<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<META NAME="GENERATOR" CONTENT="LinuxDoc-Tools 1.0.9">
<TITLE>BIRD Programmer's Documentation: Core</TITLE>
<LINK HREF="prog-3.html" REL=next>
<LINK HREF="prog-1.html" REL=previous>
<LINK HREF="prog.html#toc2" REL=contents>
</HEAD>
<BODY>
<A HREF="prog-3.html">Next</A>
<A HREF="prog-1.html">Previous</A>
<A HREF="prog.html#toc2">Contents</A>
<HR>
<H2><A NAME="s2">2.</A> <A HREF="prog.html#toc2">Core</A></H2>
<H2><A NAME="ss2.1">2.1</A> <A HREF="prog.html#toc2.1">Forwarding Information Base</A>
</H2>
<P>
<P>FIB is a data structure designed for storage of routes indexed by their
network prefixes. It supports insertion, deletion, searching by prefix,
`routing' (in CIDR sense, that is searching for a longest prefix matching
a given IP address) and (which makes the structure very tricky to implement)
asynchronous reading, that is enumerating the contents of a FIB while other
modules add, modify or remove entries.
<P>Internally, each FIB is represented as a collection of nodes of type <I>fib_node</I>
indexed using a sophisticated hashing mechanism.
We use two-stage hashing where we calculate a 16-bit primary hash key independent
on hash table size and then we just divide the primary keys modulo table size
to get a real hash key used for determining the bucket containing the node.
The lists of nodes in each bucket are sorted according to the primary hash
key, hence if we keep the total number of buckets to be a power of two,
re-hashing of the structure keeps the relative order of the nodes.
<P>To get the asynchronous reading consistent over node deletions, we need to
keep a list of readers for each node. When a node gets deleted, its readers
are automatically moved to the next node in the table.
<P>Basic FIB operations are performed by functions defined by this module,
enumerating of FIB contents is accomplished by using the <B>FIB_WALK()</B> macro
or <B>FIB_ITERATE_START()</B> if you want to do it asynchronously.
<P>For simple iteration just place the body of the loop between <B>FIB_WALK()</B> and
<B>FIB_WALK_END()</B>. You can't modify the FIB during the iteration (you can modify
data in the node, but not add or remove nodes).
<P>If you need more freedom, you can use the FIB_ITERATE_*() group of macros.
First, you initialize an iterator with <B>FIB_ITERATE_INIT()</B>. Then you can put
the loop body in between <B>FIB_ITERATE_START()</B> and <B>FIB_ITERATE_END()</B>. In
addition, the iteration can be suspended by calling <B>FIB_ITERATE_PUT()</B>.
This'll link the iterator inside the FIB. While suspended, you may modify the
FIB, exit the current function, etc. To resume the iteration, enter the loop
again. You can use <B>FIB_ITERATE_UNLINK()</B> to unlink the iterator (while
iteration is suspended) in cases like premature end of FIB iteration.
<P>Note that the iterator must not be destroyed when the iteration is suspended,
the FIB would then contain a pointer to invalid memory. Therefore, after each
<B>FIB_ITERATE_INIT()</B> or <B>FIB_ITERATE_PUT()</B> there must be either
<B>FIB_ITERATE_START()</B> or <B>FIB_ITERATE_UNLINK()</B> before the iterator is destroyed.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>fib_init</B>
(<I>struct fib *</I> <B>f</B>, <I>pool *</I> <B>p</B>, <I>unsigned</I> <B>node_size</B>, <I>unsigned</I> <B>hash_order</B>, <I>fib_init_func</I> <B>init</B>) -- initialize a new FIB
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>the FIB to be initialized (the structure itself being allocated by the caller)
<DT><I>pool *</I> <B>p</B><DD><P>pool to allocate the nodes in
<DT><I>unsigned</I> <B>node_size</B><DD><P>node size to be used (each node consists of a standard header <I>fib_node</I>
followed by user data)
<DT><I>unsigned</I> <B>hash_order</B><DD><P>initial hash order (a binary logarithm of hash table size), 0 to use default order
(recommended)
<DT><I>fib_init_func</I> <B>init</B><DD><P>pointer a function to be called to initialize a newly created node
</DL>
<H3>Description</H3>
<P>This function initializes a newly allocated FIB and prepares it for use.
<HR><H3>Function</H3>
<P><I>void *</I>
<B>fib_find</B>
(<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) -- search for FIB node by prefix
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
<DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
<DT><I>int</I> <B>len</B><DD><P>prefix length
</DL>
<H3>Description</H3>
<P>Search for a FIB node corresponding to the given prefix, return
a pointer to it or <I>NULL</I> if no such node exists.
<HR><H3>Function</H3>
<P><I>void *</I>
<B>fib_get</B>
(<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) -- find or create a FIB node
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to work with
<DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
<DT><I>int</I> <B>len</B><DD><P>prefix length
</DL>
<H3>Description</H3>
<P>Search for a FIB node corresponding to the given prefix and
return a pointer to it. If no such node exists, create it.
<HR><H3>Function</H3>
<P><I>void *</I>
<B>fib_route</B>
(<I>struct fib *</I> <B>f</B>, <I>ip_addr</I> <B>a</B>, <I>int</I> <B>len</B>) -- CIDR routing lookup
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
<DT><I>ip_addr</I> <B>a</B><DD><P>pointer to IP address of the prefix
<DT><I>int</I> <B>len</B><DD><P>prefix length
</DL>
<H3>Description</H3>
<P>Search for a FIB node with longest prefix matching the given
network, that is a node which a CIDR router would use for routing
that network.
<HR><H3>Function</H3>
<P><I>void</I>
<B>fib_delete</B>
(<I>struct fib *</I> <B>f</B>, <I>void *</I> <B>E</B>) -- delete a FIB node
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to delete from
<DT><I>void *</I> <B>E</B><DD><P>entry to delete
</DL>
<H3>Description</H3>
<P>This function removes the given entry from the FIB,
taking care of all the asynchronous readers by shifting
them to the next node in the canonical reading order.
<HR><H3>Function</H3>
<P><I>void</I>
<B>fib_free</B>
(<I>struct fib *</I> <B>f</B>) -- delete a FIB
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be deleted
</DL>
<H3>Description</H3>
<P>This function deletes a FIB -- it frees all memory associated
with it and all its entries.
<HR><H3>Function</H3>
<P><I>void</I>
<B>fib_check</B>
(<I>struct fib *</I> <B>f</B>) -- audit a FIB
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be checked
</DL>
<H3>Description</H3>
<P>This debugging function audits a FIB by checking its internal consistency.
Use when you suspect somebody of corrupting innocent data structures.
<H2><A NAME="ss2.2">2.2</A> <A HREF="prog.html#toc2.2">Routing tables</A>
</H2>
<P>
<P>Routing tables are probably the most important structures BIRD uses. They
hold all the information about known networks, the associated routes and
their attributes.
<P>There are multiple routing tables (a primary one together with any
number of secondary ones if requested by the configuration). Each table
is basically a FIB containing entries describing the individual
destination networks. For each network (represented by structure <I>net</I>),
there is a one-way linked list of route entries (<I>rte</I>), the first entry
on the list being the best one (i.e., the one we currently use
for routing), the order of the other ones is undetermined.
<P>The <I>rte</I> contains information specific to the route (preference, protocol
metrics, time of last modification etc.) and a pointer to a <I>rta</I> structure
(see the route attribute module for a precise explanation) holding the
remaining route attributes which are expected to be shared by multiple
routes in order to conserve memory.
<P>
<P><HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_find</B>
(<I>net *</I> <B>net</B>, <I>struct rte_src *</I> <B>src</B>) -- find a route
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>net *</I> <B>net</B><DD><P>network node
<DT><I>struct rte_src *</I> <B>src</B><DD><P>route source
</DL>
<H3>Description</H3>
<P>The <B>rte_find()</B> function returns a route for destination <B>net</B>
which is from route source <B>src</B>.
<HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_get_temp</B>
(<I>rta *</I> <B>a</B>) -- get a temporary <I>rte</I>
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>a</B><DD><P>attributes to assign to the new route (a <I>rta</I>; in case it's
un-cached, <B>rte_update()</B> will create a cached copy automatically)
</DL>
<H3>Description</H3>
<P>Create a temporary <I>rte</I> and bind it with the attributes <B>a</B>.
Also set route preference to the default preference set for
the protocol.
<HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_cow_rta</B>
(<I>rte *</I> <B>r</B>, <I>linpool *</I> <B>lp</B>) -- get a private writable copy of <I>rte</I> with writable <I>rta</I>
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
<DT><I>linpool *</I> <B>lp</B><DD><P>a linpool from which to allocate <I>rta</I>
</DL>
<H3>Description</H3>
<P><B>rte_cow_rta()</B> takes a <I>rte</I> and prepares it and associated <I>rta</I> for
modification. There are three possibilities: First, both <I>rte</I> and <I>rta</I> are
private copies, in that case they are returned unchanged. Second, <I>rte</I> is
private copy, but <I>rta</I> is cached, in that case <I>rta</I> is duplicated using
<B>rta_do_cow()</B>. Third, both <I>rte</I> is shared and <I>rta</I> is cached, in that case
both structures are duplicated by <B>rte_do_cow()</B> and <B>rta_do_cow()</B>.
<P>Note that in the second case, cached <I>rta</I> loses one reference, while private
copy created by <B>rta_do_cow()</B> is a shallow copy sharing indirect data (eattrs,
nexthops, ...) with it. To work properly, original shared <I>rta</I> should have
another reference during the life of created private copy.
