File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / bird / doc / prog-4.html
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Aug 22 12:33:54 2017 UTC (6 years, 11 months ago) by misho
Branches: bird, MAIN
CVS tags: v1_6_8p3, v1_6_3p0, v1_6_3, HEAD
bird 1.6.3

    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
    2: <HTML>
    3: <HEAD>
    4:  <META NAME="GENERATOR" CONTENT="LinuxDoc-Tools 1.0.9">
    5:  <TITLE>BIRD Programmer's Documentation: Filters</TITLE>
    6:  <LINK HREF="prog-5.html" REL=next>
    7:  <LINK HREF="prog-3.html" REL=previous>
    8:  <LINK HREF="prog.html#toc4" REL=contents>
    9: </HEAD>
   10: <BODY>
   11: <A HREF="prog-5.html">Next</A>
   12: <A HREF="prog-3.html">Previous</A>
   13: <A HREF="prog.html#toc4">Contents</A>
   14: <HR>
   15: <H2><A NAME="s4">4.</A> <A HREF="prog.html#toc4">Filters</A></H2>
   16: 
   17: <H2><A NAME="ss4.1">4.1</A> <A HREF="prog.html#toc4.1">Filters</A>
   18: </H2>
   19: 
   20: <P>
   21: <P>You can find sources of the filter language in <CODE>filter/</CODE>
   22: directory. File <CODE>filter/config.Y</CODE> contains filter grammar and basically translates
   23: the source from user into a tree of <I>f_inst</I> structures. These trees are
   24: later interpreted using code in <CODE>filter/filter.c</CODE>.
   25: <P>A filter is represented by a tree of <I>f_inst</I> structures, one structure per
   26: "instruction". Each <I>f_inst</I> contains <B>code</B>, <B>aux</B> value which is
   27: usually the data type this instruction operates on and two generic
   28: arguments (<B>a1</B>, <B>a2</B>). Some instructions contain pointer(s) to other
   29: instructions in their (<B>a1</B>, <B>a2</B>) fields.
   30: <P>Filters use a <I>f_val</I> structure for their data. Each <I>f_val</I>
   31: contains type and value (types are constants prefixed with <I>T_</I>). Few
   32: of the types are special; <I>T_RETURN</I> can be or-ed with a type to indicate
   33: that return from a function or from the whole filter should be
   34: forced. Important thing about <I>f_val</I>'s is that they may be copied
   35: with a simple <CODE>=</CODE>. That's fine for all currently defined types: strings
   36: are read-only (and therefore okay), paths are copied for each
   37: operation (okay too).
   38: <P>
   39: <P><HR><H3>Function</H3>
   40: <P><I>int</I>
   41: <B>val_compare</B>
   42: (<I>struct f_val</I> <B>v1</B>, <I>struct f_val</I> <B>v2</B>) --     compare two values
   43: <P>
   44: <H3>Arguments</H3>
   45: <P>
   46: <DL>
   47: <DT><I>struct f_val</I> <B>v1</B><DD><P>first value
   48: <DT><I>struct f_val</I> <B>v2</B><DD><P>second value
   49: </DL>
   50: <H3>Description</H3>
   51: <P>Compares two values and returns -1, 0, 1 on &lt;, =, &gt; or CMP_ERROR on
   52: error. Tree module relies on this giving consistent results so
   53: that it can be used for building balanced trees.
   54: 
   55: 
   56: <HR><H3>Function</H3>
   57: <P><I>int</I>
   58: <B>val_same</B>
   59: (<I>struct f_val</I> <B>v1</B>, <I>struct f_val</I> <B>v2</B>) --     compare two values
   60: <P>
   61: <H3>Arguments</H3>
   62: <P>
   63: <DL>
   64: <DT><I>struct f_val</I> <B>v1</B><DD><P>first value
   65: <DT><I>struct f_val</I> <B>v2</B><DD><P>second value
   66: </DL>
   67: <H3>Description</H3>
   68: <P>Compares two values and returns 1 if they are same and 0 if not.
   69: Comparison of values of different types is valid and returns 0.
   70: 
   71: 
   72: <HR><H3>Function</H3>
   73: <P><I>int</I>
   74: <B>val_in_range</B>
   75: (<I>struct f_val</I> <B>v1</B>, <I>struct f_val</I> <B>v2</B>) --     implement <CODE>~</CODE> operator
   76: <P>
   77: <H3>Arguments</H3>
   78: <P>
   79: <DL>
   80: <DT><I>struct f_val</I> <B>v1</B><DD><P>element
   81: <DT><I>struct f_val</I> <B>v2</B><DD><P>set
   82: </DL>
   83: <H3>Description</H3>
   84: <P>Checks if <B>v1</B> is element (<CODE>~</CODE> operator) of <B>v2</B>.
