Annotation of embedaddon/bird/proto/ospf/topology.h, revision 1.1.1.1

1.1       misho       1: /*
                      2:  *     BIRD -- OSPF
                      3:  *
                      4:  *     (c) 1999--2004 Ondrej Filip <feela@network.cz>
                      5:  *     (c) 2009--2014 Ondrej Zajicek <santiago@crfreenet.org>
                      6:  *     (c) 2009--2014 CZ.NIC z.s.p.o.
                      7:  *
                      8:  *     Can be freely distributed and used under the terms of the GNU GPL.
                      9:  */
                     10: 
                     11: #ifndef _BIRD_OSPF_TOPOLOGY_H_
                     12: #define _BIRD_OSPF_TOPOLOGY_H_
                     13: 
                     14: struct top_hash_entry
                     15: {                              /* Index for fast mapping (type,rtrid,LSid)->vertex */
                     16:   snode n;
                     17:   node cn;                     /* For adding into list of candidates
                     18:                                   in intra-area routing table calculation */
                     19:   struct top_hash_entry *next; /* Next in hash chain */
                     20:   struct ospf_lsa_header lsa;
                     21:   u16 lsa_type;                        /* lsa.type processed and converted to common values (LSA_T_*) */
                     22:   u16 init_age;                        /* Initial value for lsa.age during inst_time */
                     23:   u32 domain;                  /* Area ID for area-wide LSAs, Iface ID for link-wide LSAs */
                     24:   //  struct ospf_area *oa;
                     25:   void *lsa_body;              /* May be NULL if LSA was flushed but hash entry was kept */
                     26:   void *next_lsa_body;         /* For postponed LSA origination */
                     27:   u16 next_lsa_blen;           /* For postponed LSA origination */
                     28:   u16 next_lsa_opts;           /* For postponed LSA origination */
                     29:   bird_clock_t inst_time;      /* Time of installation into DB */
                     30:   struct ort *nf;              /* Reference fibnode for sum and ext LSAs, NULL for otherwise */
                     31:   struct mpnh *nhs;            /* Computed nexthops - valid only in ospf_rt_spf() */
                     32:   ip_addr lb;                  /* In OSPFv2, link back address. In OSPFv3, any global address in the area useful for vlinks */
                     33:   u32 lb_id;                   /* Interface ID of link back iface (for bcast or NBMA networks) */
                     34:   u32 dist;                    /* Distance from the root */
                     35:   int ret_count;               /* Number of retransmission lists referencing the entry */
                     36:   u8 color;
                     37: #define OUTSPF 0
                     38: #define CANDIDATE 1
                     39: #define INSPF 2
                     40:   u8 mode;                     /* LSA generated during RT calculation (LSA_RTCALC or LSA_STALE)*/
                     41:   u8 nhs_reuse;                        /* Whether nhs nodes can be reused during merging.
                     42:                                   See a note in rt.c:add_cand() */
                     43: };
                     44: 
                     45: 
                     46: /* Prevents ospf_hash_find() to ignore the entry, for p->lsrqh and p->lsrth */
                     47: #define LSA_BODY_DUMMY ((void *) 1)
                     48: 
                     49: /*
                     50:  * LSA entry life cycle
                     51:  *
                     52:  * LSA entries are created by ospf_originate_lsa() (for locally originated LSAs)
                     53:  * or ospf_install_lsa() (for LSAs received from neighbors). A regular (like
                     54:  * newly originated) LSA entry has defined lsa_body nad lsa.age < %LSA_MAXAGE.
                     55:  * When the LSA is requested to be flushed by ospf_flush_lsa(), the lsa.age is
                     56:  * set to %LSA_MAXAGE and flooded. Flush process is finished asynchronously,
                     57:  * when (at least) flooding is acknowledged by neighbors. This is detected in
                     58:  * ospf_update_lsadb(), then ospf_clear_lsa() is called to free the LSA body but
                     59:  * the LSA entry is kept. Such LSA does not formally exist, we keep an empty
                     60:  * entry (until regular timeout) to know inst_time and lsa.sn in the case of
                     61:  * later reorigination. After the timeout, LSA is removed by ospf_remove_lsa().
                     62:  *
                     63:  * When LSA origination is requested (by ospf_originate_lsa()). but it is not
                     64:  * possible to do that immediately (because of MinLSInterval or because the
                     65:  * sequence number is wrapping), The new LSA is scheduled for later origination
                     66:  * in next_lsa_* fields of the LSA entry. The later origination is handled by
                     67:  * ospf_originate_next_lsa() called from ospf_update_lsadb(). We can see that
                     68:  * both real origination and final flush is asynchronous to ospf_originate_lsa()
                     69:  * and ospf_flush_lsa().