<H3>Result</H3>
<P>a pointer to the new writable <I>rte</I> with writable <I>rta</I>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_announce</B>
(<I>rtable *</I> <B>tab</B>, <I>unsigned</I> <B>type</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>rte *</I> <B>new_best</B>, <I>rte *</I> <B>old_best</B>, <I>rte *</I> <B>before_old</B>) -- announce a routing table change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>table the route has been added to
<DT><I>unsigned</I> <B>type</B><DD><P>type of route announcement (RA_OPTIMAL or RA_ANY)
<DT><I>net *</I> <B>net</B><DD><P>network in question
<DT><I>rte *</I> <B>new</B><DD><P>the new route to be announced
<DT><I>rte *</I> <B>old</B><DD><P>the previous route for the same network
<DT><I>rte *</I> <B>new_best</B><DD><P>the new best route for the same network
<DT><I>rte *</I> <B>old_best</B><DD><P>the previous best route for the same network
<DT><I>rte *</I> <B>before_old</B><DD><P>The previous route before <B>old</B> for the same network.
If <B>before_old</B> is NULL <B>old</B> was the first.
</DL>
<H3>Description</H3>
<P>This function gets a routing table update and announces it
to all protocols that acccepts given type of route announcement
and are connected to the same table by their announcement hooks.
<P>Route announcement of type <I>RA_OPTIMAL</I> si generated when optimal
route (in routing table <B>tab</B>) changes. In that case <B>old</B> stores the
old optimal route.
<P>Route announcement of type <I>RA_ANY</I> si generated when any route (in
routing table <B>tab</B>) changes In that case <B>old</B> stores the old route
from the same protocol.
<P>For each appropriate protocol, we first call its <B>import_control()</B>
hook which performs basic checks on the route (each protocol has a
right to veto or force accept of the route before any filter is
asked) and adds default values of attributes specific to the new
protocol (metrics, tags etc.). Then it consults the protocol's
export filter and if it accepts the route, the <B>rt_notify()</B> hook of
the protocol gets called.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_free</B>
(<I>rte *</I> <B>e</B>) -- delete a <I>rte</I>
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be deleted
</DL>
<H3>Description</H3>
<P><B>rte_free()</B> deletes the given <I>rte</I> from the routing table it's linked to.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_update2</B>
(<I>struct announce_hook *</I> <B>ah</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>struct rte_src *</I> <B>src</B>) -- enter a new update to a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>pointer to table announce hook
<DT><I>net *</I> <B>net</B><DD><P>network node
<DT><I>rte *</I> <B>new</B><DD><P>a <I>rte</I> representing the new route or <I>NULL</I> for route removal.
<DT><I>struct rte_src *</I> <B>src</B><DD><P>protocol originating the update
</DL>
<H3>Description</H3>
<P>This function is called by the routing protocols whenever they discover
a new route or wish to update/remove an existing route. The right announcement
sequence is to build route attributes first (either un-cached with <B>aflags</B> set
to zero or a cached one using <B>rta_lookup()</B>; in this case please note that
you need to increase the use count of the attributes yourself by calling
<B>rta_clone()</B>), call <B>rte_get_temp()</B> to obtain a temporary <I>rte</I>, fill in all
the appropriate data and finally submit the new <I>rte</I> by calling <B>rte_update()</B>.
<P><B>src</B> specifies the protocol that originally created the route and the meaning
of protocol-dependent data of <B>new</B>. If <B>new</B> is not <I>NULL</I>, <B>src</B> have to be the
same value as <B>new</B>->attrs->proto. <B>p</B> specifies the protocol that called
<B>rte_update()</B>. In most cases it is the same protocol as <B>src</B>. <B>rte_update()</B>
stores <B>p</B> in <B>new</B>->sender;
<P>When <B>rte_update()</B> gets any route, it automatically validates it (checks,
whether the network and next hop address are valid IP addresses and also
whether a normal routing protocol doesn't try to smuggle a host or link
scope route to the table), converts all protocol dependent attributes stored
in the <I>rte</I> to temporary extended attributes, consults import filters of the
protocol to see if the route should be accepted and/or its attributes modified,
stores the temporary attributes back to the <I>rte</I>.
<P>Now, having a "public" version of the route, we
automatically find any old route defined by the protocol <B>src</B>
for network <B>n</B>, replace it by the new one (or removing it if <B>new</B> is <I>NULL</I>),
recalculate the optimal route for this destination and finally broadcast
the change (if any) to all routing protocols by calling <B>rte_announce()</B>.
<P>All memory used for attribute lists and other temporary allocations is taken
from a special linear pool <B>rte_update_pool</B> and freed when <B>rte_update()</B>
finishes.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_refresh_begin</B>
(<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) -- start a refresh cycle
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>t</B><DD><P>related routing table
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook
</DL>
<H3>Description</H3>
<P>This function starts a refresh cycle for given routing table and announce
hook. The refresh cycle is a sequence where the protocol sends all its valid
routes to the routing table (by <B>rte_update()</B>). After that, all protocol
routes (more precisely routes with <B>ah</B> as <B>sender</B>) not sent during the
refresh cycle but still in the table from the past are pruned. This is
implemented by marking all related routes as stale by REF_STALE flag in
<B>rt_refresh_begin()</B>, then marking all related stale routes with REF_DISCARD
flag in <B>rt_refresh_end()</B> and then removing such routes in the prune loop.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_refresh_end</B>
(<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) -- end a refresh cycle
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>t</B><DD><P>related routing table
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook
</DL>
<H3>Description</H3>
<P>This function starts a refresh cycle for given routing table and announce
hook. See <B>rt_refresh_begin()</B> for description of refresh cycles.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_dump</B>
(<I>rte *</I> <B>e</B>) -- dump a route
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be dumped
</DL>
<H3>Description</H3>
<P>This functions dumps contents of a <I>rte</I> to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_dump</B>
(<I>rtable *</I> <B>t</B>) -- dump a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>t</B><DD><P>routing table to be dumped
</DL>
<H3>Description</H3>
<P>This function dumps contents of a given routing table to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_dump_all</B>
(<B>void</B>) -- dump all routing tables
<P>
<H3>Description</H3>
<P>
<P>This function dumps contents of all routing tables to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_init</B>
(<B>void</B>) -- initialize routing tables
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup. It initializes the
routing table module.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rt_prune_table</B>
(<I>rtable *</I> <B>tab</B>) -- prune a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>a routing table for pruning
</DL>
<H3>Description</H3>
<P>This function scans the routing table <B>tab</B> and removes routes belonging to
flushing protocols, discarded routes and also stale network entries, in a
similar fashion like <B>rt_prune_loop()</B>. Returns 1 when all such routes are
pruned. Contrary to <B>rt_prune_loop()</B>, this function is not a part of the
protocol flushing loop, but it is called from <B>rt_event()</B> for just one routing
table.
<P>Note that <B>rt_prune_table()</B> and <B>rt_prune_loop()</B> share (for each table) the
prune state (<B>prune_state</B>) and also the pruning iterator (<B>prune_fit</B>).
<HR><H3>Function</H3>
<P><I>int</I>
<B>rt_prune_loop</B>
(<B>void</B>) -- prune routing tables
<P>
<H3>Description</H3>
<P>
<P>The prune loop scans routing tables and removes routes belonging to flushing
protocols, discarded routes and also stale network entries. Returns 1 when
all such routes are pruned. It is a part of the protocol flushing loop.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_lock_table</B>
(<I>rtable *</I> <B>r</B>) -- lock a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>r</B><DD><P>routing table to be locked
</DL>
<H3>Description</H3>
<P>Lock a routing table, because it's in use by a protocol,
preventing it from being freed when it gets undefined in a new
configuration.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_unlock_table</B>
(<I>rtable *</I> <B>r</B>) -- unlock a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>r</B><DD><P>routing table to be unlocked
</DL>
<H3>Description</H3>
<P>Unlock a routing table formerly locked by <B>rt_lock_table()</B>,
that is decrease its use count and delete it if it's scheduled
for deletion by configuration changes.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_commit</B>
(<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>) -- commit new routing table configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>new</B><DD><P>new configuration
<DT><I>struct config *</I> <B>old</B><DD><P>original configuration or <I>NULL</I> if it's boot time config
</DL>
<H3>Description</H3>
<P>Scan differences between <B>old</B> and <B>new</B> configuration and modify
the routing tables according to these changes. If <B>new</B> defines a
previously unknown table, create it, if it omits a table existing
in <B>old</B>, schedule it for deletion (it gets deleted when all protocols
disconnect from it by calling <B>rt_unlock_table()</B>), if it exists
in both configurations, leave it unchanged.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rt_feed_baby</B>
(<I>struct proto *</I> <B>p</B>) -- advertise routes to a new protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol to be fed
</DL>
<H3>Description</H3>
<P>This function performs one pass of advertisement of routes to a newly
initialized protocol. It's called by the protocol code as long as it
has something to do. (We avoid transferring all the routes in single
pass in order not to monopolize CPU time.)
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_feed_baby_abort</B>
(<I>struct proto *</I> <B>p</B>) -- abort protocol feeding
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol
</DL>
<H3>Description</H3>
<P>This function is called by the protocol code when the protocol
stops or ceases to exist before the last iteration of <B>rt_feed_baby()</B>
has finished.
<HR><H3>Function</H3>
<P><I>net *</I>
<B>net_find</B>
(<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) -- find a network entry
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
<DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
<DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
</DL>
<H3>Description</H3>
<P><B>net_find()</B> looks up the given network in routing table <B>tab</B> and
returns a pointer to its <I>net</I> entry or <I>NULL</I> if no such network
exists.
