File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / bird / nest / rt-attr.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Aug 22 12:33:54 2017 UTC (6 years, 10 months ago) by misho
Branches: bird, MAIN
CVS tags: v1_6_3p0, v1_6_3, HEAD
bird 1.6.3

    1: /*
    2:  *	BIRD -- Route Attribute Cache
    3:  *
    4:  *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
    5:  *
    6:  *	Can be freely distributed and used under the terms of the GNU GPL.
    7:  */
    8: 
    9: /**
   10:  * DOC: Route attribute cache
   11:  *
   12:  * Each route entry carries a set of route attributes. Several of them
   13:  * vary from route to route, but most attributes are usually common
   14:  * for a large number of routes. To conserve memory, we've decided to
   15:  * store only the varying ones directly in the &rte and hold the rest
   16:  * in a special structure called &rta which is shared among all the
   17:  * &rte's with these attributes.
   18:  *
   19:  * Each &rta contains all the static attributes of the route (i.e.,
   20:  * those which are always present) as structure members and a list of
   21:  * dynamic attributes represented by a linked list of &ea_list
   22:  * structures, each of them consisting of an array of &eattr's containing
   23:  * the individual attributes. An attribute can be specified more than once
   24:  * in the &ea_list chain and in such case the first occurrence overrides
   25:  * the others. This semantics is used especially when someone (for example
   26:  * a filter) wishes to alter values of several dynamic attributes, but
   27:  * it wants to preserve the original attribute lists maintained by
   28:  * another module.
   29:  *
   30:  * Each &eattr contains an attribute identifier (split to protocol ID and
   31:  * per-protocol attribute ID), protocol dependent flags, a type code (consisting
   32:  * of several bit fields describing attribute characteristics) and either an
   33:  * embedded 32-bit value or a pointer to a &adata structure holding attribute
   34:  * contents.
   35:  *
   36:  * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
   37:  * &rta's can have arbitrarily complex structure of &ea_list's and they
   38:  * can be modified by any module in the route processing chain. Cached
   39:  * &rta's have their attribute lists normalized (that means at most one
   40:  * &ea_list is present and its values are sorted in order to speed up
   41:  * searching), they are stored in a hash table to make fast lookup possible
   42:  * and they are provided with a use count to allow sharing.
   43:  *
   44:  * Routing tables always contain only cached &rta's.
   45:  */
   46: 
   47: #include "nest/bird.h"
   48: #include "nest/route.h"
   49: #include "nest/protocol.h"
   50: #include "nest/iface.h"
   51: #include "nest/cli.h"
   52: #include "nest/attrs.h"
   53: #include "lib/alloca.h"
   54: #include "lib/hash.h"
   55: #include "lib/resource.h"
   56: #include "lib/string.h"
   57: 
   58: pool *rta_pool;
   59: 
   60: static slab *rta_slab;
   61: static slab *mpnh_slab;
   62: static slab *rte_src_slab;
   63: 
   64: /* rte source ID bitmap */
   65: static u32 *src_ids;
   66: static u32 src_id_size, src_id_used, src_id_pos;
   67: #define SRC_ID_INIT_SIZE 4
   68: 
   69: /* rte source hash */
   70: 
   71: #define RSH_KEY(n)		n->proto, n->private_id
   72: #define RSH_NEXT(n)		n->next
   73: #define RSH_EQ(p1,n1,p2,n2)	p1 == p2 && n1 == n2
   74: #define RSH_FN(p,n)		p->hash_key ^ u32_hash(n)
   75: 
   76: #define RSH_REHASH		rte_src_rehash
   77: #define RSH_PARAMS		/2, *2, 1, 1, 8, 20
   78: #define RSH_INIT_ORDER		6
   79: 
   80: static HASH(struct rte_src) src_hash;
   81: 
   82: struct protocol *attr_class_to_protocol[EAP_MAX];
   83: 
   84: 
   85: static void
   86: rte_src_init(void)
   87: {
   88:   rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
   89: 
   90:   src_id_pos = 0;
   91:   src_id_size = SRC_ID_INIT_SIZE;
   92:   src_ids = mb_allocz(rta_pool, src_id_size * sizeof(u32));
   93: 
   94:  /* ID 0 is reserved */
   95:   src_ids[0] = 1;
   96:   src_id_used = 1;
   97: 
   98:   HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
   99: }
  100: 
  101: static inline int u32_cto(uint x) { return ffs(~x) - 1; }
  102: 
  103: static inline u32
  104: rte_src_alloc_id(void)
  105: {
  106:   uint i, j;
  107:   for (i = src_id_pos; i < src_id_size; i++)
  108:     if (src_ids[i] != 0xffffffff)
  109:       goto found;
  110: 
  111:   /* If we are at least 7/8 full, expand */
