Annotation of embedaddon/bird2/doc/bird.sgml, revision 1.1.1.1

1.1       misho       1: <!doctype birddoc system>
                      2: 
                      3: <!--
                      4:        BIRD 2.0 documentation
                      5: 
                      6: This documentation can have 4 forms: sgml (this is master copy), html, ASCII
                      7: text and dvi/postscript (generated from sgml using sgmltools). You should always
                      8: edit master copy.
                      9: 
                     10: This is a slightly modified linuxdoc dtd. Anything in <descrip> tags is
                     11: considered definition of configuration primitives, <cf> is fragment of
                     12: configuration within normal text, <m> is "meta" information within fragment of
                     13: configuration - something in config which is not keyword.
                     14: 
                     15:     (set-fill-column 80)
                     16: 
                     17:     Copyright 1999,2000 Pavel Machek <pavel@ucw.cz>, distribute under GPL version 2 or later.
                     18: 
                     19:  -->
                     20: 
                     21: <book>
                     22: 
                     23: <title>BIRD 2.0 User's Guide
                     24: <author>
                     25: Ondrej Filip <it/&lt;feela@network.cz&gt;/,
                     26: Pavel Machek <it/&lt;pavel@ucw.cz&gt;/,
                     27: Martin Mares <it/&lt;mj@ucw.cz&gt;/,
                     28: Maria Matejka <it/&lt;mq@jmq.cz&gt;/,
                     29: Ondrej Zajicek <it/&lt;santiago@crfreenet.org&gt;/
                     30: </author>
                     31: 
                     32: <abstract>
                     33: This document contains user documentation for the BIRD Internet Routing Daemon project.
                     34: </abstract>
                     35: 
                     36: <!-- Table of contents -->
                     37: <toc>
                     38: 
                     39: <!-- Begin the document -->
                     40: 
                     41: 
                     42: <chapt>Introduction
                     43: <label id="intro">
                     44: 
                     45: <sect>What is BIRD
                     46: <label id="what-is-bird">
                     47: 
                     48: <p>The name `BIRD' is actually an acronym standing for `BIRD Internet Routing
                     49: Daemon'. Let's take a closer look at the meaning of the name:
                     50: 
                     51: <p><em/BIRD/: Well, we think we have already explained that. It's an acronym
                     52: standing for `BIRD Internet Routing Daemon', you remember, don't you? :-)
                     53: 
                     54: <p><em/Internet Routing/: It's a program (well, a daemon, as you are going to
                     55: discover in a moment) which works as a dynamic router in an Internet type
                     56: network (that is, in a network running either the IPv4 or the IPv6 protocol).
                     57: Routers are devices which forward packets between interconnected networks in
                     58: order to allow hosts not connected directly to the same local area network to
                     59: communicate with each other. They also communicate with the other routers in the
                     60: Internet to discover the topology of the network which allows them to find
                     61: optimal (in terms of some metric) rules for forwarding of packets (which are
                     62: called routing tables) and to adapt themselves to the changing conditions such
                     63: as outages of network links, building of new connections and so on. Most of
                     64: these routers are costly dedicated devices running obscure firmware which is
                     65: hard to configure and not open to any changes (on the other hand, their special
                     66: hardware design allows them to keep up with lots of high-speed network
                     67: interfaces, better than general-purpose computer does). Fortunately, most
                     68: operating systems of the UNIX family allow an ordinary computer to act as a
                     69: router and forward packets belonging to the other hosts, but only according to a
                     70: statically configured table.
                     71: 
                     72: <p>A <em/Routing Daemon/ is in UNIX terminology a non-interactive program
                     73: running on background which does the dynamic part of Internet routing, that is
                     74: it communicates with the other routers, calculates routing tables and sends them
                     75: to the OS kernel which does the actual packet forwarding. There already exist
                     76: other such routing daemons: routed (RIP only), GateD (non-free),
                     77: <HTMLURL URL="http://www.zebra.org" name="Zebra"> and
                     78: <HTMLURL URL="http://sourceforge.net/projects/mrt" name="MRTD">,
                     79: but their capabilities are limited and they are relatively hard to configure
                     80: and maintain.
