HR><H3>Function</H3>
  789: <P><I>void</I>
  790: <B>ea_show</B>
  791: (<I>struct cli *</I> <B>c</B>, <I>eattr *</I> <B>e</B>) --     print an <I>eattr</I> to CLI
  792: <P>
  793: <H3>Arguments</H3>
  794: <P>
  795: <DL>
  796: <DT><I>struct cli *</I> <B>c</B><DD><P>destination CLI
  797: <DT><I>eattr *</I> <B>e</B><DD><P>attribute to be printed
  798: </DL>
  799: <H3>Description</H3>
  800: <P>This function takes an extended attribute represented by its <I>eattr</I>
  801: structure and prints it to the CLI according to the type information.
  802: <P>If the protocol defining the attribute provides its own
  803: <B>get_attr()</B> hook, it's consulted first.
  804: 
  805: 
  806: <HR><H3>Function</H3>
  807: <P><I>void</I>
  808: <B>ea_dump</B>
  809: (<I>ea_list *</I> <B>e</B>) --     dump an extended attribute
  810: <P>
  811: <H3>Arguments</H3>
  812: <P>
  813: <DL>
  814: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute to be dumped
  815: </DL>
  816: <H3>Description</H3>
  817: <P><B>ea_dump()</B> dumps contents of the extended attribute given to
  818: the debug output.
  819: 
  820: 
  821: <HR><H3>Function</H3>
  822: <P><I>uint</I>
  823: <B>ea_hash</B>
  824: (<I>ea_list *</I> <B>e</B>) --     calculate an <I>ea_list</I> hash key
  825: <P>
  826: <H3>Arguments</H3>
  827: <P>
  828: <DL>
  829: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  830: </DL>
  831: <H3>Description</H3>
  832: <P><B>ea_hash()</B> takes an extended attribute list and calculated a hopefully
  833: uniformly distributed hash value from its contents.
  834: 
  835: 
  836: <HR><H3>Function</H3>
  837: <P><I>ea_list *</I>
  838: <B>ea_append</B>
  839: (<I>ea_list *</I> <B>to</B>, <I>ea_list *</I> <B>what</B>) --     concatenate <I>ea_list</I>'s
  840: <P>
  841: <H3>Arguments</H3>
  842: <P>
  843: <DL>
  844: <DT><I>ea_list *</I> <B>to</B><DD><P>destination list (can be <I>NULL</I>)
  845: <DT><I>ea_list *</I> <B>what</B><DD><P>list to be appended (can be <I>NULL</I>)
  846: </DL>
  847: <H3>Description</H3>
  848: <P>This function appends the <I>ea_list</I> <B>what</B> at the end of
  849: <I>ea_list</I> <B>to</B> and returns a pointer to the resulting list.
  850: 
  851: 
  852: <HR><H3>Function</H3>
  853: <P><I>rta *</I>
  854: <B>rta_lookup</B>
  855: (<I>rta *</I> <B>o</B>) --     look up a <I>rta</I> in attribute cache
  856: <P>
  857: <H3>Arguments</H3>
  858: <P>
  859: <DL>
  860: <DT><I>rta *</I> <B>o</B><DD><P>a un-cached <I>rta</I>
  861: </DL>
  862: <H3>Description</H3>
  863: <P><B>rta_lookup()</B> gets an un-cached <I>rta</I> structure and returns its cached
  864: counterpart. It starts with examining the attribute cache to see whether
  865: there exists a matching entry. If such an entry exists, it's returned and
  866: its use count is incremented, else a new entry is created with use count
  867: set to 1.
  868: <P>The extended attribute lists attached to the <I>rta</I> are automatically
  869: converted to the normalized form.
  870: 
  871: 
  872: <HR><H3>Function</H3>
  873: <P><I>void</I>
  874: <B>rta_dump</B>
  875: (<I>rta *</I> <B>a</B>) --     dump route attributes
  876: <P>
  877: <H3>Arguments</H3>
  878: <P>
  879: <DL>
  880: <DT><I>rta *</I> <B>a</B><DD><P>attribute structure to dump
  881: </DL>
  882: <H3>Description</H3>
  883: <P>This function takes a <I>rta</I> and dumps its contents to the debug output.
  884: 
  885: 
  886: <HR><H3>Function</H3>
  887: <P><I>void</I>
  888: <B>rta_dump_all</B>
  889: (<B>void</B>) --     dump attribute cache
  890: <P>
  891: <H3>Description</H3>
  892: <P>
  893: <P>This function dumps the whole contents of route attribute cache
  894: to the debug output.
  895: 
  896: 
  897: <HR><H3>Function</H3>
  898: <P><I>void</I>
  899: <B>rta_init</B>
  900: (<B>void</B>) --     initialize route attribute cache
  901: <P>
  902: <H3>Description</H3>
  903: <P>
  904: <P>This function is called during initialization of the routing
  905: table module to set up the internals of the attribute cache.
  906: 
  907: 
  908: <HR><H3>Function</H3>
  909: <P><I>rta *</I>
  910: <B>rta_clone</B>
  911: (<I>rta *</I> <B>r</B>) --     clone route attributes
  912: <P>
  913: <H3>Arguments</H3>
  914: <P>
  915: <DL>
  916: <DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be cloned
  917: </DL>
  918: <H3>Description</H3>
  919: <P><B>rta_clone()</B> takes a cached <I>rta</I> and returns its identical cached
  920: copy. Currently it works by just returning the original <I>rta</I> with
  921: its use count incremented.
  922: 
  923: 
  924: <HR><H3>Function</H3>
  925: <P><I>void</I>
  926: <B>rta_free</B>
  927: (<I>rta *</I> <B>r</B>) --     free route attributes
  928: <P>
  929: <H3>Arguments</H3>
  930: <P>
  931: <DL>
  932: <DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be freed
  933: </DL>
  934: <H3>Description</H3>
  935: <P>If you stop using a <I>rta</I> (for example when deleting a route which uses
  936: it), you need to call <B>rta_free()</B> to notify the attribute cache the
  937: attribute is no longer in use and can be freed if you were the last
  938: user (which <B>rta_free()</B> tests by inspecting the use count).
  939: 
  940: <P>
  941: <H2><A NAME="ss2.4">2.4</A> <A HREF="prog.html#toc2.4">Routing protocols</A>
  942: </H2>
  943: 
  944: <H3>Introduction</H3>
  945: 
  946: <P>The routing protocols are the bird's heart and a fine amount of code
  947: is dedicated to their management and for providing support functions to them.
  948: (-: Actually, this is the reason why the directory with sources of the core
  949: code is called <CODE>nest</CODE> :-).
  950: <P>
  951: <P>When talking about protocols, one need to distinguish between <EM>protocols</EM>
  952: and protocol <EM>instances</EM>. A protocol exists exactly once, not depending on whether
  953: it's configured or not and it can have an arbitrary number of instances corresponding
  954: to its "incarnations" requested by the configuration file. Each instance is completely
  955: autonomous, has its own configuration, its own status, its own set of routes and its
  956: own set of interfaces it works on.
  957: <P>
  958: <P>A protocol is represented by a <I>protocol</I> structure containing all the basic
  959: information (protocol name, default settings and pointers to most of the protocol
  960: hooks). All these structures are linked in the <B>protocol_list</B> list.
  961: <P>
  962: <P>Each instance has its own <I>proto</I> structure describing all its properties: protocol
  963: type, configuration, a resource pool where all resources belonging to the instance
  964: live, various protocol attributes (take a look at the declaration of <I>proto</I> in
  965: <CODE>protocol.h</CODE>), protocol states (see below for what do they mean), connections
  966: to routing tables, filters attached to the protocol
  967: and finally a set of pointers to the rest of protocol hooks (they
  968: are the same for all instances of the protocol, but in order to avoid extra
  969: indirections when calling the hooks from the fast path, they are stored directly
  970: in <I>proto</I>). The instance is always linked in both the global instance list
  971: (<B>proto_list</B>) and a per-status list (either <B>active_proto_list</B> for
  972: running protocols, <B>initial_proto_list</B> for protocols being initialized or
  973: <B>flush_proto_list</B> when the protocol is being shut down).
  974: <P>
  975: <P>The protocol hooks are described in the next chapter, for more information about
  976: configuration of protocols, please refer to the configuration chapter and also
  977: to the description of the <B>proto_commit</B> function.
  978: <P>
  979: <H3>Protocol states</H3>
  980: 
  981: <P>As startup and shutdown of each protocol are complex processes which can be affected
  982: by lots of external events (user's actions, reconfigurations, behavior of neighboring routers etc.),
  983: we have decided to supervise them by a pair of simple state machines -- the protocol
  984: state machine and a core state machine.
  985: <P>
  986: <P>The <EM>protocol state machine</EM> corresponds to internal state of the protocol
  987: and the protocol can alter its state whenever it wants to. There are
  988: the following states:
  989: <P>
  990: <DL>
  991: <DT><CODE>PS_DOWN</CODE><DD><P>The protocol is down and waits for being woken up by calling its
  992: start() hook.
  993: <DT><CODE>PS_START</CODE><DD><P>The protocol is waiting for connection with the rest of the
  994: network. It's active, it has resources allocated, but it still doesn't want
  995: any routes since it doesn't know what to do with them.