<HR><H3>Function</H3>
<P><I>net *</I>
<B>net_get</B>
(<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) -- obtain a network entry
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
<DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
<DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
</DL>
<H3>Description</H3>
<P><B>net_get()</B> looks up the given network in routing table <B>tab</B> and
returns a pointer to its <I>net</I> entry. If no such entry exists, it's
created.
<HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_cow</B>
(<I>rte *</I> <B>r</B>) -- copy a route for writing
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
</DL>
<H3>Description</H3>
<P><B>rte_cow()</B> takes a <I>rte</I> and prepares it for modification. The exact action
taken depends on the flags of the <I>rte</I> -- if it's a temporary entry, it's
just returned unchanged, else a new temporary entry with the same contents
is created.
<P>The primary use of this function is inside the filter machinery -- when
a filter wants to modify <I>rte</I> contents (to change the preference or to
attach another set of attributes), it must ensure that the <I>rte</I> is not
shared with anyone else (and especially that it isn't stored in any routing
table).
<H3>Result</H3>
<P>a pointer to the new writable <I>rte</I>.
<H2><A NAME="ss2.3">2.3</A> <A HREF="prog.html#toc2.3">Route attribute cache</A>
</H2>
<P>
<P>Each route entry carries a set of route attributes. Several of them
vary from route to route, but most attributes are usually common
for a large number of routes. To conserve memory, we've decided to
store only the varying ones directly in the <I>rte</I> and hold the rest
in a special structure called <I>rta</I> which is shared among all the
<I>rte</I>'s with these attributes.
<P>Each <I>rta</I> contains all the static attributes of the route (i.e.,
those which are always present) as structure members and a list of
dynamic attributes represented by a linked list of <I>ea_list</I>
structures, each of them consisting of an array of <I>eattr</I>'s containing
the individual attributes. An attribute can be specified more than once
in the <I>ea_list</I> chain and in such case the first occurrence overrides
the others. This semantics is used especially when someone (for example
a filter) wishes to alter values of several dynamic attributes, but
it wants to preserve the original attribute lists maintained by
another module.
<P>Each <I>eattr</I> contains an attribute identifier (split to protocol ID and
per-protocol attribute ID), protocol dependent flags, a type code (consisting
of several bit fields describing attribute characteristics) and either an
embedded 32-bit value or a pointer to a <I>adata</I> structure holding attribute
contents.
<P>There exist two variants of <I>rta</I>'s -- cached and un-cached ones. Un-cached
<I>rta</I>'s can have arbitrarily complex structure of <I>ea_list</I>'s and they
can be modified by any module in the route processing chain. Cached
<I>rta</I>'s have their attribute lists normalized (that means at most one
<I>ea_list</I> is present and its values are sorted in order to speed up
searching), they are stored in a hash table to make fast lookup possible
and they are provided with a use count to allow sharing.
<P>Routing tables always contain only cached <I>rta</I>'s.
<P>
<P><HR><H3>Function</H3>
<P><I>struct mpnh *</I>
<B>mpnh_merge</B>
(<I>struct mpnh *</I> <B>x</B>, <I>struct mpnh *</I> <B>y</B>, <I>int</I> <B>rx</B>, <I>int</I> <B>ry</B>, <I>int</I> <B>max</B>, <I>linpool *</I> <B>lp</B>) -- merge nexthop lists
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct mpnh *</I> <B>x</B><DD><P>list 1
<DT><I>struct mpnh *</I> <B>y</B><DD><P>list 2
<DT><I>int</I> <B>rx</B><DD><P>reusability of list <B>x</B>
<DT><I>int</I> <B>ry</B><DD><P>reusability of list <B>y</B>
<DT><I>int</I> <B>max</B><DD><P>max number of nexthops
<DT><I>linpool *</I> <B>lp</B><DD><P>linpool for allocating nexthops
</DL>
<H3>Description</H3>
<P>The <B>mpnh_merge()</B> function takes two nexthop lists <B>x</B> and <B>y</B> and merges them,
eliminating possible duplicates. The input lists must be sorted and the
result is sorted too. The number of nexthops in result is limited by <B>max</B>.
New nodes are allocated from linpool <B>lp</B>.
<P>The arguments <B>rx</B> and <B>ry</B> specify whether corresponding input lists may be
consumed by the function (i.e. their nodes reused in the resulting list), in
that case the caller should not access these lists after that. To eliminate
issues with deallocation of these lists, the caller should use some form of
bulk deallocation (e.g. stack or linpool) to free these nodes when the
resulting list is no longer needed. When reusability is not set, the
corresponding lists are not modified nor linked from the resulting list.
<HR><H3>Function</H3>
<P><I>eattr *</I>
<B>ea_find</B>
(<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>) -- find an extended attribute
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list to search in
<DT><I>unsigned</I> <B>id</B><DD><P>attribute ID to search for
</DL>
<H3>Description</H3>
<P>Given an extended attribute list, <B>ea_find()</B> searches for a first
occurrence of an attribute with specified ID, returning either a pointer
to its <I>eattr</I> structure or <I>NULL</I> if no such attribute exists.
<HR><H3>Function</H3>
<P><I>eattr *</I>
<B>ea_walk</B>
(<I>struct ea_walk_state *</I> <B>s</B>, <I>uint</I> <B>id</B>, <I>uint</I> <B>max</B>) -- walk through extended attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ea_walk_state *</I> <B>s</B><DD><P>walk state structure
<DT><I>uint</I> <B>id</B><DD><P>start of attribute ID interval
<DT><I>uint</I> <B>max</B><DD><P>length of attribute ID interval
</DL>
<H3>Description</H3>
<P>Given an extended attribute list, <B>ea_walk()</B> walks through the list looking
for first occurrences of attributes with ID in specified interval from <B>id</B> to
(<B>id</B> + <B>max</B> - 1), returning pointers to found <I>eattr</I> structures, storing its
walk state in <B>s</B> for subsequent calls.
<P>The function <B>ea_walk()</B> is supposed to be called in a loop, with initially
zeroed walk state structure <B>s</B> with filled the initial extended attribute
list, returning one found attribute in each call or <I>NULL</I> when no other
attribute exists. The extended attribute list or the arguments should not be
modified between calls. The maximum value of <B>max</B> is 128.
<HR><H3>Function</H3>
<P><I>int</I>
<B>ea_get_int</B>
(<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>, <I>int</I> <B>def</B>) -- fetch an integer attribute
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
<DT><I>unsigned</I> <B>id</B><DD><P>attribute ID
<DT><I>int</I> <B>def</B><DD><P>default value
</DL>
<H3>Description</H3>
<P>This function is a shortcut for retrieving a value of an integer attribute
by calling <B>ea_find()</B> to find the attribute, extracting its value or returning
a provided default if no such attribute is present.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_sort</B>
(<I>ea_list *</I> <B>e</B>) -- sort an attribute list
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>list to be sorted
</DL>
<H3>Description</H3>
<P>This function takes a <I>ea_list</I> chain and sorts the attributes
within each of its entries.
<P>If an attribute occurs multiple times in a single <I>ea_list</I>,
<B>ea_sort()</B> leaves only the first (the only significant) occurrence.
<HR><H3>Function</H3>
<P><I>unsigned</I>
<B>ea_scan</B>
(<I>ea_list *</I> <B>e</B>) -- estimate attribute list size
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
</DL>
<H3>Description</H3>
<P>This function calculates an upper bound of the size of
a given <I>ea_list</I> after merging with <B>ea_merge()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_merge</B>
(<I>ea_list *</I> <B>e</B>, <I>ea_list *</I> <B>t</B>) -- merge segments of an attribute list
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
<DT><I>ea_list *</I> <B>t</B><DD><P>buffer to store the result to
</DL>
<H3>Description</H3>
<P>This function takes a possibly multi-segment attribute list
and merges all of its segments to one.
<P>The primary use of this function is for <I>ea_list</I> normalization:
first call <B>ea_scan()</B> to determine how much memory will the result
take, then allocate a buffer (usually using <B>alloca()</B>), merge the
segments with <B>ea_merge()</B> and finally sort and prune the result
by calling <B>ea_sort()</B>.
<HR><H3>Function</H3>
<P><I>int</I>
<B>ea_same</B>
(<I>ea_list *</I> <B>x</B>, <I>ea_list *</I> <B>y</B>) -- compare two <I>ea_list</I>'s
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>x</B><DD><P>attribute list
<DT><I>ea_list *</I> <B>y</B><DD><P>attribute list
</DL>
<H3>Description</H3>
<P><B>ea_same()</B> compares two normalized attribute lists <B>x</B> and <B>y</B> and returns
1 if they contain the same attributes, 0 otherwise.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_show</B>
(<I>struct cli *</I> <B>c</B>, <I>eattr *</I> <B>e</B>) -- print an <I>eattr</I> to CLI
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct cli *</I> <B>c</B><DD><P>destination CLI
<DT><I>eattr *</I> <B>e</B><DD><P>attribute to be printed
</DL>
<H3>Description</H3>
<P>This function takes an extended attribute represented by its <I>eattr</I>
structure and prints it to the CLI according to the type information.
<P>If the protocol defining the attribute provides its own
<B>get_attr()</B> hook, it's consulted first.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_dump</B>
(<I>ea_list *</I> <B>e</B>) -- dump an extended attribute
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute to be dumped
</DL>
<H3>Description</H3>
<P><B>ea_dump()</B> dumps contents of the extended attribute given to
the debug output.