  112:   if (src_id_used > (src_id_size * 28))
  113:     {
  114:       src_id_size *= 2;
  115:       src_ids = mb_realloc(src_ids, src_id_size * sizeof(u32));
  116:       bzero(src_ids + i, (src_id_size - i) * sizeof(u32));
  117:       goto found;
  118:     }
  119: 
  120:   for (i = 0; i < src_id_pos; i++)
  121:     if (src_ids[i] != 0xffffffff)
  122:       goto found;
  123: 
  124:   ASSERT(0);
  125: 
  126:  found:
  127:   ASSERT(i < 0x8000000);
  128: 
  129:   src_id_pos = i;
  130:   j = u32_cto(src_ids[i]);
  131: 
  132:   src_ids[i] |= (1 << j);
  133:   src_id_used++;
  134:   return 32 * i + j;
  135: }
  136: 
  137: static inline void
  138: rte_src_free_id(u32 id)
  139: {
  140:   int i = id / 32;
  141:   int j = id % 32;
  142: 
  143:   ASSERT((i < src_id_size) && (src_ids[i] & (1 << j)));
  144:   src_ids[i] &= ~(1 << j);
  145:   src_id_used--;
  146: }
  147: 
  148: 
  149: HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
  150: 
  151: struct rte_src *
  152: rt_find_source(struct proto *p, u32 id)
  153: {
  154:   return HASH_FIND(src_hash, RSH, p, id);
  155: }
  156: 
  157: struct rte_src *
  158: rt_get_source(struct proto *p, u32 id)
  159: {
  160:   struct rte_src *src = rt_find_source(p, id);
  161: 
  162:   if (src)
  163:     return src;
  164: 
  165:   src = sl_alloc(rte_src_slab);
  166:   src->proto = p;
  167:   src->private_id = id;
  168:   src->global_id = rte_src_alloc_id();
  169:   src->uc = 0;
  170: 
  171:   HASH_INSERT2(src_hash, RSH, rta_pool, src);
  172: 
  173:   return src;
  174: }
  175: 
  176: void
  177: rt_prune_sources(void)
  178: {
  179:   HASH_WALK_FILTER(src_hash, next, src, sp)
  180:   {
  181:     if (src->uc == 0)
  182:     {
  183:       HASH_DO_REMOVE(src_hash, RSH, sp);
  184:       rte_src_free_id(src->global_id);
  185:       sl_free(rte_src_slab, src);
  186:     }
  187:   }
  188:   HASH_WALK_FILTER_END;
  189: 
  190:   HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
  191: }
  192: 
  193: 
  194: /*
  195:  *	Multipath Next Hop
  196:  */
  197: 
  198: static inline uint
  199: mpnh_hash(struct mpnh *x)
  200: {
  201:   uint h = 0;
  202:   for (; x; x = x->next)
  203:     h ^= ipa_hash(x->gw);
  204: 
  205:   return h;
  206: }
  207: 
  208: int
  209: mpnh__same(struct mpnh *x, struct mpnh *y)
  210: {
  211:   for (; x && y; x = x->next, y = y->next)
  212:     if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) || (x->weight != y->weight))
  213:       return 0;
  214: 
  215:   return x == y;
  216: }
  217: 
  218: static int
  219: mpnh_compare_node(struct mpnh *x, struct mpnh *y)
  220: {
  221:   int r;
  222: 
  223:   if (!x)
  224:     return 1;
  225: 
  226:   if (!y)
  227:     return -1;
  228: 
  229:   r = ((int) y->weight) - ((int) x->weight);
  230:   if (r)
  231:     return r;
  232: 
  233:   r = ipa_compare(x->gw, y->gw);
  234:   if (r)
  235:     return r;
  236: 
  237:   return ((int) x->iface->index) - ((int) y->iface->index);
  238: }
  239: 
  240: static inline struct mpnh *
  241: mpnh_copy_node(const struct mpnh *src, linpool *lp)
  242: {
  243:   struct mpnh *n = lp_alloc(lp, sizeof(struct mpnh));
  244:   n->gw = src->gw;
  245:   n->iface = src->iface;
  246:   n->next = NULL;
  247:   n->weight = src->weight;
  248:   return n;
  249: }
  250: 
  251: /**
  252:  * mpnh_merge - merge nexthop lists
  253:  * @x: list 1
  254:  * @y: list 2
  255:  * @rx: reusability of list @x
  256:  * @ry: reusability of list @y
  257:  * @max: max number of nexthops
  258:  * @lp: linpool for allocating nexthops
  259:  *
  260:  * The mpnh_merge() function takes two nexthop lists @x and @y and merges them,
  261:  * eliminating possible duplicates. The input lists must be sorted and the
  262:  * result is sorted too. The number of nexthops in result is limited by @max.
  263:  * New nodes are allocated from linpool @lp.
  264:  *
  265:  * The arguments @rx and @ry specify whether corresponding input lists may be
  266:  * consumed by the function (i.e. their nodes reused in the resulting list), in
  267:  * that case the caller should not access these lists after that. To eliminate
  268:  * issues with deallocation of these lists, the caller should use some form of
  269:  * bulk deallocation (e.g. stack or linpool) to free these nodes when the
  270:  * resulting list is no longer needed. When reusability is not set, the
  271:  * corresponding lists are not modified nor linked from the resulting list.