                     70:  *
                     71:  * LSA entry therefore could be in three basic states:
                     72:  * R - regular (lsa.age < %LSA_MAXAGE, lsa_body != NULL)
                     73:  * F - flushing (lsa.age == %LSA_MAXAGE, lsa_body != NULL)
                     74:  * E - empty (lsa.age == %LSA_MAXAGE, lsa_body == NULL)
                     75:  *
                     76:  * And these states are doubled based on whether the next LSA is scheduled
                     77:  * (next_lsa_body != NULL, -n suffix) or not (next_lsa_body == NULL). We also
                     78:  * use X for a state of non-existentce. We have this basic state graph
                     79:  * (transitions from any state to R are omitted for clarity):
                     80:  *
                     81:  *  X --> R ---> F ---> E --> X
                     82:  *        | \  / |      |
                     83:  *        |  \/  |      |
                     84:  *        |  /\  |      |
                     85:  *        | /  \ |      |
                     86:  *        Rn --> Fn --> En
                     87:  *
                     88:  * The transitions are:
                     89:  *
                     90:  * any state -> R              - new LSA origination requested and executed
                     91:  * R -> Rn, F -> Fn, E -> En   - new LSA origination requested and postponed
                     92:  * R -> Fn                     - new LSA origination requested, seqnum wrapping
                     93:  * Rn,Fn,En -> R               - postponed LSA finally originated
                     94:  * R -> R                      - LSA refresh done
                     95:  * R -> Fn                     - LSA refresh with seqnum wrapping
                     96:  * R -> F, Rn -> Fn            - LSA age timeout
                     97:  * R,Rn,Fn -> F, En -> E       - LSA flush requested
                     98:  * F -> E, Fn -> En            - LSA flush done (acknowledged)
                     99:  * E -> X                      - LSA real age timeout (or immediate for received LSA)
                    100:  *
                    101:  * The 'origination requested' and 'flush requested' transitions are triggered
                    102:  * and done by ospf_originate_lsa() and ospf_flush_lsa(), the rest is handled
                    103:  * asynchronously by ospf_update_lsadb().
                    104:  *
                    105:  * The situation is significantly simpler for non-local (received) LSAs - there
                    106:  * is no postponed origination and after flushing is done, LSAs are immediately
                    107:  * removed, so it is just X -> R -> F -> X, or X -> F -> X (when MaxAge LSA is
                    108:  * received).
                    109:  *
                    110:  * There are also some special cases related to handling of received unknown
                    111:  * self-originated LSAs in ospf_advance_lsa():
                    112:  * X -> F              - LSA is received and immediately flushed
                    113:  * R,Rn -> Fn          - LSA with MaxSeqNo received and flushed, current LSA scheduled
                    114:  */
                    115: 
                    116: 
                    117: #define LSA_M_BASIC    0
                    118: #define LSA_M_EXPORT   1
                    119: #define LSA_M_RTCALC   2
                    120: #define LSA_M_STALE    3
                    121: 
                    122: /*
                    123:  * LSA entry modes:
                    124:  *
                    125:  * LSA_M_BASIC - The LSA is explicitly originated using ospf_originate_lsa() and
                    126:  * explicitly flushed using ospf_flush_lsa(). When the LSA is changed, the
                    127:  * routing table calculation is scheduled. This is also the mode used for LSAs
                    128:  * received from neighbors. Example: Router-LSAs, Network-LSAs.
                    129:  *
                    130:  * LSA_M_EXPORT - like LSA_M_BASIC, but the routing table calculation does not
                    131:  * depend on the LSA. Therefore, the calculation is not scheduled when the LSA
                    132:  * is changed. Example: AS-external-LSAs for exported routes.
                    133:  *
                    134:  * LSA_M_RTCALC - The LSA has to be requested using ospf_originate_lsa() during
                    135:  * each routing table calculation, otherwise it is flushed automatically at the
                    136:  * end of the calculation. The LSA is a result of the calculation and not a
                    137:  * source for it. Therefore, the calculation is not scheduled when the LSA is
                    138:  * changed. Example: Summary-LSAs.
                    139:  *
                    140:  * LSA_M_STALE - Temporary state for LSA_M_RTCALC that is not requested during
                    141:  * the current routing table calculation.