   85: 
   86: 
   87: <HR><H3>Function</H3>
   88: <P><I>struct f_val</I>
   89: <B>interpret</B>
   90: (<I>struct f_inst *</I> <B>what</B>)
   91: <H3>Arguments</H3>
   92: <P>
   93: <DL>
   94: <DT><I>struct f_inst *</I> <B>what</B><DD><P>filter to interpret
   95: </DL>
   96: <H3>Description</H3>
   97: <P>Interpret given tree of filter instructions. This is core function
   98: of filter system and does all the hard work.
   99: <H3>Each instruction has 4 fields</H3>
  100: <P>code (which is instruction code),
  101: aux (which is extension to instruction code, typically type),
  102: arg1 and arg2 - arguments. Depending on instruction, arguments
  103: are either integers, or pointers to instruction trees. Common
  104: instructions like +, that have two expressions as arguments use
  105: TWOARGS macro to get both of them evaluated.
  106: <P><I>f_val</I> structures are copied around, so there are no problems with
  107: memory managment.
  108: 
  109: 
  110: <HR><H3>Function</H3>
  111: <P><I>int</I>
  112: <B>f_run</B>
  113: (<I>struct filter *</I> <B>filter</B>, <I>struct rte **</I> <B>rte</B>, <I>struct ea_list **</I> <B>tmp_attrs</B>, <I>struct linpool *</I> <B>tmp_pool</B>, <I>int</I> <B>flags</B>) --     run a filter for a route
  114: <P>
  115: <H3>Arguments</H3>
  116: <P>
  117: <DL>
  118: <DT><I>struct filter *</I> <B>filter</B><DD><P>filter to run
  119: <DT><I>struct rte **</I> <B>rte</B><DD><P>route being filtered, may be modified
  120: <DT><I>struct ea_list **</I> <B>tmp_attrs</B><DD><P>temporary attributes, prepared by caller or generated by <B>f_run()</B>
  121: <DT><I>struct linpool *</I> <B>tmp_pool</B><DD><P>all filter allocations go from this pool
  122: <DT><I>int</I> <B>flags</B><DD><P>flags
  123: </DL>
  124: <H3>Description</H3>
  125: <P>If filter needs to modify the route, there are several
  126: posibilities. <B>rte</B> might be read-only (with REF_COW flag), in that
  127: case rw copy is obtained by <B>rte_cow()</B> and <B>rte</B> is replaced. If
  128: <B>rte</B> is originally rw, it may be directly modified (and it is never
  129: copied).
  130: <P>The returned rte may reuse the (possibly cached, cloned) rta, or
  131: (if rta was modificied) contains a modified uncached rta, which
  132: uses parts allocated from <B>tmp_pool</B> and parts shared from original
  133: rta. There is one exception - if <B>rte</B> is rw but contains a cached
  134: rta and that is modified, rta in returned rte is also cached.
  135: <P>Ownership of cached rtas is consistent with rte, i.e.
  136: if a new rte is returned, it has its own clone of cached rta
  137: (and cached rta of read-only source rte is intact), if rte is
  138: modified in place, old cached rta is possibly freed.
  139: 
  140: 
  141: <HR><H3>Function</H3>
  142: <P><I>int</I>
  143: <B>filter_same</B>
  144: (<I>struct filter *</I> <B>new</B>, <I>struct filter *</I> <B>old</B>) --     compare two filters
  145: <P>
  146: <H3>Arguments</H3>
  147: <P>
  148: <DL>
  149: <DT><I>struct filter *</I> <B>new</B><DD><P>first filter to be compared
  150: <DT><I>struct filter *</I> <B>old</B><DD><P>second filter to be compared, notice that this filter is
  151: damaged while comparing.
  152: </DL>
  153: <H3>Description</H3>
  154: <P>Returns 1 in case filters are same, otherwise 0. If there are
  155: underlying bugs, it will rather say 0 on same filters than say
  156: 1 on different.
  157: 
  158: 
  159: <HR><H3>Function</H3>
  160: <P><I>struct f_tree *</I>
  161: <B>find_tree</B>
  162: (<I>struct f_tree *</I> <B>t</B>, <I>struct f_val</I> <B>val</B>)
  163: <H3>Arguments</H3>
  164: <P>
  165: <DL>
  166: <DT><I>struct f_tree *</I> <B>t</B><DD><P>tree to search in
  167: <DT><I>struct f_val</I> <B>val</B><DD><P>value to find
  168: </DL>
  169: <H3>Description</H3>
  170: <P>Search for given value in the tree. I relies on fact that sorted tree is populated
  171: by <I>f_val</I> structures (that can be compared by <B>val_compare()</B>). In each node of tree, 
  172: either single value (then t-&gt;from==t-&gt;to) or range is present.