  272:  */
  273: struct mpnh *
  274: mpnh_merge(struct mpnh *x, struct mpnh *y, int rx, int ry, int max, linpool *lp)
  275: {
  276:   struct mpnh *root = NULL;
  277:   struct mpnh **n = &root;
  278: 
  279:   while ((x || y) && max--)
  280:   {
  281:     int cmp = mpnh_compare_node(x, y);
  282:     if (cmp < 0)
  283:     {
  284:       *n = rx ? x : mpnh_copy_node(x, lp);
  285:       x = x->next;
  286:     }
  287:     else if (cmp > 0)
  288:     {
  289:       *n = ry ? y : mpnh_copy_node(y, lp);
  290:       y = y->next;
  291:     }
  292:     else
  293:     {
  294:       *n = rx ? x : (ry ? y : mpnh_copy_node(x, lp));
  295:       x = x->next;
  296:       y = y->next;
  297:     }
  298:     n = &((*n)->next);
  299:   }
  300:   *n = NULL;
  301: 
  302:   return root;
  303: }
  304: 
  305: void
  306: mpnh_insert(struct mpnh **n, struct mpnh *x)
  307: {
  308:   for (; *n; n = &((*n)->next))
  309:   {
  310:     int cmp = mpnh_compare_node(*n, x);
  311: 
  312:     if (cmp < 0)
  313:       continue;
  314:     else if (cmp > 0)
  315:       break;
  316:     else
  317:       return;
  318:   }
  319: 
  320:   x->next = *n;
  321:   *n = x;
  322: }
  323: 
  324: int
  325: mpnh_is_sorted(struct mpnh *x)
  326: {
  327:   for (; x && x->next; x = x->next)
  328:     if (mpnh_compare_node(x, x->next) >= 0)
  329:       return 0;
  330: 
  331:   return 1;
  332: }
  333: 
  334: static struct mpnh *
  335: mpnh_copy(struct mpnh *o)
  336: {
  337:   struct mpnh *first = NULL;
  338:   struct mpnh **last = &first;
  339: 
  340:   for (; o; o = o->next)
  341:     {
  342:       struct mpnh *n = sl_alloc(mpnh_slab);
  343:       n->gw = o->gw;
  344:       n->iface = o->iface;
  345:       n->next = NULL;
  346:       n->weight = o->weight;
  347: 
  348:       *last = n;
  349:       last = &(n->next);
  350:     }
  351: 
  352:   return first;
  353: }
  354: 
  355: static void
  356: mpnh_free(struct mpnh *o)
  357: {
  358:   struct mpnh *n;
  359: 
  360:   while (o)
  361:     {
  362:       n = o->next;
  363:       sl_free(mpnh_slab, o);
  364:       o = n;
  365:     }
  366: }
  367: 
  368: 
  369: /*
  370:  *	Extended Attributes
  371:  */
  372: 
  373: static inline eattr *
  374: ea__find(ea_list *e, unsigned id)
  375: {
  376:   eattr *a;
  377:   int l, r, m;
  378: 
  379:   while (e)
  380:     {
  381:       if (e->flags & EALF_BISECT)
  382: 	{
  383: 	  l = 0;
  384: 	  r = e->count - 1;
  385: 	  while (l <= r)
  386: 	    {
  387: 	      m = (l+r) / 2;
  388: 	      a = &e->attrs[m];
  389: 	      if (a->id == id)
  390: 		return a;
  391: 	      else if (a->id < id)
  392: 		l = m+1;
  393: 	      else
  394: 		r = m-1;
  395: 	    }
  396: 	}
  397:       else
  398: 	for(m=0; m<e->count; m++)
  399: 	  if (e->attrs[m].id == id)
  400: 	    return &e->attrs[m];
  401:       e = e->next;
  402:     }
  403:   return NULL;
  404: }
  405: 
  406: /**
  407:  * ea_find - find an extended attribute
  408:  * @e: attribute list to search in
  409:  * @id: attribute ID to search for
  410:  *
  411:  * Given an extended attribute list, ea_find() searches for a first
  412:  * occurrence of an attribute with specified ID, returning either a pointer
  413:  * to its &eattr structure or %NULL if no such attribute exists.
  414:  */
  415: eattr *
  416: ea_find(ea_list *e, unsigned id)
  417: {
  418:   eattr *a = ea__find(e, id & EA_CODE_MASK);
  419: 
  420:   if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
  421:       !(id & EA_ALLOW_UNDEF))
  422:     return NULL;
  423:   return a;
  424: }
  425: 
  426: /**
  427:  * ea_walk - walk through extended attributes
  428:  * @s: walk state structure
  429:  * @id: start of attribute ID interval
  430:  * @max: length of attribute ID interval
  431:  *
  432:  * Given an extended attribute list, ea_walk() walks through the list looking
  433:  * for first occurrences of attributes with ID in specified interval from @id to
  434:  * (@id + @max - 1), returning pointers to found &eattr structures, storing its
  435:  * walk state in @s for subsequent calls.
  436:  *
  437:  * The function ea_walk() is supposed to be called in a loop, with initially
  438:  * zeroed walk state structure @s with filled the initial extended attribute
  439:  * list, returning one found attribute in each call or %NULL when no other
  440:  * attribute exists. The extended attribute list or the arguments should not be
  441:  * modified between calls. The maximum value of @max is 128.
  442:  */
  443: eattr *
  444: ea_walk(struct ea_walk_state *s, uint id, uint max)
  445: {
  446:   ea_list *e = s->eattrs;
  447:   eattr *a = s->ea;
  448:   eattr *a_max;
  449: 
  450:   max = id + max;
  451: 
  452:   if (a)
  453:     goto step;
  454: 
  455:   for (; e; e = e->next)
  456:   {
  457:     if (e->flags & EALF_BISECT)
  458:     {
  459:       int l, r, m;
  460: 
  461:       l = 0;
  462:       r = e->count - 1;
  463:       while (l < r)
  464:       {
  465: 	m = (l+r) / 2;
  466: 	if (e->attrs[m].id < id)
  467: 	  l = m + 1;
  468: 	else
  469: 	  r = m;
  470:       }
  471:       a = e->attrs + l;
  472:     }
  473:     else
  474:       a = e->attrs;
  475: 
  476:   step:
  477:     a_max = e->attrs + e->count;
  478:     for (; a < a_max; a++)
  479:       if ((a->id >= id) && (a->id < max))
  480:       {
  481: 	int n = a->id - id;
  482: 
  483: 	if (BIT32_TEST(s->visited, n))
  484: 	  continue;
  485: 
  486: 	BIT32_SET(s->visited, n);
  487: 
  488: 	if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
  489: 	  continue;
  490: 
  491: 	s->eattrs = e;
  492: 	s->ea = a;
  493: 	return a;
  494:       }
  495:       else if (e->flags & EALF_BISECT)
  496: 	break;
  497:   }
  498: 
  499:   return NULL;
  500: }
  501: 
  502: /**
  503:  * ea_get_int - fetch an integer attribute
  504:  * @e: attribute list
  505:  * @id: attribute ID
  506:  * @def: default value
  507:  *
  508:  * This function is a shortcut for retrieving a value of an integer attribute
  509:  * by calling ea_find() to find the attribute, extracting its value or returning
  510:  * a provided default if no such attribute is present.
