File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / bird / lib / sha256.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Aug 22 12:33:54 2017 UTC (6 years, 10 months ago) by misho
Branches: bird, MAIN
CVS tags: v1_6_8p3, v1_6_3p0, v1_6_3, HEAD
bird 1.6.3

    1: /*
    2:  *	BIRD Library -- SHA-256 and SHA-224 Hash Functions
    3:  *
    4:  *	(c) 2015 CZ.NIC z.s.p.o.
    5:  *
    6:  *	Based on the code from libgcrypt-1.6.0, which is
    7:  *	(c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc.
    8:  *
    9:  *	Can be freely distributed and used under the terms of the GNU GPL.
   10:  */
   11: 
   12: #include "lib/sha256.h"
   13: #include "lib/unaligned.h"
   14: 
   15: 
   16: // #define SHA256_UNROLLED
   17: 
   18: void
   19: sha256_init(struct hash_context *CTX)
   20: {
   21:   struct sha256_context *ctx = (void *) CTX;
   22: 
   23:   ctx->h0 = 0x6a09e667;
   24:   ctx->h1 = 0xbb67ae85;
   25:   ctx->h2 = 0x3c6ef372;
   26:   ctx->h3 = 0xa54ff53a;
   27:   ctx->h4 = 0x510e527f;
   28:   ctx->h5 = 0x9b05688c;
   29:   ctx->h6 = 0x1f83d9ab;
   30:   ctx->h7 = 0x5be0cd19;
   31: 
   32:   ctx->nblocks = 0;
   33:   ctx->count = 0;
   34: }
   35: 
   36: void
   37: sha224_init(struct hash_context *CTX)
   38: {
   39:   struct sha224_context *ctx = (void *) CTX;
   40: 
   41:   ctx->h0 = 0xc1059ed8;
   42:   ctx->h1 = 0x367cd507;
   43:   ctx->h2 = 0x3070dd17;
   44:   ctx->h3 = 0xf70e5939;
   45:   ctx->h4 = 0xffc00b31;
   46:   ctx->h5 = 0x68581511;
   47:   ctx->h6 = 0x64f98fa7;
   48:   ctx->h7 = 0xbefa4fa4;
   49: 
   50:   ctx->nblocks = 0;
   51:   ctx->count = 0;
   52: }
   53: 
   54: /* (4.2) same as SHA-1's F1.  */
   55: static inline u32
   56: f1(u32 x, u32 y, u32 z)
   57: {
   58:   return (z ^ (x & (y ^ z)));
   59: }
   60: 
   61: /* (4.3) same as SHA-1's F3 */
   62: static inline u32
   63: f3(u32 x, u32 y, u32 z)
   64: {
   65:   return ((x & y) | (z & (x|y)));
   66: }
   67: 
   68: /* Bitwise rotation of an uint to the right */
   69: static inline u32 ror(u32 x, int n)
   70: {
   71:   return ((x >> (n&(32-1))) | (x << ((32-n)&(32-1))));
   72: }
   73: 
   74: /* (4.4) */
   75: static inline u32
   76: sum0(u32 x)
   77: {
   78:   return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22));
   79: }
   80: 
   81: /* (4.5) */
   82: static inline u32
   83: sum1(u32 x)
   84: {
   85:   return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25));
   86: }
   87: 
   88: /*
   89:   Transform the message X which consists of 16 32-bit-words. See FIPS
   90:   180-2 for details.  */
   91: #define S0(x) (ror((x),  7) ^ ror((x), 18) ^ ((x) >>  3))	/* (4.6) */
   92: #define S1(x) (ror((x), 17) ^ ror((x), 19) ^ ((x) >> 10))	/* (4.7) */
   93: #define R(a,b,c,d,e,f,g,h,k,w)					\
   94:     do								\
   95:     {								\
   96:       t1 = (h) + sum1((e)) + f1((e),(f),(g)) + (k) + (w);	\
   97:       t2 = sum0((a)) + f3((a),(b),(c));				\
   98:       h = g;							\
   99:       g = f;							\
  100:       f = e;							\
  101:       e = d + t1;						\
  102:       d = c;							\
  103:       c = b;							\
  104:       b = a;							\
  105:       a = t1 + t2;						\
  106:     } while (0)
  107: 
  108: /*
  109:     The SHA-256 core: Transform the message X which consists of 16
  110:     32-bit-words. See FIPS 180-2 for details.