                     81: 
                     82: <p>BIRD is an Internet Routing Daemon designed to avoid all of these shortcomings,
                     83: to support all the routing technology used in the today's Internet or planned to
                     84: be used in near future and to have a clean extensible architecture allowing new
                     85: routing protocols to be incorporated easily. Among other features, BIRD
                     86: supports:
                     87: 
                     88: <itemize>
                     89:        <item>both IPv4 and IPv6 protocols
                     90:        <item>multiple routing tables
                     91:        <item>the Border Gateway Protocol (BGPv4)
                     92:        <item>the Routing Information Protocol (RIPv2, RIPng)
                     93:        <item>the Open Shortest Path First protocol (OSPFv2, OSPFv3)
                     94:        <item>the Babel Routing Protocol
                     95:        <item>the Router Advertisements for IPv6 hosts
                     96:        <item>a virtual protocol for exchange of routes between different
                     97:                routing tables on a single host
                     98:        <item>a command-line interface allowing on-line control and inspection
                     99:                of status of the daemon
                    100:        <item>soft reconfiguration (no need to use complex online commands to
                    101:                change the configuration, just edit the configuration file and
                    102:                notify BIRD to re-read it and it will smoothly switch itself to
                    103:                the new configuration, not disturbing routing protocols unless
                    104:                they are affected by the configuration changes)
                    105:        <item>a powerful language for route filtering
                    106: </itemize>
                    107: 
                    108: <p>BIRD has been developed at the Faculty of Math and Physics, Charles
                    109: University, Prague, Czech Republic as a student project. It can be freely
                    110: distributed under the terms of the GNU General Public License.
                    111: 
                    112: <p>BIRD has been designed to work on all UNIX-like systems. It has been
                    113: developed and tested under Linux 2.0 to 2.6, and then ported to FreeBSD, NetBSD
                    114: and OpenBSD, porting to other systems (even non-UNIX ones) should be relatively
                    115: easy due to its highly modular architecture.
                    116: 
                    117: <p>BIRD 1.x supported either IPv4 or IPv6 protocol, but had to be compiled separately
                    118: for each one. BIRD~2 supports both of them with a possibility of further extension.
                    119: BIRD~2 supports Linux at least 3.16, FreeBSD 10, NetBSD 7.0, and OpenBSD 5.8.
                    120: Anyway, it will probably work well also on older systems.
                    121: 
                    122: <sect>Installing BIRD
                    123: <label id="install">
                    124: 
                    125: <p>On a recent UNIX system with GNU development tools (GCC, binutils, m4, make)
                    126: and Perl, installing BIRD should be as easy as:
                    127: 
                    128: <code>
                    129:        ./configure
                    130:        make
                    131:        make install
                    132:        vi /usr/local/etc/bird.conf
                    133:        bird
                    134: </code>
                    135: 
                    136: <p>You can use <tt>./configure --help</tt> to get a list of configure
                    137: options. The most important ones are: <tt/--with-protocols=/ to produce a slightly smaller
                    138: BIRD executable by configuring out routing protocols you don't use, and
                    139: <tt/--prefix=/ to install BIRD to a place different from <file>/usr/local</file>.
                    140: 
                    141: 
                    142: <sect>Running BIRD
                    143: <label id="argv">
                    144: 
                    145: <p>You can pass several command-line options to bird:
                    146: 
                    147: <descrip>
                    148:        <tag><label id="argv-config">-c <m/config name/</tag>
                    149:        use given configuration file instead of <it/prefix/<file>/etc/bird.conf</file>.
                    150: 
                    151:        <tag><label id="argv-debug">-d</tag>
                    152:        enable debug messages to stderr, and run bird in foreground.
                    153: 
                    154:        <tag><label id="argv-debug-file">-D <m/filename of debug log/</tag>
                    155:        enable debug messages to given file.
                    156: 
                    157:        <tag><label id="argv-foreground">-f</tag>
                    158:        run bird in foreground.
                    159: 
                    160:        <tag><label id="argv-group">-g <m/group/</tag>
                    161:        use that group ID, see the next section for details.