<HR><H3>Function</H3>
<P><I>uint</I>
<B>ea_hash</B>
(<I>ea_list *</I> <B>e</B>) -- calculate an <I>ea_list</I> hash key
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
</DL>
<H3>Description</H3>
<P><B>ea_hash()</B> takes an extended attribute list and calculated a hopefully
uniformly distributed hash value from its contents.
<HR><H3>Function</H3>
<P><I>ea_list *</I>
<B>ea_append</B>
(<I>ea_list *</I> <B>to</B>, <I>ea_list *</I> <B>what</B>) -- concatenate <I>ea_list</I>'s
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>to</B><DD><P>destination list (can be <I>NULL</I>)
<DT><I>ea_list *</I> <B>what</B><DD><P>list to be appended (can be <I>NULL</I>)
</DL>
<H3>Description</H3>
<P>This function appends the <I>ea_list</I> <B>what</B> at the end of
<I>ea_list</I> <B>to</B> and returns a pointer to the resulting list.
<HR><H3>Function</H3>
<P><I>rta *</I>
<B>rta_lookup</B>
(<I>rta *</I> <B>o</B>) -- look up a <I>rta</I> in attribute cache
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>o</B><DD><P>a un-cached <I>rta</I>
</DL>
<H3>Description</H3>
<P><B>rta_lookup()</B> gets an un-cached <I>rta</I> structure and returns its cached
counterpart. It starts with examining the attribute cache to see whether
there exists a matching entry. If such an entry exists, it's returned and
its use count is incremented, else a new entry is created with use count
set to 1.
<P>The extended attribute lists attached to the <I>rta</I> are automatically
converted to the normalized form.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_dump</B>
(<I>rta *</I> <B>a</B>) -- dump route attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>a</B><DD><P>attribute structure to dump
</DL>
<H3>Description</H3>
<P>This function takes a <I>rta</I> and dumps its contents to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_dump_all</B>
(<B>void</B>) -- dump attribute cache
<P>
<H3>Description</H3>
<P>
<P>This function dumps the whole contents of route attribute cache
to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_init</B>
(<B>void</B>) -- initialize route attribute cache
<P>
<H3>Description</H3>
<P>
<P>This function is called during initialization of the routing
table module to set up the internals of the attribute cache.
<HR><H3>Function</H3>
<P><I>rta *</I>
<B>rta_clone</B>
(<I>rta *</I> <B>r</B>) -- clone route attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be cloned
</DL>
<H3>Description</H3>
<P><B>rta_clone()</B> takes a cached <I>rta</I> and returns its identical cached
copy. Currently it works by just returning the original <I>rta</I> with
its use count incremented.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_free</B>
(<I>rta *</I> <B>r</B>) -- free route attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be freed
</DL>
<H3>Description</H3>
<P>If you stop using a <I>rta</I> (for example when deleting a route which uses
it), you need to call <B>rta_free()</B> to notify the attribute cache the
attribute is no longer in use and can be freed if you were the last
user (which <B>rta_free()</B> tests by inspecting the use count).
<P>
<H2><A NAME="ss2.4">2.4</A> <A HREF="prog.html#toc2.4">Routing protocols</A>
</H2>
<H3>Introduction</H3>
<P>The routing protocols are the bird's heart and a fine amount of code
is dedicated to their management and for providing support functions to them.
(-: Actually, this is the reason why the directory with sources of the core
code is called <CODE>nest</CODE> :-).
<P>
<P>When talking about protocols, one need to distinguish between <EM>protocols</EM>
and protocol <EM>instances</EM>. A protocol exists exactly once, not depending on whether
it's configured or not and it can have an arbitrary number of instances corresponding
to its "incarnations" requested by the configuration file. Each instance is completely
autonomous, has its own configuration, its own status, its own set of routes and its
own set of interfaces it works on.
<P>
<P>A protocol is represented by a <I>protocol</I> structure containing all the basic
information (protocol name, default settings and pointers to most of the protocol
hooks). All these structures are linked in the <B>protocol_list</B> list.
<P>
<P>Each instance has its own <I>proto</I> structure describing all its properties: protocol
type, configuration, a resource pool where all resources belonging to the instance
live, various protocol attributes (take a look at the declaration of <I>proto</I> in
<CODE>protocol.h</CODE>), protocol states (see below for what do they mean), connections
to routing tables, filters attached to the protocol
and finally a set of pointers to the rest of protocol hooks (they
are the same for all instances of the protocol, but in order to avoid extra
indirections when calling the hooks from the fast path, they are stored directly
in <I>proto</I>). The instance is always linked in both the global instance list
(<B>proto_list</B>) and a per-status list (either <B>active_proto_list</B> for
running protocols, <B>initial_proto_list</B> for protocols being initialized or
<B>flush_proto_list</B> when the protocol is being shut down).
<P>
<P>The protocol hooks are described in the next chapter, for more information about
configuration of protocols, please refer to the configuration chapter and also
to the description of the <B>proto_commit</B> function.
<P>
<H3>Protocol states</H3>
<P>As startup and shutdown of each protocol are complex processes which can be affected
by lots of external events (user's actions, reconfigurations, behavior of neighboring routers etc.),
we have decided to supervise them by a pair of simple state machines -- the protocol
state machine and a core state machine.
<P>
<P>The <EM>protocol state machine</EM> corresponds to internal state of the protocol
and the protocol can alter its state whenever it wants to. There are
the following states:
<P>
<DL>
<DT><CODE>PS_DOWN</CODE><DD><P>The protocol is down and waits for being woken up by calling its
start() hook.
<DT><CODE>PS_START</CODE><DD><P>The protocol is waiting for connection with the rest of the
network. It's active, it has resources allocated, but it still doesn't want
any routes since it doesn't know what to do with them.
<DT><CODE>PS_UP</CODE><DD><P>The protocol is up and running. It communicates with the core,
delivers routes to tables and wants to hear announcement about route changes.
<DT><CODE>PS_STOP</CODE><DD><P>The protocol has been shut down (either by being asked by the
core code to do so or due to having encountered a protocol error).
</DL>
<P>
<P>Unless the protocol is in the <CODE>PS_DOWN</CODE> state, it can decide to change
its state by calling the <B>proto_notify_state</B> function.
<P>
<P>At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.
<P>
<P>The <EM>core state machine</EM> takes care of the core view of protocol state.
The states are traversed according to changes of the protocol state machine, but
sometimes the transitions are delayed if the core needs to finish some actions
(for example sending of new routes to the protocol) before proceeding to the
new state. There are the following core states:
<P>
<DL>
<DT><CODE>FS_HUNGRY</CODE><DD><P>The protocol is down, it doesn't have any routes and
doesn't want them.
<DT><CODE>FS_FEEDING</CODE><DD><P>The protocol has reached the <CODE>PS_UP</CODE> state, but
we are still busy sending the initial set of routes to it.
<DT><CODE>FS_HAPPY</CODE><DD><P>The protocol is up and has complete routing information.
<DT><CODE>FS_FLUSHING</CODE><DD><P>The protocol is shutting down (it's in either <CODE>PS_STOP</CODE>
or <CODE>PS_DOWN</CODE> state) and we're flushing all of its routes from the
routing tables.
</DL>
<P>
<H3>Functions of the protocol module</H3>
<P>The protocol module provides the following functions:
<HR><H3>Function</H3>
<P><I>void *</I>
<B>proto_new</B>
(<I>struct proto_config *</I> <B>c</B>, <I>unsigned</I> <B>size</B>) -- create a new protocol instance
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>c</B><DD><P>protocol configuration
<DT><I>unsigned</I> <B>size</B><DD><P>size of protocol data structure (each protocol instance is represented by
a structure starting with generic part [struct <I>proto</I>] and continued
with data specific to the protocol)
</DL>
<H3>Description</H3>
<P>When a new configuration has been read in, the core code starts
initializing all the protocol instances configured by calling their
<B>init()</B> hooks with the corresponding instance configuration. The initialization
code of the protocol is expected to create a new instance according to the
configuration by calling this function and then modifying the default settings
to values wanted by the protocol.
<HR><H3>Function</H3>
<P><I>struct announce_hook *</I>
<B>proto_add_announce_hook</B>
(<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>, <I>struct proto_stats *</I> <B>stats</B>) -- connect protocol to a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>struct rtable *</I> <B>t</B><DD><P>routing table to connect to
<DT><I>struct proto_stats *</I> <B>stats</B><DD><P>per-table protocol statistics
</DL>
<H3>Description</H3>
<P>This function creates a connection between the protocol instance <B>p</B> and the
routing table <B>t</B>, making the protocol hear all changes in the table.
<P>The announce hook is linked in the protocol ahook list. Announce hooks are
allocated from the routing table resource pool and when protocol accepts
routes also in the table ahook list. The are linked to the table ahook list
and unlinked from it depending on export_state (in <B>proto_want_export_up()</B> and
<B>proto_want_export_down()</B>) and they are automatically freed after the protocol
is flushed (in <B>proto_fell_down()</B>).
<P>Unless you want to listen to multiple routing tables (as the Pipe protocol
does), you needn't to worry about this function since the connection to the
protocol's primary routing table is initialized automatically by the core
code.
<HR><H3>Function</H3>
<P><I>struct announce_hook *</I>
<B>proto_find_announce_hook</B>
(<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>) -- find announce hooks
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>struct rtable *</I> <B>t</B><DD><P>routing table
</DL>
<H3>Description</H3>
<P>Returns pointer to announce hook or NULL
<HR><H3>Function</H3>
<P><I>void *</I>
<B>proto_config_new</B>
(<I>struct protocol *</I> <B>pr</B>, <I>int</I> <B>class</B>) -- create a new protocol configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct protocol *</I> <B>pr</B><DD><P>protocol the configuration will belong to
<DT><I>int</I> <B>class</B><DD><P>SYM_PROTO or SYM_TEMPLATE
</DL>
<H3>Description</H3>
<P>Whenever the configuration file says that a new instance
of a routing protocol should be created, the parser calls
<B>proto_config_new()</B> to create a configuration entry for this
instance (a structure staring with the <I>proto_config</I> header
containing all the generic items followed by protocol-specific
ones). Also, the configuration entry gets added to the list
of protocol instances kept in the configuration.
