File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / bird / doc / prog-2.html
Revision 1.1.1.2 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Wed Mar 17 19:50:23 2021 UTC (3 years, 4 months ago) by misho
Branches: bird, MAIN
CVS tags: v1_6_8p3, HEAD
bird 1.6.8

    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
    2: <HTML>
    3: <HEAD>
    4:  <META NAME="GENERATOR" CONTENT="LinuxDoc-Tools 1.0.9">
    5:  <TITLE>BIRD Programmer's Documentation: Core</TITLE>
    6:  <LINK HREF="prog-3.html" REL=next>
    7:  <LINK HREF="prog-1.html" REL=previous>
    8:  <LINK HREF="prog.html#toc2" REL=contents>
    9: </HEAD>
   10: <BODY>
   11: <A HREF="prog-3.html">Next</A>
   12: <A HREF="prog-1.html">Previous</A>
   13: <A HREF="prog.html#toc2">Contents</A>
   14: <HR>
   15: <H2><A NAME="s2">2.</A> <A HREF="prog.html#toc2">Core</A></H2>
   16: 
   17: <H2><A NAME="ss2.1">2.1</A> <A HREF="prog.html#toc2.1">Forwarding Information Base</A>
   18: </H2>
   19: 
   20: <P>
   21: <P>FIB is a data structure designed for storage of routes indexed by their
   22: network prefixes. It supports insertion, deletion, searching by prefix,
   23: `routing' (in CIDR sense, that is searching for a longest prefix matching
   24: a given IP address) and (which makes the structure very tricky to implement)
   25: asynchronous reading, that is enumerating the contents of a FIB while other
   26: modules add, modify or remove entries.
   27: <P>Internally, each FIB is represented as a collection of nodes of type <I>fib_node</I>
   28: indexed using a sophisticated hashing mechanism.
   29: We use two-stage hashing where we calculate a 16-bit primary hash key independent
   30: on hash table size and then we just divide the primary keys modulo table size
   31: to get a real hash key used for determining the bucket containing the node.
   32: The lists of nodes in each bucket are sorted according to the primary hash
   33: key, hence if we keep the total number of buckets to be a power of two,
   34: re-hashing of the structure keeps the relative order of the nodes.
   35: <P>To get the asynchronous reading consistent over node deletions, we need to
   36: keep a list of readers for each node. When a node gets deleted, its readers
   37: are automatically moved to the next node in the table.
   38: <P>Basic FIB operations are performed by functions defined by this module,
   39: enumerating of FIB contents is accomplished by using the <B>FIB_WALK()</B> macro
   40: or <B>FIB_ITERATE_START()</B> if you want to do it asynchronously.
   41: <P>For simple iteration just place the body of the loop between <B>FIB_WALK()</B> and
   42: <B>FIB_WALK_END()</B>. You can't modify the FIB during the iteration (you can modify
   43: data in the node, but not add or remove nodes).
   44: <P>If you need more freedom, you can use the FIB_ITERATE_*() group of macros.
   45: First, you initialize an iterator with <B>FIB_ITERATE_INIT()</B>. Then you can put
   46: the loop body in between <B>FIB_ITERATE_START()</B> and <B>FIB_ITERATE_END()</B>. In
   47: addition, the iteration can be suspended by calling <B>FIB_ITERATE_PUT()</B>.
   48: This'll link the iterator inside the FIB. While suspended, you may modify the
   49: FIB, exit the current function, etc. To resume the iteration, enter the loop
   50: again. You can use <B>FIB_ITERATE_UNLINK()</B> to unlink the iterator (while
   51: iteration is suspended) in cases like premature end of FIB iteration.
   52: <P>Note that the iterator must not be destroyed when the iteration is suspended,
   53: the FIB would then contain a pointer to invalid memory. Therefore, after each
   54: <B>FIB_ITERATE_INIT()</B> or <B>FIB_ITERATE_PUT()</B> there must be either
   55: <B>FIB_ITERATE_START()</B> or <B>FIB_ITERATE_UNLINK()</B> before the iterator is destroyed.
   56: <P>
   57: <P><HR><H3>Function</H3>
   58: <P><I>void</I>
   59: <B>fib_init</B>
   60: (<I>struct fib *</I> <B>f</B>, <I>pool *</I> <B>p</B>, <I>unsigned</I> <B>node_size</B>, <I>unsigned</I> <B>hash_order</B>, <I>fib_init_func</I> <B>init</B>) --     initialize a new FIB
   61: <P>
   62: <H3>Arguments</H3>
   63: <P>
   64: <DL>
   65: <DT><I>struct fib *</I> <B>f</B><DD><P>the FIB to be initialized (the structure itself being allocated by the caller)
   66: <DT><I>pool *</I> <B>p</B><DD><P>pool to allocate the nodes in
   67: <DT><I>unsigned</I> <B>node_size</B><DD><P>node size to be used (each node consists of a standard header <I>fib_node</I>
   68: followed by user data)
   69: <DT><I>unsigned</I> <B>hash_order</B><DD><P>initial hash order (a binary logarithm of hash table size), 0 to use default order
   70: (recommended)
   71: <DT><I>fib_init_func</I> <B>init</B><DD><P>pointer a function to be called to initialize a newly created node
   72: </DL>
   73: <H3>Description</H3>
   74: <P>This function initializes a newly allocated FIB and prepares it for use.
   75: 
   76: 
   77: <HR><H3>Function</H3>
   78: <P><I>void *</I>
   79: <B>fib_find</B>
   80: (<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) --     search for FIB node by prefix
   81: <P>
   82: <H3>Arguments</H3>
   83: <P>
   84: <DL>
   85: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
   86: <DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
   87: <DT><I>int</I> <B>len</B><DD><P>prefix length
   88: </DL>
   89: <H3>Description</H3>
   90: <P>Search for a FIB node corresponding to the given prefix, return
   91: a pointer to it or <I>NULL</I> if no such node exists.
   92: 
   93: 
   94: <HR><H3>Function</H3>
   95: <P><I>void *</I>
   96: <B>fib_get</B>
   97: (<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) --     find or create a FIB node
   98: <P>
   99: <H3>Arguments</H3>
  100: <P>
  101: <DL>
  102: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to work with
  103: <DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
  104: <DT><I>int</I> <B>len</B><DD><P>prefix length
  105: </DL>
  106: <H3>Description</H3>
  107: <P>Search for a FIB node corresponding to the given prefix and
  108: return a pointer to it. If no such node exists, create it.
  109: 
  110: 
  111: <HR><H3>Function</H3>
  112: <P><I>void *</I>
  113: <B>fib_route</B>
  114: (<I>struct fib *</I> <B>f</B>, <I>ip_addr</I> <B>a</B>, <I>int</I> <B>len</B>) --     CIDR routing lookup
  115: <P>
  116: <H3>Arguments</H3>
  117: <P>
  118: <DL>
  119: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
  120: <DT><I>ip_addr</I> <B>a</B><DD><P>pointer to IP address of the prefix
  121: <DT><I>int</I> <B>len</B><DD><P>prefix length
  122: </DL>
  123: <H3>Description</H3>
  124: <P>Search for a FIB node with longest prefix matching the given
  125: network, that is a node which a CIDR router would use for routing
  126: that network.
  127: 
  128: 
  129: <HR><H3>Function</H3>
  130: <P><I>void</I>
  131: <B>fib_delete</B>
  132: (<I>struct fib *</I> <B>f</B>, <I>void *</I> <B>E</B>) --     delete a FIB node
  133: <P>
  134: <H3>Arguments</H3>
  135: <P>
  136: <DL>
  137: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to delete from
  138: <DT><I>void *</I> <B>E</B><DD><P>entry to delete
  139: </DL>
  140: <H3>Description</H3>
  141: <P>This function removes the given entry from the FIB,
  142: taking care of all the asynchronous readers by shifting
  143: them to the next node in the canonical reading order.
  144: 
  145: 
  146: <HR><H3>Function</H3>
  147: <P><I>void</I>
  148: <B>fib_free</B>
  149: (<I>struct fib *</I> <B>f</B>) --     delete a FIB
  150: <P>
  151: <H3>Arguments</H3>
  152: <P>
  153: <DL>
  154: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be deleted
  155: </DL>
  156: <H3>Description</H3>
  157: <P>This function deletes a FIB -- it frees all memory associated
  158: with it and all its entries.
  159: 
  160: 
  161: <HR><H3>Function</H3>
  162: <P><I>void</I>
  163: <B>fib_check</B>
  164: (<I>struct fib *</I> <B>f</B>) --     audit a FIB
  165: <P>
  166: <H3>Arguments</H3>
  167: <P>
  168: <DL>
  169: <DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be checked
  170: </DL>
  171: <H3>Description</H3>
  172: <P>This debugging function audits a FIB by checking its internal consistency.
  173: Use when you suspect somebody of corrupting innocent data structures.
  174: 
  175: <H2><A NAME="ss2.2">2.2</A> <A HREF="prog.html#toc2.2">Routing tables</A>
  176: </H2>
  177: 
  178: <P>
  179: <P>Routing tables are probably the most important structures BIRD uses. They
  180: hold all the information about known networks, the associated routes and
  181: their attributes.
  182: <P>There are multiple routing tables (a primary one together with any
  183: number of secondary ones if requested by the configuration). Each table
  184: is basically a FIB containing entries describing the individual
  185: destination networks. For each network (represented by structure <I>net</I>),
  186: there is a one-way linked list of route entries (<I>rte</I>), the first entry
  187: on the list being the best one (i.e., the one we currently use
  188: for routing), the order of the other ones is undetermined.
  189: <P>The <I>rte</I> contains information specific to the route (preference, protocol
  190: metrics, time of last modification etc.) and a pointer to a <I>rta</I> structure
  191: (see the route attribute module for a precise explanation) holding the
  192: remaining route attributes which are expected to be shared by multiple
  193: routes in order to conserve memory.
  194: <P>
  195: <P><HR><H3>Function</H3>
  196: <P><I>rte *</I>
  197: <B>rte_find</B>
  198: (<I>net *</I> <B>net</B>, <I>struct rte_src *</I> <B>src</B>) --     find a route
  199: <P>
  200: <H3>Arguments</H3>
  201: <P>
  202: <DL>
  203: <DT><I>net *</I> <B>net</B><DD><P>network node
  204: <DT><I>struct rte_src *</I> <B>src</B><DD><P>route source
  205: </DL>
  206: <H3>Description</H3>
  207: <P>The <B>rte_find()</B> function returns a route for destination <B>net</B>
  208: which is from route source <B>src</B>.
  209: 
  210: 
  211: <HR><H3>Function</H3>
  212: <P><I>rte *</I>
  213: <B>rte_get_temp</B>
  214: (<I>rta *</I> <B>a</B>) --     get a temporary <I>rte</I>
  215: <P>
  216: <H3>Arguments</H3>
  217: <P>
  218: <DL>
  219: <DT><I>rta *</I> <B>a</B><DD><P>attributes to assign to the new route (a <I>rta</I>; in case it's
  220: un-cached, <B>rte_update()</B> will create a cached copy automatically)
  221: </DL>
  222: <H3>Description</H3>
  223: <P>Create a temporary <I>rte</I> and bind it with the attributes <B>a</B>.
  224: Also set route preference to the default preference set for
  225: the protocol.
  226: 
  227: 
  228: <HR><H3>Function</H3>
  229: <P><I>rte *</I>
  230: <B>rte_cow_rta</B>
  231: (<I>rte *</I> <B>r</B>, <I>linpool *</I> <B>lp</B>) --     get a private writable copy of <I>rte</I> with writable <I>rta</I>
  232: <P>
  233: <H3>Arguments</H3>
  234: <P>
  235: <DL>
  236: <DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
  237: <DT><I>linpool *</I> <B>lp</B><DD><P>a linpool from which to allocate <I>rta</I>
  238: </DL>
  239: <H3>Description</H3>
  240: <P><B>rte_cow_rta()</B> takes a <I>rte</I> and prepares it and associated <I>rta</I> for
  241: modification. There are three possibilities: First, both <I>rte</I> and <I>rta</I> are
  242: private copies, in that case they are returned unchanged.  Second, <I>rte</I> is
  243: private copy, but <I>rta</I> is cached, in that case <I>rta</I> is duplicated using
  244: <B>rta_do_cow()</B>. Third, both <I>rte</I> is shared and <I>rta</I> is cached, in that case
  245: both structures are duplicated by <B>rte_do_cow()</B> and <B>rta_do_cow()</B>.
  246: <P>Note that in the second case, cached <I>rta</I> loses one reference, while private
  247: copy created by <B>rta_do_cow()</B> is a shallow copy sharing indirect data (eattrs,
  248: nexthops, ...) with it. To work properly, original shared <I>rta</I> should have
  249: another reference during the life of created private copy.
  250: <H3>Result</H3>
  251: <P>a pointer to the new writable <I>rte</I> with writable <I>rta</I>.
  252: 
  253: 
  254: <HR><H3>Function</H3>
  255: <P><I>void</I>
  256: <B>rte_announce</B>
  257: (<I>rtable *</I> <B>tab</B>, <I>unsigned</I> <B>type</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>rte *</I> <B>new_best</B>, <I>rte *</I> <B>old_best</B>, <I>rte *</I> <B>before_old</B>) --     announce a routing table change
  258: <P>
  259: <H3>Arguments</H3>
  260: <P>
  261: <DL>
  262: <DT><I>rtable *</I> <B>tab</B><DD><P>table the route has been added to
  263: <DT><I>unsigned</I> <B>type</B><DD><P>type of route announcement (RA_OPTIMAL or RA_ANY)
  264: <DT><I>net *</I> <B>net</B><DD><P>network in question
  265: <DT><I>rte *</I> <B>new</B><DD><P>the new route to be announced
  266: <DT><I>rte *</I> <B>old</B><DD><P>the previous route for the same network
  267: <DT><I>rte *</I> <B>new_best</B><DD><P>the new best route for the same network
  268: <DT><I>rte *</I> <B>old_best</B><DD><P>the previous best route for the same network
  269: <DT><I>rte *</I> <B>before_old</B><DD><P>The previous route before <B>old</B> for the same network.
  270: If <B>before_old</B> is NULL <B>old</B> was the first.