                    162: 
                    163:        <tag><label id="argv-help">-h, --help</tag>
                    164:        display command-line options to bird.
                    165: 
                    166:        <tag><label id="argv-local">-l</tag>
                    167:        look for a configuration file and a communication socket in the current
                    168:        working directory instead of in default system locations. However, paths
                    169:        specified by options <cf/-c/, <cf/-s/ have higher priority.
                    170: 
                    171:        <tag><label id="argv-parse">-p</tag>
                    172:        just parse the config file and exit. Return value is zero if the config
                    173:        file is valid, nonzero if there are some errors.
                    174: 
                    175:        <tag><label id="argv-pid">-P <m/name of PID file/</tag>
                    176:        create a PID file with given filename.
                    177: 
                    178:        <tag><label id="argv-recovery">-R</tag>
                    179:        apply graceful restart recovery after start.
                    180: 
                    181:        <tag><label id="argv-socket">-s <m/name of communication socket/</tag>
                    182:        use given filename for a socket for communications with the client,
                    183:        default is <it/prefix/<file>/var/run/bird.ctl</file>.
                    184: 
                    185:        <tag><label id="argv-user">-u <m/user/</tag>
                    186:        drop privileges and use that user ID, see the next section for details.
                    187: 
                    188:        <tag><label id="argv-version">--version</tag>
                    189:        display bird version.
                    190: </descrip>
                    191: 
                    192: <p>BIRD writes messages about its work to log files or syslog (according to config).
                    193: 
                    194: 
                    195: <sect>Privileges
                    196: <label id="privileges">
                    197: 
                    198: <p>BIRD, as a routing daemon, uses several privileged operations (like setting
                    199: routing table and using raw sockets). Traditionally, BIRD is executed and runs
                    200: with root privileges, which may be prone to security problems. The recommended
                    201: way is to use a privilege restriction (options <cf/-u/, <cf/-g/). In that case
                    202: BIRD is executed with root privileges, but it changes its user and group ID to
                    203: an unprivileged ones, while using Linux capabilities to retain just required
                    204: privileges (capabilities CAP_NET_*). Note that the control socket is created
                    205: before the privileges are dropped, but the config file is read after that. The
                    206: privilege restriction is not implemented in BSD port of BIRD.
                    207: 
                    208: <p>An unprivileged user (as an argument to <cf/-u/ options) may be the user
                    209: <cf/nobody/, but it is suggested to use a new dedicated user account (like
                    210: <cf/bird/). The similar considerations apply for the group option, but there is
                    211: one more condition -- the users in the same group can use <file/birdc/ to
                    212: control BIRD.
                    213: 
                    214: <p>Finally, there is a possibility to use external tools to run BIRD in an
                    215: environment with restricted privileges. This may need some configuration, but it
                    216: is generally easy -- BIRD needs just the standard library, privileges to read
                    217: the config file and create the control socket and the CAP_NET_* capabilities.
                    218: 
                    219: 
                    220: <chapt>Architecture
                    221: <label id="architecture">
                    222: 
                    223: <sect>Routing tables
                    224: <label id="routing-tables">
                    225: 
                    226: <p>The heart of BIRD is a routing table. BIRD has several independent routing tables;
                    227: each of them contains routes of exactly one <m/nettype/ (see below). There are two
                    228: default tables -- <cf/master4/ for IPv4 routes and <cf/master6/ for IPv6 routes.
                    229: Other tables must be explicitly configured.
                    230: 
                    231: <p>
                    232: These routing tables are not kernel forwarding tables. No forwarding is done by
                    233: BIRD. If you want to forward packets using the routes in BIRD tables, you may
                    234: use the Kernel protocol (see below) to synchronize them with kernel FIBs.
                    235: 
                    236: <p>
                    237: Every nettype defines a (kind of) primary key on routes. Every route source can
                    238: supply one route for every possible primary key; new route announcement replaces
                    239: the old route from the same source, keeping other routes intact. BIRD always
                    240: chooses the best route for each primary key among the known routes and keeps the
                    241: others as suboptimal. When the best route is retracted, BIRD re-runs the best
                    242: route selection algorithm to find the current best route.