<P>The function is also used to create protocol templates (when class
SYM_TEMPLATE is specified), the only difference is that templates
are not added to the list of protocol instances and therefore not
initialized during <B>protos_commit()</B>).
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_copy_config</B>
(<I>struct proto_config *</I> <B>dest</B>, <I>struct proto_config *</I> <B>src</B>) -- copy a protocol configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>dest</B><DD><P>destination protocol configuration
<DT><I>struct proto_config *</I> <B>src</B><DD><P>source protocol configuration
</DL>
<H3>Description</H3>
<P>Whenever a new instance of a routing protocol is created from the
template, <B>proto_copy_config()</B> is called to copy a content of
the source protocol configuration to the new protocol configuration.
Name, class and a node in protos list of <B>dest</B> are kept intact.
<B>copy_config()</B> protocol hook is used to copy protocol-specific data.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_preconfig</B>
(<I>struct config *</I> <B>c</B>) -- pre-configuration processing
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>This function calls the <B>preconfig()</B> hooks of all routing
protocols available to prepare them for reading of the new
configuration.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_postconfig</B>
(<I>struct config *</I> <B>c</B>) -- post-configuration processing
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>This function calls the <B>postconfig()</B> hooks of all protocol
instances specified in configuration <B>c</B>. The hooks are not
called for protocol templates.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_commit</B>
(<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>, <I>int</I> <B>force_reconfig</B>, <I>int</I> <B>type</B>) -- commit new protocol configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>new</B><DD><P>new configuration
<DT><I>struct config *</I> <B>old</B><DD><P>old configuration or <I>NULL</I> if it's boot time config
<DT><I>int</I> <B>force_reconfig</B><DD><P>force restart of all protocols (used for example
when the router ID changes)
<DT><I>int</I> <B>type</B><DD><P>type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
</DL>
<H3>Description</H3>
<P>Scan differences between <B>old</B> and <B>new</B> configuration and adjust all
protocol instances to conform to the new configuration.
<P>When a protocol exists in the new configuration, but it doesn't in the
original one, it's immediately started. When a collision with the other
running protocol would arise, the new protocol will be temporarily stopped
by the locking mechanism.
<P>When a protocol exists in the old configuration, but it doesn't in the
new one, it's shut down and deleted after the shutdown completes.
<P>When a protocol exists in both configurations, the core decides
whether it's possible to reconfigure it dynamically - it checks all
the core properties of the protocol (changes in filters are ignored
if type is RECONFIG_SOFT) and if they match, it asks the
<B>reconfigure()</B> hook of the protocol to see if the protocol is able
to switch to the new configuration. If it isn't possible, the
protocol is shut down and a new instance is started with the new
configuration after the shutdown is completed.
<H2><A NAME="ss2.5">2.5</A> <A HREF="prog.html#toc2.5">Graceful restart recovery</A>
</H2>
<P>
<P>Graceful restart of a router is a process when the routing plane (e.g. BIRD)
restarts but both the forwarding plane (e.g kernel routing table) and routing
neighbors keep proper routes, and therefore uninterrupted packet forwarding
is maintained.
<P>BIRD implements graceful restart recovery by deferring export of routes to
protocols until routing tables are refilled with the expected content. After
start, protocols generate routes as usual, but routes are not propagated to
them, until protocols report that they generated all routes. After that,
graceful restart recovery is finished and the export (and the initial feed)
to protocols is enabled.
<P>When graceful restart recovery need is detected during initialization, then
enabled protocols are marked with <B>gr_recovery</B> flag before start. Such
protocols then decide how to proceed with graceful restart, participation is
voluntary. Protocols could lock the recovery by <B>proto_graceful_restart_lock()</B>
(stored in <B>gr_lock</B> flag), which means that they want to postpone the end of
the recovery until they converge and then unlock it. They also could set
<B>gr_wait</B> before advancing to <I>PS_UP</I>, which means that the core should defer
route export to that protocol until the end of the recovery. This should be
done by protocols that expect their neigbors to keep the proper routes
(kernel table, BGP sessions with BGP graceful restart capability).
<P>The graceful restart recovery is finished when either all graceful restart
locks are unlocked or when graceful restart wait timer fires.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>graceful_restart_recovery</B>
(<B>void</B>) -- request initial graceful restart recovery
<P>
<H3>Graceful restart recovery</H3>
<P>
<P>Called by the platform initialization code if the need for recovery
after graceful restart is detected during boot. Have to be called
before <B>protos_commit()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>graceful_restart_init</B>
(<B>void</B>) -- initialize graceful restart
<P>
<H3>Description</H3>
<P>
<P>When graceful restart recovery was requested, the function starts an active
phase of the recovery and initializes graceful restart wait timer. The
function have to be called after <B>protos_commit()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>graceful_restart_done</B>
(<I>struct timer *t</I> <B>UNUSED</B>) -- finalize graceful restart
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct timer *t</I> <B>UNUSED</B><DD><P>-- undescribed --
</DL>
<H3>Description</H3>
<P>When there are no locks on graceful restart, the functions finalizes the
graceful restart recovery. Protocols postponing route export until the end of
the recovery are awakened and the export to them is enabled. All other
related state is cleared. The function is also called when the graceful
restart wait timer fires (but there are still some locks).
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_graceful_restart_lock</B>
(<I>struct proto *</I> <B>p</B>) -- lock graceful restart by protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>This function allows a protocol to postpone the end of graceful restart
recovery until it converges. The lock is removed when the protocol calls
<B>proto_graceful_restart_unlock()</B> or when the protocol is stopped.
<P>The function have to be called during the initial phase of graceful restart
recovery and only for protocols that are part of graceful restart (i.e. their
<B>gr_recovery</B> is set), which means it should be called from protocol start
hooks.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_graceful_restart_unlock</B>
(<I>struct proto *</I> <B>p</B>) -- unlock graceful restart by protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>This function unlocks a lock from <B>proto_graceful_restart_lock()</B>. It is also
automatically called when the lock holding protocol went down.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_dump_all</B>
(<B>void</B>) -- dump status of all protocols
<P>
<H3>Description</H3>
<P>
<P>This function dumps status of all existing protocol instances to the
debug output. It involves printing of general status information
such as protocol states, its position on the protocol lists
and also calling of a <B>dump()</B> hook of the protocol to print
the internals.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_build</B>
(<I>struct protocol *</I> <B>p</B>) -- make a single protocol available
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct protocol *</I> <B>p</B><DD><P>the protocol
</DL>
<H3>Description</H3>
<P>After the platform specific initialization code uses <B>protos_build()</B>
to add all the standard protocols, it should call <B>proto_build()</B> for
all platform specific protocols to inform the core that they exist.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_build</B>
(<B>void</B>) -- build a protocol list
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup to insert
all standard protocols to the global protocol list. Insertion
of platform specific protocols (such as the kernel syncer)
is in the domain of competence of the platform dependent
startup code.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_set_message</B>
(<I>struct proto *</I> <B>p</B>, <I>char *</I> <B>msg</B>, <I>int</I> <B>len</B>) -- set administrative message to protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol
<DT><I>char *</I> <B>msg</B><DD><P>message
<DT><I>int</I> <B>len</B><DD><P>message length (-1 for NULL-terminated string)
</DL>
<H3>Description</H3>
<P>The function sets administrative message (string) related to protocol state
change. It is called by the nest code for manual enable/disable/restart
commands all routes to the protocol, and by protocol-specific code when the
protocol state change is initiated by the protocol. Using NULL message clears
the last message. The message string may be either NULL-terminated or with an
explicit length.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_request_feeding</B>
(<I>struct proto *</I> <B>p</B>) -- request feeding routes to the protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>given protocol
</DL>
<H3>Description</H3>
<P>Sometimes it is needed to send again all routes to the
protocol. This is called feeding and can be requested by this
function. This would cause protocol export state transition
to ES_FEEDING (during feeding) and when completed, it will
switch back to ES_READY. This function can be called even
when feeding is already running, in that case it is restarted.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_notify_limit</B>
(<I>struct announce_hook *</I> <B>ah</B>, <I>struct proto_limit *</I> <B>l</B>, <I>int</I> <B>dir</B>, <I>u32</I> <B>rt_count</B>)
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>announce hook
<DT><I>struct proto_limit *</I> <B>l</B><DD><P>limit being hit
<DT><I>int</I> <B>dir</B><DD><P>limit direction (PLD_*)
<DT><I>u32</I> <B>rt_count</B><DD><P>the number of routes
</DL>
<H3>Description</H3>
<P>The function is called by the route processing core when limit <B>l</B>
is breached. It activates the limit and tooks appropriate action
according to <B>l</B>->action.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_notify_state</B>
(<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>ps</B>) -- notify core about protocol state change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol the state of which has changed
<DT><I>unsigned</I> <B>ps</B><DD><P>the new status
</DL>
<H3>Description</H3>
<P>Whenever a state of a protocol changes due to some event internal
to the protocol (i.e., not inside a <B>start()</B> or <B>shutdown()</B> hook),
it should immediately notify the core about the change by calling
<B>proto_notify_state()</B> which will write the new state to the <I>proto</I>
structure and take all the actions necessary to adapt to the new
state. State change to PS_DOWN immediately frees resources of protocol
and might execute start callback of protocol; therefore,
it should be used at tail positions of protocol callbacks.