  271: </DL>
  272: <H3>Description</H3>
  273: <P>This function gets a routing table update and announces it
  274: to all protocols that acccepts given type of route announcement
  275: and are connected to the same table by their announcement hooks.
  276: <P>Route announcement of type <I>RA_OPTIMAL</I> si generated when optimal
  277: route (in routing table <B>tab</B>) changes. In that case <B>old</B> stores the
  278: old optimal route.
  279: <P>Route announcement of type <I>RA_ANY</I> si generated when any route (in
  280: routing table <B>tab</B>) changes In that case <B>old</B> stores the old route
  281: from the same protocol.
  282: <P>For each appropriate protocol, we first call its <B>import_control()</B>
  283: hook which performs basic checks on the route (each protocol has a
  284: right to veto or force accept of the route before any filter is
  285: asked) and adds default values of attributes specific to the new
  286: protocol (metrics, tags etc.).  Then it consults the protocol's
  287: export filter and if it accepts the route, the <B>rt_notify()</B> hook of
  288: the protocol gets called.
  289: 
  290: 
  291: <HR><H3>Function</H3>
  292: <P><I>void</I>
  293: <B>rte_free</B>
  294: (<I>rte *</I> <B>e</B>) --     delete a <I>rte</I>
  295: <P>
  296: <H3>Arguments</H3>
  297: <P>
  298: <DL>
  299: <DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be deleted
  300: </DL>
  301: <H3>Description</H3>
  302: <P><B>rte_free()</B> deletes the given <I>rte</I> from the routing table it's linked to.
  303: 
  304: 
  305: <HR><H3>Function</H3>
  306: <P><I>void</I>
  307: <B>rte_update2</B>
  308: (<I>struct announce_hook *</I> <B>ah</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>struct rte_src *</I> <B>src</B>) --     enter a new update to a routing table
  309: <P>
  310: <H3>Arguments</H3>
  311: <P>
  312: <DL>
  313: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>pointer to table announce hook
  314: <DT><I>net *</I> <B>net</B><DD><P>network node
  315: <DT><I>rte *</I> <B>new</B><DD><P>a <I>rte</I> representing the new route or <I>NULL</I> for route removal.
  316: <DT><I>struct rte_src *</I> <B>src</B><DD><P>protocol originating the update
  317: </DL>
  318: <H3>Description</H3>
  319: <P>This function is called by the routing protocols whenever they discover
  320: a new route or wish to update/remove an existing route. The right announcement
  321: sequence is to build route attributes first (either un-cached with <B>aflags</B> set
  322: to zero or a cached one using <B>rta_lookup()</B>; in this case please note that
  323: you need to increase the use count of the attributes yourself by calling
  324: <B>rta_clone()</B>), call <B>rte_get_temp()</B> to obtain a temporary <I>rte</I>, fill in all
  325: the appropriate data and finally submit the new <I>rte</I> by calling <B>rte_update()</B>.
  326: <P><B>src</B> specifies the protocol that originally created the route and the meaning
  327: of protocol-dependent data of <B>new</B>. If <B>new</B> is not <I>NULL</I>, <B>src</B> have to be the
  328: same value as <B>new</B>-&gt;attrs-&gt;proto. <B>p</B> specifies the protocol that called
  329: <B>rte_update()</B>. In most cases it is the same protocol as <B>src</B>. <B>rte_update()</B>
  330: stores <B>p</B> in <B>new</B>-&gt;sender;
  331: <P>When <B>rte_update()</B> gets any route, it automatically validates it (checks,
  332: whether the network and next hop address are valid IP addresses and also
  333: whether a normal routing protocol doesn't try to smuggle a host or link
  334: scope route to the table), converts all protocol dependent attributes stored
  335: in the <I>rte</I> to temporary extended attributes, consults import filters of the
  336: protocol to see if the route should be accepted and/or its attributes modified,
  337: stores the temporary attributes back to the <I>rte</I>.
  338: <P>Now, having a "public" version of the route, we
  339: automatically find any old route defined by the protocol <B>src</B>
  340: for network <B>n</B>, replace it by the new one (or removing it if <B>new</B> is <I>NULL</I>),
  341: recalculate the optimal route for this destination and finally broadcast
  342: the change (if any) to all routing protocols by calling <B>rte_announce()</B>.
  343: <P>All memory used for attribute lists and other temporary allocations is taken
  344: from a special linear pool <B>rte_update_pool</B> and freed when <B>rte_update()</B>
  345: finishes.
  346: 
  347: 
  348: <HR><H3>Function</H3>
  349: <P><I>void</I>
  350: <B>rt_refresh_begin</B>
  351: (<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) --     start a refresh cycle
  352: <P>
  353: <H3>Arguments</H3>
  354: <P>
  355: <DL>
  356: <DT><I>rtable *</I> <B>t</B><DD><P>related routing table
  357: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook 
  358: </DL>
  359: <H3>Description</H3>
  360: <P>This function starts a refresh cycle for given routing table and announce
  361: hook. The refresh cycle is a sequence where the protocol sends all its valid
  362: routes to the routing table (by <B>rte_update()</B>). After that, all protocol
  363: routes (more precisely routes with <B>ah</B> as <B>sender</B>) not sent during the
  364: refresh cycle but still in the table from the past are pruned. This is
  365: implemented by marking all related routes as stale by REF_STALE flag in
  366: <B>rt_refresh_begin()</B>, then marking all related stale routes with REF_DISCARD
  367: flag in <B>rt_refresh_end()</B> and then removing such routes in the prune loop.
  368: 
  369: 
  370: <HR><H3>Function</H3>
  371: <P><I>void</I>
  372: <B>rt_refresh_end</B>
  373: (<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) --     end a refresh cycle
  374: <P>
  375: <H3>Arguments</H3>
  376: <P>
  377: <DL>
  378: <DT><I>rtable *</I> <B>t</B><DD><P>related routing table
  379: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook 
  380: </DL>
  381: <H3>Description</H3>
  382: <P>This function starts a refresh cycle for given routing table and announce
  383: hook. See <B>rt_refresh_begin()</B> for description of refresh cycles.
  384: 
  385: 
  386: <HR><H3>Function</H3>
  387: <P><I>void</I>
  388: <B>rte_dump</B>
  389: (<I>rte *</I> <B>e</B>) --     dump a route
  390: <P>
  391: <H3>Arguments</H3>
  392: <P>
  393: <DL>
  394: <DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be dumped
  395: </DL>
  396: <H3>Description</H3>
  397: <P>This functions dumps contents of a <I>rte</I> to debug output.
  398: 
  399: 
  400: <HR><H3>Function</H3>
  401: <P><I>void</I>
  402: <B>rt_dump</B>
  403: (<I>rtable *</I> <B>t</B>) --     dump a routing table
  404: <P>
  405: <H3>Arguments</H3>
  406: <P>
  407: <DL>
  408: <DT><I>rtable *</I> <B>t</B><DD><P>routing table to be dumped
  409: </DL>
  410: <H3>Description</H3>
  411: <P>This function dumps contents of a given routing table to debug output.
  412: 
  413: 
  414: <HR><H3>Function</H3>
  415: <P><I>void</I>
  416: <B>rt_dump_all</B>
  417: (<B>void</B>) --     dump all routing tables
  418: <P>
  419: <H3>Description</H3>
  420: <P>
  421: <P>This function dumps contents of all routing tables to debug output.
  422: 
  423: 
  424: <HR><H3>Function</H3>
  425: <P><I>void</I>
  426: <B>rt_init</B>
  427: (<B>void</B>) --     initialize routing tables
  428: <P>
  429: <H3>Description</H3>
  430: <P>
  431: <P>This function is called during BIRD startup. It initializes the
  432: routing table module.
  433: 
  434: 
  435: <HR><H3>Function</H3>
  436: <P><I>int</I>
  437: <B>rt_prune_table</B>
  438: (<I>rtable *</I> <B>tab</B>) --     prune a routing table
  439: <P>
  440: <H3>Arguments</H3>
  441: <P>
  442: <DL>
  443: <DT><I>rtable *</I> <B>tab</B><DD><P>a routing table for pruning
  444: </DL>
  445: <H3>Description</H3>
  446: <P>This function scans the routing table <B>tab</B> and removes routes belonging to
  447: flushing protocols, discarded routes and also stale network entries, in a
  448: similar fashion like <B>rt_prune_loop()</B>. Returns 1 when all such routes are
  449: pruned. Contrary to <B>rt_prune_loop()</B>, this function is not a part of the
  450: protocol flushing loop, but it is called from <B>rt_event()</B> for just one routing
  451: table.
  452: <P>Note that <B>rt_prune_table()</B> and <B>rt_prune_loop()</B> share (for each table) the
  453: prune state (<B>prune_state</B>) and also the pruning iterator (<B>prune_fit</B>).
  454: 
  455: 
  456: <HR><H3>Function</H3>
  457: <P><I>int</I>
  458: <B>rt_prune_loop</B>
  459: (<B>void</B>) --     prune routing tables
  460: <P>
  461: <H3>Description</H3>
  462: <P>
  463: <P>The prune loop scans routing tables and removes routes belonging to flushing
  464: protocols, discarded routes and also stale network entries. Returns 1 when
  465: all such routes are pruned. It is a part of the protocol flushing loop.
  466: 
  467: 
  468: <HR><H3>Function</H3>
  469: <P><I>void</I>
  470: <B>rt_lock_table</B>
  471: (<I>rtable *</I> <B>r</B>) --     lock a routing table
  472: <P>
  473: <H3>Arguments</H3>
  474: <P>
  475: <DL>
  476: <DT><I>rtable *</I> <B>r</B><DD><P>routing table to be locked
  477: </DL>
  478: <H3>Description</H3>
  479: <P>Lock a routing table, because it's in use by a protocol,
  480: preventing it from being freed when it gets undefined in a new
  481: configuration.
  482: 
  483: 
  484: <HR><H3>Function</H3>
  485: <P><I>void</I>
  486: <B>rt_unlock_table</B>
  487: (<I>rtable *</I> <B>r</B>) --     unlock a routing table
  488: <P>
  489: <H3>Arguments</H3>
  490: <P>
  491: <DL>
  492: <DT><I>rtable *</I> <B>r</B><DD><P>routing table to be unlocked
  493: </DL>
  494: <H3>Description</H3>
  495: <P>Unlock a routing table formerly locked by <B>rt_lock_table()</B>,
  496: that is decrease its use count and delete it if it's scheduled
  497: for deletion by configuration changes.
  498: 
  499: 
  500: <HR><H3>Function</H3>
  501: <P><I>void</I>
  502: <B>rt_commit</B>
  503: (<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>) --     commit new routing table configuration
  504: <P>
  505: <H3>Arguments</H3>
  506: <P>
  507: <DL>
  508: <DT><I>struct config *</I> <B>new</B><DD><P>new configuration
  509: <DT><I>struct config *</I> <B>old</B><DD><P>original configuration or <I>NULL</I> if it's boot time config
  510: </DL>
  511: <H3>Description</H3>
  512: <P>Scan differences between <B>old</B> and <B>new</B> configuration and modify
  513: the routing tables according to these changes. If <B>new</B> defines a
  514: previously unknown table, create it, if it omits a table existing
  515: in <B>old</B>, schedule it for deletion (it gets deleted when all protocols
  516: disconnect from it by calling <B>rt_unlock_table()</B>), if it exists
  517: in both configurations, leave it unchanged.
  518: 
  519: 
  520: <HR><H3>Function</H3>
  521: <P><I>int</I>
  522: <B>rt_feed_baby</B>
  523: (<I>struct proto *</I> <B>p</B>) --     advertise routes to a new protocol
  524: <P>
  525: <H3>Arguments</H3>
  526: <P>
  527: <DL>
  528: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol to be fed
  529: </DL>
  530: <H3>Description</H3>
  531: <P>This function performs one pass of advertisement of routes to a newly
  532: initialized protocol. It's called by the protocol code as long as it
  533: has something to do. (We avoid transferring all the routes in single
  534: pass in order not to monopolize CPU time.)
  535: 
  536: 
  537: <HR><H3>Function</H3>
  538: <P><I>void</I>
  539: <B>rt_feed_baby_abort</B>
  540: (<I>struct proto *</I> <B>p</B>) --     abort protocol feeding
  541: <P>
  542: <H3>Arguments</H3>
  543: <P>
  544: <DL>
  545: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol
  546: </DL>
  547: <H3>Description</H3>
  548: <P>This function is called by the protocol code when the protocol
  549: stops or ceases to exist before the last iteration of <B>rt_feed_baby()</B>
  550: has finished.
  551: 
  552: 
  553: <HR><H3>Function</H3>
  554: <P><I>net *</I>
  555: <B>net_find</B>
  556: (<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) --     find a network entry
  557: <P>
  558: <H3>Arguments</H3>
  559: <P>
  560: <DL>
  561: <DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
  562: <DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
  563: <DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
  564: </DL>
  565: <H3>Description</H3>
  566: <P><B>net_find()</B> looks up the given network in routing table <B>tab</B> and
  567: returns a pointer to its <I>net</I> entry or <I>NULL</I> if no such network
  568: exists.
  569: 
  570: 
  571: <HR><H3>Function</H3>
  572: <P><I>net *</I>
  573: <B>net_get</B>
  574: (<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) --     obtain a network entry
  575: <P>
  576: <H3>Arguments</H3>
  577: <P>
  578: <DL>
  579: <DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
  580: <DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
  581: <DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
  582: </DL>
  583: <H3>Description</H3>
  584: <P><B>net_get()</B> looks up the given network in routing table <B>tab</B> and
  585: returns a pointer to its <I>net</I> entry. If no such entry exists, it's
  586: created.
  587: 
  588: 
  589: <HR><H3>Function</H3>
  590: <P><I>rte *</I>
  591: <B>rte_cow</B>
  592: (<I>rte *</I> <B>r</B>) --     copy a route for writing
  593: <P>
  594: <H3>Arguments</H3>
  595: <P>
  596: <DL>
  597: <DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
  598: </DL>
  599: <H3>Description</H3>
  600: <P><B>rte_cow()</B> takes a <I>rte</I> and prepares it for modification. The exact action
  601: taken depends on the flags of the <I>rte</I> -- if it's a temporary entry, it's
  602: just returned unchanged, else a new temporary entry with the same contents
  603: is created.