  511:  */
  512: int
  513: ea_get_int(ea_list *e, unsigned id, int def)
  514: {
  515:   eattr *a = ea_find(e, id);
  516:   if (!a)
  517:     return def;
  518:   return a->u.data;
  519: }
  520: 
  521: static inline void
  522: ea_do_sort(ea_list *e)
  523: {
  524:   unsigned n = e->count;
  525:   eattr *a = e->attrs;
  526:   eattr *b = alloca(n * sizeof(eattr));
  527:   unsigned s, ss;
  528: 
  529:   /* We need to use a stable sorting algorithm, hence mergesort */
  530:   do
  531:     {
  532:       s = ss = 0;
  533:       while (s < n)
  534: 	{
  535: 	  eattr *p, *q, *lo, *hi;
  536: 	  p = b;
  537: 	  ss = s;
  538: 	  *p++ = a[s++];
  539: 	  while (s < n && p[-1].id <= a[s].id)
  540: 	    *p++ = a[s++];
  541: 	  if (s < n)
  542: 	    {
  543: 	      q = p;
  544: 	      *p++ = a[s++];
  545: 	      while (s < n && p[-1].id <= a[s].id)
  546: 		*p++ = a[s++];
  547: 	      lo = b;
  548: 	      hi = q;
  549: 	      s = ss;
  550: 	      while (lo < q && hi < p)
  551: 		if (lo->id <= hi->id)
  552: 		  a[s++] = *lo++;
  553: 		else
  554: 		  a[s++] = *hi++;
  555: 	      while (lo < q)
  556: 		a[s++] = *lo++;
  557: 	      while (hi < p)
  558: 		a[s++] = *hi++;
  559: 	    }
  560: 	}
  561:     }
  562:   while (ss);
  563: }
  564: 
  565: static inline void
  566: ea_do_prune(ea_list *e)
  567: {
  568:   eattr *s, *d, *l, *s0;
  569:   int i = 0;
  570: 
  571:   /* Discard duplicates and undefs. Do you remember sorting was stable? */
  572:   s = d = e->attrs;
  573:   l = e->attrs + e->count;
  574:   while (s < l)
  575:     {
  576:       s0 = s++;
  577:       while (s < l && s->id == s[-1].id)
  578: 	s++;
  579:       /* s0 is the most recent version, s[-1] the oldest one */
  580:       if ((s0->type & EAF_TYPE_MASK) != EAF_TYPE_UNDEF)
  581: 	{
  582: 	  *d = *s0;
  583: 	  d->type = (d->type & ~EAF_ORIGINATED) | (s[-1].type & EAF_ORIGINATED);
  584: 	  d++;
  585: 	  i++;
  586: 	}
  587:     }
  588:   e->count = i;
  589: }
  590: 
  591: /**
  592:  * ea_sort - sort an attribute list
  593:  * @e: list to be sorted
  594:  *
  595:  * This function takes a &ea_list chain and sorts the attributes
  596:  * within each of its entries.
  597:  *
  598:  * If an attribute occurs multiple times in a single &ea_list,
  599:  * ea_sort() leaves only the first (the only significant) occurrence.
  600:  */
  601: void
  602: ea_sort(ea_list *e)
  603: {
  604:   while (e)
  605:     {
  606:       if (!(e->flags & EALF_SORTED))
  607: 	{
  608: 	  ea_do_sort(e);
  609: 	  ea_do_prune(e);
  610: 	  e->flags |= EALF_SORTED;
  611: 	}
  612:       if (e->count > 5)
  613: 	e->flags |= EALF_BISECT;
  614:       e = e->next;
  615:     }
  616: }
  617: 
  618: /**
  619:  * ea_scan - estimate attribute list size
  620:  * @e: attribute list
  621:  *
  622:  * This function calculates an upper bound of the size of
  623:  * a given &ea_list after merging with ea_merge().
  624:  */
  625: unsigned
  626: ea_scan(ea_list *e)
  627: {
  628:   unsigned cnt = 0;
  629: 
  630:   while (e)
  631:     {
  632:       cnt += e->count;
  633:       e = e->next;
  634:     }
  635:   return sizeof(ea_list) + sizeof(eattr)*cnt;
  636: }
  637: 
  638: /**
  639:  * ea_merge - merge segments of an attribute list
  640:  * @e: attribute list
  641:  * @t: buffer to store the result to
  642:  *
  643:  * This function takes a possibly multi-segment attribute list
  644:  * and merges all of its segments to one.
  645:  *
  646:  * The primary use of this function is for &ea_list normalization:
  647:  * first call ea_scan() to determine how much memory will the result
  648:  * take, then allocate a buffer (usually using alloca()), merge the
  649:  * segments with ea_merge() and finally sort and prune the result
  650:  * by calling ea_sort().
  651:  */
  652: void
  653: ea_merge(ea_list *e, ea_list *t)
  654: {
  655:   eattr *d = t->attrs;
  656: 
  657:   t->flags = 0;
  658:   t->count = 0;
  659:   t->next = NULL;
  660:   while (e)
  661:     {
  662:       memcpy(d, e->attrs, sizeof(eattr)*e->count);
  663:       t->count += e->count;
  664:       d += e->count;
  665:       e = e->next;
  666:     }
  667: }
  668: 
  669: /**
  670:  * ea_same - compare two &ea_list's
  671:  * @x: attribute list
  672:  * @y: attribute list
  673:  *
  674:  * ea_same() compares two normalized attribute lists @x and @y and returns
  675:  * 1 if they contain the same attributes, 0 otherwise.