  111:  */
  112: static uint
  113: sha256_transform(struct sha256_context *ctx, const byte *data)
  114: {
  115:   static const u32 K[64] = {
  116:       0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  117:       0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  118:       0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  119:       0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  120:       0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  121:       0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  122:       0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  123:       0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  124:       0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  125:       0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  126:       0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  127:       0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  128:       0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  129:       0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  130:       0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  131:       0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  132:   };
  133: 
  134:   u32 a,b,c,d,e,f,g,h,t1,t2;
  135:   u32 w[64];
  136:   int i;
  137: 
  138:   a = ctx->h0;
  139:   b = ctx->h1;
  140:   c = ctx->h2;
  141:   d = ctx->h3;
  142:   e = ctx->h4;
  143:   f = ctx->h5;
  144:   g = ctx->h6;
  145:   h = ctx->h7;
  146: 
  147:   for (i = 0; i < 16; i++)
  148:     w[i] = get_u32(data + i * 4);
  149: 
  150:   for (; i < 64; i++)
  151:     w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16];
  152: 
  153:   for (i = 0; i < 64;)
  154:   {
  155: #ifndef SHA256_UNROLLED
  156:     R(a,b,c,d,e,f,g,h,K[i],w[i]);
  157:     i++;
  158: #else /* Unrolled */
  159:     t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i];
  160:     t2 = sum0(a) + f3(a, b, c);
  161:     d += t1;
  162:     h  = t1 + t2;
  163: 
  164:     t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1];
  165:     t2 = sum0(h) + f3(h, a, b);
  166:     c += t1;
  167:     g  = t1 + t2;
  168: 
  169:     t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2];
  170:     t2 = sum0(g) + f3(g, h, a);
  171:     b += t1;
  172:     f  = t1 + t2;
  173: 
  174:     t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3];
  175:     t2 = sum0(f) + f3(f, g, h);
  176:     a += t1;
  177:     e  = t1 + t2;
  178: 
  179:     t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4];
  180:     t2 = sum0(e) + f3(e, f, g);
  181:     h += t1;
  182:     d  = t1 + t2;
  183: 
  184:     t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5];
  185:     t2 = sum0(d) + f3(d, e, f);
  186:     g += t1;
  187:     c  = t1 + t2;
  188: 
  189:     t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6];
  190:     t2 = sum0(c) + f3(c, d, e);
  191:     f += t1;
  192:     b  = t1 + t2;
  193: 
  194:     t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7];
  195:     t2 = sum0(b) + f3(b, c, d);
  196:     e += t1;
  197:     a  = t1 + t2;
  198: 
  199:     i += 8;
  200: #endif
  201:   }
  202: 
  203:   ctx->h0 += a;
  204:   ctx->h1 += b;
  205:   ctx->h2 += c;
  206:   ctx->h3 += d;
  207:   ctx->h4 += e;
  208:   ctx->h5 += f;
  209:   ctx->h6 += g;
  210:   ctx->h7 += h;
  211: 
  212:   return /*burn_stack*/ 74*4+32;
  213: }
  214: #undef S0
  215: #undef S1
  216: #undef R