  604: <P>The primary use of this function is inside the filter machinery -- when
  605: a filter wants to modify <I>rte</I> contents (to change the preference or to
  606: attach another set of attributes), it must ensure that the <I>rte</I> is not
  607: shared with anyone else (and especially that it isn't stored in any routing
  608: table).
  609: <H3>Result</H3>
  610: <P>a pointer to the new writable <I>rte</I>.
  611: 
  612: <H2><A NAME="ss2.3">2.3</A> <A HREF="prog.html#toc2.3">Route attribute cache</A>
  613: </H2>
  614: 
  615: <P>
  616: <P>Each route entry carries a set of route attributes. Several of them
  617: vary from route to route, but most attributes are usually common
  618: for a large number of routes. To conserve memory, we've decided to
  619: store only the varying ones directly in the <I>rte</I> and hold the rest
  620: in a special structure called <I>rta</I> which is shared among all the
  621: <I>rte</I>'s with these attributes.
  622: <P>Each <I>rta</I> contains all the static attributes of the route (i.e.,
  623: those which are always present) as structure members and a list of
  624: dynamic attributes represented by a linked list of <I>ea_list</I>
  625: structures, each of them consisting of an array of <I>eattr</I>'s containing
  626: the individual attributes. An attribute can be specified more than once
  627: in the <I>ea_list</I> chain and in such case the first occurrence overrides
  628: the others. This semantics is used especially when someone (for example
  629: a filter) wishes to alter values of several dynamic attributes, but
  630: it wants to preserve the original attribute lists maintained by
  631: another module.
  632: <P>Each <I>eattr</I> contains an attribute identifier (split to protocol ID and
  633: per-protocol attribute ID), protocol dependent flags, a type code (consisting
  634: of several bit fields describing attribute characteristics) and either an
  635: embedded 32-bit value or a pointer to a <I>adata</I> structure holding attribute
  636: contents.
  637: <P>There exist two variants of <I>rta</I>'s -- cached and un-cached ones. Un-cached
  638: <I>rta</I>'s can have arbitrarily complex structure of <I>ea_list</I>'s and they
  639: can be modified by any module in the route processing chain. Cached
  640: <I>rta</I>'s have their attribute lists normalized (that means at most one
  641: <I>ea_list</I> is present and its values are sorted in order to speed up
  642: searching), they are stored in a hash table to make fast lookup possible
  643: and they are provided with a use count to allow sharing.
  644: <P>Routing tables always contain only cached <I>rta</I>'s.
  645: <P>
  646: <P><HR><H3>Function</H3>
  647: <P><I>struct mpnh *</I>
  648: <B>mpnh_merge</B>
  649: (<I>struct mpnh *</I> <B>x</B>, <I>struct mpnh *</I> <B>y</B>, <I>int</I> <B>rx</B>, <I>int</I> <B>ry</B>, <I>int</I> <B>max</B>, <I>linpool *</I> <B>lp</B>) --     merge nexthop lists
  650: <P>
  651: <H3>Arguments</H3>
  652: <P>
  653: <DL>
  654: <DT><I>struct mpnh *</I> <B>x</B><DD><P>list 1
  655: <DT><I>struct mpnh *</I> <B>y</B><DD><P>list 2
  656: <DT><I>int</I> <B>rx</B><DD><P>reusability of list <B>x</B>
  657: <DT><I>int</I> <B>ry</B><DD><P>reusability of list <B>y</B>
  658: <DT><I>int</I> <B>max</B><DD><P>max number of nexthops
  659: <DT><I>linpool *</I> <B>lp</B><DD><P>linpool for allocating nexthops
  660: </DL>
  661: <H3>Description</H3>
  662: <P>The <B>mpnh_merge()</B> function takes two nexthop lists <B>x</B> and <B>y</B> and merges them,
  663: eliminating possible duplicates. The input lists must be sorted and the
  664: result is sorted too. The number of nexthops in result is limited by <B>max</B>.
  665: New nodes are allocated from linpool <B>lp</B>.
  666: <P>The arguments <B>rx</B> and <B>ry</B> specify whether corresponding input lists may be
  667: consumed by the function (i.e. their nodes reused in the resulting list), in
  668: that case the caller should not access these lists after that. To eliminate
  669: issues with deallocation of these lists, the caller should use some form of
  670: bulk deallocation (e.g. stack or linpool) to free these nodes when the
  671: resulting list is no longer needed. When reusability is not set, the
  672: corresponding lists are not modified nor linked from the resulting list.
  673: 
  674: 
  675: <HR><H3>Function</H3>
  676: <P><I>eattr *</I>
  677: <B>ea_find</B>
  678: (<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>) --     find an extended attribute
  679: <P>
  680: <H3>Arguments</H3>
  681: <P>
  682: <DL>
  683: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list to search in
  684: <DT><I>unsigned</I> <B>id</B><DD><P>attribute ID to search for
  685: </DL>
  686: <H3>Description</H3>
  687: <P>Given an extended attribute list, <B>ea_find()</B> searches for a first
  688: occurrence of an attribute with specified ID, returning either a pointer
  689: to its <I>eattr</I> structure or <I>NULL</I> if no such attribute exists.
  690: 
  691: 
  692: <HR><H3>Function</H3>
  693: <P><I>eattr *</I>
  694: <B>ea_walk</B>
  695: (<I>struct ea_walk_state *</I> <B>s</B>, <I>uint</I> <B>id</B>, <I>uint</I> <B>max</B>) --     walk through extended attributes
  696: <P>
  697: <H3>Arguments</H3>
  698: <P>
  699: <DL>
  700: <DT><I>struct ea_walk_state *</I> <B>s</B><DD><P>walk state structure
  701: <DT><I>uint</I> <B>id</B><DD><P>start of attribute ID interval
  702: <DT><I>uint</I> <B>max</B><DD><P>length of attribute ID interval
  703: </DL>
  704: <H3>Description</H3>
  705: <P>Given an extended attribute list, <B>ea_walk()</B> walks through the list looking
  706: for first occurrences of attributes with ID in specified interval from <B>id</B> to
  707: (<B>id</B> + <B>max</B> - 1), returning pointers to found <I>eattr</I> structures, storing its
  708: walk state in <B>s</B> for subsequent calls.
  709: <P>The function <B>ea_walk()</B> is supposed to be called in a loop, with initially
  710: zeroed walk state structure <B>s</B> with filled the initial extended attribute
  711: list, returning one found attribute in each call or <I>NULL</I> when no other
  712: attribute exists. The extended attribute list or the arguments should not be
  713: modified between calls. The maximum value of <B>max</B> is 128.
  714: 
  715: 
  716: <HR><H3>Function</H3>
  717: <P><I>int</I>
  718: <B>ea_get_int</B>
  719: (<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>, <I>int</I> <B>def</B>) --     fetch an integer attribute
  720: <P>
  721: <H3>Arguments</H3>
  722: <P>
  723: <DL>
  724: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  725: <DT><I>unsigned</I> <B>id</B><DD><P>attribute ID
  726: <DT><I>int</I> <B>def</B><DD><P>default value
  727: </DL>
  728: <H3>Description</H3>
  729: <P>This function is a shortcut for retrieving a value of an integer attribute
  730: by calling <B>ea_find()</B> to find the attribute, extracting its value or returning
  731: a provided default if no such attribute is present.
  732: 
  733: 
  734: <HR><H3>Function</H3>
  735: <P><I>void</I>
  736: <B>ea_sort</B>
  737: (<I>ea_list *</I> <B>e</B>) --     sort an attribute list
  738: <P>
  739: <H3>Arguments</H3>
  740: <P>
  741: <DL>
  742: <DT><I>ea_list *</I> <B>e</B><DD><P>list to be sorted
  743: </DL>
  744: <H3>Description</H3>
  745: <P>This function takes a <I>ea_list</I> chain and sorts the attributes
  746: within each of its entries.
  747: <P>If an attribute occurs multiple times in a single <I>ea_list</I>,
  748: <B>ea_sort()</B> leaves only the first (the only significant) occurrence.
  749: 
  750: 
  751: <HR><H3>Function</H3>
  752: <P><I>unsigned</I>
  753: <B>ea_scan</B>
  754: (<I>ea_list *</I> <B>e</B>) --     estimate attribute list size
  755: <P>
  756: <H3>Arguments</H3>
  757: <P>
  758: <DL>
  759: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  760: </DL>
  761: <H3>Description</H3>
  762: <P>This function calculates an upper bound of the size of
  763: a given <I>ea_list</I> after merging with <B>ea_merge()</B>.
  764: 
  765: 
  766: <HR><H3>Function</H3>
  767: <P><I>void</I>
  768: <B>ea_merge</B>
  769: (<I>ea_list *</I> <B>e</B>, <I>ea_list *</I> <B>t</B>) --     merge segments of an attribute list
  770: <P>
  771: <H3>Arguments</H3>
  772: <P>
  773: <DL>
  774: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  775: <DT><I>ea_list *</I> <B>t</B><DD><P>buffer to store the result to
  776: </DL>
  777: <H3>Description</H3>
  778: <P>This function takes a possibly multi-segment attribute list
  779: and merges all of its segments to one.
  780: <P>The primary use of this function is for <I>ea_list</I> normalization:
  781: first call <B>ea_scan()</B> to determine how much memory will the result
  782: take, then allocate a buffer (usually using <B>alloca()</B>), merge the
  783: segments with <B>ea_merge()</B> and finally sort and prune the result
  784: by calling <B>ea_sort()</B>.
  785: 
  786: 
  787: <HR><H3>Function</H3>
  788: <P><I>int</I>
  789: <B>ea_same</B>
  790: (<I>ea_list *</I> <B>x</B>, <I>ea_list *</I> <B>y</B>) --     compare two <I>ea_list</I>'s
  791: <P>
  792: <H3>Arguments</H3>
  793: <P>
  794: <DL>
  795: <DT><I>ea_list *</I> <B>x</B><DD><P>attribute list
  796: <DT><I>ea_list *</I> <B>y</B><DD><P>attribute list
  797: </DL>
  798: <H3>Description</H3>
  799: <P><B>ea_same()</B> compares two normalized attribute lists <B>x</B> and <B>y</B> and returns
  800: 1 if they contain the same attributes, 0 otherwise.
  801: 
  802: 
  803: <HR><H3>Function</H3>
  804: <P><I>void</I>
  805: <B>ea_show</B>
  806: (<I>struct cli *</I> <B>c</B>, <I>eattr *</I> <B>e</B>) --     print an <I>eattr</I> to CLI
  807: <P>
  808: <H3>Arguments</H3>
  809: <P>
  810: <DL>
  811: <DT><I>struct cli *</I> <B>c</B><DD><P>destination CLI
  812: <DT><I>eattr *</I> <B>e</B><DD><P>attribute to be printed
  813: </DL>
  814: <H3>Description</H3>
  815: <P>This function takes an extended attribute represented by its <I>eattr</I>
  816: structure and prints it to the CLI according to the type information.
  817: <P>If the protocol defining the attribute provides its own
  818: <B>get_attr()</B> hook, it's consulted first.
  819: 
  820: 
  821: <HR><H3>Function</H3>
  822: <P><I>void</I>
  823: <B>ea_dump</B>
  824: (<I>ea_list *</I> <B>e</B>) --     dump an extended attribute
  825: <P>
  826: <H3>Arguments</H3>
  827: <P>
  828: <DL>
  829: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute to be dumped
  830: </DL>
  831: <H3>Description</H3>
  832: <P><B>ea_dump()</B> dumps contents of the extended attribute given to
  833: the debug output.
  834: 
  835: 
  836: <HR><H3>Function</H3>
  837: <P><I>uint</I>
  838: <B>ea_hash</B>
  839: (<I>ea_list *</I> <B>e</B>) --     calculate an <I>ea_list</I> hash key
  840: <P>
  841: <H3>Arguments</H3>
  842: <P>
  843: <DL>
  844: <DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
  845: </DL>
  846: <H3>Description</H3>
  847: <P><B>ea_hash()</B> takes an extended attribute list and calculated a hopefully
  848: uniformly distributed hash value from its contents.
  849: 
  850: 
  851: <HR><H3>Function</H3>
  852: <P><I>ea_list *</I>
  853: <B>ea_append</B>
  854: (<I>ea_list *</I> <B>to</B>, <I>ea_list *</I> <B>what</B>) --     concatenate <I>ea_list</I>'s
  855: <P>
  856: <H3>Arguments</H3>
  857: <P>
  858: <DL>
  859: <DT><I>ea_list *</I> <B>to</B><DD><P>destination list (can be <I>NULL</I>)
  860: <DT><I>ea_list *</I> <B>what</B><DD><P>list to be appended (can be <I>NULL</I>)
  861: </DL>
  862: <H3>Description</H3>
  863: <P>This function appends the <I>ea_list</I> <B>what</B> at the end of
  864: <I>ea_list</I> <B>to</B> and returns a pointer to the resulting list.
  865: 
  866: 
  867: <HR><H3>Function</H3>
  868: <P><I>rta *</I>
  869: <B>rta_lookup</B>
  870: (<I>rta *</I> <B>o</B>) --     look up a <I>rta</I> in attribute cache
  871: <P>
  872: <H3>Arguments</H3>
  873: <P>
  874: <DL>
  875: <DT><I>rta *</I> <B>o</B><DD><P>a un-cached <I>rta</I>
  876: </DL>
  877: <H3>Description</H3>
  878: <P><B>rta_lookup()</B> gets an un-cached <I>rta</I> structure and returns its cached
  879: counterpart. It starts with examining the attribute cache to see whether
  880: there exists a matching entry. If such an entry exists, it's returned and
  881: its use count is incremented, else a new entry is created with use count
  882: set to 1.
  883: <P>The extended attribute lists attached to the <I>rta</I> are automatically
  884: converted to the normalized form.
  885: 
  886: 
  887: <HR><H3>Function</H3>
  888: <P><I>void</I>
  889: <B>rta_dump</B>
  890: (<I>rta *</I> <B>a</B>) --     dump route attributes
  891: <P>
  892: <H3>Arguments</H3>
  893: <P>
  894: <DL>
  895: <DT><I>rta *</I> <B>a</B><DD><P>attribute structure to dump
  896: </DL>
  897: <H3>Description</H3>
  898: <P>This function takes a <I>rta</I> and dumps its contents to the debug output.