  676:  */
  677: int
  678: ea_same(ea_list *x, ea_list *y)
  679: {
  680:   int c;
  681: 
  682:   if (!x || !y)
  683:     return x == y;
  684:   ASSERT(!x->next && !y->next);
  685:   if (x->count != y->count)
  686:     return 0;
  687:   for(c=0; c<x->count; c++)
  688:     {
  689:       eattr *a = &x->attrs[c];
  690:       eattr *b = &y->attrs[c];
  691: 
  692:       if (a->id != b->id ||
  693: 	  a->flags != b->flags ||
  694: 	  a->type != b->type ||
  695: 	  ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
  696: 	return 0;
  697:     }
  698:   return 1;
  699: }
  700: 
  701: static inline ea_list *
  702: ea_list_copy(ea_list *o)
  703: {
  704:   ea_list *n;
  705:   unsigned i, len;
  706: 
  707:   if (!o)
  708:     return NULL;
  709:   ASSERT(!o->next);
  710:   len = sizeof(ea_list) + sizeof(eattr) * o->count;
  711:   n = mb_alloc(rta_pool, len);
  712:   memcpy(n, o, len);
  713:   n->flags |= EALF_CACHED;
  714:   for(i=0; i<o->count; i++)
  715:     {
  716:       eattr *a = &n->attrs[i];
  717:       if (!(a->type & EAF_EMBEDDED))
  718: 	{
  719: 	  unsigned size = sizeof(struct adata) + a->u.ptr->length;
  720: 	  struct adata *d = mb_alloc(rta_pool, size);
  721: 	  memcpy(d, a->u.ptr, size);
  722: 	  a->u.ptr = d;
  723: 	}
  724:     }
  725:   return n;
  726: }
  727: 
  728: static inline void
  729: ea_free(ea_list *o)
  730: {
  731:   int i;
  732: 
  733:   if (o)
  734:     {
  735:       ASSERT(!o->next);
  736:       for(i=0; i<o->count; i++)
  737: 	{
  738: 	  eattr *a = &o->attrs[i];
  739: 	  if (!(a->type & EAF_EMBEDDED))
  740: 	    mb_free(a->u.ptr);
  741: 	}
  742:       mb_free(o);
  743:     }
  744: }
  745: 
  746: static int
  747: get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
  748: {
  749:   if (a->id == EA_GEN_IGP_METRIC)
  750:     {
  751:       *buf += bsprintf(*buf, "igp_metric");
  752:       return GA_NAME;
  753:     }
  754: 
  755:   return GA_UNKNOWN;
  756: }
  757: 
  758: void
  759: ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
  760: {
  761:   byte *bound = buf + bufsize - 32;
  762:   u32 data = a->u.data;
  763:   int i;
  764: 
  765:   for (i = min; i < max; i++)
  766:     if ((data & (1u << i)) && names[i])
  767:     {
  768:       if (buf > bound)
  769:       {
  770: 	strcpy(buf, " ...");
  771: 	return;
  772:       }
  773: 
  774:       buf += bsprintf(buf, " %s", names[i]);
  775:       data &= ~(1u << i);
  776:     }
  777: 
  778:   if (data)
  779:     bsprintf(buf, " %08x", data);
  780: 
  781:   return;
  782: }
  783: 
  784: static inline void
  785: opaque_format(struct adata *ad, byte *buf, uint size)
  786: {
  787:   byte *bound = buf + size - 10;
  788:   uint i;
  789: 
  790:   for(i = 0; i < ad->length; i++)
  791:     {
  792:       if (buf > bound)
  793: 	{
  794: 	  strcpy(buf, " ...");
  795: 	  return;
  796: 	}
  797:       if (i)
  798: 	*buf++ = ' ';
  799: 
  800:       buf += bsprintf(buf, "%02x", ad->data[i]);
  801:     }
  802: 
  803:   *buf = 0;
  804:   return;
  805: }
  806: 
  807: static inline void
  808: ea_show_int_set(struct cli *c, struct adata *ad, int way, byte *pos, byte *buf, byte *end)
  809: {
  810:   int i = int_set_format(ad, way, 0, pos, end - pos);
  811:   cli_printf(c, -1012, "\t%s", buf);
  812:   while (i)
  813:     {
  814:       i = int_set_format(ad, way, i, buf, end - buf - 1);
  815:       cli_printf(c, -1012, "\t\t%s", buf);
  816:     }
  817: }
  818: 
  819: static inline void
  820: ea_show_ec_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
  821: {
  822:   int i = ec_set_format(ad, 0, pos, end - pos);
  823:   cli_printf(c, -1012, "\t%s", buf);
  824:   while (i)
  825:     {
  826:       i = ec_set_format(ad, i, buf, end - buf - 1);
  827:       cli_printf(c, -1012, "\t\t%s", buf);
  828:     }
  829: }
  830: 
  831: static inline void
  832: ea_show_lc_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
  833: {
  834:   int i = lc_set_format(ad, 0, pos, end - pos);
  835:   cli_printf(c, -1012, "\t%s", buf);
  836:   while (i)
  837:     {
  838:       i = lc_set_format(ad, i, buf, end - buf - 1);
  839:       cli_printf(c, -1012, "\t\t%s", buf);
  840:     }
  841: }
  842: 
  843: /**
  844:  * ea_show - print an &eattr to CLI
  845:  * @c: destination CLI
  846:  * @e: attribute to be printed
  847:  *
  848:  * This function takes an extended attribute represented by its &eattr
  849:  * structure and prints it to the CLI according to the type information.
  850:  *
  851:  * If the protocol defining the attribute provides its own
  852:  * get_attr() hook, it's consulted first.