<H2><A NAME="ss2.6">2.6</A> <A HREF="prog.html#toc2.6">Protocol hooks</A>
</H2>
<P>
<P>Each protocol can provide a rich set of hook functions referred to by pointers
in either the <I>proto</I> or <I>protocol</I> structure. They are called by the core whenever
it wants the protocol to perform some action or to notify the protocol about
any change of its environment. All of the hooks can be set to <I>NULL</I> which means
to ignore the change or to take a default action.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>preconfig</B>
(<I>struct protocol *</I> <B>p</B>, <I>struct config *</I> <B>c</B>) -- protocol preconfiguration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct protocol *</I> <B>p</B><DD><P>a routing protocol
<DT><I>struct config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>The <B>preconfig()</B> hook is called before parsing of a new configuration.
<HR><H3>Function</H3>
<P><I>void</I>
<B>postconfig</B>
(<I>struct proto_config *</I> <B>c</B>) -- instance post-configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
</DL>
<H3>Description</H3>
<P>The <B>postconfig()</B> hook is called for each configured instance after
parsing of the new configuration is finished.
<HR><H3>Function</H3>
<P><I>struct proto *</I>
<B>init</B>
(<I>struct proto_config *</I> <B>c</B>) -- initialize an instance
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
</DL>
<H3>Description</H3>
<P>The <B>init()</B> hook is called by the core to create a protocol instance
according to supplied protocol configuration.
<H3>Result</H3>
<P>a pointer to the instance created
<HR><H3>Function</H3>
<P><I>int</I>
<B>reconfigure</B>
(<I>struct proto *</I> <B>p</B>, <I>struct proto_config *</I> <B>c</B>) -- request instance reconfiguration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>an instance
<DT><I>struct proto_config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>The core calls the <B>reconfigure()</B> hook whenever it wants to ask the
protocol for switching to a new configuration. If the reconfiguration
is possible, the hook returns 1. Otherwise, it returns 0 and the core
will shut down the instance and start a new one with the new configuration.
<P>After the protocol confirms reconfiguration, it must no longer keep any
references to the old configuration since the memory it's stored in can
be re-used at any time.
<HR><H3>Function</H3>
<P><I>void</I>
<B>dump</B>
(<I>struct proto *</I> <B>p</B>) -- dump protocol state
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>an instance
</DL>
<H3>Description</H3>
<P>This hook dumps the complete state of the instance to the
debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>dump_attrs</B>
(<I>rte *</I> <B>e</B>) -- dump protocol-dependent attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>a route entry
</DL>
<H3>Description</H3>
<P>This hook dumps all attributes in the <I>rte</I> which belong to this
protocol to the debug output.
<HR><H3>Function</H3>
<P><I>int</I>
<B>start</B>
(<I>struct proto *</I> <B>p</B>) -- request instance startup
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>The <B>start()</B> hook is called by the core when it wishes to start
the instance. Multitable protocols should lock their tables here.
<H3>Result</H3>
<P>new protocol state
<HR><H3>Function</H3>
<P><I>int</I>
<B>shutdown</B>
(<I>struct proto *</I> <B>p</B>) -- request instance shutdown
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>The <B>stop()</B> hook is called by the core when it wishes to shut
the instance down for some reason.
<H3>Returns</H3>
<P>new protocol state
<HR><H3>Function</H3>
<P><I>void</I>
<B>cleanup</B>
(<I>struct proto *</I> <B>p</B>) -- request instance cleanup
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>The <B>cleanup()</B> hook is called by the core when the protocol became
hungry/down, i.e. all protocol ahooks and routes are flushed.
Multitable protocols should unlock their tables here.
<HR><H3>Function</H3>
<P><I>void</I>
<B>get_status</B>
(<I>struct proto *</I> <B>p</B>, <I>byte *</I> <B>buf</B>) -- get instance status
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the status string
</DL>
<H3>Description</H3>
<P>This hook is called by the core if it wishes to obtain an brief one-line user friendly
representation of the status of the instance to be printed by the <cf/show protocols/
command.
<HR><H3>Function</H3>
<P><I>void</I>
<B>get_route_info</B>
(<I>rte *</I> <B>e</B>, <I>byte *</I> <B>buf</B>, <I>ea_list *</I> <B>attrs</B>) -- get route information
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>a route entry
<DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the resulting string
<DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes of the route
</DL>
<H3>Description</H3>
<P>This hook is called to fill the buffer <B>buf</B> with a brief user friendly
representation of metrics of a route belonging to this protocol.
<HR><H3>Function</H3>
<P><I>int</I>
<B>get_attr</B>
(<I>eattr *</I> <B>a</B>, <I>byte *</I> <B>buf</B>, <I>int</I> <B>buflen</B>) -- get attribute information
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>eattr *</I> <B>a</B><DD><P>an extended attribute
<DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with attribute information
<DT><I>int</I> <B>buflen</B><DD><P>a length of the <B>buf</B> parameter
</DL>
<H3>Description</H3>
<P>The <B>get_attr()</B> hook is called by the core to obtain a user friendly
representation of an extended route attribute. It can either leave
the whole conversion to the core (by returning <I>GA_UNKNOWN</I>), fill
in only attribute name (and let the core format the attribute value
automatically according to the type field; by returning <I>GA_NAME</I>)
or doing the whole conversion (used in case the value requires extra
care; return <I>GA_FULL</I>).
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_notify</B>
(<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct iface *</I> <B>i</B>) -- notify instance about interface changes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>unsigned</I> <B>flags</B><DD><P>interface change flags
<DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
</DL>
<H3>Description</H3>
<P>This hook is called whenever any network interface changes its status.
The change is described by a combination of status bits (<I>IF_CHANGE_xxx</I>)
in the <B>flags</B> parameter.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ifa_notify</B>
(<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct ifa *</I> <B>a</B>) -- notify instance about interface address changes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>unsigned</I> <B>flags</B><DD><P>address change flags
<DT><I>struct ifa *</I> <B>a</B><DD><P>the interface address
</DL>
<H3>Description</H3>
<P>This hook is called to notify the protocol instance about an interface
acquiring or losing one of its addresses. The change is described by
a combination of status bits (<I>IF_CHANGE_xxx</I>) in the <B>flags</B> parameter.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_notify</B>
(<I>struct proto *</I> <B>p</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>ea_list *</I> <B>attrs</B>) -- notify instance about routing table change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>net *</I> <B>net</B><DD><P>a network entry
<DT><I>rte *</I> <B>new</B><DD><P>new route for the network
<DT><I>rte *</I> <B>old</B><DD><P>old route for the network
<DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes associated with the <B>new</B> entry
</DL>
<H3>Description</H3>
<P>The <B>rt_notify()</B> hook is called to inform the protocol instance about
changes in the connected routing table <B>table</B>, that is a route <B>old</B>
belonging to network <B>net</B> being replaced by a new route <B>new</B> with
extended attributes <B>attrs</B>. Either <B>new</B> or <B>old</B> or both can be <I>NULL</I>
if the corresponding route doesn't exist.
<P>If the type of route announcement is RA_OPTIMAL, it is an
announcement of optimal route change, <B>new</B> stores the new optimal
route and <B>old</B> stores the old optimal route.
<P>If the type of route announcement is RA_ANY, it is an announcement
of any route change, <B>new</B> stores the new route and <B>old</B> stores the
old route from the same protocol.
<P><B>p</B>->accept_ra_types specifies which kind of route announcements
protocol wants to receive.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_notify</B>
(<I>neighbor *</I> <B>neigh</B>) -- notify instance about neighbor status change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>neighbor *</I> <B>neigh</B><DD><P>a neighbor cache entry
</DL>
<H3>Description</H3>
<P>The <B>neigh_notify()</B> hook is called by the neighbor cache whenever
a neighbor changes its state, that is it gets disconnected or a
sticky neighbor gets connected.
<HR><H3>Function</H3>
<P><I>ea_list *</I>
<B>make_tmp_attrs</B>
(<I>rte *</I> <B>e</B>, <I>struct linpool *</I> <B>pool</B>) -- convert embedded attributes to temporary ones
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>route entry
<DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool to allocate attribute memory in
</DL>
<H3>Description</H3>
<P>This hook is called by the routing table functions if they need
to convert the protocol attributes embedded directly in the <I>rte</I>
to temporary extended attributes in order to distribute them
to other protocols or to filters. <B>make_tmp_attrs()</B> creates
an <I>ea_list</I> in the linear pool <B>pool</B>, fills it with values of the
temporary attributes and returns a pointer to it.
<HR><H3>Function</H3>
<P><I>void</I>
<B>store_tmp_attrs</B>
(<I>rte *</I> <B>e</B>, <I>ea_list *</I> <B>attrs</B>) -- convert temporary attributes to embedded ones
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>route entry
<DT><I>ea_list *</I> <B>attrs</B><DD><P>temporary attributes to be converted
</DL>
<H3>Description</H3>
<P>This hook is an exact opposite of <B>make_tmp_attrs()</B> -- it takes
a list of extended attributes and converts them to attributes
embedded in the <I>rte</I> corresponding to this protocol.
<P>You must be prepared for any of the attributes being missing
from the list and use default values instead.
