Annotation of embedaddon/bird/lib/sha1.c, revision 1.1.1.1
1.1 misho 1: /*
2: * BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174)
3: *
4: * (c) 2015 CZ.NIC z.s.p.o.
5: *
6: * Based on the code from libucw-6.4
7: * (c) 2008--2009 Martin Mares <mj@ucw.cz>
8: *
9: * Based on the code from libgcrypt-1.2.3, which is
10: * (c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
11: *
12: * Can be freely distributed and used under the terms of the GNU GPL.
13: */
14:
15: #include "lib/sha1.h"
16: #include "lib/unaligned.h"
17:
18:
19: void
20: sha1_init(struct hash_context *CTX)
21: {
22: struct sha1_context *ctx = (void *) CTX;
23:
24: ctx->h0 = 0x67452301;
25: ctx->h1 = 0xefcdab89;
26: ctx->h2 = 0x98badcfe;
27: ctx->h3 = 0x10325476;
28: ctx->h4 = 0xc3d2e1f0;
29:
30: ctx->nblocks = 0;
31: ctx->count = 0;
32: }
33:
34: /*
35: * Transform the message X which consists of 16 32-bit-words
36: */
37: static void
38: sha1_transform(struct sha1_context *ctx, const byte *data)
39: {
40: u32 a,b,c,d,e,tm;
41: u32 x[16];
42:
43: /* Get values from the chaining vars. */
44: a = ctx->h0;
45: b = ctx->h1;
46: c = ctx->h2;
47: d = ctx->h3;
48: e = ctx->h4;
49:
50: #ifdef CPU_BIG_ENDIAN
51: memcpy(x, data, 64);
52: #else
53: int i;
54: for (i = 0; i < 16; i++)
55: x[i] = get_u32(data+4*i);
56: #endif
57:
58: #define K1 0x5A827999L
59: #define K2 0x6ED9EBA1L
60: #define K3 0x8F1BBCDCL
61: #define K4 0xCA62C1D6L
62: #define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) )
63: #define F2(x,y,z) ( x ^ y ^ z )
64: #define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) )
65: #define F4(x,y,z) ( x ^ y ^ z )
66:
67: #define M(i) (tm = x[i&0x0f] ^ x[(i-14)&0x0f] ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f], (x[i&0x0f] = ROL(tm, 1)))
68:
69: /* Bitwise rotation of an unsigned int to the left **/
70: #define ROL(x, bits) (((x) << (bits)) | ((uint)(x) >> (sizeof(uint)*8 - (bits))))
71:
72: #define R(a, b, c, d, e, f, k, m) \
73: do \
74: { \
75: e += ROL(a, 5) + f(b, c, d) + k + m; \
76: b = ROL(b, 30); \
77: } while(0)
78:
79: R( a, b, c, d, e, F1, K1, x[ 0] );
80: R( e, a, b, c, d, F1, K1, x[ 1] );
81: R( d, e, a, b, c, F1, K1, x[ 2] );
82: R( c, d, e, a, b, F1, K1, x[ 3] );
83: R( b, c, d, e, a, F1, K1, x[ 4] );
84: R( a, b, c, d, e, F1, K1, x[ 5] );
85: R( e, a, b, c, d, F1, K1, x[ 6] );
86: R( d, e, a, b, c, F1, K1, x[ 7] );
87: R( c, d, e, a, b, F1, K1, x[ 8] );
88: R( b, c, d, e, a, F1, K1, x[ 9] );
89: R( a, b, c, d, e, F1, K1, x[10] );
90: R( e, a, b, c, d, F1, K1, x[11] );
91: R( d, e, a, b, c, F1, K1, x[12] );
92: R( c, d, e, a, b, F1, K1, x[13] );
93: R( b, c, d, e, a, F1, K1, x[14] );
94: R( a, b, c, d, e, F1, K1, x[15] );
95: R( e, a, b, c, d, F1, K1, M(16) );