  853:  */
  854: void
  855: ea_show(struct cli *c, eattr *e)
  856: {
  857:   struct protocol *p;
  858:   int status = GA_UNKNOWN;
  859:   struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
  860:   byte buf[CLI_MSG_SIZE];
  861:   byte *pos = buf, *end = buf + sizeof(buf);
  862: 
  863:   if (p = attr_class_to_protocol[EA_PROTO(e->id)])
  864:     {
  865:       pos += bsprintf(pos, "%s.", p->name);
  866:       if (p->get_attr)
  867: 	status = p->get_attr(e, pos, end - pos);
  868:       pos += strlen(pos);
  869:     }
  870:   else if (EA_PROTO(e->id))
  871:     pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
  872:   else
  873:     status = get_generic_attr(e, &pos, end - pos);
  874: 
  875:   if (status < GA_NAME)
  876:     pos += bsprintf(pos, "%02x", EA_ID(e->id));
  877:   if (status < GA_FULL)
  878:     {
  879:       *pos++ = ':';
  880:       *pos++ = ' ';
  881:       switch (e->type & EAF_TYPE_MASK)
  882: 	{
  883: 	case EAF_TYPE_INT:
  884: 	  bsprintf(pos, "%u", e->u.data);
  885: 	  break;
  886: 	case EAF_TYPE_OPAQUE:
  887: 	  opaque_format(ad, pos, end - pos);
  888: 	  break;
  889: 	case EAF_TYPE_IP_ADDRESS:
  890: 	  bsprintf(pos, "%I", *(ip_addr *) ad->data);
  891: 	  break;
  892: 	case EAF_TYPE_ROUTER_ID:
  893: 	  bsprintf(pos, "%R", e->u.data);
  894: 	  break;
  895: 	case EAF_TYPE_AS_PATH:
  896: 	  as_path_format(ad, pos, end - pos);
  897: 	  break;
  898: 	case EAF_TYPE_BITFIELD:
  899: 	  bsprintf(pos, "%08x", e->u.data);
  900: 	  break;
  901: 	case EAF_TYPE_INT_SET:
  902: 	  ea_show_int_set(c, ad, 1, pos, buf, end);
  903: 	  return;
  904: 	case EAF_TYPE_EC_SET:
  905: 	  ea_show_ec_set(c, ad, pos, buf, end);
  906: 	  return;
  907: 	case EAF_TYPE_LC_SET:
  908: 	  ea_show_lc_set(c, ad, pos, buf, end);
  909: 	  return;
  910: 	case EAF_TYPE_UNDEF:
  911: 	default:
  912: 	  bsprintf(pos, "<type %02x>", e->type);
  913: 	}
  914:     }
  915:   cli_printf(c, -1012, "\t%s", buf);
  916: }
  917: 
  918: /**
  919:  * ea_dump - dump an extended attribute
  920:  * @e: attribute to be dumped
  921:  *
  922:  * ea_dump() dumps contents of the extended attribute given to
  923:  * the debug output.
  924:  */
  925: void
  926: ea_dump(ea_list *e)
  927: {
  928:   int i;
  929: 
  930:   if (!e)
  931:     {
  932:       debug("NONE");
  933:       return;
  934:     }
  935:   while (e)
  936:     {
  937:       debug("[%c%c%c]",
  938: 	    (e->flags & EALF_SORTED) ? 'S' : 's',
  939: 	    (e->flags & EALF_BISECT) ? 'B' : 'b',
  940: 	    (e->flags & EALF_CACHED) ? 'C' : 'c');
  941:       for(i=0; i<e->count; i++)
  942: 	{
  943: 	  eattr *a = &e->attrs[i];
  944: 	  debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
  945: 	  if (a->type & EAF_TEMP)
  946: 	    debug("T");
  947: 	  debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
  948: 	  if (a->type & EAF_ORIGINATED)
  949: 	    debug("o");
  950: 	  if (a->type & EAF_EMBEDDED)
  951: 	    debug(":%08x", a->u.data);
  952: 	  else
  953: 	    {
  954: 	      int j, len = a->u.ptr->length;
  955: 	      debug("[%d]:", len);
  956: 	      for(j=0; j<len; j++)
  957: 		debug("%02x", a->u.ptr->data[j]);
  958: 	    }
  959: 	}
  960:       if (e = e->next)
  961: 	debug(" | ");
  962:     }
  963: }
  964: 
  965: /**
  966:  * ea_hash - calculate an &ea_list hash key
  967:  * @e: attribute list
  968:  *
  969:  * ea_hash() takes an extended attribute list and calculated a hopefully
  970:  * uniformly distributed hash value from its contents.
  971:  */
  972: inline uint
  973: ea_hash(ea_list *e)
  974: {
  975:   u32 h = 0;
  976:   int i;
  977: 
  978:   if (e)			/* Assuming chain of length 1 */
  979:     {
  980:       for(i=0; i<e->count; i++)
  981: 	{
  982: 	  struct eattr *a = &e->attrs[i];
  983: 	  h ^= a->id;
  984: 	  if (a->type & EAF_EMBEDDED)
  985: 	    h ^= a->u.data;
  986: 	  else
  987: 	    {
  988: 	      struct adata *d = a->u.ptr;
  989: 	      int size = d->length;
  990: 	      byte *z = d->data;
  991: 	      while (size >= 4)
  992: 		{
  993: 		  h ^= *(u32 *)z;
  994: 		  z += 4;
  995: 		  size -= 4;
  996: 		}
  997: 	      while (size--)
  998: 		h = (h >> 24) ^ (h << 8) ^ *z++;
  999: 	    }
 1000: 	}
 1001:       h ^= h >> 16;
 1002:       h ^= h >> 6;
 1003:       h &= 0xffff;
 1004:     }
 1005:   return h;
 1006: }
 1007: 
 1008: /**
 1009:  * ea_append - concatenate &ea_list's
 1010:  * @to: destination list (can be %NULL)
 1011:  * @what: list to be appended (can be %NULL)
 1012:  *
 1013:  * This function appends the &ea_list @what at the end of
 1014:  * &ea_list @to and returns a pointer to the resulting list.