  899: 
  900: 
  901: <HR><H3>Function</H3>
  902: <P><I>void</I>
  903: <B>rta_dump_all</B>
  904: (<B>void</B>) --     dump attribute cache
  905: <P>
  906: <H3>Description</H3>
  907: <P>
  908: <P>This function dumps the whole contents of route attribute cache
  909: to the debug output.
  910: 
  911: 
  912: <HR><H3>Function</H3>
  913: <P><I>void</I>
  914: <B>rta_init</B>
  915: (<B>void</B>) --     initialize route attribute cache
  916: <P>
  917: <H3>Description</H3>
  918: <P>
  919: <P>This function is called during initialization of the routing
  920: table module to set up the internals of the attribute cache.
  921: 
  922: 
  923: <HR><H3>Function</H3>
  924: <P><I>rta *</I>
  925: <B>rta_clone</B>
  926: (<I>rta *</I> <B>r</B>) --     clone route attributes
  927: <P>
  928: <H3>Arguments</H3>
  929: <P>
  930: <DL>
  931: <DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be cloned
  932: </DL>
  933: <H3>Description</H3>
  934: <P><B>rta_clone()</B> takes a cached <I>rta</I> and returns its identical cached
  935: copy. Currently it works by just returning the original <I>rta</I> with
  936: its use count incremented.
  937: 
  938: 
  939: <HR><H3>Function</H3>
  940: <P><I>void</I>
  941: <B>rta_free</B>
  942: (<I>rta *</I> <B>r</B>) --     free route attributes
  943: <P>
  944: <H3>Arguments</H3>
  945: <P>
  946: <DL>
  947: <DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be freed
  948: </DL>
  949: <H3>Description</H3>
  950: <P>If you stop using a <I>rta</I> (for example when deleting a route which uses
  951: it), you need to call <B>rta_free()</B> to notify the attribute cache the
  952: attribute is no longer in use and can be freed if you were the last
  953: user (which <B>rta_free()</B> tests by inspecting the use count).
  954: 
  955: <P>
  956: <H2><A NAME="ss2.4">2.4</A> <A HREF="prog.html#toc2.4">Routing protocols</A>
  957: </H2>
  958: 
  959: <H3>Introduction</H3>
  960: 
  961: <P>The routing protocols are the bird's heart and a fine amount of code
  962: is dedicated to their management and for providing support functions to them.
  963: (-: Actually, this is the reason why the directory with sources of the core
  964: code is called <CODE>nest</CODE> :-).
  965: <P>
  966: <P>When talking about protocols, one need to distinguish between <EM>protocols</EM>
  967: and protocol <EM>instances</EM>. A protocol exists exactly once, not depending on whether
  968: it's configured or not and it can have an arbitrary number of instances corresponding
  969: to its "incarnations" requested by the configuration file. Each instance is completely
  970: autonomous, has its own configuration, its own status, its own set of routes and its
  971: own set of interfaces it works on.
  972: <P>
  973: <P>A protocol is represented by a <I>protocol</I> structure containing all the basic
  974: information (protocol name, default settings and pointers to most of the protocol
  975: hooks). All these structures are linked in the <B>protocol_list</B> list.
  976: <P>
  977: <P>Each instance has its own <I>proto</I> structure describing all its properties: protocol
  978: type, configuration, a resource pool where all resources belonging to the instance
  979: live, various protocol attributes (take a look at the declaration of <I>proto</I> in
  980: <CODE>protocol.h</CODE>), protocol states (see below for what do they mean), connections
  981: to routing tables, filters attached to the protocol
  982: and finally a set of pointers to the rest of protocol hooks (they
  983: are the same for all instances of the protocol, but in order to avoid extra
  984: indirections when calling the hooks from the fast path, they are stored directly
  985: in <I>proto</I>). The instance is always linked in both the global instance list
  986: (<B>proto_list</B>) and a per-status list (either <B>active_proto_list</B> for
  987: running protocols, <B>initial_proto_list</B> for protocols being initialized or
  988: <B>flush_proto_list</B> when the protocol is being shut down).
  989: <P>
  990: <P>The protocol hooks are described in the next chapter, for more information about
  991: configuration of protocols, please refer to the configuration chapter and also
  992: to the description of the <B>proto_commit</B> function.
  993: <P>
  994: <H3>Protocol states</H3>
  995: 
  996: <P>As startup and shutdown of each protocol are complex processes which can be affected
  997: by lots of external events (user's actions, reconfigurations, behavior of neighboring routers etc.),
  998: we have decided to supervise them by a pair of simple state machines -- the protocol
  999: state machine and a core state machine.
 1000: <P>
 1001: <P>The <EM>protocol state machine</EM> corresponds to internal state of the protocol
 1002: and the protocol can alter its state whenever it wants to. There are
 1003: the following states:
 1004: <P>
 1005: <DL>
 1006: <DT><CODE>PS_DOWN</CODE><DD><P>The protocol is down and waits for being woken up by calling its
 1007: start() hook.
 1008: <DT><CODE>PS_START</CODE><DD><P>The protocol is waiting for connection with the rest of the
 1009: network. It's active, it has resources allocated, but it still doesn't want
 1010: any routes since it doesn't know what to do with them.
 1011: <DT><CODE>PS_UP</CODE><DD><P>The protocol is up and running. It communicates with the core,
 1012: delivers routes to tables and wants to hear announcement about route changes.
 1013: <DT><CODE>PS_STOP</CODE><DD><P>The protocol has been shut down (either by being asked by the
 1014: core code to do so or due to having encountered a protocol error).
 1015: </DL>
 1016: <P>
 1017: <P>Unless the protocol is in the <CODE>PS_DOWN</CODE> state, it can decide to change
 1018: its state by calling the <B>proto_notify_state</B> function.
 1019: <P>
 1020: <P>At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.
 1021: <P>
 1022: <P>The <EM>core state machine</EM> takes care of the core view of protocol state.
 1023: The states are traversed according to changes of the protocol state machine, but
 1024: sometimes the transitions are delayed if the core needs to finish some actions
 1025: (for example sending of new routes to the protocol) before proceeding to the
 1026: new state. There are the following core states:
 1027: <P>
 1028: <DL>
 1029: <DT><CODE>FS_HUNGRY</CODE><DD><P>The protocol is down, it doesn't have any routes and
 1030: doesn't want them.
 1031: <DT><CODE>FS_FEEDING</CODE><DD><P>The protocol has reached the <CODE>PS_UP</CODE> state, but
 1032: we are still busy sending the initial set of routes to it.
 1033: <DT><CODE>FS_HAPPY</CODE><DD><P>The protocol is up and has complete routing information.
 1034: <DT><CODE>FS_FLUSHING</CODE><DD><P>The protocol is shutting down (it's in either <CODE>PS_STOP</CODE>
 1035: or <CODE>PS_DOWN</CODE> state) and we're flushing all of its routes from the
 1036: routing tables.
 1037: </DL>
 1038: <P>
 1039: <H3>Functions of the protocol module</H3>
 1040: 
 1041: <P>The protocol module provides the following functions:
 1042: <HR><H3>Function</H3>
 1043: <P><I>void *</I>
 1044: <B>proto_new</B>
 1045: (<I>struct proto_config *</I> <B>c</B>, <I>unsigned</I> <B>size</B>) --  create a new protocol instance
 1046: <P>
 1047: <H3>Arguments</H3>
 1048: <P>
 1049: <DL>
 1050: <DT><I>struct proto_config *</I> <B>c</B><DD><P>protocol configuration
 1051: <DT><I>unsigned</I> <B>size</B><DD><P>size of protocol data structure (each protocol instance is represented by
 1052: a structure starting with generic part [struct <I>proto</I>] and continued
 1053: with data specific to the protocol)
 1054: </DL>
 1055: <H3>Description</H3>
 1056: <P>When a new configuration has been read in, the core code starts
 1057: initializing all the protocol instances configured by calling their
 1058: <B>init()</B> hooks with the corresponding instance configuration. The initialization
 1059: code of the protocol is expected to create a new instance according to the
 1060: configuration by calling this function and then modifying the default settings
 1061: to values wanted by the protocol.
 1062: 
 1063: 
 1064: <HR><H3>Function</H3>
 1065: <P><I>struct announce_hook *</I>
 1066: <B>proto_add_announce_hook</B>
 1067: (<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>, <I>struct proto_stats *</I> <B>stats</B>) --  connect protocol to a routing table
 1068: <P>
 1069: <H3>Arguments</H3>
 1070: <P>
 1071: <DL>
 1072: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1073: <DT><I>struct rtable *</I> <B>t</B><DD><P>routing table to connect to
 1074: <DT><I>struct proto_stats *</I> <B>stats</B><DD><P>per-table protocol statistics
 1075: </DL>
 1076: <H3>Description</H3>
 1077: <P>This function creates a connection between the protocol instance <B>p</B> and the
 1078: routing table <B>t</B>, making the protocol hear all changes in the table.
 1079: <P>The announce hook is linked in the protocol ahook list. Announce hooks are
 1080: allocated from the routing table resource pool and when protocol accepts
 1081: routes also in the table ahook list. The are linked to the table ahook list
 1082: and unlinked from it depending on export_state (in <B>proto_want_export_up()</B> and
 1083: <B>proto_want_export_down()</B>) and they are automatically freed after the protocol
 1084: is flushed (in <B>proto_fell_down()</B>).
 1085: <P>Unless you want to listen to multiple routing tables (as the Pipe protocol
 1086: does), you needn't to worry about this function since the connection to the
 1087: protocol's primary routing table is initialized automatically by the core
 1088: code.
 1089: 
 1090: 
 1091: <HR><H3>Function</H3>
 1092: <P><I>struct announce_hook *</I>
 1093: <B>proto_find_announce_hook</B>
 1094: (<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>) --  find announce hooks
 1095: <P>
 1096: <H3>Arguments</H3>
 1097: <P>
 1098: <DL>
 1099: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1100: <DT><I>struct rtable *</I> <B>t</B><DD><P>routing table
 1101: </DL>
 1102: <H3>Description</H3>
 1103: <P>Returns pointer to announce hook or NULL
 1104: 
 1105: 
 1106: <HR><H3>Function</H3>
 1107: <P><I>void *</I>
 1108: <B>proto_config_new</B>
 1109: (<I>struct protocol *</I> <B>pr</B>, <I>int</I> <B>class</B>) --  create a new protocol configuration
 1110: <P>
 1111: <H3>Arguments</H3>
 1112: <P>
 1113: <DL>
 1114: <DT><I>struct protocol *</I> <B>pr</B><DD><P>protocol the configuration will belong to
 1115: <DT><I>int</I> <B>class</B><DD><P>SYM_PROTO or SYM_TEMPLATE
 1116: </DL>
 1117: <H3>Description</H3>
 1118: <P>Whenever the configuration file says that a new instance
 1119: of a routing protocol should be created, the parser calls
 1120: <B>proto_config_new()</B> to create a configuration entry for this
 1121: instance (a structure staring with the <I>proto_config</I> header
 1122: containing all the generic items followed by protocol-specific
 1123: ones). Also, the configuration entry gets added to the list
 1124: of protocol instances kept in the configuration.
 1125: <P>The function is also used to create protocol templates (when class
 1126: SYM_TEMPLATE is specified), the only difference is that templates
 1127: are not added to the list of protocol instances and therefore not
 1128: initialized during <B>protos_commit()</B>).
 1129: 
 1130: 
 1131: <HR><H3>Function</H3>
 1132: <P><I>void</I>
 1133: <B>proto_copy_config</B>
 1134: (<I>struct proto_config *</I> <B>dest</B>, <I>struct proto_config *</I> <B>src</B>) --  copy a protocol configuration
 1135: <P>
 1136: <H3>Arguments</H3>
 1137: <P>
 1138: <DL>
 1139: <DT><I>struct proto_config *</I> <B>dest</B><DD><P>destination protocol configuration
 1140: <DT><I>struct proto_config *</I> <B>src</B><DD><P>source protocol configuration
 1141: </DL>
 1142: <H3>Description</H3>
 1143: <P>Whenever a new instance of a routing protocol is created from the
 1144: template, <B>proto_copy_config()</B> is called to copy a content of
 1145: the source protocol configuration to the new protocol configuration.
 1146: Name, class and a node in protos list of <B>dest</B> are kept intact.
 1147: <B>copy_config()</B> protocol hook is used to copy protocol-specific data.
 1148: 
 1149: 
 1150: <HR><H3>Function</H3>
 1151: <P><I>void</I>
 1152: <B>protos_preconfig</B>
 1153: (<I>struct config *</I> <B>c</B>) --  pre-configuration processing
 1154: <P>
 1155: <H3>Arguments</H3>
 1156: <P>
 1157: <DL>
 1158: <DT><I>struct config *</I> <B>c</B><DD><P>new configuration
 1159: </DL>
 1160: <H3>Description</H3>
 1161: <P>This function calls the <B>preconfig()</B> hooks of all routing
 1162: protocols available to prepare them for reading of the new
 1163: configuration.
 1164: 
 1165: 
 1166: <HR><H3>Function</H3>
 1167: <P><I>void</I>
 1168: <B>protos_postconfig</B>
 1169: (<I>struct config *</I> <B>c</B>) --  post-configuration processing
 1170: <P>
 1171: <H3>Arguments</H3>
 1172: <P>
 1173: <DL>
 1174: <DT><I>struct config *</I> <B>c</B><DD><P>new configuration
 1175: </DL>
 1176: <H3>Description</H3>
 1177: <P>This function calls the <B>postconfig()</B> hooks of all protocol
 1178: instances specified in configuration <B>c</B>. The hooks are not
 1179: called for protocol templates.