                    243: 
                    244: <p>
                    245: The global best route selection algorithm is (roughly) as follows:
                    246: 
                    247: <itemize>
                    248:        <item>Preferences of the routes are compared.
                    249:        <item>Source protocol instance preferences are compared.
                    250:        <item>If source protocols are the same (e.g. BGP vs. BGP), the protocol's route selection algorithm is invoked.
                    251:        <item>If source protocols are different (e.g. BGP vs. OSPF), result of the algorithm is undefined.
                    252: </itemize>
                    253: 
                    254: <p><label id="dsc-table-sorted">Usually, a routing table just chooses a selected
                    255: route from a list of entries for one network. But if the <cf/sorted/ option is
                    256: activated, these lists of entries are kept completely sorted (according to
                    257: preference or some protocol-dependent metric). This is needed for some features
                    258: of some protocols (e.g. <cf/secondary/ option of BGP protocol, which allows to
                    259: accept not just a selected route, but the first route (in the sorted list) that
                    260: is accepted by filters), but it is incompatible with some other features (e.g.
                    261: <cf/deterministic med/ option of BGP protocol, which activates a way of choosing
                    262: selected route that cannot be described using comparison and ordering). Minor
                    263: advantage is that routes are shown sorted in <cf/show route/, minor disadvantage
                    264: is that it is slightly more computationally expensive.
                    265: 
                    266: <sect>Routes and network types
                    267: <label id="routes">
                    268: 
                    269: <p>BIRD works with several types of routes. Some of them are typical IP routes,
                    270: others are better described as forwarding rules. We call them all routes,
                    271: regardless of this difference.
                    272: 
                    273: <p>Every route consists of several attributes (read more about them in the
                    274: <ref id="route-attributes" name="Route attributes"> section); the common for all
                    275: routes are:
                    276: 
                    277: <itemize>
                    278:        <item>IP address of router which told us about this route
                    279:        <item>Source protocol instance
                    280:        <item>Route preference
                    281:        <item>Optional attributes defined by protocols
                    282: </itemize>
                    283: 
                    284: <p>Other attributes depend on nettypes. Some of them are part of the primary key, these are marked (PK).
                    285: 
                    286: <sect1>IPv4 and IPv6 routes
                    287: <label id="ip-routes">
                    288: 
                    289: <p>The traditional routes. Configuration keywords are <cf/ipv4/ and <cf/ipv6/.
                    290: 
                    291: <itemize>
                    292:        <item>(PK) Route destination (IP prefix together with its length)
                    293:        <item>Route next hops (see below)
                    294: </itemize>
                    295: 
                    296: <sect1>IPv6 source-specific routes
                    297: <label id="ip-sadr-routes">
                    298: 
                    299: <p>The IPv6 routes containing both destination and source prefix. They are used
                    300: for source-specific routing (SSR), also called source-address dependent routing
                    301: (SADR), see <rfc id="8043">. Currently limited mostly to the Babel protocol.
                    302: Configuration keyword is <cf/ipv6 sadr/.
                    303: 
                    304: <itemize>
                    305:        <item>(PK) Route destination (IP prefix together with its length)
                    306:        <item>(PK) Route source (IP prefix together with its length)
                    307:        <item>Route next hops (see below)
                    308: </itemize>
                    309: 
                    310: <sect1>VPN IPv4 and IPv6 routes
                    311: <label id="vpn-routes">
                    312: 
                    313: <p>Routes for IPv4 and IPv6 with VPN Route Distinguisher (<rfc id="4364">).
                    314: Configuration keywords are <cf/vpn4/ and <cf/vpn6/.
                    315: 
                    316: <itemize>
                    317:        <item>(PK) Route destination (IP prefix together with its length)
                    318:        <item>(PK) Route distinguisher (according to <rfc id="4364">)
                    319:        <item>Route next hops
                    320: </itemize>
                    321: 
                    322: <sect1>Route Origin Authorization for IPv4 and IPv6
                    323: <label id="roa-routes">
                    324: 
                    325: <p>These entries can be used to validate route origination of BGP routes.