 1015:  */
 1016: ea_list *
 1017: ea_append(ea_list *to, ea_list *what)
 1018: {
 1019:   ea_list *res;
 1020: 
 1021:   if (!to)
 1022:     return what;
 1023:   res = to;
 1024:   while (to->next)
 1025:     to = to->next;
 1026:   to->next = what;
 1027:   return res;
 1028: }
 1029: 
 1030: /*
 1031:  *	rta's
 1032:  */
 1033: 
 1034: static uint rta_cache_count;
 1035: static uint rta_cache_size = 32;
 1036: static uint rta_cache_limit;
 1037: static uint rta_cache_mask;
 1038: static rta **rta_hash_table;
 1039: 
 1040: static void
 1041: rta_alloc_hash(void)
 1042: {
 1043:   rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
 1044:   if (rta_cache_size < 32768)
 1045:     rta_cache_limit = rta_cache_size * 2;
 1046:   else
 1047:     rta_cache_limit = ~0;
 1048:   rta_cache_mask = rta_cache_size - 1;
 1049: }
 1050: 
 1051: static inline uint
 1052: rta_hash(rta *a)
 1053: {
 1054:   return (((uint) (uintptr_t) a->src) ^ ipa_hash(a->gw) ^
 1055: 	  mpnh_hash(a->nexthops) ^ ea_hash(a->eattrs)) & 0xffff;
 1056: }
 1057: 
 1058: static inline int
 1059: rta_same(rta *x, rta *y)
 1060: {
 1061:   return (x->src == y->src &&
 1062: 	  x->source == y->source &&
 1063: 	  x->scope == y->scope &&
 1064: 	  x->cast == y->cast &&
 1065: 	  x->dest == y->dest &&
 1066: 	  x->flags == y->flags &&
 1067: 	  x->igp_metric == y->igp_metric &&
 1068: 	  ipa_equal(x->gw, y->gw) &&
 1069: 	  ipa_equal(x->from, y->from) &&
 1070: 	  x->iface == y->iface &&
 1071: 	  x->hostentry == y->hostentry &&
 1072: 	  mpnh_same(x->nexthops, y->nexthops) &&
 1073: 	  ea_same(x->eattrs, y->eattrs));
 1074: }
 1075: 
 1076: static rta *
 1077: rta_copy(rta *o)
 1078: {
 1079:   rta *r = sl_alloc(rta_slab);
 1080: 
 1081:   memcpy(r, o, sizeof(rta));
 1082:   r->uc = 1;
 1083:   r->nexthops = mpnh_copy(o->nexthops);
 1084:   r->eattrs = ea_list_copy(o->eattrs);
 1085:   return r;
 1086: }
 1087: 
 1088: static inline void
 1089: rta_insert(rta *r)
 1090: {
 1091:   uint h = r->hash_key & rta_cache_mask;
 1092:   r->next = rta_hash_table[h];
 1093:   if (r->next)
 1094:     r->next->pprev = &r->next;
 1095:   r->pprev = &rta_hash_table[h];
 1096:   rta_hash_table[h] = r;
 1097: }
 1098: 
 1099: static void
 1100: rta_rehash(void)
 1101: {
 1102:   uint ohs = rta_cache_size;
 1103:   uint h;
 1104:   rta *r, *n;
 1105:   rta **oht = rta_hash_table;
 1106: 
 1107:   rta_cache_size = 2*rta_cache_size;
 1108:   DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
 1109:   rta_alloc_hash();
 1110:   for(h=0; h<ohs; h++)
 1111:     for(r=oht[h]; r; r=n)
 1112:       {
 1113: 	n = r->next;
 1114: 	rta_insert(r);
 1115:       }
 1116:   mb_free(oht);
 1117: }
 1118: 
 1119: /**
 1120:  * rta_lookup - look up a &rta in attribute cache
 1121:  * @o: a un-cached &rta
 1122:  *
 1123:  * rta_lookup() gets an un-cached &rta structure and returns its cached
 1124:  * counterpart. It starts with examining the attribute cache to see whether
 1125:  * there exists a matching entry. If such an entry exists, it's returned and
 1126:  * its use count is incremented, else a new entry is created with use count
 1127:  * set to 1.
 1128:  *
 1129:  * The extended attribute lists attached to the &rta are automatically
 1130:  * converted to the normalized form.