                    142:  *
                    143:  *
                    144:  * Note that we do not schedule the routing table calculation when the age of
                    145:  * LSA_M_BASIC LSA is changed to MaxAge because of the sequence number wrapping,
                    146:  * As it will be switched back to a regular one ASAP.
                    147:  */
                    148: 
                    149: 
                    150: struct top_graph
                    151: {
                    152:   pool *pool;                  /* Pool we allocate from */
                    153:   slab *hash_slab;             /* Slab for hash entries */
                    154:   struct top_hash_entry **hash_table;  /* Hashing (modelled a`la fib) */
                    155:   uint ospf2;                  /* Whether it is for OSPFv2 or OSPFv3 */
                    156:   uint hash_size;
                    157:   uint hash_order;
                    158:   uint hash_mask;
                    159:   uint hash_entries;
                    160:   uint hash_entries_min, hash_entries_max;
                    161: };
                    162: 
                    163: struct ospf_new_lsa
                    164: {
                    165:   u16 type;
                    166:   u8  mode;
                    167:   u32 dom;
                    168:   u32 id;
                    169:   u16 opts;
                    170:   u16 length;
                    171:   struct ospf_iface *ifa;
                    172:   struct ort *nf;
                    173: };
                    174: 
                    175: struct top_graph *ospf_top_new(struct ospf_proto *p, pool *pool);
                    176: void ospf_top_free(struct top_graph *f);
                    177: 
                    178: struct top_hash_entry * ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body);
                    179: struct top_hash_entry * ospf_originate_lsa(struct ospf_proto *p, struct ospf_new_lsa *lsa);
                    180: void ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body);
                    181: void ospf_flush_lsa(struct ospf_proto *p, struct top_hash_entry *en);
                    182: void ospf_update_lsadb(struct ospf_proto *p);
                    183: 
                    184: static inline void ospf_flush2_lsa(struct ospf_proto *p, struct top_hash_entry **en)
                    185: { if (*en) { ospf_flush_lsa(p, *en); *en = NULL; } }
                    186: 
                    187: void ospf_originate_sum_net_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric);
                    188: void ospf_originate_sum_rt_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric, u32 options);
                    189: void ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 mode, u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit);
                    190: 
                    191: void ospf_rt_notify(struct proto *P, rtable *tbl, net *n, rte *new, rte *old, ea_list *attrs);
                    192: void ospf_update_topology(struct ospf_proto *p);
                    193: 
                    194: struct top_hash_entry *ospf_hash_find(struct top_graph *, u32 domain, u32 lsa, u32 rtr, u32 type);
                    195: struct top_hash_entry *ospf_hash_get(struct top_graph *, u32 domain, u32 lsa, u32 rtr, u32 type);
                    196: void ospf_hash_delete(struct top_graph *, struct top_hash_entry *);
                    197: 
                    198: static inline struct top_hash_entry * ospf_hash_find_entry(struct top_graph *f, struct top_hash_entry *en)
                    199: { return ospf_hash_find(f, en->domain, en->lsa.id, en->lsa.rt, en->lsa_type); }
                    200: 
                    201: static inline struct top_hash_entry * ospf_hash_get_entry(struct top_graph *f, struct top_hash_entry *en)
                    202: { return ospf_hash_get(f, en->domain, en->lsa.id, en->lsa.rt, en->lsa_type); }
                    203: 
                    204: struct top_hash_entry * ospf_hash_find_rt(struct top_graph *f, u32 domain, u32 rtr);
                    205: struct top_hash_entry * ospf_hash_find_rt3_first(struct top_graph *f, u32 domain, u32 rtr);
                    206: struct top_hash_entry * ospf_hash_find_rt3_next(struct top_hash_entry *e);
                    207: 
                    208: struct top_hash_entry * ospf_hash_find_net2(struct top_graph *f, u32 domain, u32 id);
                    209: 
                    210: /* In OSPFv2, id is network IP prefix (lsa.id) while lsa.rt field is unknown
                    211:    In OSPFv3, id is lsa.rt of DR while nif is neighbor iface id (lsa.id) */
                    212: static inline struct top_hash_entry *
                    213: ospf_hash_find_net(struct top_graph *f, u32 domain, u32 id, u32 nif)
                    214: {
                    215:   return f->ospf2 ?
                    216:     ospf_hash_find_net2(f, domain, id) :
                    217:     ospf_hash_find(f, domain, nif, id, LSA_T_NET);
                    218: }
                    219: 
                    220: 
                    221: #endif /* _BIRD_OSPF_TOPOLOGY_H_ */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>