 1180: 
 1181: 
 1182: <HR><H3>Function</H3>
 1183: <P><I>void</I>
 1184: <B>protos_commit</B>
 1185: (<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>, <I>int</I> <B>force_reconfig</B>, <I>int</I> <B>type</B>) --  commit new protocol configuration
 1186: <P>
 1187: <H3>Arguments</H3>
 1188: <P>
 1189: <DL>
 1190: <DT><I>struct config *</I> <B>new</B><DD><P>new configuration
 1191: <DT><I>struct config *</I> <B>old</B><DD><P>old configuration or <I>NULL</I> if it's boot time config
 1192: <DT><I>int</I> <B>force_reconfig</B><DD><P>force restart of all protocols (used for example
 1193: when the router ID changes)
 1194: <DT><I>int</I> <B>type</B><DD><P>type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
 1195: </DL>
 1196: <H3>Description</H3>
 1197: <P>Scan differences between <B>old</B> and <B>new</B> configuration and adjust all
 1198: protocol instances to conform to the new configuration.
 1199: <P>When a protocol exists in the new configuration, but it doesn't in the
 1200: original one, it's immediately started. When a collision with the other
 1201: running protocol would arise, the new protocol will be temporarily stopped
 1202: by the locking mechanism.
 1203: <P>When a protocol exists in the old configuration, but it doesn't in the
 1204: new one, it's shut down and deleted after the shutdown completes.
 1205: <P>When a protocol exists in both configurations, the core decides
 1206: whether it's possible to reconfigure it dynamically - it checks all
 1207: the core properties of the protocol (changes in filters are ignored
 1208: if type is RECONFIG_SOFT) and if they match, it asks the
 1209: <B>reconfigure()</B> hook of the protocol to see if the protocol is able
 1210: to switch to the new configuration.  If it isn't possible, the
 1211: protocol is shut down and a new instance is started with the new
 1212: configuration after the shutdown is completed.
 1213: 
 1214: <H2><A NAME="ss2.5">2.5</A> <A HREF="prog.html#toc2.5">Graceful restart recovery</A>
 1215: </H2>
 1216: 
 1217: <P>
 1218: <P>Graceful restart of a router is a process when the routing plane (e.g. BIRD)
 1219: restarts but both the forwarding plane (e.g kernel routing table) and routing
 1220: neighbors keep proper routes, and therefore uninterrupted packet forwarding
 1221: is maintained.
 1222: <P>BIRD implements graceful restart recovery by deferring export of routes to
 1223: protocols until routing tables are refilled with the expected content. After
 1224: start, protocols generate routes as usual, but routes are not propagated to
 1225: them, until protocols report that they generated all routes. After that,
 1226: graceful restart recovery is finished and the export (and the initial feed)
 1227: to protocols is enabled.
 1228: <P>When graceful restart recovery need is detected during initialization, then
 1229: enabled protocols are marked with <B>gr_recovery</B> flag before start. Such
 1230: protocols then decide how to proceed with graceful restart, participation is
 1231: voluntary. Protocols could lock the recovery by <B>proto_graceful_restart_lock()</B>
 1232: (stored in <B>gr_lock</B> flag), which means that they want to postpone the end of
 1233: the recovery until they converge and then unlock it. They also could set
 1234: <B>gr_wait</B> before advancing to <I>PS_UP</I>, which means that the core should defer
 1235: route export to that protocol until the end of the recovery. This should be
 1236: done by protocols that expect their neigbors to keep the proper routes
 1237: (kernel table, BGP sessions with BGP graceful restart capability).
 1238: <P>The graceful restart recovery is finished when either all graceful restart
 1239: locks are unlocked or when graceful restart wait timer fires.
 1240: <P>
 1241: <P><HR><H3>Function</H3>
 1242: <P><I>void</I>
 1243: <B>graceful_restart_recovery</B>
 1244: (<B>void</B>) --     request initial graceful restart recovery
 1245: <P>
 1246: <H3>Graceful restart recovery</H3>
 1247: <P>
 1248: <P>Called by the platform initialization code if the need for recovery
 1249: after graceful restart is detected during boot. Have to be called
 1250: before <B>protos_commit()</B>.
 1251: 
 1252: 
 1253: <HR><H3>Function</H3>
 1254: <P><I>void</I>
 1255: <B>graceful_restart_init</B>
 1256: (<B>void</B>) --     initialize graceful restart
 1257: <P>
 1258: <H3>Description</H3>
 1259: <P>
 1260: <P>When graceful restart recovery was requested, the function starts an active
 1261: phase of the recovery and initializes graceful restart wait timer. The
 1262: function have to be called after <B>protos_commit()</B>.
 1263: 
 1264: 
 1265: <HR><H3>Function</H3>
 1266: <P><I>void</I>
 1267: <B>graceful_restart_done</B>
 1268: (<I>struct timer *t</I> <B>UNUSED</B>) --     finalize graceful restart
 1269: <P>
 1270: <H3>Arguments</H3>
 1271: <P>
 1272: <DL>
 1273: <DT><I>struct timer *t</I> <B>UNUSED</B><DD><P>-- undescribed --
 1274: </DL>
 1275: <H3>Description</H3>
 1276: <P>When there are no locks on graceful restart, the functions finalizes the
 1277: graceful restart recovery. Protocols postponing route export until the end of
 1278: the recovery are awakened and the export to them is enabled. All other
 1279: related state is cleared. The function is also called when the graceful
 1280: restart wait timer fires (but there are still some locks).
 1281: 
 1282: 
 1283: <HR><H3>Function</H3>
 1284: <P><I>void</I>
 1285: <B>proto_graceful_restart_lock</B>
 1286: (<I>struct proto *</I> <B>p</B>) --     lock graceful restart by protocol
 1287: <P>
 1288: <H3>Arguments</H3>
 1289: <P>
 1290: <DL>
 1291: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1292: </DL>
 1293: <H3>Description</H3>
 1294: <P>This function allows a protocol to postpone the end of graceful restart
 1295: recovery until it converges. The lock is removed when the protocol calls
 1296: <B>proto_graceful_restart_unlock()</B> or when the protocol is stopped.
 1297: <P>The function have to be called during the initial phase of graceful restart
 1298: recovery and only for protocols that are part of graceful restart (i.e. their
 1299: <B>gr_recovery</B> is set), which means it should be called from protocol start
 1300: hooks.
 1301: 
 1302: 
 1303: <HR><H3>Function</H3>
 1304: <P><I>void</I>
 1305: <B>proto_graceful_restart_unlock</B>
 1306: (<I>struct proto *</I> <B>p</B>) --     unlock graceful restart by protocol
 1307: <P>
 1308: <H3>Arguments</H3>
 1309: <P>
 1310: <DL>
 1311: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1312: </DL>
 1313: <H3>Description</H3>
 1314: <P>This function unlocks a lock from <B>proto_graceful_restart_lock()</B>. It is also
 1315: automatically called when the lock holding protocol went down.
 1316: 
 1317: 
 1318: <HR><H3>Function</H3>
 1319: <P><I>void</I>
 1320: <B>protos_dump_all</B>
 1321: (<B>void</B>) --     dump status of all protocols
 1322: <P>
 1323: <H3>Description</H3>
 1324: <P>
 1325: <P>This function dumps status of all existing protocol instances to the
 1326: debug output. It involves printing of general status information
 1327: such as protocol states, its position on the protocol lists
 1328: and also calling of a <B>dump()</B> hook of the protocol to print
 1329: the internals.
 1330: 
 1331: 
 1332: <HR><H3>Function</H3>
 1333: <P><I>void</I>
 1334: <B>proto_build</B>
 1335: (<I>struct protocol *</I> <B>p</B>) --     make a single protocol available
 1336: <P>
 1337: <H3>Arguments</H3>
 1338: <P>
 1339: <DL>
 1340: <DT><I>struct protocol *</I> <B>p</B><DD><P>the protocol
 1341: </DL>
 1342: <H3>Description</H3>
 1343: <P>After the platform specific initialization code uses <B>protos_build()</B>
 1344: to add all the standard protocols, it should call <B>proto_build()</B> for
 1345: all platform specific protocols to inform the core that they exist.
 1346: 
 1347: 
 1348: <HR><H3>Function</H3>
 1349: <P><I>void</I>
 1350: <B>protos_build</B>
 1351: (<B>void</B>) --     build a protocol list
 1352: <P>
 1353: <H3>Description</H3>
 1354: <P>
 1355: <P>This function is called during BIRD startup to insert
 1356: all standard protocols to the global protocol list. Insertion
 1357: of platform specific protocols (such as the kernel syncer)
 1358: is in the domain of competence of the platform dependent
 1359: startup code.
 1360: 
 1361: 
 1362: <HR><H3>Function</H3>
 1363: <P><I>void</I>
 1364: <B>proto_set_message</B>
 1365: (<I>struct proto *</I> <B>p</B>, <I>char *</I> <B>msg</B>, <I>int</I> <B>len</B>) --     set administrative message to protocol
 1366: <P>
 1367: <H3>Arguments</H3>
 1368: <P>
 1369: <DL>
 1370: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol
 1371: <DT><I>char *</I> <B>msg</B><DD><P>message
 1372: <DT><I>int</I> <B>len</B><DD><P>message length (-1 for NULL-terminated string)
 1373: </DL>
 1374: <H3>Description</H3>
 1375: <P>The function sets administrative message (string) related to protocol state
 1376: change. It is called by the nest code for manual enable/disable/restart
 1377: commands all routes to the protocol, and by protocol-specific code when the
 1378: protocol state change is initiated by the protocol. Using NULL message clears
 1379: the last message. The message string may be either NULL-terminated or with an
 1380: explicit length.
 1381: 
 1382: 
 1383: <HR><H3>Function</H3>
 1384: <P><I>void</I>
 1385: <B>proto_request_feeding</B>
 1386: (<I>struct proto *</I> <B>p</B>) --     request feeding routes to the protocol
 1387: <P>
 1388: <H3>Arguments</H3>
 1389: <P>
 1390: <DL>
 1391: <DT><I>struct proto *</I> <B>p</B><DD><P>given protocol 
 1392: </DL>
 1393: <H3>Description</H3>
 1394: <P>Sometimes it is needed to send again all routes to the
 1395: protocol. This is called feeding and can be requested by this
 1396: function. This would cause protocol export state transition
 1397: to ES_FEEDING (during feeding) and when completed, it will
 1398: switch back to ES_READY. This function can be called even
 1399: when feeding is already running, in that case it is restarted.
 1400: 
 1401: 
 1402: <HR><H3>Function</H3>
 1403: <P><I>void</I>
 1404: <B>proto_notify_limit</B>
 1405: (<I>struct announce_hook *</I> <B>ah</B>, <I>struct proto_limit *</I> <B>l</B>, <I>int</I> <B>dir</B>, <I>u32</I> <B>rt_count</B>)
 1406: <H3>Arguments</H3>
 1407: <P>
 1408: <DL>
 1409: <DT><I>struct announce_hook *</I> <B>ah</B><DD><P>announce hook
 1410: <DT><I>struct proto_limit *</I> <B>l</B><DD><P>limit being hit
 1411: <DT><I>int</I> <B>dir</B><DD><P>limit direction (PLD_*)
 1412: <DT><I>u32</I> <B>rt_count</B><DD><P>the number of routes 
 1413: </DL>
 1414: <H3>Description</H3>
 1415: <P>The function is called by the route processing core when limit <B>l</B>
 1416: is breached. It activates the limit and tooks appropriate action
 1417: according to <B>l</B>-&gt;action.
 1418: 
 1419: 
 1420: <HR><H3>Function</H3>
 1421: <P><I>void</I>
 1422: <B>proto_notify_state</B>
 1423: (<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>ps</B>) --     notify core about protocol state change
 1424: <P>
 1425: <H3>Arguments</H3>
 1426: <P>
 1427: <DL>
 1428: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol the state of which has changed
 1429: <DT><I>unsigned</I> <B>ps</B><DD><P>the new status
 1430: </DL>
 1431: <H3>Description</H3>
 1432: <P>Whenever a state of a protocol changes due to some event internal
 1433: to the protocol (i.e., not inside a <B>start()</B> or <B>shutdown()</B> hook),
 1434: it should immediately notify the core about the change by calling
 1435: <B>proto_notify_state()</B> which will write the new state to the <I>proto</I>
 1436: structure and take all the actions necessary to adapt to the new
 1437: state. State change to PS_DOWN immediately frees resources of protocol
 1438: and might execute start callback of protocol; therefore,
 1439: it should be used at tail positions of protocol callbacks.
 1440: 
 1441: <H2><A NAME="ss2.6">2.6</A> <A HREF="prog.html#toc2.6">Protocol hooks</A>
 1442: </H2>
 1443: 
 1444: <P>
 1445: <P>Each protocol can provide a rich set of hook functions referred to by pointers
 1446: in either the <I>proto</I> or <I>protocol</I> structure. They are called by the core whenever
 1447: it wants the protocol to perform some action or to notify the protocol about
 1448: any change of its environment. All of the hooks can be set to <I>NULL</I> which means
 1449: to ignore the change or to take a default action.
 1450: <P>
 1451: <P><HR><H3>Function</H3>
 1452: <P><I>void</I>
 1453: <B>preconfig</B>
 1454: (<I>struct protocol *</I> <B>p</B>, <I>struct config *</I> <B>c</B>) --     protocol preconfiguration
 1455: <P>
 1456: <H3>Arguments</H3>
 1457: <P>
 1458: <DL>
 1459: <DT><I>struct protocol *</I> <B>p</B><DD><P>a routing protocol
 1460: <DT><I>struct config *</I> <B>c</B><DD><P>new configuration
 1461: </DL>
 1462: <H3>Description</H3>
 1463: <P>The <B>preconfig()</B> hook is called before parsing of a new configuration.
 1464: 
 1465: 
 1466: <HR><H3>Function</H3>
 1467: <P><I>void</I>
 1468: <B>postconfig</B>
 1469: (<I>struct proto_config *</I> <B>c</B>) --     instance post-configuration
 1470: <P>
 1471: <H3>Arguments</H3>
 1472: <P>
 1473: <DL>
 1474: <DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
 1475: </DL>
 1476: <H3>Description</H3>
 1477: <P>The <B>postconfig()</B> hook is called for each configured instance after
 1478: parsing of the new configuration is finished.