 1131:  */
 1132: rta *
 1133: rta_lookup(rta *o)
 1134: {
 1135:   rta *r;
 1136:   uint h;
 1137: 
 1138:   ASSERT(!(o->aflags & RTAF_CACHED));
 1139:   if (o->eattrs)
 1140:     {
 1141:       if (o->eattrs->next)	/* Multiple ea_list's, need to merge them */
 1142: 	{
 1143: 	  ea_list *ml = alloca(ea_scan(o->eattrs));
 1144: 	  ea_merge(o->eattrs, ml);
 1145: 	  o->eattrs = ml;
 1146: 	}
 1147:       ea_sort(o->eattrs);
 1148:     }
 1149: 
 1150:   h = rta_hash(o);
 1151:   for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
 1152:     if (r->hash_key == h && rta_same(r, o))
 1153:       return rta_clone(r);
 1154: 
 1155:   r = rta_copy(o);
 1156:   r->hash_key = h;
 1157:   r->aflags = RTAF_CACHED;
 1158:   rt_lock_source(r->src);
 1159:   rt_lock_hostentry(r->hostentry);
 1160:   rta_insert(r);
 1161: 
 1162:   if (++rta_cache_count > rta_cache_limit)
 1163:     rta_rehash();
 1164: 
 1165:   return r;
 1166: }
 1167: 
 1168: void
 1169: rta__free(rta *a)
 1170: {
 1171:   ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
 1172:   rta_cache_count--;
 1173:   *a->pprev = a->next;
 1174:   if (a->next)
 1175:     a->next->pprev = a->pprev;
 1176:   a->aflags = 0;		/* Poison the entry */
 1177:   rt_unlock_hostentry(a->hostentry);
 1178:   rt_unlock_source(a->src);
 1179:   mpnh_free(a->nexthops);
 1180:   ea_free(a->eattrs);
 1181:   sl_free(rta_slab, a);
 1182: }
 1183: 
 1184: rta *
 1185: rta_do_cow(rta *o, linpool *lp)
 1186: {
 1187:   rta *r = lp_alloc(lp, sizeof(rta));
 1188:   memcpy(r, o, sizeof(rta));
 1189:   r->aflags = 0;
 1190:   r->uc = 0;
 1191:   return r;
 1192: }
 1193: 
 1194: /**
 1195:  * rta_dump - dump route attributes
 1196:  * @a: attribute structure to dump
 1197:  *
 1198:  * This function takes a &rta and dumps its contents to the debug output.
 1199:  */
 1200: void
 1201: rta_dump(rta *a)
 1202: {
 1203:   static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
 1204: 			 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
 1205: 			 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
 1206:                          "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
 1207:   static char *rtc[] = { "", " BC", " MC", " AC" };
 1208:   static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
 1209: 
 1210:   debug("p=%s uc=%d %s %s%s%s h=%04x",
 1211: 	a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope), rtc[a->cast],
 1212: 	rtd[a->dest], a->hash_key);
 1213:   if (!(a->aflags & RTAF_CACHED))
 1214:     debug(" !CACHED");
 1215:   debug(" <-%I", a->from);
 1216:   if (a->dest == RTD_ROUTER)
 1217:     debug(" ->%I", a->gw);
 1218:   if (a->dest == RTD_DEVICE || a->dest == RTD_ROUTER)
 1219:     debug(" [%s]", a->iface ? a->iface->name : "???" );
 1220:   if (a->eattrs)
 1221:     {
 1222:       debug(" EA: ");
 1223:       ea_dump(a->eattrs);
 1224:     }
 1225: }
 1226: 
 1227: /**
 1228:  * rta_dump_all - dump attribute cache
 1229:  *
 1230:  * This function dumps the whole contents of route attribute cache
 1231:  * to the debug output.
 1232:  */
 1233: void
 1234: rta_dump_all(void)
 1235: {
 1236:   rta *a;
 1237:   uint h;
 1238: 
 1239:   debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
 1240:   for(h=0; h<rta_cache_size; h++)
 1241:     for(a=rta_hash_table[h]; a; a=a->next)
 1242:       {
 1243: 	debug("%p ", a);
 1244: 	rta_dump(a);
 1245: 	debug("\n");
 1246:       }
 1247:   debug("\n");
 1248: }
 1249: 
 1250: void
 1251: rta_show(struct cli *c, rta *a, ea_list *eal)
 1252: {
 1253:   static char *src_names[] = { "dummy", "static", "inherit", "device", "static-device", "redirect",
 1254: 			       "RIP", "OSPF", "OSPF-IA", "OSPF-E1", "OSPF-E2", "BGP", "pipe" };
 1255:   static char *cast_names[] = { "unicast", "broadcast", "multicast", "anycast" };
 1256:   int i;
 1257: 
 1258:   cli_printf(c, -1008, "\tType: %s %s %s", src_names[a->source], cast_names[a->cast], ip_scope_text(a->scope));
 1259:   if (!eal)
 1260:     eal = a->eattrs;
 1261:   for(; eal; eal=eal->next)
 1262:     for(i=0; i<eal->count; i++)
 1263:       ea_show(c, &eal->attrs[i]);
 1264: }
 1265: 
 1266: /**
 1267:  * rta_init - initialize route attribute cache
 1268:  *
 1269:  * This function is called during initialization of the routing
 1270:  * table module to set up the internals of the attribute cache.
 1271:  */
 1272: void
 1273: rta_init(void)
 1274: {
 1275:   rta_pool = rp_new(&root_pool, "Attributes");
 1276:   rta_slab = sl_new(rta_pool, sizeof(rta));
 1277:   mpnh_slab = sl_new(rta_pool, sizeof(struct mpnh));
 1278:   rta_alloc_hash();
 1279:   rte_src_init();
 1280: }
 1281: 
 1282: /*
 1283:  *  Documentation for functions declared inline in route.h
 1284:  */
 1285: #if 0
 1286: 
 1287: /**
 1288:  * rta_clone - clone route attributes
 1289:  * @r: a &rta to be cloned
 1290:  *
 1291:  * rta_clone() takes a cached &rta and returns its identical cached
 1292:  * copy. Currently it works by just returning the original &rta with
 1293:  * its use count incremented.
 1294:  */
 1295: static inline rta *rta_clone(rta *r)
 1296: { DUMMY; }
 1297: 
 1298: /**
 1299:  * rta_free - free route attributes
 1300:  * @r: a &rta to be freed
 1301:  *
 1302:  * If you stop using a &rta (for example when deleting a route which uses
 1303:  * it), you need to call rta_free() to notify the attribute cache the
 1304:  * attribute is no longer in use and can be freed if you were the last
 1305:  * user (which rta_free() tests by inspecting the use count).
 1306:  */
 1307: static inline void rta_free(rta *r)
 1308: { DUMMY; }
 1309: 
 1310: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>