  996: <DT><CODE>PS_UP</CODE><DD><P>The protocol is up and running. It communicates with the core,
  997: delivers routes to tables and wants to hear announcement about route changes.
  998: <DT><CODE>PS_STOP</CODE><DD><P>The protocol has been shut down (either by being asked by the
  999: core code to do so or due to having encountered a protocol error).
 1000: </DL>
 1001: <P>
 1002: <P>Unless the protocol is in the <CODE>PS_DOWN</CODE> state, it can decide to change
 1003: its state by calling the <B>proto_notify_state</B> function.
 1004: <P>
 1005: <P>At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.
 1006: <P>
 1007: <P>The <EM>core state machine</EM> takes care of the core view of protocol state.
 1008: The states are traversed according to changes of the protocol state machine, but
 1009: sometimes the transitions are delayed if the core needs to finish some actions
 1010: (for example sending of new routes to the protocol) before proceeding to the
 1011: new state. There are the following core states:
 1012: <P>
 1013: <DL>
 1014: <DT><CODE>FS_HUNGRY</CODE><DD><P>The protocol is down, it doesn't have any routes and
 1015: doesn't want them.
 1016: <DT><CODE>FS_FEEDING</CODE><DD><P>The protocol has reached the <CODE>PS_UP</CODE> state, but
 1017: we are still busy sending the initial set of routes to it.
 1018: <DT><CODE>FS_HAPPY</CODE><DD><P>The protocol is up and has complete routing information.
 1019: <DT><CODE>FS_FLUSHING</CODE><DD><P>The protocol is shutting down (it's in either <CODE>PS_STOP</CODE>
 1020: or <CODE>PS_DOWN</CODE> state) and we're flushing all of its routes from the
 1021: routing tables.
 1022: </DL>
 1023: <P>
 1024: <H3>Functions of the protocol module</H3>
 1025: 
 1026: <P>The protocol module provides the following functions:
 1027: <HR><H3>Function</H3>
 1028: <P><I>void *</I>
 1029: <B>proto_new</B>
 1030: (<I>struct proto_config *</I> <B>c</B>, <I>unsigned</I> <B>size</B>) --  create a new protocol instance
 1031: <P>
 1032: <H3>Arguments</H3>
 1033: <P>
 1034: <DL>
 1035: <DT><I>struct proto_config *</I> <B>c</B><DD><P>protocol configuration
 1036: <DT><I>unsigned</I> <B>size</B><DD><P>size of protocol data structure (each protocol instance is represented by
 1037: a structure starting with generic part [struct <I>proto</I>] and continued
 1038: with data specific to the protocol)
 1039: </DL>
 1040: <H3>Description</H3>
 1041: <P>When a new configuration has been read in, the core code starts
 1042: initializing all the protocol instances configured by calling their
 1043: <B>init()</B> hooks with the corresponding instance configuration. The initialization
 1044: code of the protocol is expected to create a new instance according to the
 1045: configuration by calling this function and then modifying the default settings
 1046: to values wanted by the protocol.
 1047: 
 1048: 
 1049: <HR><H3>Function</H3>
 1050: <P><I>struct announce_hook *</I>
 1051: <B>proto_add_announce_hook</B>
 1052: (<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>, <I>struct proto_stats *</I> <B>stats</B>) --  connect protocol to a routing table
 1053: <P>
 1054: <H3>Arguments</H3>
 1055: <P>
 1056: <DL>
 1057: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1058: <DT><I>struct rtable *</I> <B>t</B><DD><P>routing table to connect to
 1059: <DT><I>struct proto_stats *</I> <B>stats</B><DD><P>per-table protocol statistics
 1060: </DL>
 1061: <H3>Description</H3>
 1062: <P>This function creates a connection between the protocol instance <B>p</B> and the
 1063: routing table <B>t</B>, making the protocol hear all changes in the table.
 1064: <P>The announce hook is linked in the protocol ahook list. Announce hooks are
 1065: allocated from the routing table resource pool and when protocol accepts
 1066: routes also in the table ahook list. The are linked to the table ahook list
 1067: and unlinked from it depending on export_state (in <B>proto_want_export_up()</B> and
 1068: <B>proto_want_export_down()</B>) and they are automatically freed after the protocol
 1069: is flushed (in <B>proto_fell_down()</B>).
 1070: <P>Unless you want to listen to multiple routing tables (as the Pipe protocol
 1071: does), you needn't to worry about this function since the connection to the
 1072: protocol's primary routing table is initialized automatically by the core
 1073: code.
 1074: 
 1075: 
 1076: <HR><H3>Function</H3>
 1077: <P><I>struct announce_hook *</I>
 1078: <B>proto_find_announce_hook</B>
 1079: (<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>) --  find announce hooks
 1080: <P>
 1081: <H3>Arguments</H3>
 1082: <P>
 1083: <DL>
 1084: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1085: <DT><I>struct rtable *</I> <B>t</B><DD><P>routing table
 1086: </DL>
 1087: <H3>Description</H3>
 1088: <P>Returns pointer to announce hook or NULL
 1089: 
 1090: 
 1091: <HR><H3>Function</H3>
 1092: <P><I>void *</I>
 1093: <B>proto_config_new</B>
 1094: (<I>struct protocol *</I> <B>pr</B>, <I>int</I> <B>class</B>) --  create a new protocol configuration
 1095: <P>
 1096: <H3>Arguments</H3>
 1097: <P>
 1098: <DL>
 1099: <DT><I>struct protocol *</I> <B>pr</B><DD><P>protocol the configuration will belong to
 1100: <DT><I>int</I> <B>class</B><DD><P>SYM_PROTO or SYM_TEMPLATE
 1101: </DL>
 1102: <H3>Description</H3>
 1103: <P>Whenever the configuration file says that a new instance
 1104: of a routing protocol should be created, the parser calls
 1105: <B>proto_config_new()</B> to create a configuration entry for this
 1106: instance (a structure staring with the <I>proto_config</I> header
 1107: containing all the generic items followed by protocol-specific
 1108: ones). Also, the configuration entry gets added to the list
 1109: of protocol instances kept in the configuration.
 1110: <P>The function is also used to create protocol templates (when class
 1111: SYM_TEMPLATE is specified), the only difference is that templates
 1112: are not added to the list of protocol instances and therefore not
 1113: initialized during <B>protos_commit()</B>).
 1114: 
 1115: 
 1116: <HR><H3>Function</H3>
 1117: <P><I>void</I>
 1118: <B>proto_copy_config</B>
 1119: (<I>struct proto_config *</I> <B>dest</B>, <I>struct proto_config *</I> <B>src</B>) --  copy a protocol configuration
 1120: <P>
 1121: <H3>Arguments</H3>
 1122: <P>
 1123: <DL>
 1124: <DT><I>struct proto_config *</I> <B>dest</B><DD><P>destination protocol configuration
 1125: <DT><I>struct proto_config *</I> <B>src</B><DD><P>source protocol configuration
 1126: </DL>
 1127: <H3>Description</H3>
 1128: <P>Whenever a new instance of a routing protocol is created from the
 1129: template, <B>proto_copy_config()</B> is called to copy a content of
 1130: the source protocol configuration to the new protocol configuration.
 1131: Name, class and a node in protos list of <B>dest</B> are kept intact.
 1132: <B>copy_config()</B> protocol hook is used to copy protocol-specific data.
 1133: 
 1134: 
 1135: <HR><H3>Function</H3>
 1136: <P><I>void</I>
 1137: <B>protos_preconfig</B>
 1138: (<I>struct config *</I> <B>c</B>) --  pre-configuration processing
 1139: <P>
 1140: <H3>Arguments</H3>
 1141: <P>
 1142: <DL>
 1143: <DT><I>struct config *</I> <B>c</B><DD><P>new configuration
 1144: </DL>
 1145: <H3>Description</H3>
 1146: <P>This function calls the <B>preconfig()</B> hooks of all routing
 1147: protocols available to prepare them for reading of the new
 1148: configuration.
 1149: 
 1150: 
 1151: <HR><H3>Function</H3>
 1152: <P><I>void</I>
 1153: <B>protos_postconfig</B>
 1154: (<I>struct config *</I> <B>c</B>) --  post-configuration processing
 1155: <P>
 1156: <H3>Arguments</H3>
 1157: <P>
 1158: <DL>
 1159: <DT><I>struct config *</I> <B>c</B><DD><P>new configuration
 1160: </DL>
 1161: <H3>Description</H3>
 1162: <P>This function calls the <B>postconfig()</B> hooks of all protocol
 1163: instances specified in configuration <B>c</B>. The hooks are not
 1164: called for protocol templates.
 1165: 
 1166: 
 1167: <HR><H3>Function</H3>
 1168: <P><I>void</I>
 1169: <B>protos_commit</B>
 1170: (<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>, <I>int</I> <B>force_reconfig</B>, <I>int</I> <B>type</B>) --  commit new protocol configuration
 1171: <P>
 1172: <H3>Arguments</H3>
 1173: <P>
 1174: <DL>
 1175: <DT><I>struct config *</I> <B>new</B><DD><P>new configuration
 1176: <DT><I>struct config *</I> <B>old</B><DD><P>old configuration or <I>NULL</I> if it's boot time config
 1177: <DT><I>int</I> <B>force_reconfig</B><DD><P>force restart of all protocols (used for example
 1178: when the router ID changes)
 1179: <DT><I>int</I> <B>type</B><DD><P>type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
 1180: </DL>
 1181: <H3>Description</H3>
 1182: <P>Scan differences between <B>old</B> and <B>new</B> configuration and adjust all
 1183: protocol instances to conform to the new configuration.