                    326: A ROA entry specifies prefixes which could be originated by an AS number.
                    327: Their keywords are <cf/roa4/ and <cf/roa6/.
                    328: 
                    329: <itemize>
                    330:        <item>(PK) IP prefix together with its length
                    331:        <item>(PK) Matching prefix maximal length
                    332:        <item>(PK) AS number
                    333: </itemize>
                    334: 
                    335: <sect1>Flowspec for IPv4 and IPv6
                    336: <label id="flow-routes">
                    337: 
                    338: <p>Flowspec rules are a form of firewall and traffic flow control rules
                    339: distributed mostly via BGP. These rules may help the operators stop various
                    340: network attacks in the beginning before eating up the whole bandwidth.
                    341: Configuration keywords are <cf/flow4/ and <cf/flow6/.
                    342: 
                    343: <itemize>
                    344:        <item>(PK) IP prefix together with its length
                    345:        <item>(PK) Flow definition data
                    346:        <item>Flow action (encoded internally as BGP communities according to <rfc id="5575">)
                    347: </itemize>
                    348: 
                    349: <sect1>MPLS switching rules
                    350: <label id="mpls-routes">
                    351: 
                    352: <p>This nettype is currently a stub before implementing more support of <rfc id="3031">.
                    353: BIRD currently does not support any label distribution protocol nor any label assignment method.
                    354: Only the Kernel, Pipe and Static protocols can use MPLS tables.
                    355: Configuration keyword is <cf/mpls/.
                    356: 
                    357: <itemize>
                    358:        <item>(PK) MPLS label
                    359:        <item>Route next hops
                    360: </itemize>
                    361: 
                    362: <sect1>Route next hops
                    363: <label id="route-next-hop">
                    364: 
                    365: <p>This is not a nettype. The route next hop is a complex attribute common for many
                    366: nettypes as you can see before. Every next hop has its assigned device
                    367: (either assumed from its IP address or set explicitly). It may have also
                    368: an IP address and an MPLS stack (one or both independently).
                    369: Maximal MPLS stack depth is set (in compile time) to 8 labels.
                    370: 
                    371: <p>Every route (when eligible to have a next hop) can have more than one next hop.
                    372: In that case, every next hop has also its weight.
                    373: 
                    374: <sect>Protocols and channels
                    375: <label id="protocols-concept">
                    376: 
                    377: <p>BIRD protocol is an abstract class of producers and consumers of the routes.
                    378: Each protocol may run in multiple instances and bind on one side to route
                    379: tables via channels, on the other side to specified listen sockets (BGP),
                    380: interfaces (Babel, OSPF, RIP), APIs (Kernel, Direct), or nothing (Static, Pipe).
                    381: 
                    382: <p>There are also two protocols that do not have any channels -- BFD and Device.
                    383: Both of them are kind of service for other protocols.
                    384: 
                    385: <p>Each protocol is connected to a routing table through a channel. Some protocols
                    386: support only one channel (OSPF, RIP), some protocols support more channels (BGP, Direct).
                    387: Each channel has two filters which can accept, reject and modify the routes.
                    388: An <it/export/ filter is applied to routes passed from the routing table to the protocol,
                    389: an <it/import/ filter is applied to routes in the opposite direction.
                    390: 
                    391: <sect>Graceful restart
                    392: <label id="graceful-restart">
                    393: 
                    394: <p>When BIRD is started after restart or crash, it repopulates routing tables in
                    395: an uncoordinated manner, like after clean start. This may be impractical in some
                    396: cases, because if the forwarding plane (i.e. kernel routing tables) remains
                    397: intact, then its synchronization with BIRD would temporarily disrupt packet
                    398: forwarding until protocols converge. Graceful restart is a mechanism that could
                    399: help with this issue. Generally, it works by starting protocols and letting them
                    400: repopulate routing tables while deferring route propagation until protocols
                    401: acknowledge their convergence. Note that graceful restart behavior have to be
                    402: configured for all relevant protocols and requires protocol-specific support
                    403: (currently implemented for Kernel and BGP protocols), it is activated for
                    404: particular boot by option <cf/-R/.