96: R( d, e, a, b, c, F1, K1, M(17) );
97: R( c, d, e, a, b, F1, K1, M(18) );
98: R( b, c, d, e, a, F1, K1, M(19) );
99: R( a, b, c, d, e, F2, K2, M(20) );
100: R( e, a, b, c, d, F2, K2, M(21) );
101: R( d, e, a, b, c, F2, K2, M(22) );
102: R( c, d, e, a, b, F2, K2, M(23) );
103: R( b, c, d, e, a, F2, K2, M(24) );
104: R( a, b, c, d, e, F2, K2, M(25) );
105: R( e, a, b, c, d, F2, K2, M(26) );
106: R( d, e, a, b, c, F2, K2, M(27) );
107: R( c, d, e, a, b, F2, K2, M(28) );
108: R( b, c, d, e, a, F2, K2, M(29) );
109: R( a, b, c, d, e, F2, K2, M(30) );
110: R( e, a, b, c, d, F2, K2, M(31) );
111: R( d, e, a, b, c, F2, K2, M(32) );
112: R( c, d, e, a, b, F2, K2, M(33) );
113: R( b, c, d, e, a, F2, K2, M(34) );
114: R( a, b, c, d, e, F2, K2, M(35) );
115: R( e, a, b, c, d, F2, K2, M(36) );
116: R( d, e, a, b, c, F2, K2, M(37) );
117: R( c, d, e, a, b, F2, K2, M(38) );
118: R( b, c, d, e, a, F2, K2, M(39) );
119: R( a, b, c, d, e, F3, K3, M(40) );
120: R( e, a, b, c, d, F3, K3, M(41) );
121: R( d, e, a, b, c, F3, K3, M(42) );
122: R( c, d, e, a, b, F3, K3, M(43) );
123: R( b, c, d, e, a, F3, K3, M(44) );
124: R( a, b, c, d, e, F3, K3, M(45) );
125: R( e, a, b, c, d, F3, K3, M(46) );
126: R( d, e, a, b, c, F3, K3, M(47) );
127: R( c, d, e, a, b, F3, K3, M(48) );
128: R( b, c, d, e, a, F3, K3, M(49) );
129: R( a, b, c, d, e, F3, K3, M(50) );
130: R( e, a, b, c, d, F3, K3, M(51) );
131: R( d, e, a, b, c, F3, K3, M(52) );
132: R( c, d, e, a, b, F3, K3, M(53) );
133: R( b, c, d, e, a, F3, K3, M(54) );
134: R( a, b, c, d, e, F3, K3, M(55) );
135: R( e, a, b, c, d, F3, K3, M(56) );
136: R( d, e, a, b, c, F3, K3, M(57) );
137: R( c, d, e, a, b, F3, K3, M(58) );
138: R( b, c, d, e, a, F3, K3, M(59) );
139: R( a, b, c, d, e, F4, K4, M(60) );
140: R( e, a, b, c, d, F4, K4, M(61) );
141: R( d, e, a, b, c, F4, K4, M(62) );
142: R( c, d, e, a, b, F4, K4, M(63) );
143: R( b, c, d, e, a, F4, K4, M(64) );
144: R( a, b, c, d, e, F4, K4, M(65) );
145: R( e, a, b, c, d, F4, K4, M(66) );
146: R( d, e, a, b, c, F4, K4, M(67) );
147: R( c, d, e, a, b, F4, K4, M(68) );
148: R( b, c, d, e, a, F4, K4, M(69) );
149: R( a, b, c, d, e, F4, K4, M(70) );
150: R( e, a, b, c, d, F4, K4, M(71) );
151: R( d, e, a, b, c, F4, K4, M(72) );
152: R( c, d, e, a, b, F4, K4, M(73) );
153: R( b, c, d, e, a, F4, K4, M(74) );
154: R( a, b, c, d, e, F4, K4, M(75) );
155: R( e, a, b, c, d, F4, K4, M(76) );
156: R( d, e, a, b, c, F4, K4, M(77) );
157: R( c, d, e, a, b, F4, K4, M(78) );
158: R( b, c, d, e, a, F4, K4, M(79) );
159:
160: /* Update chaining vars. */
161: ctx->h0 += a;
162: ctx->h1 += b;
163: ctx->h2 += c;
164: ctx->h3 += d;
165: ctx->h4 += e;
166: }
167:
168: /*
169: * Update the message digest with the contents of BUF with length LEN.