<HR><H3>Function</H3>
<P><I>int</I>
<B>import_control</B>
(<I>struct proto *</I> <B>p</B>, <I>rte **</I> <B>e</B>, <I>ea_list **</I> <B>attrs</B>, <I>struct linpool *</I> <B>pool</B>) -- pre-filtering decisions on route import
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance the route is going to be imported to
<DT><I>rte **</I> <B>e</B><DD><P>the route in question
<DT><I>ea_list **</I> <B>attrs</B><DD><P>extended attributes of the route
<DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool for allocation of all temporary data
</DL>
<H3>Description</H3>
<P>The <B>import_control()</B> hook is called as the first step of a exporting
a route from a routing table to the protocol instance. It can modify
route attributes and force acceptance or rejection of the route regardless
of user-specified filters. See <B>rte_announce()</B> for a complete description
of the route distribution process.
<P>The standard use of this hook is to reject routes having originated
from the same instance and to set default values of the protocol's metrics.
<H3>Result</H3>
<P>1 if the route has to be accepted, -1 if rejected and 0 if it
should be passed to the filters.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rte_recalculate</B>
(<I>struct rtable *</I> <B>table</B>, <I>struct network *</I> <B>net</B>, <I>struct rte *</I> <B>new</B>, <I>struct rte *</I> <B>old</B>, <I>struct rte *</I> <B>old_best</B>) -- prepare routes for comparison
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct rtable *</I> <B>table</B><DD><P>a routing table
<DT><I>struct network *</I> <B>net</B><DD><P>a network entry
<DT><I>struct rte *</I> <B>new</B><DD><P>new route for the network
<DT><I>struct rte *</I> <B>old</B><DD><P>old route for the network
<DT><I>struct rte *</I> <B>old_best</B><DD><P>old best route for the network (may be NULL)
</DL>
<H3>Description</H3>
<P>This hook is called when a route change (from <B>old</B> to <B>new</B> for a
<B>net</B> entry) is propagated to a <B>table</B>. It may be used to prepare
routes for comparison by <B>rte_better()</B> in the best route
selection. <B>new</B> may or may not be in <B>net</B>->routes list,
<B>old</B> is not there.
<H3>Result</H3>
<P>1 if the ordering implied by <B>rte_better()</B> changes enough
that full best route calculation have to be done, 0 otherwise.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rte_better</B>
(<I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>) -- compare metrics of two routes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>new</B><DD><P>the new route
<DT><I>rte *</I> <B>old</B><DD><P>the original route
</DL>
<H3>Description</H3>
<P>This hook gets called when the routing table contains two routes
for the same network which have originated from different instances
of a single protocol and it wants to select which one is preferred
over the other one. Protocols usually decide according to route metrics.
<H3>Result</H3>
<P>1 if <B>new</B> is better (more preferred) than <B>old</B>, 0 otherwise.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rte_same</B>
(<I>rte *</I> <B>e1</B>, <I>rte *</I> <B>e2</B>) -- compare two routes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e1</B><DD><P>route
<DT><I>rte *</I> <B>e2</B><DD><P>route
</DL>
<H3>Description</H3>
<P>The <B>rte_same()</B> hook tests whether the routes <B>e1</B> and <B>e2</B> belonging
to the same protocol instance have identical contents. Contents of
<I>rta</I>, all the extended attributes and <I>rte</I> preference are checked
by the core code, no need to take care of them here.
<H3>Result</H3>
<P>1 if <B>e1</B> is identical to <B>e2</B>, 0 otherwise.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_insert</B>
(<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) -- notify instance about route insertion
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>net *</I> <B>n</B><DD><P>network
<DT><I>rte *</I> <B>e</B><DD><P>route
</DL>
<H3>Description</H3>
<P>This hook is called whenever a <I>rte</I> belonging to the instance
is accepted for insertion to a routing table.
<P>Please avoid using this function in new protocols.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_remove</B>
(<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) -- notify instance about route removal
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>net *</I> <B>n</B><DD><P>network
<DT><I>rte *</I> <B>e</B><DD><P>route
</DL>
<H3>Description</H3>
<P>This hook is called whenever a <I>rte</I> belonging to the instance
is removed from a routing table.
<P>Please avoid using this function in new protocols.
<H2><A NAME="ss2.7">2.7</A> <A HREF="prog.html#toc2.7">Interfaces</A>
</H2>
<P>
<P>The interface module keeps track of all network interfaces in the
system and their addresses.
<P>Each interface is represented by an <I>iface</I> structure which carries
interface capability flags (<I>IF_MULTIACCESS</I>, <I>IF_BROADCAST</I> etc.),
MTU, interface name and index and finally a linked list of network
prefixes assigned to the interface, each one represented by
struct <I>ifa</I>.
<P>The interface module keeps a `soft-up' state for each <I>iface</I> which
is a conjunction of link being up, the interface being of a `sane'
type and at least one IP address assigned to it.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>ifa_dump</B>
(<I>struct ifa *</I> <B>a</B>) -- dump interface address
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>interface address descriptor
</DL>
<H3>Description</H3>
<P>This function dumps contents of an <I>ifa</I> to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_dump</B>
(<I>struct iface *</I> <B>i</B>) -- dump interface
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>interface to dump
</DL>
<H3>Description</H3>
<P>This function dumps all information associated with a given
network interface to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_dump_all</B>
(<B>void</B>) -- dump all interfaces
<P>
<H3>Description</H3>
<P>
<P>This function dumps information about all known network
interfaces to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_delete</B>
(<I>struct iface *</I> <B>old</B>) -- remove interface
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>old</B><DD><P>interface
</DL>
<H3>Description</H3>
<P>This function is called by the low-level platform dependent code
whenever it notices an interface disappears. It is just a shorthand
for <B>if_update()</B>.
<HR><H3>Function</H3>
<P><I>struct iface *</I>
<B>if_update</B>
(<I>struct iface *</I> <B>new</B>) -- update interface status
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>new</B><DD><P>new interface status
</DL>
<H3>Description</H3>
<P><B>if_update()</B> is called by the low-level platform dependent code
whenever it notices an interface change.
<P>There exist two types of interface updates -- synchronous and asynchronous
ones. In the synchronous case, the low-level code calls <B>if_start_update()</B>,
scans all interfaces reported by the OS, uses <B>if_update()</B> and <B>ifa_update()</B>
to pass them to the core and then it finishes the update sequence by
calling <B>if_end_update()</B>. When working asynchronously, the sysdep code
calls <B>if_update()</B> and <B>ifa_update()</B> whenever it notices a change.
<P><B>if_update()</B> will automatically notify all other modules about the change.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_feed_baby</B>
(<I>struct proto *</I> <B>p</B>) -- advertise interfaces to a new protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol to feed
</DL>
<H3>Description</H3>
<P>When a new protocol starts, this function sends it a series
of notifications about all existing interfaces.
<HR><H3>Function</H3>
<P><I>struct iface *</I>
<B>if_find_by_index</B>
(<I>unsigned</I> <B>idx</B>) -- find interface by ifindex
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>unsigned</I> <B>idx</B><DD><P>ifindex
</DL>
<H3>Description</H3>
<P>This function finds an <I>iface</I> structure corresponding to an interface
of the given index <B>idx</B>. Returns a pointer to the structure or <I>NULL</I>
if no such structure exists.
<HR><H3>Function</H3>
<P><I>struct iface *</I>
<B>if_find_by_name</B>
(<I>char *</I> <B>name</B>) -- find interface by name
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>char *</I> <B>name</B><DD><P>interface name
</DL>
<H3>Description</H3>
<P>This function finds an <I>iface</I> structure corresponding to an interface
of the given name <B>name</B>. Returns a pointer to the structure or <I>NULL</I>
if no such structure exists.
<HR><H3>Function</H3>
<P><I>struct ifa *</I>
<B>ifa_update</B>
(<I>struct ifa *</I> <B>a</B>) -- update interface address
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>new interface address
</DL>
<H3>Description</H3>
<P>This function adds address information to a network
interface. It's called by the platform dependent code during
the interface update process described under <B>if_update()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ifa_delete</B>
(<I>struct ifa *</I> <B>a</B>) -- remove interface address
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>interface address
</DL>
<H3>Description</H3>
<P>This function removes address information from a network
interface. It's called by the platform dependent code during
the interface update process described under <B>if_update()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_init</B>
(<B>void</B>) -- initialize interface module
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup to initialize
all data structures of the interface module.
<H2><A NAME="ss2.8">2.8</A> <A HREF="prog.html#toc2.8">Neighbor cache</A>
</H2>
<P>
<P>Most routing protocols need to associate their internal state data with
neighboring routers, check whether an address given as the next hop
attribute of a route is really an address of a directly connected host
and which interface is it connected through. Also, they often need to
be notified when a neighbor ceases to exist or when their long awaited
neighbor becomes connected. The neighbor cache is there to solve all
these problems.
<P>The neighbor cache maintains a collection of neighbor entries. Each
entry represents one IP address corresponding to either our directly
connected neighbor or our own end of the link (when the scope of the
address is set to <I>SCOPE_HOST</I>) together with per-neighbor data belonging to a
single protocol.
<P>Active entries represent known neighbors and are stored in a hash
table (to allow fast retrieval based on the IP address of the node) and
two linked lists: one global and one per-interface (allowing quick
processing of interface change events). Inactive entries exist only
when the protocol has explicitly requested it via the <I>NEF_STICKY</I>
flag because it wishes to be notified when the node will again become
a neighbor. Such entries are enqueued in a special list which is walked
whenever an interface changes its state to up. Neighbor entry VRF
association is implied by respective protocol.
<P>When a neighbor event occurs (a neighbor gets disconnected or a sticky
inactive neighbor becomes connected), the protocol hook <B>neigh_notify()</B>
is called to advertise the change.