                    405: 
                    406: <p>Some protocols (e.g. BGP) could be restarted gracefully after both
                    407: intentional outage and crash, while others (e.g. OSPF) after intentional outage
                    408: only. For planned graceful restart, BIRD must be shut down by
                    409: <ref id="cli-graceful-restart" name="graceful restart"> command instead of
                    410: regular <ref id="cli-down" name="down"> command. In this way routing neighbors
                    411: are notified about planned graceful restart and routes are kept in kernel table
                    412: after shutdown.
                    413: 
                    414: 
                    415: <chapt>Configuration
                    416: <label id="config">
                    417: 
                    418: <sect>Introduction
                    419: <label id="config-intro">
                    420: 
                    421: <p>BIRD is configured using a text configuration file. Upon startup, BIRD reads
                    422: <it/prefix/<file>/etc/bird.conf</file> (unless the <tt/-c/ command line option
                    423: is given). Configuration may be changed at user's request: if you modify the
                    424: config file and then signal BIRD with <tt/SIGHUP/, it will adjust to the new
                    425: config. Then there's the client which allows you to talk with BIRD in an
                    426: extensive way.
                    427: 
                    428: <p>In the config, everything on a line after <cf/#/ or inside <cf>/* */</cf> is
                    429: a comment, whitespace characters are treated as a single space. If there's a
                    430: variable number of options, they are grouped using the <cf/{ }/ brackets. Each
                    431: option is terminated by a <cf/;/. Configuration is case sensitive. There are two
                    432: ways how to name symbols (like protocol names, filter names, constants etc.).
                    433: You can either use a simple string starting with a letter (or underscore)
                    434: followed by any combination of letters, numbers and underscores (e.g. <cf/R123/,
                    435: <cf/my_filter/, <cf/bgp5/) or you can enclose the name into apostrophes (<cf/'/)
                    436: and than you can use any combination of numbers, letters, underscores, hyphens,
                    437: dots and colons (e.g.  <cf/'1:strange-name'/, <cf/'-NAME-'/, <cf/'cool::name'/).
                    438: 
                    439: <p>Here is an example of a simple config file. It enables synchronization of
                    440: routing tables with OS kernel, learns network interfaces and runs RIP on all
                    441: network interfaces found.
                    442: 
                    443: <code>
                    444: protocol kernel {
                    445:        ipv4 {
                    446:                export all;     # Default is export none
                    447:        };
                    448:        persist;                # Don't remove routes on BIRD shutdown
                    449: }
                    450: 
                    451: protocol device {
                    452: }
                    453: 
                    454: protocol rip {
                    455:        ipv4 {
                    456:                import all;
                    457:                export all;
                    458:        };
                    459:        interface "*";
                    460: }
                    461: </code>
                    462: 
                    463: 
                    464: <sect>Global options
                    465: <label id="global-opts">
                    466: 
                    467: <p><descrip>
                    468:        <tag><label id="opt-include">include "<m/filename/";</tag>
                    469:        This statement causes inclusion of a new file. The <m/filename/ could
                    470:        also be a wildcard, in that case matching files are included in
                    471:        alphabetic order. The maximal depth is 8. Note that this statement can
                    472:        be used anywhere in the config file, even inside other options, but
                    473:        always on the beginning of line. In the following example, the first
                    474:        semicolon belongs to the <cf/include/, the second to <cf/ipv6 table/.
                    475:        If the <file/tablename.conf/ contains exactly one token (the name of the
                    476:        table), this construction is correct:
                    477: <code>
                    478: ipv6 table
                    479: include "tablename.conf";;
                    480: </code>
                    481: 
                    482:        <tag><label id="opt-log">log "<m/filename/" [<m/limit/ "<m/backup/"] | syslog [name <m/name/] | stderr all|{ <m/list of classes/ }</tag>
                    483:        Set logging of messages having the given class (either <cf/all/ or <cf>{
                    484:        error|trace [, <m/.../] }</cf> etc.) into selected destination - a file
                    485:        specified as a filename string (with optional log rotation information),
                    486:        syslog (with optional name argument), or the stderr output.