 1184: <P>When a protocol exists in the new configuration, but it doesn't in the
 1185: original one, it's immediately started. When a collision with the other
 1186: running protocol would arise, the new protocol will be temporarily stopped
 1187: by the locking mechanism.
 1188: <P>When a protocol exists in the old configuration, but it doesn't in the
 1189: new one, it's shut down and deleted after the shutdown completes.
 1190: <P>When a protocol exists in both configurations, the core decides
 1191: whether it's possible to reconfigure it dynamically - it checks all
 1192: the core properties of the protocol (changes in filters are ignored
 1193: if type is RECONFIG_SOFT) and if they match, it asks the
 1194: <B>reconfigure()</B> hook of the protocol to see if the protocol is able
 1195: to switch to the new configuration.  If it isn't possible, the
 1196: protocol is shut down and a new instance is started with the new
 1197: configuration after the shutdown is completed.
 1198: 
 1199: <H2><A NAME="ss2.5">2.5</A> <A HREF="prog.html#toc2.5">Graceful restart recovery</A>
 1200: </H2>
 1201: 
 1202: <P>
 1203: <P>Graceful restart of a router is a process when the routing plane (e.g. BIRD)
 1204: restarts but both the forwarding plane (e.g kernel routing table) and routing
 1205: neighbors keep proper routes, and therefore uninterrupted packet forwarding
 1206: is maintained.
 1207: <P>BIRD implements graceful restart recovery by deferring export of routes to
 1208: protocols until routing tables are refilled with the expected content. After
 1209: start, protocols generate routes as usual, but routes are not propagated to
 1210: them, until protocols report that they generated all routes. After that,
 1211: graceful restart recovery is finished and the export (and the initial feed)
 1212: to protocols is enabled.
 1213: <P>When graceful restart recovery need is detected during initialization, then
 1214: enabled protocols are marked with <B>gr_recovery</B> flag before start. Such
 1215: protocols then decide how to proceed with graceful restart, participation is
 1216: voluntary. Protocols could lock the recovery by <B>proto_graceful_restart_lock()</B>
 1217: (stored in <B>gr_lock</B> flag), which means that they want to postpone the end of
 1218: the recovery until they converge and then unlock it. They also could set
 1219: <B>gr_wait</B> before advancing to <I>PS_UP</I>, which means that the core should defer
 1220: route export to that protocol until the end of the recovery. This should be
 1221: done by protocols that expect their neigbors to keep the proper routes
 1222: (kernel table, BGP sessions with BGP graceful restart capability).
 1223: <P>The graceful restart recovery is finished when either all graceful restart
 1224: locks are unlocked or when graceful restart wait timer fires.
 1225: <P>
 1226: <P><HR><H3>Function</H3>
 1227: <P><I>void</I>
 1228: <B>graceful_restart_recovery</B>
 1229: (<B>void</B>) --     request initial graceful restart recovery
 1230: <P>
 1231: <H3>Graceful restart recovery</H3>
 1232: <P>
 1233: <P>Called by the platform initialization code if the need for recovery
 1234: after graceful restart is detected during boot. Have to be called
 1235: before <B>protos_commit()</B>.
 1236: 
 1237: 
 1238: <HR><H3>Function</H3>
 1239: <P><I>void</I>
 1240: <B>graceful_restart_init</B>
 1241: (<B>void</B>) --     initialize graceful restart
 1242: <P>
 1243: <H3>Description</H3>
 1244: <P>
 1245: <P>When graceful restart recovery was requested, the function starts an active
 1246: phase of the recovery and initializes graceful restart wait timer. The
 1247: function have to be called after <B>protos_commit()</B>.
 1248: 
 1249: 
 1250: <HR><H3>Function</H3>
 1251: <P><I>void</I>
 1252: <B>graceful_restart_done</B>
 1253: (<I>struct timer *t</I> <B>UNUSED</B>) --     finalize graceful restart
 1254: <P>
 1255: <H3>Arguments</H3>
 1256: <P>
 1257: <DL>
 1258: <DT><I>struct timer *t</I> <B>UNUSED</B><DD><P>-- undescribed --
 1259: </DL>
 1260: <H3>Description</H3>
 1261: <P>When there are no locks on graceful restart, the functions finalizes the
 1262: graceful restart recovery. Protocols postponing route export until the end of
 1263: the recovery are awakened and the export to them is enabled. All other
 1264: related state is cleared. The function is also called when the graceful
 1265: restart wait timer fires (but there are still some locks).
 1266: 
 1267: 
 1268: <HR><H3>Function</H3>
 1269: <P><I>void</I>
 1270: <B>proto_graceful_restart_lock</B>
 1271: (<I>struct proto *</I> <B>p</B>) --     lock graceful restart by protocol
 1272: <P>
 1273: <H3>Arguments</H3>
 1274: <P>
 1275: <DL>
 1276: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1277: </DL>
 1278: <H3>Description</H3>
 1279: <P>This function allows a protocol to postpone the end of graceful restart
 1280: recovery until it converges. The lock is removed when the protocol calls
 1281: <B>proto_graceful_restart_unlock()</B> or when the protocol is stopped.
 1282: <P>The function have to be called during the initial phase of graceful restart
 1283: recovery and only for protocols that are part of graceful restart (i.e. their
 1284: <B>gr_recovery</B> is set), which means it should be called from protocol start
 1285: hooks.
 1286: 
 1287: 
 1288: <HR><H3>Function</H3>
 1289: <P><I>void</I>
 1290: <B>proto_graceful_restart_unlock</B>
 1291: (<I>struct proto *</I> <B>p</B>) --     unlock graceful restart by protocol
 1292: <P>
 1293: <H3>Arguments</H3>
 1294: <P>
 1295: <DL>
 1296: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1297: </DL>
 1298: <H3>Description</H3>
 1299: <P>This function unlocks a lock from <B>proto_graceful_restart_lock()</B>. It is also
 1300: automatically called when the lock holding protocol went down.
 1301: 
 1302: 
 1303: <HR><H3>Function</H3>
 1304: <P><I>void</I>
 1305: <B>protos_dump_all</B>
 1306: (<B>void</B>) --     dump status of all protocols
 1307: <P>
 1308: <H3>Description</H3>
 1309: <P>
 1310: <P>This function dumps status of all existing protocol instances to the
 1311: debug output. It involves printing of general status information
 1312: such as protocol states, its position on the protocol lists
 1313: and also calling of a <B>dump()</B> hook of the protocol to print
 1314: the internals.
 1315: 
 1316: 
 1317: <HR><H3>Function</H3>
 1318: <P><I>void</I>
 1319: <B>proto_build</B>
 1320: (<I>struct protocol *</I> <B>p</B>) --     make a single protocol available
 1321: <P>
 1322: <H3>Arguments</H3>
 1323: <P>
 1324: <DL>
 1325: <DT><I>struct protocol *</I> <B>p</B><DD><P>the protocol
 1326: </DL>
 1327: <H3>Description</H3>
 1328: <P>After the platform specific initialization code uses <B>protos_build()</B>
 1329: to add all the standard protocols, it should call <B>proto_build()</B> for
 1330: all platform specific protocols to inform the core that they exist.
 1331: 
 1332: 
 1333: <HR><H3>Function</H3>
 1334: <P><I>void</I>
 1335: <B>protos_build</B>
 1336: (<B>void</B>) --     build a protocol list
 1337: <P>
 1338: <H3>Description</H3>
 1339: <P>
 1340: <P>This function is called during BIRD startup to insert
 1341: all standard protocols to the global protocol list. Insertion
 1342: of platform specific protocols (such as the kernel syncer)
 1343: is in the domain of competence of the platform dependent
 1344: startup code.
 1345: 
 1346: 
 1347: <HR><H3>Function</H3>
 1348: <P><I>void</I>
 1349: <B>proto_request_feeding</B>
 1350: (<I>struct proto *</I> <B>p</B>) --     request feeding routes to the protocol
 1351: <P>
 1352: <H3>Arguments</H3>
 1353: <P>
 1354: <DL>
 1355: <DT><I>struct proto *</I> <B>p</B><DD><P>given protocol 
 1356: </DL>
 1357: <H3>Description</H3>
 1358: <P>Sometimes it is needed to send again all routes to the
 1359: protocol. This is called feeding and can be requested by this
 1360: function. This would cause protocol export state transition
 1361: to ES_FEEDING (during feeding) and when completed, it will
 1362: switch back to ES_READY. This function can be called even
 1363: when feeding is already running, in that case it is restarted.
 1364: 
 1365: 
 1366: <HR><H3>Function</H3>
 1367: <P><I>void</I>
 1368: <B>proto_notify_limit</B>
 1369: (<I>struct announce_hook *</I> <B>ah</B>, <I>struct proto_limit *</I> <B>l</B>, <I>int</I> <B>dir</B>, <I>u32</I> <B>rt_count</B>)
 1370: <H3>Arguments</H3>
 1371: <P>
 1372: <DL>
 1373: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>announce hook
 1374: <DT><I>struct proto_limit *</I> <B>l</B><DD><P>limit being hit
 1375: <DT><I>int</I> <B>dir</B><DD><P>limit direction (PLD_*)
 1376: <DT><I>u32</I> <B>rt_count</B><DD><P>the number of routes 
 1377: </DL>
 1378: <H3>Description</H3>
 1379: <P>The function is called by the route processing core when limit <B>l</B>
 1380: is breached. It activates the limit and tooks appropriate action
 1381: according to <B>l</B>-&gt;action.