<P>
<P><HR><H3>Function</H3>
<P><I>neighbor *</I>
<B>neigh_find</B>
(<I>struct proto *</I> <B>p</B>, <I>ip_addr *</I> <B>a</B>, <I>unsigned</I> <B>flags</B>) -- find or create a neighbor entry.
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol which asks for the entry.
<DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the node to be searched for.
<DT><I>unsigned</I> <B>flags</B><DD><P>0 or <I>NEF_STICKY</I> if you want to create a sticky entry.
</DL>
<H3>Description</H3>
<P>Search the neighbor cache for a node with given IP address. If
it's found, a pointer to the neighbor entry is returned. If no
such entry exists and the node is directly connected on
one of our active interfaces, a new entry is created and returned
to the caller with protocol-dependent fields initialized to zero.
If the node is not connected directly or *<B>a</B> is not a valid unicast
IP address, <B>neigh_find()</B> returns <I>NULL</I>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_dump</B>
(<I>neighbor *</I> <B>n</B>) -- dump specified neighbor entry.
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>neighbor *</I> <B>n</B><DD><P>the entry to dump
</DL>
<H3>Description</H3>
<P>This functions dumps the contents of a given neighbor entry
to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_dump_all</B>
(<B>void</B>) -- dump all neighbor entries.
<P>
<H3>Description</H3>
<P>
<P>This function dumps the contents of the neighbor cache to
debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_if_up</B>
(<I>struct iface *</I> <B>i</B>)
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>interface in question
</DL>
<H3>Description</H3>
<P>Tell the neighbor cache that a new interface became up.
<P>The neighbor cache wakes up all inactive sticky neighbors with
addresses belonging to prefixes of the interface <B>i</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_if_down</B>
(<I>struct iface *</I> <B>i</B>) -- notify neighbor cache about interface down event
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
</DL>
<H3>Description</H3>
<P>Notify the neighbor cache that an interface has ceased to exist.
<P>It causes all entries belonging to neighbors connected to this interface
to be flushed.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_if_link</B>
(<I>struct iface *</I> <B>i</B>) -- notify neighbor cache about interface link change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
</DL>
<H3>Description</H3>
<P>Notify the neighbor cache that an interface changed link state.
All owners of neighbor entries connected to this interface are
notified.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_ifa_update</B>
(<I>struct ifa *</I> <B>a</B>)
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>interface address in question
</DL>
<H3>Description</H3>
<P>Tell the neighbor cache that an address was added or removed.
<P>The neighbor cache wakes up all inactive sticky neighbors with
addresses belonging to prefixes of the interface belonging to <B>ifa</B>
and causes all unreachable neighbors to be flushed.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_prune</B>
(<B>void</B>) -- prune neighbor cache
<P>
<H3>Description</H3>
<P>
<P><B>neigh_prune()</B> examines all neighbor entries cached and removes those
corresponding to inactive protocols. It's called whenever a protocol
is shut down to get rid of all its heritage.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_init</B>
(<I>pool *</I> <B>if_pool</B>) -- initialize the neighbor cache.
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>pool *</I> <B>if_pool</B><DD><P>resource pool to be used for neighbor entries.
</DL>
<H3>Description</H3>
<P>This function is called during BIRD startup to initialize
the neighbor cache module.
<H2><A NAME="ss2.9">2.9</A> <A HREF="prog.html#toc2.9">Command line interface</A>
</H2>
<P>
<P>This module takes care of the BIRD's command-line interface (CLI).
The CLI exists to provide a way to control BIRD remotely and to inspect
its status. It uses a very simple textual protocol over a stream
connection provided by the platform dependent code (on UNIX systems,
it's a UNIX domain socket).
<P>Each session of the CLI consists of a sequence of request and replies,
slightly resembling the FTP and SMTP protocols.
Requests are commands encoded as a single line of text, replies are
sequences of lines starting with a four-digit code followed by either
a space (if it's the last line of the reply) or a minus sign (when the
reply is going to continue with the next line), the rest of the line
contains a textual message semantics of which depends on the numeric
code. If a reply line has the same code as the previous one and it's
a continuation line, the whole prefix can be replaced by a single
white space character.
<P>Reply codes starting with 0 stand for `action successfully completed' messages,
1 means `table entry', 8 `runtime error' and 9 `syntax error'.
<P>Each CLI session is internally represented by a <I>cli</I> structure and a
resource pool containing all resources associated with the connection,
so that it can be easily freed whenever the connection gets closed, not depending
on the current state of command processing.
<P>The CLI commands are declared as a part of the configuration grammar
by using the <CODE>CF_CLI</CODE> macro. When a command is received, it is processed
by the same lexical analyzer and parser as used for the configuration, but
it's switched to a special mode by prepending a fake token to the text,
so that it uses only the CLI command rules. Then the parser invokes
an execution routine corresponding to the command, which either constructs
the whole reply and returns it back or (in case it expects the reply will be long)
it prints a partial reply and asks the CLI module (using the <B>cont</B> hook)
to call it again when the output is transferred to the user.
<P>The <B>this_cli</B> variable points to a <I>cli</I> structure of the session being
currently parsed, but it's of course available only in command handlers
not entered using the <B>cont</B> hook.
<P>TX buffer management works as follows: At cli.tx_buf there is a
list of TX buffers (struct cli_out), cli.tx_write is the buffer
currently used by the producer (<B>cli_printf()</B>, <B>cli_alloc_out()</B>) and
cli.tx_pos is the buffer currently used by the consumer
(<B>cli_write()</B>, in system dependent code). The producer uses
cli_out.wpos ptr as the current write position and the consumer
uses cli_out.outpos ptr as the current read position. When the
producer produces something, it calls <B>cli_write_trigger()</B>. If there
is not enough space in the current buffer, the producer allocates
the new one. When the consumer processes everything in the buffer
queue, it calls <B>cli_written()</B>, tha frees all buffers (except the
first one) and schedules cli.event .
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>cli_printf</B>
(<I>cli *</I> <B>c</B>, <I>int</I> <B>code</B>, <I>char *</I> <B>msg</B>, <I>...</I> <B>...</B>) -- send reply to a CLI connection
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>cli *</I> <B>c</B><DD><P>CLI connection
<DT><I>int</I> <B>code</B><DD><P>numeric code of the reply, negative for continuation lines
<DT><I>char *</I> <B>msg</B><DD><P>a <B>printf()</B>-like formatting string.
<DT><I>...</I> <B>...</B><DD><P>variable arguments
</DL>
<H3>Description</H3>
<P>This function send a single line of reply to a given CLI connection.
In works in all aspects like <B>bsprintf()</B> except that it automatically
prepends the reply line prefix.
<P>Please note that if the connection can be already busy sending some
data in which case <B>cli_printf()</B> stores the output to a temporary buffer,
so please avoid sending a large batch of replies without waiting
for the buffers to be flushed.
<P>If you want to write to the current CLI output, you can use the <B>cli_msg()</B>
macro instead.
<HR><H3>Function</H3>
<P><I>void</I>
<B>cli_init</B>
(<B>void</B>) -- initialize the CLI module
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup to initialize
the internal data structures of the CLI module.
<H2><A NAME="ss2.10">2.10</A> <A HREF="prog.html#toc2.10">Object locks</A>
</H2>
<P>
<P>The lock module provides a simple mechanism for avoiding conflicts between
various protocols which would like to use a single physical resource (for
example a network port). It would be easy to say that such collisions can
occur only when the user specifies an invalid configuration and therefore
he deserves to get what he has asked for, but unfortunately they can also
arise legitimately when the daemon is reconfigured and there exists (although
for a short time period only) an old protocol instance being shut down and a new one
willing to start up on the same interface.
<P>The solution is very simple: when any protocol wishes to use a network port
or some other non-shareable resource, it asks the core to lock it and it doesn't
use the resource until it's notified that it has acquired the lock.
<P>Object locks are represented by <I>object_lock</I> structures which are in turn a
kind of resource. Lockable resources are uniquely determined by resource type
(<I>OBJLOCK_UDP</I> for a UDP port etc.), IP address (usually a broadcast or
multicast address the port is bound to), port number, interface and optional
instance ID.
<P>
<P><HR><H3>Function</H3>
<P><I>struct object_lock *</I>
<B>olock_new</B>
(<I>pool *</I> <B>p</B>) -- create an object lock
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>pool *</I> <B>p</B><DD><P>resource pool to create the lock in.
</DL>
<H3>Description</H3>
<P>The <B>olock_new()</B> function creates a new resource of type <I>object_lock</I>
and returns a pointer to it. After filling in the structure, the caller
should call <B>olock_acquire()</B> to do the real locking.
<HR><H3>Function</H3>
<P><I>void</I>
<B>olock_acquire</B>
(<I>struct object_lock *</I> <B>l</B>) -- acquire a lock
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct object_lock *</I> <B>l</B><DD><P>the lock to acquire
</DL>
<H3>Description</H3>
<P>This function attempts to acquire exclusive access to the non-shareable
resource described by the lock <B>l</B>. It returns immediately, but as soon
as the resource becomes available, it calls the <B>hook()</B> function set up
by the caller.
<P>When you want to release the resource, just <B>rfree()</B> the lock.
<HR><H3>Function</H3>
<P><I>void</I>
<B>olock_init</B>
(<B>void</B>) -- initialize the object lock mechanism
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup. It initializes
all the internal data structures of the lock module.
<HR>
<A HREF="prog-3.html">Next</A>
<A HREF="prog-1.html">Previous</A>
<A HREF="prog.html#toc2">Contents</A>
</BODY>
</HTML>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>