                    487: 
                    488:        Classes are:
                    489:        <cf/info/, <cf/warning/, <cf/error/ and <cf/fatal/ for messages about local problems,
                    490:        <cf/debug/ for debugging messages,
                    491:        <cf/trace/ when you want to know what happens in the network,
                    492:        <cf/remote/ for messages about misbehavior of remote machines,
                    493:        <cf/auth/ about authentication failures,
                    494:        <cf/bug/ for internal BIRD bugs.
                    495: 
                    496:        Logging directly to file supports basic log rotation -- there is an
                    497:        optional log file limit and a backup filename, when log file reaches the
                    498:        limit, the current log file is renamed to the backup filename and a new
                    499:        log file is created.
                    500: 
                    501:        You may specify more than one <cf/log/ line to establish logging to
                    502:        multiple destinations. Default: log everything to the system log, or
                    503:        to the debug output if debugging is enabled by <cf/-d//<cf/-D/
                    504:        command-line option.
                    505: 
                    506:        <tag><label id="opt-debug-protocols">debug protocols all|off|{ states|routes|filters|interfaces|events|packets [, <m/.../] }</tag>
                    507:        Set global defaults of protocol debugging options. See <cf/debug/ in the
                    508:        following section. Default: off.
                    509: 
                    510:        <tag><label id="opt-debug-commands">debug commands <m/number/</tag>
                    511:        Control logging of client connections (0 for no logging, 1 for logging
                    512:        of connects and disconnects, 2 and higher for logging of all client
                    513:        commands). Default: 0.
                    514: 
                    515:        <tag><label id="opt-debug-latency">debug latency <m/switch/</tag>
                    516:        Activate tracking of elapsed time for internal events. Recent events
                    517:        could be examined using <cf/dump events/ command. Default: off.
                    518: 
                    519:        <tag><label id="opt-debug-latency-limit">debug latency limit <m/time/</tag>
                    520:        If <cf/debug latency/ is enabled, this option allows to specify a limit
                    521:        for elapsed time. Events exceeding the limit are logged. Default: 1 s.
                    522: 
                    523:        <tag><label id="opt-watchdog-warn">watchdog warning <m/time/</tag>
                    524:        Set time limit for I/O loop cycle. If one iteration took more time to
                    525:        complete, a warning is logged. Default: 5 s.
                    526: 
                    527:        <tag><label id="opt-watchdog-timeout">watchdog timeout <m/time/</tag>
                    528:        Set time limit for I/O loop cycle. If the limit is breached, BIRD is
                    529:        killed by abort signal. The timeout has effective granularity of
                    530:        seconds, zero means disabled. Default: disabled (0).
                    531: 
                    532:        <tag><label id="opt-mrtdump">mrtdump "<m/filename/"</tag>
                    533:        Set MRTdump file name. This option must be specified to allow MRTdump
                    534:        feature. Default: no dump file.
                    535: 
                    536:        <tag><label id="opt-mrtdump-protocols">mrtdump protocols all|off|{ states|messages [, <m/.../] }</tag>
                    537:        Set global defaults of MRTdump options. See <cf/mrtdump/ in the
                    538:        following section. Default: off.
                    539: 
                    540:        <tag><label id="opt-filter">filter <m/name local variables/{ <m/commands/ }</tag>
                    541:        Define a filter. You can learn more about filters in the following
                    542:        chapter.
                    543: 
                    544:        <tag><label id="opt-function">function <m/name/ (<m/parameters/) <m/local variables/ { <m/commands/ }</tag>
                    545:        Define a function. You can learn more about functions in the following chapter.
                    546: 
                    547:        <tag><label id="opt-protocol">protocol rip|ospf|bgp|<m/.../ [<m/name/ [from <m/name2/]] { <m>protocol options</m> }</tag>
                    548:        Define a protocol instance called <cf><m/name/</cf> (or with a name like
                    549:        "rip5" generated automatically if you don't specify any
                    550:        <cf><m/name/</cf>). You can learn more about configuring protocols in
                    551:        their own chapters. When <cf>from <m/name2/</cf> expression is used,
                    552:        initial protocol options are taken from protocol or template
                    553:        <cf><m/name2/</cf> You can run more than one instance of most protocols
                    554:        (like RIP or BGP). By default, no instances are configured.