  217: 
  218: /* Common function to write a chunk of data to the transform function
  219:    of a hash algorithm.  Note that the use of the term "block" does
  220:    not imply a fixed size block.  Note that we explicitly allow to use
  221:    this function after the context has been finalized; the result does
  222:    not have any meaning but writing after finalize is sometimes
  223:    helpful to mitigate timing attacks. */
  224: void
  225: sha256_update(struct hash_context *CTX, const byte *buf, uint len)
  226: {
  227:   struct sha256_context *ctx = (void *) CTX;
  228: 
  229:   if (ctx->count)
  230:   {
  231:     /* Fill rest of internal buffer */
  232:     for (; len && ctx->count < SHA256_BLOCK_SIZE; len--)
  233:       ctx->buf[ctx->count++] = *buf++;
  234: 
  235:     if (ctx->count < SHA256_BLOCK_SIZE)
  236:       return;
  237: 
  238:     /* Process data from internal buffer */
  239:     sha256_transform(ctx, ctx->buf);
  240:     ctx->nblocks++;
  241:     ctx->count = 0;
  242:   }
  243: 
  244:   if (!len)
  245:     return;
  246: 
  247:   /* Process data from input buffer */
  248:   while (len >= SHA256_BLOCK_SIZE)
  249:   {
  250:     sha256_transform(ctx, buf);
  251:     ctx->nblocks++;
  252:     buf += SHA256_BLOCK_SIZE;
  253:     len -= SHA256_BLOCK_SIZE;
  254:   }
  255: 
  256:   /* Copy remaining data to internal buffer */
  257:   memcpy(ctx->buf, buf, len);
  258:   ctx->count = len;
  259: }
  260: 
  261: /*
  262:  * The routine finally terminates the computation and returns the digest.  The
  263:  * handle is prepared for a new cycle, but adding bytes to the handle will the
  264:  * destroy the returned buffer.
  265:  *
  266:  * Returns: 32 bytes with the message the digest. 28 bytes for SHA-224.
  267:  */
  268: byte *
  269: sha256_final(struct hash_context *CTX)
  270: {
  271:   struct sha256_context *ctx = (void *) CTX;
  272:   u32 t, th, msb, lsb;
  273: 
  274:   sha256_update(CTX, NULL, 0);	/* flush */
  275: 
  276:   t = ctx->nblocks;
  277:   th = 0;
  278: 
  279:   /* multiply by 64 to make a byte count */
  280:   lsb = t << 6;
  281:   msb = (th << 6) | (t >> 26);
  282:   /* add the count */
  283:   t = lsb;
  284:   if ((lsb += ctx->count) < t)
  285:     msb++;
  286:   /* multiply by 8 to make a bit count */
  287:   t = lsb;
  288:   lsb <<= 3;
  289:   msb <<= 3;
  290:   msb |= t >> 29;
  291: 
  292:   if (ctx->count < 56)
  293:   {
  294:     /* enough room */
  295:     ctx->buf[ctx->count++] = 0x80; /* pad */
  296:     while (ctx->count < 56)
  297:       ctx->buf[ctx->count++] = 0;  /* pad */
  298:   }
  299:   else
  300:   {
  301:     /* need one extra block */
  302:     ctx->buf[ctx->count++] = 0x80; /* pad character */
  303:     while (ctx->count < 64)
  304:       ctx->buf[ctx->count++] = 0;
  305:     sha256_update(CTX, NULL, 0);  /* flush */;
  306:     memset(ctx->buf, 0, 56 ); /* fill next block with zeroes */
  307:   }
  308: 
  309:   /* append the 64 bit count */
  310:   put_u32(ctx->buf + 56, msb);
  311:   put_u32(ctx->buf + 60, lsb);
  312:   sha256_transform(ctx, ctx->buf);
  313: 
  314:   byte *p = ctx->buf;
  315: #define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
  316:   X(0);
  317:   X(1);
  318:   X(2);
  319:   X(3);
  320:   X(4);
  321:   X(5);
  322:   X(6);
  323:   X(7);
  324: #undef X
  325: 
  326:   return ctx->buf;
  327: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>