 1479: 
 1480: 
 1481: <HR><H3>Function</H3>
 1482: <P><I>struct proto *</I>
 1483: <B>init</B>
 1484: (<I>struct proto_config *</I> <B>c</B>) --     initialize an instance
 1485: <P>
 1486: <H3>Arguments</H3>
 1487: <P>
 1488: <DL>
 1489: <DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
 1490: </DL>
 1491: <H3>Description</H3>
 1492: <P>The <B>init()</B> hook is called by the core to create a protocol instance
 1493: according to supplied protocol configuration.
 1494: <H3>Result</H3>
 1495: <P>a pointer to the instance created
 1496: 
 1497: 
 1498: <HR><H3>Function</H3>
 1499: <P><I>int</I>
 1500: <B>reconfigure</B>
 1501: (<I>struct proto *</I> <B>p</B>, <I>struct proto_config *</I> <B>c</B>) --     request instance reconfiguration
 1502: <P>
 1503: <H3>Arguments</H3>
 1504: <P>
 1505: <DL>
 1506: <DT><I>struct proto *</I> <B>p</B><DD><P>an instance
 1507: <DT><I>struct proto_config *</I> <B>c</B><DD><P>new configuration
 1508: </DL>
 1509: <H3>Description</H3>
 1510: <P>The core calls the <B>reconfigure()</B> hook whenever it wants to ask the
 1511: protocol for switching to a new configuration. If the reconfiguration
 1512: is possible, the hook returns 1. Otherwise, it returns 0 and the core
 1513: will shut down the instance and start a new one with the new configuration.
 1514: <P>After the protocol confirms reconfiguration, it must no longer keep any
 1515: references to the old configuration since the memory it's stored in can
 1516: be re-used at any time.
 1517: 
 1518: 
 1519: <HR><H3>Function</H3>
 1520: <P><I>void</I>
 1521: <B>dump</B>
 1522: (<I>struct proto *</I> <B>p</B>) --     dump protocol state
 1523: <P>
 1524: <H3>Arguments</H3>
 1525: <P>
 1526: <DL>
 1527: <DT><I>struct proto *</I> <B>p</B><DD><P>an instance
 1528: </DL>
 1529: <H3>Description</H3>
 1530: <P>This hook dumps the complete state of the instance to the
 1531: debug output.
 1532: 
 1533: 
 1534: <HR><H3>Function</H3>
 1535: <P><I>void</I>
 1536: <B>dump_attrs</B>
 1537: (<I>rte *</I> <B>e</B>) --     dump protocol-dependent attributes
 1538: <P>
 1539: <H3>Arguments</H3>
 1540: <P>
 1541: <DL>
 1542: <DT><I>rte *</I> <B>e</B><DD><P>a route entry
 1543: </DL>
 1544: <H3>Description</H3>
 1545: <P>This hook dumps all attributes in the <I>rte</I> which belong to this
 1546: protocol to the debug output.
 1547: 
 1548: 
 1549: <HR><H3>Function</H3>
 1550: <P><I>int</I>
 1551: <B>start</B>
 1552: (<I>struct proto *</I> <B>p</B>) --     request instance startup
 1553: <P>
 1554: <H3>Arguments</H3>
 1555: <P>
 1556: <DL>
 1557: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1558: </DL>
 1559: <H3>Description</H3>
 1560: <P>The <B>start()</B> hook is called by the core when it wishes to start
 1561: the instance. Multitable protocols should lock their tables here.
 1562: <H3>Result</H3>
 1563: <P>new protocol state
 1564: 
 1565: 
 1566: <HR><H3>Function</H3>
 1567: <P><I>int</I>
 1568: <B>shutdown</B>
 1569: (<I>struct proto *</I> <B>p</B>) --     request instance shutdown
 1570: <P>
 1571: <H3>Arguments</H3>
 1572: <P>
 1573: <DL>
 1574: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1575: </DL>
 1576: <H3>Description</H3>
 1577: <P>The <B>stop()</B> hook is called by the core when it wishes to shut
 1578: the instance down for some reason.
 1579: <H3>Returns</H3>
 1580: <P>new protocol state
 1581: 
 1582: 
 1583: <HR><H3>Function</H3>
 1584: <P><I>void</I>
 1585: <B>cleanup</B>
 1586: (<I>struct proto *</I> <B>p</B>) --     request instance cleanup
 1587: <P>
 1588: <H3>Arguments</H3>
 1589: <P>
 1590: <DL>
 1591: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1592: </DL>
 1593: <H3>Description</H3>
 1594: <P>The <B>cleanup()</B> hook is called by the core when the protocol became
 1595: hungry/down, i.e. all protocol ahooks and routes are flushed.
 1596: Multitable protocols should unlock their tables here.
 1597: 
 1598: 
 1599: <HR><H3>Function</H3>
 1600: <P><I>void</I>
 1601: <B>get_status</B>
 1602: (<I>struct proto *</I> <B>p</B>, <I>byte *</I> <B>buf</B>) --     get instance status
 1603: <P>
 1604: <H3>Arguments</H3>
 1605: <P>
 1606: <DL>
 1607: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1608: <DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the status string
 1609: </DL>
 1610: <H3>Description</H3>
 1611: <P>This hook is called by the core if it wishes to obtain an brief one-line user friendly
 1612: representation of the status of the instance to be printed by the &lt;cf/show protocols/
 1613: command.
 1614: 
 1615: 
 1616: <HR><H3>Function</H3>
 1617: <P><I>void</I>
 1618: <B>get_route_info</B>
 1619: (<I>rte *</I> <B>e</B>, <I>byte *</I> <B>buf</B>, <I>ea_list *</I> <B>attrs</B>) --     get route information
 1620: <P>
 1621: <H3>Arguments</H3>
 1622: <P>
 1623: <DL>
 1624: <DT><I>rte *</I> <B>e</B><DD><P>a route entry
 1625: <DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the resulting string
 1626: <DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes of the route
 1627: </DL>
 1628: <H3>Description</H3>
 1629: <P>This hook is called to fill the buffer <B>buf</B> with a brief user friendly
 1630: representation of metrics of a route belonging to this protocol.
 1631: 
 1632: 
 1633: <HR><H3>Function</H3>
 1634: <P><I>int</I>
 1635: <B>get_attr</B>
 1636: (<I>eattr *</I> <B>a</B>, <I>byte *</I> <B>buf</B>, <I>int</I> <B>buflen</B>) --     get attribute information
 1637: <P>
 1638: <H3>Arguments</H3>
 1639: <P>
 1640: <DL>
 1641: <DT><I>eattr *</I> <B>a</B><DD><P>an extended attribute
 1642: <DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with attribute information
 1643: <DT><I>int</I> <B>buflen</B><DD><P>a length of the <B>buf</B> parameter
 1644: </DL>
 1645: <H3>Description</H3>
 1646: <P>The <B>get_attr()</B> hook is called by the core to obtain a user friendly
 1647: representation of an extended route attribute. It can either leave
 1648: the whole conversion to the core (by returning <I>GA_UNKNOWN</I>), fill
 1649: in only attribute name (and let the core format the attribute value
 1650: automatically according to the type field; by returning <I>GA_NAME</I>)
 1651: or doing the whole conversion (used in case the value requires extra
 1652: care; return <I>GA_FULL</I>).
 1653: 
 1654: 
 1655: <HR><H3>Function</H3>
 1656: <P><I>void</I>
 1657: <B>if_notify</B>
 1658: (<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct iface *</I> <B>i</B>) --     notify instance about interface changes
 1659: <P>
 1660: <H3>Arguments</H3>
 1661: <P>
 1662: <DL>
 1663: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1664: <DT><I>unsigned</I> <B>flags</B><DD><P>interface change flags
 1665: <DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
 1666: </DL>
 1667: <H3>Description</H3>
 1668: <P>This hook is called whenever any network interface changes its status.
 1669: The change is described by a combination of status bits (<I>IF_CHANGE_xxx</I>)
 1670: in the <B>flags</B> parameter.
 1671: 
 1672: 
 1673: <HR><H3>Function</H3>
 1674: <P><I>void</I>
 1675: <B>ifa_notify</B>
 1676: (<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct ifa *</I> <B>a</B>) --     notify instance about interface address changes
 1677: <P>
 1678: <H3>Arguments</H3>
 1679: <P>
 1680: <DL>
 1681: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1682: <DT><I>unsigned</I> <B>flags</B><DD><P>address change flags
 1683: <DT><I>struct ifa *</I> <B>a</B><DD><P>the interface address
 1684: </DL>
 1685: <H3>Description</H3>
 1686: <P>This hook is called to notify the protocol instance about an interface
 1687: acquiring or losing one of its addresses. The change is described by
 1688: a combination of status bits (<I>IF_CHANGE_xxx</I>) in the <B>flags</B> parameter.
 1689: 
 1690: 
 1691: <HR><H3>Function</H3>
 1692: <P><I>void</I>
 1693: <B>rt_notify</B>
 1694: (<I>struct proto *</I> <B>p</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>ea_list *</I> <B>attrs</B>) --     notify instance about routing table change
 1695: <P>
 1696: <H3>Arguments</H3>
 1697: <P>
 1698: <DL>
 1699: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
 1700: <DT><I>net *</I> <B>net</B><DD><P>a network entry
 1701: <DT><I>rte *</I> <B>new</B><DD><P>new route for the network
 1702: <DT><I>rte *</I> <B>old</B><DD><P>old route for the network
 1703: <DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes associated with the <B>new</B> entry
 1704: </DL>
 1705: <H3>Description</H3>
 1706: <P>The <B>rt_notify()</B> hook is called to inform the protocol instance about
 1707: changes in the connected routing table <B>table</B>, that is a route <B>old</B>
 1708: belonging to network <B>net</B> being replaced by a new route <B>new</B> with
 1709: extended attributes <B>attrs</B>. Either <B>new</B> or <B>old</B> or both can be <I>NULL</I>
 1710: if the corresponding route doesn't exist.
 1711: <P>If the type of route announcement is RA_OPTIMAL, it is an
 1712: announcement of optimal route change, <B>new</B> stores the new optimal
 1713: route and <B>old</B> stores the old optimal route.
 1714: <P>If the type of route announcement is RA_ANY, it is an announcement
 1715: of any route change, <B>new</B> stores the new route and <B>old</B> stores the
 1716: old route from the same protocol.
 1717: <P><B>p</B>-&gt;accept_ra_types specifies which kind of route announcements
 1718: protocol wants to receive.
 1719: 
 1720: 
 1721: <HR><H3>Function</H3>
 1722: <P><I>void</I>
 1723: <B>neigh_notify</B>
 1724: (<I>neighbor *</I> <B>neigh</B>) --     notify instance about neighbor status change
 1725: <P>
 1726: <H3>Arguments</H3>
 1727: <P>
 1728: <DL>
 1729: <DT><I>neighbor *</I> <B>neigh</B><DD><P>a neighbor cache entry
 1730: </DL>
 1731: <H3>Description</H3>
 1732: <P>The <B>neigh_notify()</B> hook is called by the neighbor cache whenever
 1733: a neighbor changes its state, that is it gets disconnected or a
 1734: sticky neighbor gets connected.
 1735: 
 1736: 
 1737: <HR><H3>Function</H3>
 1738: <P><I>ea_list *</I>
 1739: <B>make_tmp_attrs</B>
 1740: (<I>rte *</I> <B>e</B>, <I>struct linpool *</I> <B>pool</B>) --     convert embedded attributes to temporary ones
 1741: <P>
 1742: <H3>Arguments</H3>
 1743: <P>
 1744: <DL>
 1745: <DT><I>rte *</I> <B>e</B><DD><P>route entry
 1746: <DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool to allocate attribute memory in
 1747: </DL>
 1748: <H3>Description</H3>
 1749: <P>This hook is called by the routing table functions if they need
 1750: to convert the protocol attributes embedded directly in the <I>rte</I>
 1751: to temporary extended attributes in order to distribute them
 1752: to other protocols or to filters. <B>make_tmp_attrs()</B> creates
 1753: an <I>ea_list</I> in the linear pool <B>pool</B>, fills it with values of the
 1754: temporary attributes and returns a pointer to it.
 1755: 
 1756: 
 1757: <HR><H3>Function</H3>
 1758: <P><I>void</I>
 1759: <B>store_tmp_attrs</B>
 1760: (<I>rte *</I> <B>e</B>, <I>ea_list *</I> <B>attrs</B>) --     convert temporary attributes to embedded ones
 1761: <P>
 1762: <H3>Arguments</H3>
 1763: <P>
 1764: <DL>
 1765: <DT><I>rte *</I> <B>e</B><DD><P>route entry
 1766: <DT><I>ea_list *</I> <B>attrs</B><DD><P>temporary attributes to be converted
 1767: </DL>
 1768: <H3>Description</H3>
 1769: <P>This hook is an exact opposite of <B>make_tmp_attrs()</B> -- it takes
 1770: a list of extended attributes and converts them to attributes
 1771: embedded in the <I>rte</I> corresponding to this protocol.
 1772: <P>You must be prepared for any of the attributes being missing
 1773: from the list and use default values instead.
 1774: 
 1775: 
 1776: <HR><H3>Function</H3>
 1777: <P><I>int</I>
 1778: <B>import_control</B>
 1779: (<I>struct proto *</I> <B>p</B>, <I>rte **</I> <B>e</B>, <I>ea_list **</I> <B>attrs</B>, <I>struct linpool *</I> <B>pool</B>) --     pre-filtering decisions on route import
 1780: <P>
 1781: <H3>Arguments</H3>
 1782: <P>
 1783: <DL>
 1784: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance the route is going to be imported to
 1785: <DT><I>rte **</I> <B>e</B><DD><P>the route in question
 1786: <DT><I>ea_list **</I> <B>attrs</B><DD><P>extended attributes of the route
 1787: <DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool for allocation of all temporary data
 1788: </DL>
 1789: <H3>Description</H3>
 1790: <P>The <B>import_control()</B> hook is called as the first step of a exporting
 1791: a route from a routing table to the protocol instance. It can modify
 1792: route attributes and force acceptance or rejection of the route regardless
 1793: of user-specified filters. See <B>rte_announce()</B> for a complete description
 1794: of the route distribution process.
 1795: <P>The standard use of this hook is to reject routes having originated
 1796: from the same instance and to set default values of the protocol's metrics.
 1797: <H3>Result</H3>
 1798: <P>1 if the route has to be accepted, -1 if rejected and 0 if it
 1799: should be passed to the filters.