 1382: 
 1383: 
 1384: <HR><H3>Function</H3>
 1385: <P><I>void</I>
 1386: <B>proto_notify_state</B>
 1387: (<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>ps</B>) --     notify core about protocol state change
 1388: <P>
 1389: <H3>Arguments</H3>
 1390: <P>
 1391: <DL>
 1392: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol the state of which has changed
 1393: <DT><I>unsigned</I> <B>ps</B><DD><P>the new status
 1394: </DL>
 1395: <H3>Description</H3>
 1396: <P>Whenever a state of a protocol changes due to some event internal
 1397: to the protocol (i.e., not inside a <B>start()</B> or <B>shutdown()</B> hook),
 1398: it should immediately notify the core about the change by calling
 1399: <B>proto_notify_state()</B> which will write the new state to the <I>proto</I>
 1400: structure and take all the actions necessary to adapt to the new
 1401: state. State change to PS_DOWN immediately frees resources of protocol
 1402: and might execute start callback of protocol; therefore,
 1403: it should be used at tail positions of protocol callbacks.
 1404: 
 1405: <H2><A NAME="ss2.6">2.6</A> <A HREF="prog.html#toc2.6">Protocol hooks</A>
 1406: </H2>
 1407: 
 1408: <P>
 1409: <P>Each protocol can provide a rich set of hook functions referred to by pointers
 1410: in either the <I>proto</I> or <I>protocol</I> structure. They are called by the core whenever
 1411: it wants the protocol to perform some action or to notify the protocol about
 1412: any change of its environment. All of the hooks can be set to <I>NULL</I> which means
 1413: to ignore the change or to take a default action.
 1414: <P>
 1415: <P><HR><H3>Function</H3>
 1416: <P><I>void</I>
 1417: <B>preconfig</B>
 1418: (<I>struct protocol *</I> <B>p</B>, <I>struct config *</I> <B>c</B>) --     protocol preconfiguration
 1419: <P>
 1420: <H3>Arguments</H3>
 1421: <P>
 1422: <DL>
 1423: <DT><I>struct protocol *</I> <B>p</B><DD><P>a routing protocol
 1424: <DT><I>struct config *</I> <B>c</B><DD><P>new configuration
 1425: </DL>
 1426: <H3>Description</H3>
 1427: <P>The <B>preconfig()</B> hook is called before parsing of a new configuration.
 1428: 
 1429: 
 1430: <HR><H3>Function</H3>
 1431: <P><I>void</I>
 1432: <B>postconfig</B>
 1433: (<I>struct proto_config *</I> <B>c</B>) --     instance post-configuration
 1434: <P>
 1435: <H3>Arguments</H3>
 1436: <P>
 1437: <DL>
 1438: <DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
 1439: </DL>
 1440: <H3>Description</H3>
 1441: <P>The <B>postconfig()</B> hook is called for each configured instance after
 1442: parsing of the new configuration is finished.
 1443: 
 1444: 
 1445: <HR><H3>Function</H3>
 1446: <P><I>struct proto *</I>
 1447: <B>init</B>
 1448: (<I>struct proto_config *</I> <B>c</B>) --     initialize an instance
 1449: <P>
 1450: <H3>Arguments</H3>
 1451: <P>
 1452: <DL>
 1453: <DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
 1454: </DL>
 1455: <H3>Description</H3>
 1456: <P>The <B>init()</B> hook is called by the core to create a protocol instance
 1457: according to supplied protocol configuration.
 1458: <H3>Result</H3>
 1459: <P>a pointer to the instance created
 1460: 
 1461: 
 1462: <HR><H3>Function</H3>
 1463: <P><I>int</I>
 1464: <B>reconfigure</B>
 1465: (<I>struct proto *</I> <B>p</B>, <I>struct proto_config *</I> <B>c</B>) --     request instance reconfiguration
 1466: <P>
 1467: <H3>Arguments</H3>
 1468: <P>
 1469: <DL>
 1470: <DT><I>struct proto *</I> <B>p</B><DD><P>an instance
 1471: <DT><I>struct proto_config *</I> <B>c</B><DD><P>new configuration
 1472: </DL>
 1473: <H3>Description</H3>
 1474: <P>The core calls the <B>reconfigure()</B> hook whenever it wants to ask the
 1475: protocol for switching to a new configuration. If the reconfiguration
 1476: is possible, the hook returns 1. Otherwise, it returns 0 and the core
 1477: will shut down the instance and start a new one with the new configuration.
 1478: <P>After the protocol confirms reconfiguration, it must no longer keep any
 1479: references to the old configuration since the memory it's stored in can
 1480: be re-used at any time.
 1481: 
 1482: 
 1483: <HR><H3>Function</H3>
 1484: <P><I>void</I>
 1485: <B>dump</B>
 1486: (<I>struct proto *</I> <B>p</B>) --     dump protocol state
 1487: <P>
 1488: <H3>Arguments</H3>
 1489: <P>
 1490: <DL>
 1491: <DT><I>struct proto *</I> <B>p</B><DD><P>an instance
 1492: </DL>
 1493: <H3>Description</H3>
 1494: <P>This hook dumps the complete state of the instance to the
 1495: debug output.
 1496: 
 1497: 
 1498: <HR><H3>Function</H3>
 1499: <P><I>void</I>
 1500: <B>dump_attrs</B>
 1501: (<I>rte *</I> <B>e</B>) --     dump protocol-dependent attributes
 1502: <P>
 1503: <H3>Arguments</H3>
 1504: <P>
 1505: <DL>
 1506: <DT><I>rte *</I> <B>e</B><DD><P>a route entry
 1507: </DL>
 1508: <H3>Description</H3>
 1509: <P>This hook dumps all attributes in the <I>rte</I> which belong to this
 1510: protocol to the debug output.
 1511: 
 1512: 
 1513: <HR><H3>Function</H3>
 1514: <P><I>int</I>
 1515: <B>start</B>
 1516: (<I>struct proto *</I> <B>p</B>) --     request instance startup
 1517: <P>
 1518: <H3>Arguments</H3>
 1519: <P>
 1520: <DL>
 1521: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1522: </DL>
 1523: <H3>Description</H3>
 1524: <P>The <B>start()</B> hook is called by the core when it wishes to start
 1525: the instance. Multitable protocols should lock their tables here.
 1526: <H3>Result</H3>
 1527: <P>new protocol state
 1528: 
 1529: 
 1530: <HR><H3>Function</H3>
 1531: <P><I>int</I>
 1532: <B>shutdown</B>
 1533: (<I>struct proto *</I> <B>p</B>) --     request instance shutdown
 1534: <P>
 1535: <H3>Arguments</H3>
 1536: <P>
 1537: <DL>
 1538: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1539: </DL>
 1540: <H3>Description</H3>
 1541: <P>The <B>stop()</B> hook is called by the core when it wishes to shut
 1542: the instance down for some reason.
 1543: <H3>Returns</H3>
 1544: <P>new protocol state
 1545: 
 1546: 
 1547: <HR><H3>Function</H3>
 1548: <P><I>void</I>
 1549: <B>cleanup</B>
 1550: (<I>struct proto *</I> <B>p</B>) --     request instance cleanup
 1551: <P>
 1552: <H3>Arguments</H3>
 1553: <P>
 1554: <DL>
 1555: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1556: </DL>
 1557: <H3>Description</H3>
 1558: <P>The <B>cleanup()</B> hook is called by the core when the protocol became
 1559: hungry/down, i.e. all protocol ahooks and routes are flushed.
 1560: Multitable protocols should unlock their tables here.
 1561: 
 1562: 
 1563: <HR><H3>Function</H3>
 1564: <P><I>void</I>
 1565: <B>get_status</B>
 1566: (<I>struct proto *</I> <B>p</B>, <I>byte *</I> <B>buf</B>) --     get instance status
 1567: <P>
 1568: <H3>Arguments</H3>
 1569: <P>
 1570: <DL>
 1571: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1572: <DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the status string
 1573: </DL>
 1574: <H3>Description</H3>
 1575: <P>This hook is called by the core if it wishes to obtain an brief one-line user friendly
 1576: representation of the status of the instance to be printed by the &lt;cf/show protocols/
 1577: command.
 1578: 
 1579: 
 1580: <HR><H3>Function</H3>
 1581: <P><I>void</I>
 1582: <B>get_route_info</B>
 1583: (<I>rte *</I> <B>e</B>, <I>byte *</I> <B>buf</B>, <I>ea_list *</I> <B>attrs</B>) --     get route information
 1584: <P>
 1585: <H3>Arguments</H3>
 1586: <P>
 1587: <DL>
 1588: <DT><I>rte *</I> <B>e</B><DD><P>a route entry
 1589: <DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the resulting string
 1590: <DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes of the route
 1591: </DL>
 1592: <H3>Description</H3>
 1593: <P>This hook is called to fill the buffer <B>buf</B> with a brief user friendly
 1594: representation of metrics of a route belonging to this protocol.