170: */
171: void
172: sha1_update(struct hash_context *CTX, const byte *buf, uint len)
173: {
174: struct sha1_context *ctx = (void *) CTX;
175:
176: if (ctx->count)
177: {
178: /* Fill rest of internal buffer */
179: for (; len && ctx->count < SHA1_BLOCK_SIZE; len--)
180: ctx->buf[ctx->count++] = *buf++;
181:
182: if (ctx->count < SHA1_BLOCK_SIZE)
183: return;
184:
185: /* Process data from internal buffer */
186: sha1_transform(ctx, ctx->buf);
187: ctx->nblocks++;
188: ctx->count = 0;
189: }
190:
191: if (!len)
192: return;
193:
194: /* Process data from input buffer */
195: while (len >= SHA1_BLOCK_SIZE)
196: {
197: sha1_transform(ctx, buf);
198: ctx->nblocks++;
199: buf += SHA1_BLOCK_SIZE;
200: len -= SHA1_BLOCK_SIZE;
201: }
202:
203: /* Copy remaining data to internal buffer */
204: memcpy(ctx->buf, buf, len);
205: ctx->count = len;
206: }
207:
208: /*
209: * The routine final terminates the computation and returns the digest. The
210: * handle is prepared for a new cycle, but adding bytes to the handle will the
211: * destroy the returned buffer.
212: *
213: * Returns: 20 bytes representing the digest.
214: */
215: byte *
216: sha1_final(struct hash_context *CTX)
217: {
218: struct sha1_context *ctx = (void *) CTX;
219: u32 t, msb, lsb;
220:
221: sha1_update(CTX, NULL, 0); /* flush */
222:
223: t = ctx->nblocks;
224: /* multiply by 64 to make a byte count */
225: lsb = t << 6;
226: msb = t >> 26;
227: /* add the count */
228: t = lsb;
229: if ((lsb += ctx->count) < t)
230: msb++;
231: /* multiply by 8 to make a bit count */
232: t = lsb;
233: lsb <<= 3;
234: msb <<= 3;
235: msb |= t >> 29;
236:
237: if (ctx->count < 56)
238: {
239: /* enough room */
240: ctx->buf[ctx->count++] = 0x80; /* pad */
241: while (ctx->count < 56)
242: ctx->buf[ctx->count++] = 0; /* pad */
243: }
244: else
245: {
246: /* need one extra block */
247: ctx->buf[ctx->count++] = 0x80; /* pad character */
248: while (ctx->count < 64)
249: ctx->buf[ctx->count++] = 0;
250: sha1_update(CTX, NULL, 0); /* flush */
251: memset(ctx->buf, 0, 56); /* fill next block with zeroes */
252: }
253:
254: /* append the 64 bit count */
255: ctx->buf[56] = msb >> 24;
256: ctx->buf[57] = msb >> 16;
257: ctx->buf[58] = msb >> 8;
258: ctx->buf[59] = msb;
259: ctx->buf[60] = lsb >> 24;
260: ctx->buf[61] = lsb >> 16;
261: ctx->buf[62] = lsb >> 8;
262: ctx->buf[63] = lsb;
263: sha1_transform(ctx, ctx->buf);
264:
265: byte *p = ctx->buf;
266: #define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
267: X(0);
268: X(1);
269: X(2);
270: X(3);
271: X(4);
272: #undef X
273:
274: return ctx->buf;
275: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>