 1800: 
 1801: 
 1802: <HR><H3>Function</H3>
 1803: <P><I>int</I>
 1804: <B>rte_recalculate</B>
 1805: (<I>struct rtable *</I> <B>table</B>, <I>struct network *</I> <B>net</B>, <I>struct rte *</I> <B>new</B>, <I>struct rte *</I> <B>old</B>, <I>struct rte *</I> <B>old_best</B>) --     prepare routes for comparison
 1806: <P>
 1807: <H3>Arguments</H3>
 1808: <P>
 1809: <DL>
 1810: <DT><I>struct rtable *</I> <B>table</B><DD><P>a routing table 
 1811: <DT><I>struct network *</I> <B>net</B><DD><P>a network entry
 1812: <DT><I>struct rte *</I> <B>new</B><DD><P>new route for the network
 1813: <DT><I>struct rte *</I> <B>old</B><DD><P>old route for the network
 1814: <DT><I>struct rte *</I> <B>old_best</B><DD><P>old best route for the network (may be NULL)
 1815: </DL>
 1816: <H3>Description</H3>
 1817: <P>This hook is called when a route change (from <B>old</B> to <B>new</B> for a
 1818: <B>net</B> entry) is propagated to a <B>table</B>. It may be used to prepare
 1819: routes for comparison by <B>rte_better()</B> in the best route
 1820: selection. <B>new</B> may or may not be in <B>net</B>-&gt;routes list,
 1821: <B>old</B> is not there.
 1822: <H3>Result</H3>
 1823: <P>1 if the ordering implied by <B>rte_better()</B> changes enough
 1824: that full best route calculation have to be done, 0 otherwise.
 1825: 
 1826: 
 1827: <HR><H3>Function</H3>
 1828: <P><I>int</I>
 1829: <B>rte_better</B>
 1830: (<I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>) --     compare metrics of two routes
 1831: <P>
 1832: <H3>Arguments</H3>
 1833: <P>
 1834: <DL>
 1835: <DT><I>rte *</I> <B>new</B><DD><P>the new route
 1836: <DT><I>rte *</I> <B>old</B><DD><P>the original route
 1837: </DL>
 1838: <H3>Description</H3>
 1839: <P>This hook gets called when the routing table contains two routes
 1840: for the same network which have originated from different instances
 1841: of a single protocol and it wants to select which one is preferred
 1842: over the other one. Protocols usually decide according to route metrics.
 1843: <H3>Result</H3>
 1844: <P>1 if <B>new</B> is better (more preferred) than <B>old</B>, 0 otherwise.
 1845: 
 1846: 
 1847: <HR><H3>Function</H3>
 1848: <P><I>int</I>
 1849: <B>rte_same</B>
 1850: (<I>rte *</I> <B>e1</B>, <I>rte *</I> <B>e2</B>) --     compare two routes
 1851: <P>
 1852: <H3>Arguments</H3>
 1853: <P>
 1854: <DL>
 1855: <DT><I>rte *</I> <B>e1</B><DD><P>route
 1856: <DT><I>rte *</I> <B>e2</B><DD><P>route
 1857: </DL>
 1858: <H3>Description</H3>
 1859: <P>The <B>rte_same()</B> hook tests whether the routes <B>e1</B> and <B>e2</B> belonging
 1860: to the same protocol instance have identical contents. Contents of
 1861: <I>rta</I>, all the extended attributes and <I>rte</I> preference are checked
 1862: by the core code, no need to take care of them here.
 1863: <H3>Result</H3>
 1864: <P>1 if <B>e1</B> is identical to <B>e2</B>, 0 otherwise.
 1865: 
 1866: 
 1867: <HR><H3>Function</H3>
 1868: <P><I>void</I>
 1869: <B>rte_insert</B>
 1870: (<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) --     notify instance about route insertion
 1871: <P>
 1872: <H3>Arguments</H3>
 1873: <P>
 1874: <DL>
 1875: <DT><I>net *</I> <B>n</B><DD><P>network
 1876: <DT><I>rte *</I> <B>e</B><DD><P>route
 1877: </DL>
 1878: <H3>Description</H3>
 1879: <P>This hook is called whenever a <I>rte</I> belonging to the instance
 1880: is accepted for insertion to a routing table.
 1881: <P>Please avoid using this function in new protocols.
 1882: 
 1883: 
 1884: <HR><H3>Function</H3>
 1885: <P><I>void</I>
 1886: <B>rte_remove</B>
 1887: (<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) --     notify instance about route removal
 1888: <P>
 1889: <H3>Arguments</H3>
 1890: <P>
 1891: <DL>
 1892: <DT><I>net *</I> <B>n</B><DD><P>network
 1893: <DT><I>rte *</I> <B>e</B><DD><P>route
 1894: </DL>
 1895: <H3>Description</H3>
 1896: <P>This hook is called whenever a <I>rte</I> belonging to the instance
 1897: is removed from a routing table.
 1898: <P>Please avoid using this function in new protocols.
 1899: 
 1900: <H2><A NAME="ss2.7">2.7</A> <A HREF="prog.html#toc2.7">Interfaces</A>
 1901: </H2>
 1902: 
 1903: <P>
 1904: <P>The interface module keeps track of all network interfaces in the
 1905: system and their addresses.
 1906: <P>Each interface is represented by an <I>iface</I> structure which carries
 1907: interface capability flags (<I>IF_MULTIACCESS</I>, <I>IF_BROADCAST</I> etc.),
 1908: MTU, interface name and index and finally a linked list of network
 1909: prefixes assigned to the interface, each one represented by
 1910: struct <I>ifa</I>.
 1911: <P>The interface module keeps a `soft-up' state for each <I>iface</I> which
 1912: is a conjunction of link being up, the interface being of a `sane'
 1913: type and at least one IP address assigned to it.
 1914: <P>
 1915: <P><HR><H3>Function</H3>
 1916: <P><I>void</I>
 1917: <B>ifa_dump</B>
 1918: (<I>struct ifa *</I> <B>a</B>) --     dump interface address
 1919: <P>
 1920: <H3>Arguments</H3>
 1921: <P>
 1922: <DL>
 1923: <DT><I>struct ifa *</I> <B>a</B><DD><P>interface address descriptor
 1924: </DL>
 1925: <H3>Description</H3>
 1926: <P>This function dumps contents of an <I>ifa</I> to the debug output.
 1927: 
 1928: 
 1929: <HR><H3>Function</H3>
 1930: <P><I>void</I>
 1931: <B>if_dump</B>
 1932: (<I>struct iface *</I> <B>i</B>) --     dump interface
 1933: <P>
 1934: <H3>Arguments</H3>
 1935: <P>
 1936: <DL>
 1937: <DT><I>struct iface *</I> <B>i</B><DD><P>interface to dump
 1938: </DL>
 1939: <H3>Description</H3>
 1940: <P>This function dumps all information associated with a given
 1941: network interface to the debug output.
 1942: 
 1943: 
 1944: <HR><H3>Function</H3>
 1945: <P><I>void</I>
 1946: <B>if_dump_all</B>
 1947: (<B>void</B>) --     dump all interfaces
 1948: <P>
 1949: <H3>Description</H3>
 1950: <P>
 1951: <P>This function dumps information about all known network
 1952: interfaces to the debug output.
 1953: 
 1954: 
 1955: <HR><H3>Function</H3>
 1956: <P><I>void</I>
 1957: <B>if_delete</B>
 1958: (<I>struct iface *</I> <B>old</B>) --     remove interface
 1959: <P>
 1960: <H3>Arguments</H3>
 1961: <P>
 1962: <DL>
 1963: <DT><I>struct iface *</I> <B>old</B><DD><P>interface
 1964: </DL>
 1965: <H3>Description</H3>
 1966: <P>This function is called by the low-level platform dependent code
 1967: whenever it notices an interface disappears. It is just a shorthand
 1968: for <B>if_update()</B>.
 1969: 
 1970: 
 1971: <HR><H3>Function</H3>
 1972: <P><I>struct iface *</I>
 1973: <B>if_update</B>
 1974: (<I>struct iface *</I> <B>new</B>) --     update interface status
 1975: <P>
 1976: <H3>Arguments</H3>
 1977: <P>
 1978: <DL>
 1979: <DT><I>struct iface *</I> <B>new</B><DD><P>new interface status
 1980: </DL>
 1981: <H3>Description</H3>
 1982: <P><B>if_update()</B> is called by the low-level platform dependent code
 1983: whenever it notices an interface change.
 1984: <P>There exist two types of interface updates -- synchronous and asynchronous
 1985: ones. In the synchronous case, the low-level code calls <B>if_start_update()</B>,
 1986: scans all interfaces reported by the OS, uses <B>if_update()</B> and <B>ifa_update()</B>
 1987: to pass them to the core and then it finishes the update sequence by
 1988: calling <B>if_end_update()</B>. When working asynchronously, the sysdep code
 1989: calls <B>if_update()</B> and <B>ifa_update()</B> whenever it notices a change.
 1990: <P><B>if_update()</B> will automatically notify all other modules about the change.
 1991: 
 1992: 
 1993: <HR><H3>Function</H3>
 1994: <P><I>void</I>
 1995: <B>if_feed_baby</B>
 1996: (<I>struct proto *</I> <B>p</B>) --     advertise interfaces to a new protocol
 1997: <P>
 1998: <H3>Arguments</H3>
 1999: <P>
 2000: <DL>
 2001: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol to feed
 2002: </DL>
 2003: <H3>Description</H3>
 2004: <P>When a new protocol starts, this function sends it a series
 2005: of notifications about all existing interfaces.
 2006: 
 2007: 
 2008: <HR><H3>Function</H3>
 2009: <P><I>struct iface *</I>
 2010: <B>if_find_by_index</B>
 2011: (<I>unsigned</I> <B>idx</B>) --     find interface by ifindex
 2012: <P>
 2013: <H3>Arguments</H3>
 2014: <P>
 2015: <DL>
 2016: <DT><I>unsigned</I> <B>idx</B><DD><P>ifindex
 2017: </DL>
 2018: <H3>Description</H3>
 2019: <P>This function finds an <I>iface</I> structure corresponding to an interface
 2020: of the given index <B>idx</B>. Returns a pointer to the structure or <I>NULL</I>
 2021: if no such structure exists.
 2022: 
 2023: 
 2024: <HR><H3>Function</H3>
 2025: <P><I>struct iface *</I>
 2026: <B>if_find_by_name</B>
 2027: (<I>char *</I> <B>name</B>) --     find interface by name
 2028: <P>
 2029: <H3>Arguments</H3>
 2030: <P>
 2031: <DL>
 2032: <DT><I>char *</I> <B>name</B><DD><P>interface name
 2033: </DL>
 2034: <H3>Description</H3>
 2035: <P>This function finds an <I>iface</I> structure corresponding to an interface
 2036: of the given name <B>name</B>. Returns a pointer to the structure or <I>NULL</I>
 2037: if no such structure exists.
 2038: 
 2039: 
 2040: <HR><H3>Function</H3>
 2041: <P><I>struct ifa *</I>
 2042: <B>ifa_update</B>
 2043: (<I>struct ifa *</I> <B>a</B>) --     update interface address
 2044: <P>
 2045: <H3>Arguments</H3>
 2046: <P>
 2047: <DL>
 2048: <DT><I>struct ifa *</I> <B>a</B><DD><P>new interface address
 2049: </DL>
 2050: <H3>Description</H3>
 2051: <P>This function adds address information to a network
 2052: interface. It's called by the platform dependent code during
 2053: the interface update process described under <B>if_update()</B>.
 2054: 
 2055: 
 2056: <HR><H3>Function</H3>
 2057: <P><I>void</I>
 2058: <B>ifa_delete</B>
 2059: (<I>struct ifa *</I> <B>a</B>) --     remove interface address
 2060: <P>
 2061: <H3>Arguments</H3>
 2062: <P>
 2063: <DL>
 2064: <DT><I>struct ifa *</I> <B>a</B><DD><P>interface address
 2065: </DL>
 2066: <H3>Description</H3>
 2067: <P>This function removes address information from a network
 2068: interface. It's called by the platform dependent code during
 2069: the interface update process described under <B>if_update()</B>.
 2070: 
 2071: 
 2072: <HR><H3>Function</H3>
 2073: <P><I>void</I>
 2074: <B>if_init</B>
 2075: (<B>void</B>) --     initialize interface module
 2076: <P>
 2077: <H3>Description</H3>
 2078: <P>
 2079: <P>This function is called during BIRD startup to initialize
 2080: all data structures of the interface module.
 2081: 
 2082: <H2><A NAME="ss2.8">2.8</A> <A HREF="prog.html#toc2.8">Neighbor cache</A>
 2083: </H2>
 2084: 
 2085: <P>
 2086: <P>Most routing protocols need to associate their internal state data with
 2087: neighboring routers, check whether an address given as the next hop
 2088: attribute of a route is really an address of a directly connected host
 2089: and which interface is it connected through. Also, they often need to
 2090: be notified when a neighbor ceases to exist or when their long awaited
 2091: neighbor becomes connected. The neighbor cache is there to solve all
 2092: these problems.
 2093: <P>The neighbor cache maintains a collection of neighbor entries. Each
 2094: entry represents one IP address corresponding to either our directly
 2095: connected neighbor or our own end of the link (when the scope of the
 2096: address is set to <I>SCOPE_HOST</I>) together with per-neighbor data belonging to a
 2097: single protocol.
 2098: <P>Active entries represent known neighbors and are stored in a hash
 2099: table (to allow fast retrieval based on the IP address of the node) and
 2100: two linked lists: one global and one per-interface (allowing quick
 2101: processing of interface change events). Inactive entries exist only
 2102: when the protocol has explicitly requested it via the <I>NEF_STICKY</I>
 2103: flag because it wishes to be notified when the node will again become
 2104: a neighbor. Such entries are enqueued in a special list which is walked
 2105: whenever an interface changes its state to up. Neighbor entry VRF
 2106: association is implied by respective protocol.
 2107: <P>When a neighbor event occurs (a neighbor gets disconnected or a sticky
 2108: inactive neighbor becomes connected), the protocol hook <B>neigh_notify()</B>
 2109: is called to advertise the change.