  173: <P>Both set matching and <CODE><B>switch()</B> { }</CODE> construction is implemented using this function,
  174: thus both are as fast as they can be.
  175: 
  176: 
  177: <HR><H3>Function</H3>
  178: <P><I>struct f_tree *</I>
  179: <B>build_tree</B>
  180: (<I>struct f_tree *</I> <B>from</B>)
  181: <H3>Arguments</H3>
  182: <P>
  183: <DL>
  184: <DT><I>struct f_tree *</I> <B>from</B><DD><P>degenerated tree (linked by <B>tree</B>-&gt;left) to be transformed into form suitable for <B>find_tree()</B>
  185: </DL>
  186: <H3>Description</H3>
  187: <P>Transforms degenerated tree into balanced tree.
  188: 
  189: 
  190: <HR><H3>Function</H3>
  191: <P><I>int</I>
  192: <B>same_tree</B>
  193: (<I>struct f_tree *</I> <B>t1</B>, <I>struct f_tree *</I> <B>t2</B>)
  194: <H3>Arguments</H3>
  195: <P>
  196: <DL>
  197: <DT><I>struct f_tree *</I> <B>t1</B><DD><P>first tree to be compared
  198: <DT><I>struct f_tree *</I> <B>t2</B><DD><P>second one
  199: </DL>
  200: <H3>Description</H3>
  201: <P>Compares two trees and returns 1 if they are same
  202: 
  203: <H2><A NAME="ss4.2">4.2</A> <A HREF="prog.html#toc4.2">Trie for prefix sets</A>
  204: </H2>
  205: 
  206: <P>
  207: <P>We use a (compressed) trie to represent prefix sets. Every node
  208: in the trie represents one prefix (<I>addr</I>/<I>plen</I>) and <I>plen</I> also
  209: indicates the index of the bit in the address that is used to
  210: branch at the node. If we need to represent just a set of
  211: prefixes, it would be simple, but we have to represent a
  212: set of prefix patterns. Each prefix pattern consists of
  213: <I>ppaddr</I>/<I>pplen</I> and two integers: <I>low</I> and <I>high</I>, and a prefix
  214: <I>paddr</I>/<I>plen</I> matches that pattern if the first MIN(<I>plen</I>, <I>pplen</I>)
  215: bits of <I>paddr</I> and <I>ppaddr</I> are the same and <I>low</I> &lt;= <I>plen</I> &lt;= <I>high</I>.
  216: <P>We use a bitmask (<I>accept</I>) to represent accepted prefix lengths
  217: at a node. As there are 33 prefix lengths (0..32 for IPv4), but
  218: there is just one prefix of zero length in the whole trie so we
  219: have <I>zero</I> flag in <I>f_trie</I> (indicating whether the trie accepts
  220: prefix 0.0.0.0/0) as a special case, and <I>accept</I> bitmask
  221: represents accepted prefix lengths from 1 to 32.
  222: <P>There are two cases in prefix matching - a match when the length
  223: of the prefix is smaller that the length of the prefix pattern,
  224: (<I>plen</I> &lt; <I>pplen</I>) and otherwise. The second case is simple - we
  225: just walk through the trie and look at every visited node
  226: whether that prefix accepts our prefix length (<I>plen</I>). The
  227: first case is tricky - we don't want to examine every descendant
  228: of a final node, so (when we create the trie) we have to propagate
  229: that information from nodes to their ascendants.
  230: <P>Suppose that we have two masks (M1 and M2) for a node. Mask M1
  231: represents accepted prefix lengths by just the node and mask M2
  232: represents accepted prefix lengths by the node or any of its
  233: descendants. Therefore M2 is a bitwise or of M1 and children's
  234: M2 and this is a maintained invariant during trie building.
  235: Basically, when we want to match a prefix, we walk through the trie,
  236: check mask M1 for our prefix length and when we came to
  237: final node, we check mask M2.
  238: <P>There are two differences in the real implementation. First,
  239: we use a compressed trie so there is a case that we skip our
  240: final node (if it is not in the trie) and we came to node that
  241: is either extension of our prefix, or completely out of path
  242: In the first case, we also have to check M2.
  243: <P>Second, we really need not to maintain two separate bitmasks.
  244: Checks for mask M1 are always larger than <I>applen</I> and we need
  245: just the first <I>pplen</I> bits of mask M2 (if trie compression
  246: hadn't been used it would suffice to know just $applen-th bit),
  247: so we have to store them together in <I>accept</I> mask - the first
  248: <I>pplen</I> bits of mask M2 and then mask M1.