 1595: 
 1596: 
 1597: <HR><H3>Function</H3>
 1598: <P><I>int</I>
 1599: <B>get_attr</B>
 1600: (<I>eattr *</I> <B>a</B>, <I>byte *</I> <B>buf</B>, <I>int</I> <B>buflen</B>) --     get attribute information
 1601: <P>
 1602: <H3>Arguments</H3>
 1603: <P>
 1604: <DL>
 1605: <DT><I>eattr *</I> <B>a</B><DD><P>an extended attribute
 1606: <DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with attribute information
 1607: <DT><I>int</I> <B>buflen</B><DD><P>a length of the <B>buf</B> parameter
 1608: </DL>
 1609: <H3>Description</H3>
 1610: <P>The <B>get_attr()</B> hook is called by the core to obtain a user friendly
 1611: representation of an extended route attribute. It can either leave
 1612: the whole conversion to the core (by returning <I>GA_UNKNOWN</I>), fill
 1613: in only attribute name (and let the core format the attribute value
 1614: automatically according to the type field; by returning <I>GA_NAME</I>)
 1615: or doing the whole conversion (used in case the value requires extra
 1616: care; return <I>GA_FULL</I>).
 1617: 
 1618: 
 1619: <HR><H3>Function</H3>
 1620: <P><I>void</I>
 1621: <B>if_notify</B>
 1622: (<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct iface *</I> <B>i</B>) --     notify instance about interface changes
 1623: <P>
 1624: <H3>Arguments</H3>
 1625: <P>
 1626: <DL>
 1627: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1628: <DT><I>unsigned</I> <B>flags</B><DD><P>interface change flags
 1629: <DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
 1630: </DL>
 1631: <H3>Description</H3>
 1632: <P>This hook is called whenever any network interface changes its status.
 1633: The change is described by a combination of status bits (<I>IF_CHANGE_xxx</I>)
 1634: in the <B>flags</B> parameter.
 1635: 
 1636: 
 1637: <HR><H3>Function</H3>
 1638: <P><I>void</I>
 1639: <B>ifa_notify</B>
 1640: (<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct ifa *</I> <B>a</B>) --     notify instance about interface address changes
 1641: <P>
 1642: <H3>Arguments</H3>
 1643: <P>
 1644: <DL>
 1645: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1646: <DT><I>unsigned</I> <B>flags</B><DD><P>address change flags
 1647: <DT><I>struct ifa *</I> <B>a</B><DD><P>the interface address
 1648: </DL>
 1649: <H3>Description</H3>
 1650: <P>This hook is called to notify the protocol instance about an interface
 1651: acquiring or losing one of its addresses. The change is described by
 1652: a combination of status bits (<I>IF_CHANGE_xxx</I>) in the <B>flags</B> parameter.
 1653: 
 1654: 
 1655: <HR><H3>Function</H3>
 1656: <P><I>void</I>
 1657: <B>rt_notify</B>
 1658: (<I>struct proto *</I> <B>p</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>ea_list *</I> <B>attrs</B>) --     notify instance about routing table change
 1659: <P>
 1660: <H3>Arguments</H3>
 1661: <P>
 1662: <DL>
 1663: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1664: <DT><I>net *</I> <B>net</B><DD><P>a network entry
 1665: <DT><I>rte *</I> <B>new</B><DD><P>new route for the network
 1666: <DT><I>rte *</I> <B>old</B><DD><P>old route for the network
 1667: <DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes associated with the <B>new</B> entry
 1668: </DL>
 1669: <H3>Description</H3>
 1670: <P>The <B>rt_notify()</B> hook is called to inform the protocol instance about
 1671: changes in the connected routing table <B>table</B>, that is a route <B>old</B>
 1672: belonging to network <B>net</B> being replaced by a new route <B>new</B> with
 1673: extended attributes <B>attrs</B>. Either <B>new</B> or <B>old</B> or both can be <I>NULL</I>
 1674: if the corresponding route doesn't exist.
 1675: <P>If the type of route announcement is RA_OPTIMAL, it is an
 1676: announcement of optimal route change, <B>new</B> stores the new optimal
 1677: route and <B>old</B> stores the old optimal route.
 1678: <P>If the type of route announcement is RA_ANY, it is an announcement
 1679: of any route change, <B>new</B> stores the new route and <B>old</B> stores the
 1680: old route from the same protocol.
 1681: <P><B>p</B>-&gt;accept_ra_types specifies which kind of route announcements
 1682: protocol wants to receive.
 1683: 
 1684: 
 1685: <HR><H3>Function</H3>
 1686: <P><I>void</I>
 1687: <B>neigh_notify</B>
 1688: (<I>neighbor *</I> <B>neigh</B>) --     notify instance about neighbor status change
 1689: <P>
 1690: <H3>Arguments</H3>
 1691: <P>
 1692: <DL>
 1693: <DT><I>neighbor *</I> <B>neigh</B><DD><P>a neighbor cache entry
 1694: </DL>
 1695: <H3>Description</H3>
 1696: <P>The <B>neigh_notify()</B> hook is called by the neighbor cache whenever
 1697: a neighbor changes its state, that is it gets disconnected or a
 1698: sticky neighbor gets connected.
 1699: 
 1700: 
 1701: <HR><H3>Function</H3>
 1702: <P><I>ea_list *</I>
 1703: <B>make_tmp_attrs</B>
 1704: (<I>rte *</I> <B>e</B>, <I>struct linpool *</I> <B>pool</B>) --     convert embedded attributes to temporary ones
 1705: <P>
 1706: <H3>Arguments</H3>
 1707: <P>
 1708: <DL>
 1709: <DT><I>rte *</I> <B>e</B><DD><P>route entry
 1710: <DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool to allocate attribute memory in
 1711: </DL>
 1712: <H3>Description</H3>
 1713: <P>This hook is called by the routing table functions if they need
 1714: to convert the protocol attributes embedded directly in the <I>rte</I>
 1715: to temporary extended attributes in order to distribute them
 1716: to other protocols or to filters. <B>make_tmp_attrs()</B> creates
 1717: an <I>ea_list</I> in the linear pool <B>pool</B>, fills it with values of the
 1718: temporary attributes and returns a pointer to it.
 1719: 
 1720: 
 1721: <HR><H3>Function</H3>
 1722: <P><I>void</I>
 1723: <B>store_tmp_attrs</B>
 1724: (<I>rte *</I> <B>e</B>, <I>ea_list *</I> <B>attrs</B>) --     convert temporary attributes to embedded ones
 1725: <P>
 1726: <H3>Arguments</H3>
 1727: <P>
 1728: <DL>
 1729: <DT><I>rte *</I> <B>e</B><DD><P>route entry
 1730: <DT><I>ea_list *</I> <B>attrs</B><DD><P>temporary attributes to be converted
 1731: </DL>
 1732: <H3>Description</H3>
 1733: <P>This hook is an exact opposite of <B>make_tmp_attrs()</B> -- it takes
 1734: a list of extended attributes and converts them to attributes
 1735: embedded in the <I>rte</I> corresponding to this protocol.
 1736: <P>You must be prepared for any of the attributes being missing
 1737: from the list and use default values instead.
 1738: 
 1739: 
 1740: <HR><H3>Function</H3>
 1741: <P><I>int</I>
 1742: <B>import_control</B>
 1743: (<I>struct proto *</I> <B>p</B>, <I>rte **</I> <B>e</B>, <I>ea_list **</I> <B>attrs</B>, <I>struct linpool *</I> <B>pool</B>) --     pre-filtering decisions on route import
 1744: <P>
 1745: <H3>Arguments</H3>
 1746: <P>
 1747: <DL>
 1748: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance the route is going to be imported to
 1749: <DT><I>rte **</I> <B>e</B><DD><P>the route in question
 1750: <DT><I>ea_list **</I> <B>attrs</B><DD><P>extended attributes of the route
 1751: <DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool for allocation of all temporary data
 1752: </DL>
 1753: <H3>Description</H3>
 1754: <P>The <B>import_control()</B> hook is called as the first step of a exporting
 1755: a route from a routing table to the protocol instance. It can modify
 1756: route attributes and force acceptance or rejection of the route regardless
 1757: of user-specified filters. See <B>rte_announce()</B> for a complete description
 1758: of the route distribution process.
 1759: <P>The standard use of this hook is to reject routes having originated
 1760: from the same instance and to set default values of the protocol's metrics.
 1761: <H3>Result</H3>
 1762: <P>1 if the route has to be accepted, -1 if rejected and 0 if it
 1763: should be passed to the filters.