 2110: <P>
 2111: <P><HR><H3>Function</H3>
 2112: <P><I>neighbor *</I>
 2113: <B>neigh_find</B>
 2114: (<I>struct proto *</I> <B>p</B>, <I>ip_addr *</I> <B>a</B>, <I>unsigned</I> <B>flags</B>) --     find or create a neighbor entry.
 2115: <P>
 2116: <H3>Arguments</H3>
 2117: <P>
 2118: <DL>
 2119: <DT><I>struct proto *</I> <B>p</B><DD><P>protocol which asks for the entry.
 2120: <DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the node to be searched for.
 2121: <DT><I>unsigned</I> <B>flags</B><DD><P>0 or <I>NEF_STICKY</I> if you want to create a sticky entry.
 2122: </DL>
 2123: <H3>Description</H3>
 2124: <P>Search the neighbor cache for a node with given IP address. If
 2125: it's found, a pointer to the neighbor entry is returned. If no
 2126: such entry exists and the node is directly connected on
 2127: one of our active interfaces, a new entry is created and returned
 2128: to the caller with protocol-dependent fields initialized to zero.
 2129: If the node is not connected directly or *<B>a</B> is not a valid unicast
 2130: IP address, <B>neigh_find()</B> returns <I>NULL</I>.
 2131: 
 2132: 
 2133: <HR><H3>Function</H3>
 2134: <P><I>void</I>
 2135: <B>neigh_dump</B>
 2136: (<I>neighbor *</I> <B>n</B>) --     dump specified neighbor entry.
 2137: <P>
 2138: <H3>Arguments</H3>
 2139: <P>
 2140: <DL>
 2141: <DT><I>neighbor *</I> <B>n</B><DD><P>the entry to dump
 2142: </DL>
 2143: <H3>Description</H3>
 2144: <P>This functions dumps the contents of a given neighbor entry
 2145: to debug output.
 2146: 
 2147: 
 2148: <HR><H3>Function</H3>
 2149: <P><I>void</I>
 2150: <B>neigh_dump_all</B>
 2151: (<B>void</B>) --     dump all neighbor entries.
 2152: <P>
 2153: <H3>Description</H3>
 2154: <P>
 2155: <P>This function dumps the contents of the neighbor cache to
 2156: debug output.
 2157: 
 2158: 
 2159: <HR><H3>Function</H3>
 2160: <P><I>void</I>
 2161: <B>neigh_if_up</B>
 2162: (<I>struct iface *</I> <B>i</B>)
 2163: <H3>Arguments</H3>
 2164: <P>
 2165: <DL>
 2166: <DT><I>struct iface *</I> <B>i</B><DD><P>interface in question
 2167: </DL>
 2168: <H3>Description</H3>
 2169: <P>Tell the neighbor cache that a new interface became up.
 2170: <P>The neighbor cache wakes up all inactive sticky neighbors with
 2171: addresses belonging to prefixes of the interface <B>i</B>.
 2172: 
 2173: 
 2174: <HR><H3>Function</H3>
 2175: <P><I>void</I>
 2176: <B>neigh_if_down</B>
 2177: (<I>struct iface *</I> <B>i</B>) --     notify neighbor cache about interface down event
 2178: <P>
 2179: <H3>Arguments</H3>
 2180: <P>
 2181: <DL>
 2182: <DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
 2183: </DL>
 2184: <H3>Description</H3>
 2185: <P>Notify the neighbor cache that an interface has ceased to exist.
 2186: <P>It causes all entries belonging to neighbors connected to this interface
 2187: to be flushed.
 2188: 
 2189: 
 2190: <HR><H3>Function</H3>
 2191: <P><I>void</I>
 2192: <B>neigh_if_link</B>
 2193: (<I>struct iface *</I> <B>i</B>) --     notify neighbor cache about interface link change
 2194: <P>
 2195: <H3>Arguments</H3>
 2196: <P>
 2197: <DL>
 2198: <DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
 2199: </DL>
 2200: <H3>Description</H3>
 2201: <P>Notify the neighbor cache that an interface changed link state.
 2202: All owners of neighbor entries connected to this interface are
 2203: notified.
 2204: 
 2205: 
 2206: <HR><H3>Function</H3>
 2207: <P><I>void</I>
 2208: <B>neigh_ifa_update</B>
 2209: (<I>struct ifa *</I> <B>a</B>)
 2210: <H3>Arguments</H3>
 2211: <P>
 2212: <DL>
 2213: <DT><I>struct ifa *</I> <B>a</B><DD><P>interface address in question
 2214: </DL>
 2215: <H3>Description</H3>
 2216: <P>Tell the neighbor cache that an address was added or removed.
 2217: <P>The neighbor cache wakes up all inactive sticky neighbors with
 2218: addresses belonging to prefixes of the interface belonging to <B>ifa</B>
 2219: and causes all unreachable neighbors to be flushed.
 2220: 
 2221: 
 2222: <HR><H3>Function</H3>
 2223: <P><I>void</I>
 2224: <B>neigh_prune</B>
 2225: (<B>void</B>) --     prune neighbor cache
 2226: <P>
 2227: <H3>Description</H3>
 2228: <P>
 2229: <P><B>neigh_prune()</B> examines all neighbor entries cached and removes those
 2230: corresponding to inactive protocols. It's called whenever a protocol
 2231: is shut down to get rid of all its heritage.
 2232: 
 2233: 
 2234: <HR><H3>Function</H3>
 2235: <P><I>void</I>
 2236: <B>neigh_init</B>
 2237: (<I>pool *</I> <B>if_pool</B>) --     initialize the neighbor cache.
 2238: <P>
 2239: <H3>Arguments</H3>
 2240: <P>
 2241: <DL>
 2242: <DT><I>pool *</I> <B>if_pool</B><DD><P>resource pool to be used for neighbor entries.
 2243: </DL>
 2244: <H3>Description</H3>
 2245: <P>This function is called during BIRD startup to initialize
 2246: the neighbor cache module.
 2247: 
 2248: <H2><A NAME="ss2.9">2.9</A> <A HREF="prog.html#toc2.9">Command line interface</A>
 2249: </H2>
 2250: 
 2251: <P>
 2252: <P>This module takes care of the BIRD's command-line interface (CLI).
 2253: The CLI exists to provide a way to control BIRD remotely and to inspect
 2254: its status. It uses a very simple textual protocol over a stream
 2255: connection provided by the platform dependent code (on UNIX systems,
 2256: it's a UNIX domain socket).
 2257: <P>Each session of the CLI consists of a sequence of request and replies,
 2258: slightly resembling the FTP and SMTP protocols.
 2259: Requests are commands encoded as a single line of text, replies are
 2260: sequences of lines starting with a four-digit code followed by either
 2261: a space (if it's the last line of the reply) or a minus sign (when the
 2262: reply is going to continue with the next line), the rest of the line
 2263: contains a textual message semantics of which depends on the numeric
 2264: code. If a reply line has the same code as the previous one and it's
 2265: a continuation line, the whole prefix can be replaced by a single
 2266: white space character.
 2267: <P>Reply codes starting with 0 stand for `action successfully completed' messages,
 2268: 1 means `table entry', 8 `runtime error' and 9 `syntax error'.
 2269: <P>Each CLI session is internally represented by a <I>cli</I> structure and a
 2270: resource pool containing all resources associated with the connection,
 2271: so that it can be easily freed whenever the connection gets closed, not depending
 2272: on the current state of command processing.
 2273: <P>The CLI commands are declared as a part of the configuration grammar
 2274: by using the <CODE>CF_CLI</CODE> macro. When a command is received, it is processed
 2275: by the same lexical analyzer and parser as used for the configuration, but
 2276: it's switched to a special mode by prepending a fake token to the text,
 2277: so that it uses only the CLI command rules. Then the parser invokes
 2278: an execution routine corresponding to the command, which either constructs
 2279: the whole reply and returns it back or (in case it expects the reply will be long)
 2280: it prints a partial reply and asks the CLI module (using the <B>cont</B> hook)
 2281: to call it again when the output is transferred to the user.
 2282: <P>The <B>this_cli</B> variable points to a <I>cli</I> structure of the session being
 2283: currently parsed, but it's of course available only in command handlers
 2284: not entered using the <B>cont</B> hook.
 2285: <P>TX buffer management works as follows: At cli.tx_buf there is a
 2286: list of TX buffers (struct cli_out), cli.tx_write is the buffer
 2287: currently used by the producer (<B>cli_printf()</B>, <B>cli_alloc_out()</B>) and
 2288: cli.tx_pos is the buffer currently used by the consumer
 2289: (<B>cli_write()</B>, in system dependent code). The producer uses
 2290: cli_out.wpos ptr as the current write position and the consumer
 2291: uses cli_out.outpos ptr as the current read position. When the
 2292: producer produces something, it calls <B>cli_write_trigger()</B>. If there
 2293: is not enough space in the current buffer, the producer allocates
 2294: the new one. When the consumer processes everything in the buffer
 2295: queue, it calls <B>cli_written()</B>, tha frees all buffers (except the
 2296: first one) and schedules cli.event .
 2297: <P>
 2298: <P><HR><H3>Function</H3>
 2299: <P><I>void</I>
 2300: <B>cli_printf</B>
 2301: (<I>cli *</I> <B>c</B>, <I>int</I> <B>code</B>, <I>char *</I> <B>msg</B>, <I>...</I> <B>...</B>) --     send reply to a CLI connection
 2302: <P>
 2303: <H3>Arguments</H3>
 2304: <P>
 2305: <DL>
 2306: <DT><I>cli *</I> <B>c</B><DD><P>CLI connection
 2307: <DT><I>int</I> <B>code</B><DD><P>numeric code of the reply, negative for continuation lines
 2308: <DT><I>char *</I> <B>msg</B><DD><P>a <B>printf()</B>-like formatting string.
 2309: <DT><I>...</I> <B>...</B><DD><P>variable arguments
 2310: </DL>
 2311: <H3>Description</H3>
 2312: <P>This function send a single line of reply to a given CLI connection.
 2313: In works in all aspects like <B>bsprintf()</B> except that it automatically
 2314: prepends the reply line prefix.
 2315: <P>Please note that if the connection can be already busy sending some
 2316: data in which case <B>cli_printf()</B> stores the output to a temporary buffer,
 2317: so please avoid sending a large batch of replies without waiting
 2318: for the buffers to be flushed.
 2319: <P>If you want to write to the current CLI output, you can use the <B>cli_msg()</B>
 2320: macro instead.
 2321: 
 2322: 
 2323: <HR><H3>Function</H3>
 2324: <P><I>void</I>
 2325: <B>cli_init</B>
 2326: (<B>void</B>) --     initialize the CLI module
 2327: <P>
 2328: <H3>Description</H3>
 2329: <P>
 2330: <P>This function is called during BIRD startup to initialize
 2331: the internal data structures of the CLI module.
 2332: 
 2333: <H2><A NAME="ss2.10">2.10</A> <A HREF="prog.html#toc2.10">Object locks</A>
 2334: </H2>
 2335: 
 2336: <P>
 2337: <P>The lock module provides a simple mechanism for avoiding conflicts between
 2338: various protocols which would like to use a single physical resource (for
 2339: example a network port). It would be easy to say that such collisions can
 2340: occur only when the user specifies an invalid configuration and therefore
 2341: he deserves to get what he has asked for, but unfortunately they can also
 2342: arise legitimately when the daemon is reconfigured and there exists (although
 2343: for a short time period only) an old protocol instance being shut down and a new one
 2344: willing to start up on the same interface.
 2345: <P>The solution is very simple: when any protocol wishes to use a network port
 2346: or some other non-shareable resource, it asks the core to lock it and it doesn't
 2347: use the resource until it's notified that it has acquired the lock.
 2348: <P>Object locks are represented by <I>object_lock</I> structures which are in turn a
 2349: kind of resource. Lockable resources are uniquely determined by resource type
 2350: (<I>OBJLOCK_UDP</I> for a UDP port etc.), IP address (usually a broadcast or
 2351: multicast address the port is bound to), port number, interface and optional
 2352: instance ID.
 2353: <P>
 2354: <P><HR><H3>Function</H3>
 2355: <P><I>struct object_lock *</I>
 2356: <B>olock_new</B>
 2357: (<I>pool *</I> <B>p</B>) --     create an object lock
 2358: <P>
 2359: <H3>Arguments</H3>
 2360: <P>
 2361: <DL>
 2362: <DT><I>pool *</I> <B>p</B><DD><P>resource pool to create the lock in.
 2363: </DL>
 2364: <H3>Description</H3>
 2365: <P>The <B>olock_new()</B> function creates a new resource of type <I>object_lock</I>
 2366: and returns a pointer to it. After filling in the structure, the caller
 2367: should call <B>olock_acquire()</B> to do the real locking.
 2368: 
 2369: 
 2370: <HR><H3>Function</H3>
 2371: <P><I>void</I>
 2372: <B>olock_acquire</B>
 2373: (<I>struct object_lock *</I> <B>l</B>) --     acquire a lock
 2374: <P>
 2375: <H3>Arguments</H3>
 2376: <P>
 2377: <DL>
 2378: <DT><I>struct object_lock *</I> <B>l</B><DD><P>the lock to acquire
 2379: </DL>
 2380: <H3>Description</H3>
 2381: <P>This function attempts to acquire exclusive access to the non-shareable
 2382: resource described by the lock <B>l</B>. It returns immediately, but as soon
 2383: as the resource becomes available, it calls the <B>hook()</B> function set up
 2384: by the caller.
 2385: <P>When you want to release the resource, just <B>rfree()</B> the lock.
 2386: 
 2387: 
 2388: <HR><H3>Function</H3>
 2389: <P><I>void</I>
 2390: <B>olock_init</B>
 2391: (<B>void</B>) --     initialize the object lock mechanism
 2392: <P>
 2393: <H3>Description</H3>
 2394: <P>
 2395: <P>This function is called during BIRD startup. It initializes
 2396: all the internal data structures of the lock module.
 2397: 
 2398: <HR>
 2399: <A HREF="prog-3.html">Next</A>
 2400: <A HREF="prog-1.html">Previous</A>
 2401: <A HREF="prog.html#toc2">Contents</A>
 2402: </BODY>
 2403: </HTML>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>