  249: <P>There are four cases when we walk through a trie:
  250: <P>- we are in NULL
  251: - we are out of path (prefixes are inconsistent)
  252: - we are in the wanted (final) node (node length == <I>plen</I>)
  253: - we are beyond the end of path (node length &gt; <I>plen</I>)
  254: - we are still on path and keep walking (node length &lt; <I>plen</I>)
  255: <P>The walking code in <B>trie_match_prefix()</B> is structured according to
  256: these cases.
  257: <P>
  258: <P><HR><H3>Function</H3>
  259: <P><I>struct f_trie *</I>
  260: <B>f_new_trie</B>
  261: (<I>linpool *</I> <B>lp</B>, <I>uint</I> <B>node_size</B>) --     allocates and returns a new empty trie
  262: <P>
  263: <H3>Arguments</H3>
  264: <P>
  265: <DL>
  266: <DT><I>linpool *</I> <B>lp</B><DD><P>linear pool to allocate items from
  267: <DT><I>uint</I> <B>node_size</B><DD><P>node size to be used (<I>f_trie_node</I> and user data)
  268: </DL>
  269: 
  270: 
  271: <HR><H3>Function</H3>
  272: <P><I>void *</I>
  273: <B>trie_add_prefix</B>
  274: (<I>struct f_trie *</I> <B>t</B>, <I>ip_addr</I> <B>px</B>, <I>int</I> <B>plen</B>, <I>int</I> <B>l</B>, <I>int</I> <B>h</B>)
  275: <H3>Arguments</H3>
  276: <P>
  277: <DL>
  278: <DT><I>struct f_trie *</I> <B>t</B><DD><P>trie to add to
  279: <DT><I>ip_addr</I> <B>px</B><DD><P>prefix address
  280: <DT><I>int</I> <B>plen</B><DD><P>prefix length
  281: <DT><I>int</I> <B>l</B><DD><P>prefix lower bound
  282: <DT><I>int</I> <B>h</B><DD><P>prefix upper bound
  283: </DL>
  284: <H3>Description</H3>
  285: <P>Adds prefix (prefix pattern) <B>px</B>/<B>plen</B> to trie <B>t</B>.  <B>l</B> and <B>h</B> are lower
  286: and upper bounds on accepted prefix lengths, both inclusive.
  287: 0 &lt;= l, h &lt;= 32 (128 for IPv6).
  288: <P>Returns a pointer to the allocated node. The function can return a pointer to
  289: an existing node if <B>px</B> and <B>plen</B> are the same. If px/plen == 0/0 (or ::/0),
  290: a pointer to the root node is returned.
  291: 
  292: 
  293: <HR><H3>Function</H3>
  294: <P><I>int</I>
  295: <B>trie_match_prefix</B>
  296: (<I>struct f_trie *</I> <B>t</B>, <I>ip_addr</I> <B>px</B>, <I>int</I> <B>plen</B>)
  297: <H3>Arguments</H3>
  298: <P>
  299: <DL>
  300: <DT><I>struct f_trie *</I> <B>t</B><DD><P>trie
  301: <DT><I>ip_addr</I> <B>px</B><DD><P>prefix address
  302: <DT><I>int</I> <B>plen</B><DD><P>prefix length
  303: </DL>
  304: <H3>Description</H3>
  305: <P>Tries to find a matching prefix pattern in the trie such that
  306: prefix <B>px</B>/<B>plen</B> matches that prefix pattern. Returns 1 if there
  307: is such prefix pattern in the trie.
  308: 
  309: 
  310: <HR><H3>Function</H3>
  311: <P><I>int</I>
  312: <B>trie_same</B>
  313: (<I>struct f_trie *</I> <B>t1</B>, <I>struct f_trie *</I> <B>t2</B>)
  314: <H3>Arguments</H3>
  315: <P>
  316: <DL>
  317: <DT><I>struct f_trie *</I> <B>t1</B><DD><P>first trie to be compared
  318: <DT><I>struct f_trie *</I> <B>t2</B><DD><P>second one
  319: </DL>
  320: <H3>Description</H3>
  321: <P>Compares two tries and returns 1 if they are same
  322: 
  323: 
  324: <HR><H3>Function</H3>
  325: <P><I>void</I>
  326: <B>trie_format</B>
  327: (<I>struct f_trie *</I> <B>t</B>, <I>buffer *</I> <B>buf</B>)
  328: <H3>Arguments</H3>
  329: <P>
  330: <DL>
  331: <DT><I>struct f_trie *</I> <B>t</B><DD><P>trie to be formatted
  332: <DT><I>buffer *</I> <B>buf</B><DD><P>destination buffer
  333: </DL>
  334: <H3>Description</H3>
  335: <P>Prints the trie to the supplied buffer.
  336: 
  337: <HR>
  338: <A HREF="prog-5.html">Next</A>
  339: <A HREF="prog-3.html">Previous</A>
  340: <A HREF="prog.html#toc4">Contents</A>
  341: </BODY>
  342: </HTML>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>