 1764: 
 1765: 
 1766: <HR><H3>Function</H3>
 1767: <P><I>int</I>
 1768: <B>rte_recalculate</B>
 1769: (<I>struct rtable *</I> <B>table</B>, <I>struct network *</I> <B>net</B>, <I>struct rte *</I> <B>new</B>, <I>struct rte *</I> <B>old</B>, <I>struct rte *</I> <B>old_best</B>) --     prepare routes for comparison
 1770: <P>
 1771: <H3>Arguments</H3>
 1772: <P>
 1773: <DL>
 1774: <DT><I>struct rtable *</I> <B>table</B><DD><P>a routing table 
 1775: <DT><I>struct network *</I> <B>net</B><DD><P>a network entry
 1776: <DT><I>struct rte *</I> <B>new</B><DD><P>new route for the network
 1777: <DT><I>struct rte *</I> <B>old</B><DD><P>old route for the network
 1778: <DT><I>struct rte *</I> <B>old_best</B><DD><P>old best route for the network (may be NULL)
 1779: </DL>
 1780: <H3>Description</H3>
 1781: <P>This hook is called when a route change (from <B>old</B> to <B>new</B> for a
 1782: <B>net</B> entry) is propagated to a <B>table</B>. It may be used to prepare
 1783: routes for comparison by <B>rte_better()</B> in the best route
 1784: selection. <B>new</B> may or may not be in <B>net</B>-&gt;routes list,
 1785: <B>old</B> is not there.
 1786: <H3>Result</H3>
 1787: <P>1 if the ordering implied by <B>rte_better()</B> changes enough
 1788: that full best route calculation have to be done, 0 otherwise.
 1789: 
 1790: 
 1791: <HR><H3>Function</H3>
 1792: <P><I>int</I>
 1793: <B>rte_better</B>
 1794: (<I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>) --     compare metrics of two routes
 1795: <P>
 1796: <H3>Arguments</H3>
 1797: <P>
 1798: <DL>
 1799: <DT><I>rte *</I> <B>new</B><DD><P>the new route
 1800: <DT><I>rte *</I> <B>old</B><DD><P>the original route
 1801: </DL>
 1802: <H3>Description</H3>
 1803: <P>This hook gets called when the routing table contains two routes
 1804: for the same network which have originated from different instances
 1805: of a single protocol and it wants to select which one is preferred
 1806: over the other one. Protocols usually decide according to route metrics.
 1807: <H3>Result</H3>
 1808: <P>1 if <B>new</B> is better (more preferred) than <B>old</B>, 0 otherwise.
 1809: 
 1810: 
 1811: <HR><H3>Function</H3>
 1812: <P><I>int</I>
 1813: <B>rte_same</B>
 1814: (<I>rte *</I> <B>e1</B>, <I>rte *</I> <B>e2</B>) --     compare two routes
 1815: <P>
 1816: <H3>Arguments</H3>
 1817: <P>
 1818: <DL>
 1819: <DT><I>rte *</I> <B>e1</B><DD><P>route
 1820: <DT><I>rte *</I> <B>e2</B><DD><P>route
 1821: </DL>
 1822: <H3>Description</H3>
 1823: <P>The <B>rte_same()</B> hook tests whether the routes <B>e1</B> and <B>e2</B> belonging
 1824: to the same protocol instance have identical contents. Contents of
 1825: <I>rta</I>, all the extended attributes and <I>rte</I> preference are checked
 1826: by the core code, no need to take care of them here.
 1827: <H3>Result</H3>
 1828: <P>1 if <B>e1</B> is identical to <B>e2</B>, 0 otherwise.
 1829: 
 1830: 
 1831: <HR><H3>Function</H3>
 1832: <P><I>void</I>
 1833: <B>rte_insert</B>
 1834: (<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) --     notify instance about route insertion
 1835: <P>
 1836: <H3>Arguments</H3>
 1837: <P>
 1838: <DL>
 1839: <DT><I>net *</I> <B>n</B><DD><P>network
 1840: <DT><I>rte *</I> <B>e</B><DD><P>route
 1841: </DL>
 1842: <H3>Description</H3>
 1843: <P>This hook is called whenever a <I>rte</I> belonging to the instance
 1844: is accepted for insertion to a routing table.
 1845: <P>Please avoid using this function in new protocols.
 1846: 
 1847: 
 1848: <HR><H3>Function</H3>
 1849: <P><I>void</I>
 1850: <B>rte_remove</B>
 1851: (<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) --     notify instance about route removal
 1852: <P>
 1853: <H3>Arguments</H3>
 1854: <P>
 1855: <DL>
 1856: <DT><I>net *</I> <B>n</B><DD><P>network
 1857: <DT><I>rte *</I> <B>e</B><DD><P>route
 1858: </DL>
 1859: <H3>Description</H3>
 1860: <P>This hook is called whenever a <I>rte</I> belonging to the instance
 1861: is removed from a routing table.
 1862: <P>Please avoid using this function in new protocols.
 1863: 
 1864: <H2><A NAME="ss2.7">2.7</A> <A HREF="prog.html#toc2.7">Interfaces</A>
 1865: </H2>
 1866: 
 1867: <P>
 1868: <P>The interface module keeps track of all network interfaces in the
 1869: system and their addresses.
 1870: <P>Each interface is represented by an <I>iface</I> structure which carries
 1871: interface capability flags (<I>IF_MULTIACCESS</I>, <I>IF_BROADCAST</I> etc.),
 1872: MTU, interface name and index and finally a linked list of network
 1873: prefixes assigned to the interface, each one represented by
 1874: struct <I>ifa</I>.
 1875: <P>The interface module keeps a `soft-up' state for each <I>iface</I> which
 1876: is a conjunction of link being up, the interface being of a `sane'
 1877: type and at least one IP address assigned to it.
 1878: <P>
 1879: <P><HR><H3>Function</H3>
 1880: <P><I>void</I>
 1881: <B>ifa_dump</B>
 1882: (<I>struct ifa *</I> <B>a</B>) --     dump interface address
 1883: <P>
 1884: <H3>Arguments</H3>
 1885: <P>
 1886: <DL>
 1887: <DT><I>struct ifa *</I> <B>a</B><DD><P>interface address descriptor
 1888: </DL>
 1889: <H3>Description</H3>
 1890: <P>This function dumps contents of an <I>ifa</I> to the debug output.
 1891: 
 1892: 
 1893: <HR><H3>Function</H3>
 1894: <P><I>void</I>
 1895: <B>if_dump</B>
 1896: (<I>struct iface *</I> <B>i</B>) --     dump interface
 1897: <P>
 1898: <H3>Arguments</H3>
 1899: <P>
 1900: <DL>
 1901: <DT><I>struct iface *</I> <B>i</B><DD><P>interface to dump
 1902: </DL>
 1903: <H3>Description</H3>
 1904: <P>This function dumps all information associated with a given
 1905: network interface to the debug output.
 1906: 
 1907: 
 1908: <HR><H3>Function</H3>
 1909: <P><I>void</I>
 1910: <B>if_dump_all</B>
 1911: (<B>void</B>) --     dump all interfaces
 1912: <P>
 1913: <H3>Description</H3>
 1914: <P>
 1915: <P>This function dumps information about all known network
 1916: interfaces to the debug output.
 1917: 
 1918: 
 1919: <HR><H3>Function</H3>
 1920: <P><I>void</I>
 1921: <B>if_delete</B>
 1922: (<I>struct iface *</I> <B>old</B>) --     remove interface
 1923: <P>
 1924: <H3>Arguments</H3>
 1925: <P>
 1926: <DL>
 1927: <DT><I>struct iface *</I> <B>old</B><DD><P>interface
 1928: </DL>
 1929: <H3>Description</H3>
 1930: <P>This function is called by the low-level platform dependent code
 1931: whenever it notices an interface disappears. It is just a shorthand
 1932: for <B>if_update()</B>.
 1933: 
 1934: 
 1935: <HR><H3>Function</H3>
 1936: <P><I>struct iface *</I>
 1937: <B>if_update</B>
 1938: (<I>struct iface *</I> <B>new</B>) --     update interface status
 1939: <P>
 1940: <H3>Arguments</H3>
 1941: <P>
 1942: <DL>
 1943: <DT><I>struct iface *</I> <B>new</B><DD><P>new interface status
 1944: </DL>
 1945: <H3>Description</H3>
 1946: <P><B>if_update()</B> is called by the low-level platform dependent code
 1947: whenever it notices an interface change.
 1948: <P>There exist two types of interface updates -- synchronous and asynchronous
 1949: ones. In the synchronous case, the low-level code calls <B>if_start_update()</B>,
 1950: scans all interfaces reported by the OS, uses <B>if_update()</B> and <B>ifa_update()</B>
 1951: to pass them to the core and then it finishes the update sequence by
 1952: calling <B>if_end_update()</B>. When working asynchronously, the sysdep code
 1953: calls <B>if_update()</B> and <B>ifa_update()</B> whenever it notices a change.
 1954: <P><B>if_update()</B> will automatically notify all other modules about the change.
 1955: 
 1956: 
 1957: <HR><H3>Function</H3>
 1958: <P><I>void</I>
 1959: <B>if_feed_baby</B>
 1960: (<I>struct proto *</I> <B>p</B>) --     advertise interfaces to a new protocol
 1961: <P>
 1962: <H3>Arguments</H3>
 1963: <P>
 1964: <DL>
 1965: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol to feed
 1966: </DL>
 1967: <H3>Description</H3>
 1968: <P>When a new protocol starts, this function sends it a series
 1969: of notifications about all existing interfaces.
 1970: 
 1971: 
 1972: <HR><H3>Function</H3>
 1973: <P><I>struct iface *</I>
 1974: <B>if_find_by_index</B>
 1975: (<I>unsigned</I> <B>idx</B>) --     find interface by ifindex
 1976: <P>
 1977: <H3>Arguments</H3>
 1978: <P>
 1979: <DL>
 1980: <DT><I>unsigned</I> <B>idx</B><DD><P>ifindex
 1981: </DL>
 1982: <H3>Description</H3>
 1983: <P>This function finds an <I>iface</I> structure corresponding to an interface
 1984: of the given index <B>idx</B>. Returns a pointer to the structure or <I>NULL</I>
 1985: if no such structure exists.
 1986: 
 1987: 
 1988: <HR><H3>Function</H3>
 1989: <P><I>struct iface *</I>
 1990: <B>if_find_by_name</B>
 1991: (<I>char *</I> <B>name</B>) --     find interface by name
 1992: <P>
 1993: <H3>Arguments</H3>
 1994: <P>
 1995: <DL>
 1996: <DT><I>char *</I> <B>name</B><DD><P>interface name
 1997: </DL>
 1998: <H3>Description</H3>
 1999: <P>This function finds an <I>iface</I> structure corresponding to an interface
 2000: of the given name <B>name</B>. Returns a pointer to the structure or <I>NULL</I>
 2001: if no such structure exists.
 2002: 
 2003: 
 2004: <HR><H3>Function</H3>
 2005: <P><I>struct ifa *</I>
 2006: <B>ifa_update</B>
 2007: (<I>struct ifa *</I> <B>a</B>) --     update interface address
 2008: <P>
 2009: <H3>Arguments</H3>
 2010: <P>
 2011: <DL>
 2012: <DT><I>struct ifa *</I> <B>a</B><DD><P>new interface address
 2013: </DL>
 2014: <H3>Description</H3>
 2015: <P>This function adds address information to a network
 2016: interface. It's called by the platform dependent code during
 2017: the interface update process described under <B>if_update()</B>.
 2018: 
 2019: 
 2020: <HR><H3>Function</H3>
 2021: <P><I>void</I>
 2022: <B>ifa_delete</B>
 2023: (<I>struct ifa *</I> <B>a</B>) --     remove interface address
 2024: <P>
 2025: <H3>Arguments</H3>
 2026: <P>
 2027: <DL>
 2028: <DT><I>struct ifa *</I> <B>a</B><DD><P>interface address
 2029: </DL>
 2030: <H3>Description</H3>
 2031: <P>This function removes address information from a network
 2032: interface. It's called by the platform dependent code during
 2033: the interface update process described under <B>if_update()</B>.
 2034: 
 2035: 
 2036: <HR><H3>Function</H3>
 2037: <P><I>void</I>
 2038: <B>if_init</B>
 2039: (<B>void</B>) --     initialize interface module
 2040: <P>
 2041: <H3>Description</H3>
 2042: <P>
 2043: <P>This function is called during BIRD startup to initialize
 2044: all data structures of the interface module.
 2045: 
 2046: <H2><A NAME="ss2.8">2.8</A> <A HREF="prog.html#toc2.8">Neighbor cache</A>
 2047: </H2>
 2048: 
 2049: <P>
 2050: <P>Most routing protocols need to associate their internal state data with
 2051: neighboring routers, check whether an address given as the next hop
 2052: attribute of a route is really an address of a directly connected host
 2053: and which interface is it connected through. Also, they often need to
 2054: be notified when a neighbor ceases to exist or when their long awaited
 2055: neighbor becomes connected. The neighbor cache is there to solve all
 2056: these problems.
 2057: <P>The neighbor cache maintains a collection of neighbor entries. Each
 2058: entry represents one IP address corresponding to either our directly
 2059: connected neighbor or our own end of the link (when the scope of the
 2060: address is set to <I>SCOPE_HOST</I>) together with per-neighbor data belonging to a
 2061: single protocol.
 2062: <P>Active entries represent known neighbors and are stored in a hash
 2063: table (to allow fast retrieval based on the IP address of the node) and
 2064: two linked lists: one global and one per-interface (allowing quick
 2065: processing of interface change events). Inactive entries exist only
 2066: when the protocol has explicitly requested it via the <I>NEF_STICKY</I>
 2067: flag because it wishes to be notified when the node will again become
 2068: a neighbor. Such entries are enqueued in a special list which is walked
 2069: whenever an interface changes its state to up.
 2070: <P>When a neighbor event occurs (a neighbor gets disconnected or a sticky
 2071: inactive neighbor becomes connected), the protocol hook <B>neigh_notify()</B>
 2072: is called to advertise the change.
 2073: <P>
 2074: <P><HR><H3>Function</H3>
 2075: <P><I>neighbor *</I>
 2076: <B>neigh_find</B>
 2077: (<I>struct proto *</I> <B>p</B>, <I>ip_addr *</I> <B>a</B>, <I>unsigned</I> <B>flags</B>) --     find or create a neighbor entry.
 2078: <P>
 2079: <H3>Arguments</H3>
 2080: <P>
 2081: <DL>
 2082: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol which asks for the entry.
 2083: <DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the node to be searched for.
 2084: <DT><I>unsigned</I> <B>flags</B><DD><P>0 or <I>NEF_STICKY</I> if you want to create a sticky entry.
 2085: </DL>
 2086: <H3>Description</H3>
 2087: <P>Search the neighbor cache for a node with given IP address. If
 2088: it's found, a pointer to the neighbor entry is returned. If no
 2089: such entry exists and the node is directly connected on
 2090: one of our active interfaces, a new entry is created and returned
 2091: to the caller with protocol-dependent fields initialized to zero.
 2092: If the node is not connected directly or *<B>a</B> is not a valid unicast
 2093: IP address, <B>neigh_find()</B> returns <I>NULL</I>.
 2094: 
 2095: 
 2096: <HR><H3>Function</H3>
 2097: <P><I>void</I>
 2098: <B>neigh_dump</B>
 2099: (<I>neighbor *</I> <B>n</B>) --     dump specified neighbor entry.
 2100: <P>
 2101: <H3>Arguments</H3>
 2102: <P>
 2103: <DL>
 2104: <DT><I>neighbor *</I> <B>n</B><DD><P>the entry to dump
 2105: </DL>
 2106: <H3>Description</H3>
 2107: <P>This functions dumps the contents of a given neighbor entry
 2108: to debug output.
 2109: 
 2110: 
 2111: <HR><H3>Function</H3>
 2112: <P><I>void</I>
 2113: <B>neigh_dump_all</B>
 2114: (<B>void</B>) --     dump all neighbor entries.
 2115: <P>
 2116: <H3>Description</H3>
 2117: <P>
 2118: <P>This function dumps the contents of the neighbor cache to
 2119: debug output.
 2120: 
 2121: 
 2122: <HR><H3>Function</H3>
 2123: <P><I>void</I>
 2124: <B>neigh_if_up</B>
 2125: (<I>struct iface *</I> <B>i</B>)
 2126: <H3>Arguments</H3>
 2127: <P>
 2128: <DL>
 2129: <DT><I>struct iface *</I> <B>i</B><DD><P>interface in question
 2130: </DL>
 2131: <H3>Description</H3>
 2132: <P>Tell the neighbor cache that a new interface became up.
 2133: <P>The neighbor cache wakes up all inactive sticky neighbors with
 2134: addresses belonging to prefixes of the interface <B>i</B>.
 2135: 
 2136: 
 2137: <HR><H3>Function</H3>
 2138: <P><I>void</I>
 2139: <B>neigh_if_down</B>
 2140: (<I>struct iface *</I> <B>i</B>) --     notify neighbor cache about interface down event
 2141: <P>
 2142: <H3>Arguments</H3>
 2143: <P>
 2144: <DL>
 2145: <DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
 2146: </DL>
 2147: <H3>Description</H3>
 2148: <P>Notify the neighbor cache that an interface has ceased to exist.
 2149: <P>It causes all entries belonging to neighbors connected to this interface
 2150: to be flushed.
 2151: 
 2152: 
 2153: <HR><H3>Function</H3>
 2154: <P><I>void</I>
 2155: <B>neigh_if_link</B>
 2156: (<I>struct iface *</I> <B>i</B>) --     notify neighbor cache about interface link change
 2157: <P>
 2158: <H3>Arguments</H3>
 2159: <P>
 2160: <DL>
 2161: <DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
 2162: </DL>
 2163: <H3>Description</H3>
 2164: <P>Notify the neighbor cache that an interface changed link state.
 2165: All owners of neighbor entries connected to this interface are
 2166: notified.
 2167: 
 2168: 
 2169: <HR><H3>Function</H3>
 2170: <P><I>void</I>
 2171: <B>neigh_ifa_update</B>
 2172: (<I>struct ifa *</I> <B>a</B>)
 2173: <H3>Arguments</H3>
 2174: <P>
 2175: <DL>
 2176: <DT><I>struct ifa *</I> <B>a</B><DD><P>interface address in question
 2177: </DL>
 2178: <H3>Description</H3>
 2179: <P>Tell the neighbor cache that an address was added or removed.
 2180: <P>The neighbor cache wakes up all inactive sticky neighbors with
 2181: addresses belonging to prefixes of the interface belonging to <B>ifa</B>
 2182: and causes all unreachable neighbors to be flushed.
 2183: 
 2184: 
 2185: <HR><H3>Function</H3>
 2186: <P><I>void</I>
 2187: <B>neigh_prune</B>
 2188: (<B>void</B>) --     prune neighbor cache
 2189: <P>
 2190: <H3>Description</H3>
 2191: <P>
 2192: <P><B>neigh_prune()</B> examines all neighbor entries cached and removes those
 2193: corresponding to inactive protocols. It's called whenever a protocol
 2194: is shut down to get rid of all its heritage.
 2195: 
 2196: 
 2197: <HR><H3>Function</H3>
 2198: <P><I>void</I>
 2199: <B>neigh_init</B>
 2200: (<I>pool *</I> <B>if_pool</B>) --     initialize the neighbor cache.
 2201: <P>
 2202: <H3>Arguments</H3>
 2203: <P>
 2204: <DL>
 2205: <DT><I>pool *</I> <B>if_pool</B><DD><P>resource pool to be used for neighbor entries.
 2206: </DL>
 2207: <H3>Description</H3>
 2208: <P>This function is called during BIRD startup to initialize
 2209: the neighbor cache module.
 2210: 
 2211: <H2><A NAME="ss2.9">2.9</A> <A HREF="prog.html#toc2.9">Command line interface</A>
 2212: </H2>
 2213: 
 2214: <P>
 2215: <P>This module takes care of the BIRD's command-line interface (CLI).
 2216: The CLI exists to provide a way to control BIRD remotely and to inspect
 2217: its status. It uses a very simple textual protocol over a stream
 2218: connection provided by the platform dependent code (on UNIX systems,
 2219: it's a UNIX domain socket).
 2220: <P>Each session of the CLI consists of a sequence of request and replies,
 2221: slightly resembling the FTP and SMTP protocols.
 2222: Requests are commands encoded as a single line of text, replies are
 2223: sequences of lines starting with a four-digit code followed by either
 2224: a space (if it's the last line of the reply) or a minus sign (when the
 2225: reply is going to continue with the next line), the rest of the line
 2226: contains a textual message semantics of which depends on the numeric
 2227: code. If a reply line has the same code as the previous one and it's
 2228: a continuation line, the whole prefix can be replaced by a single
 2229: white space character.
 2230: <P>Reply codes starting with 0 stand for `action successfully completed' messages,
 2231: 1 means `table entry', 8 `runtime error' and 9 `syntax error'.
 2232: <P>Each CLI session is internally represented by a <I>cli</I> structure and a
 2233: resource pool containing all resources associated with the connection,
 2234: so that it can be easily freed whenever the connection gets closed, not depending
 2235: on the current state of command processing.
 2236: <P>The CLI commands are declared as a part of the configuration grammar
 2237: by using the <CODE>CF_CLI</CODE> macro. When a command is received, it is processed
 2238: by the same lexical analyzer and parser as used for the configuration, but
 2239: it's switched to a special mode by prepending a fake token to the text,
 2240: so that it uses only the CLI command rules. Then the parser invokes
 2241: an execution routine corresponding to the command, which either constructs
 2242: the whole reply and returns it back or (in case it expects the reply will be long)
 2243: it prints a partial reply and asks the CLI module (using the <B>cont</B> hook)
 2244: to call it again when the output is transferred to the user.
 2245: <P>The <B>this_cli</B> variable points to a <I>cli</I> structure of the session being
 2246: currently parsed, but it's of course available only in command handlers
 2247: not entered using the <B>cont</B> hook.
 2248: <P>TX buffer management works as follows: At cli.tx_buf there is a
 2249: list of TX buffers (struct cli_out), cli.tx_write is the buffer
 2250: currently used by the producer (<B>cli_printf()</B>, <B>cli_alloc_out()</B>) and
 2251: cli.tx_pos is the buffer currently used by the consumer
 2252: (<B>cli_write()</B>, in system dependent code). The producer uses
 2253: cli_out.wpos ptr as the current write position and the consumer
 2254: uses cli_out.outpos ptr as the current read position. When the
 2255: producer produces something, it calls <B>cli_write_trigger()</B>. If there
 2256: is not enough space in the current buffer, the producer allocates
 2257: the new one. When the consumer processes everything in the buffer
 2258: queue, it calls <B>cli_written()</B>, tha frees all buffers (except the
 2259: first one) and schedules cli.event .
 2260: <P>
 2261: <P><HR><H3>Function</H3>
 2262: <P><I>void</I>
 2263: <B>cli_printf</B>
 2264: (<I>cli *</I> <B>c</B>, <I>int</I> <B>code</B>, <I>char *</I> <B>msg</B>, <I>...</I> <B>...</B>) --     send reply to a CLI connection
 2265: <P>
 2266: <H3>Arguments</H3>
 2267: <P>
 2268: <DL>
 2269: <DT><I>cli *</I> <B>c</B><DD><P>CLI connection
 2270: <DT><I>int</I> <B>code</B><DD><P>numeric code of the reply, negative for continuation lines
 2271: <DT><I>char *</I> <B>msg</B><DD><P>a <B>printf()</B>-like formatting string.
 2272: <DT><I>...</I> <B>...</B><DD><P>variable arguments
 2273: </DL>
 2274: <H3>Description</H3>
 2275: <P>This function send a single line of reply to a given CLI connection.
 2276: In works in all aspects like <B>bsprintf()</B> except that it automatically
 2277: prepends the reply line prefix.
 2278: <P>Please note that if the connection can be already busy sending some
 2279: data in which case <B>cli_printf()</B> stores the output to a temporary buffer,
 2280: so please avoid sending a large batch of replies without waiting
 2281: for the buffers to be flushed.
 2282: <P>If you want to write to the current CLI output, you can use the <B>cli_msg()</B>
 2283: macro instead.
 2284: 
 2285: 
 2286: <HR><H3>Function</H3>
 2287: <P><I>void</I>
 2288: <B>cli_init</B>
 2289: (<B>void</B>) --     initialize the CLI module
 2290: <P>
 2291: <H3>Description</H3>
 2292: <P>
 2293: <P>This function is called during BIRD startup to initialize
 2294: the internal data structures of the CLI module.
 2295: 
 2296: <H2><A NAME="ss2.10">2.10</A> <A HREF="prog.html#toc2.10">Object locks</A>
 2297: </H2>
 2298: 
 2299: <P>
 2300: <P>The lock module provides a simple mechanism for avoiding conflicts between
 2301: various protocols which would like to use a single physical resource (for
 2302: example a network port). It would be easy to say that such collisions can
 2303: occur only when the user specifies an invalid configuration and therefore
 2304: he deserves to get what he has asked for, but unfortunately they can also
 2305: arise legitimately when the daemon is reconfigured and there exists (although
 2306: for a short time period only) an old protocol instance being shut down and a new one
 2307: willing to start up on the same interface.
 2308: <P>The solution is very simple: when any protocol wishes to use a network port
 2309: or some other non-shareable resource, it asks the core to lock it and it doesn't
 2310: use the resource until it's notified that it has acquired the lock.
 2311: <P>Object locks are represented by <I>object_lock</I> structures which are in turn a
 2312: kind of resource. Lockable resources are uniquely determined by resource type
 2313: (<I>OBJLOCK_UDP</I> for a UDP port etc.), IP address (usually a broadcast or
 2314: multicast address the port is bound to), port number, interface and optional
 2315: instance ID.
 2316: <P>
 2317: <P><HR><H3>Function</H3>
 2318: <P><I>struct object_lock *</I>
 2319: <B>olock_new</B>
 2320: (<I>pool *</I> <B>p</B>) --     create an object lock
 2321: <P>
 2322: <H3>Arguments</H3>
 2323: <P>
 2324: <DL>
 2325: <DT><I>pool *</I> <B>p</B><DD><P>resource pool to create the lock in.
 2326: </DL>
 2327: <H3>Description</H3>
 2328: <P>The <B>olock_new()</B> function creates a new resource of type <I>object_lock</I>
 2329: and returns a pointer to it. After filling in the structure, the caller
 2330: should call <B>olock_acquire()</B> to do the real locking.
 2331: 
 2332: 
 2333: <HR><H3>Function</H3>
 2334: <P><I>void</I>
 2335: <B>olock_acquire</B>
 2336: (<I>struct object_lock *</I> <B>l</B>) --     acquire a lock
 2337: <P>
 2338: <H3>Arguments</H3>
 2339: <P>
 2340: <DL>
 2341: <DT><I>struct object_lock *</I> <B>l</B><DD><P>the lock to acquire
 2342: </DL>
 2343: <H3>Description</H3>
 2344: <P>This function attempts to acquire exclusive access to the non-shareable
 2345: resource described by the lock <B>l</B>. It returns immediately, but as soon
 2346: as the resource becomes available, it calls the <B>hook()</B> function set up
 2347: by the caller.
 2348: <P>When you want to release the resource, just <B>rfree()</B> the lock.
 2349: 
 2350: 
 2351: <HR><H3>Function</H3>
 2352: <P><I>void</I>
 2353: <B>olock_init</B>
 2354: (<B>void</B>) --     initialize the object lock mechanism
 2355: <P>
 2356: <H3>Description</H3>
 2357: <P>
 2358: <P>This function is called during BIRD startup. It initializes
 2359: all the internal data structures of the lock module.
 2360: 
 2361: <HR>
 2362: <A HREF="prog-3.html">Next</A>
 2363: <A HREF="prog-1.html">Previous</A>
 2364: <A HREF="prog.html#toc2">Contents</A>
 2365: </BODY>
 2366: </HTML>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>