                    555: 
                    556:        <tag><label id="opt-template">template rip|ospf|bgp|<m/.../ [<m/name/ [from <m/name2/]] { <m>protocol options</m> }</tag>
                    557:        Define a protocol template instance called <m/name/ (or with a name like
                    558:        "bgp1" generated automatically if you don't specify any <m/name/).
                    559:        Protocol templates can be used to group common options when many
                    560:        similarly configured protocol instances are to be defined. Protocol
                    561:        instances (and other templates) can use templates by using <cf/from/
                    562:        expression and the name of the template. At the moment templates (and
                    563:        <cf/from/ expression) are not implemented for OSPF protocol.
                    564: 
                    565:        <tag><label id="opt-define">define <m/constant/ = <m/expression/</tag>
                    566:        Define a constant. You can use it later in every place you could use a
                    567:        value of the same type. Besides, there are some predefined numeric
                    568:        constants based on /etc/iproute2/rt_* files. A list of defined constants
                    569:        can be seen (together with other symbols) using 'show symbols' command.
                    570: 
                    571:        <tag><label id="opt-attribute">attribute <m/type/ <m/name/</tag>
                    572:        Declare a custom route attribute. You can set and get it in filters like
                    573:        any other route attribute. This feature is intended for marking routes
                    574:        in import filters for export filtering purposes instead of locally
                    575:        assigned BGP communities which have to be deleted in export filters.
                    576: 
                    577:        <tag><label id="opt-router-id">router id <m/IPv4 address/</tag>
                    578:        Set BIRD's router ID. It's a world-wide unique identification of your
                    579:        router, usually one of router's IPv4 addresses. Default: the lowest
                    580:        IPv4 address of a non-loopback interface.
                    581: 
                    582:        <tag><label id="opt-router-id-from">router id from [-] [ "<m/mask/" ] [ <m/prefix/ ] [, <m/.../]</tag>
                    583:        Set BIRD's router ID based on an IPv4 address of an interface specified by
                    584:        an interface pattern.
                    585:        See <ref id="proto-iface" name="interface"> section for detailed
                    586:        description of interface patterns with extended clauses.
                    587: 
                    588:        <tag><label id="opt-graceful-restart">graceful restart wait <m/number/</tag>
                    589:        During graceful restart recovery, BIRD waits for convergence of routing
                    590:        protocols. This option allows to specify a timeout for the recovery to
                    591:        prevent waiting indefinitely if some protocols cannot converge. Default:
                    592:        240 seconds.
                    593: 
                    594:        <tag><label id="opt-timeformat">timeformat route|protocol|base|log "<m/format1/" [<m/limit/ "<m/format2/"]</tag>
                    595:        This option allows to specify a format of date/time used by BIRD. The
                    596:        first argument specifies for which purpose such format is used.
                    597:        <cf/route/ is a format used in 'show route' command output,
                    598:        <cf/protocol/ is used in 'show protocols' command output, <cf/base/ is
                    599:        used for other commands and <cf/log/ is used in a log file.
                    600: 
                    601:        "<m/format1/" is a format string using <it/strftime(3)/ notation (see
                    602:        <it/man strftime/ for details). It is extended to support sub-second
                    603:        time part with variable precision (up to microseconds) using "%f"
                    604:        conversion code (e.g., "%T.%3f" is hh:mm:ss.sss time). <m/limit/ and
                    605:        "<m/format2/" allow to specify the second format string for times in
                    606:        past deeper than <m/limit/ seconds.
                    607: 
                    608:        There are several shorthands: <cf/iso long/ is a ISO 8601 date/time
                    609:        format (YYYY-MM-DD hh:mm:ss) that can be also specified using <cf/"%F
                    610:        %T"/. Similarly, <cf/iso long ms/ and <cf/iso long us/ are ISO 8601
                    611:        date/time formats with millisecond or microsecond precision.
                    612:        <cf/iso short/ is a variant of ISO 8601 that uses just the time format
                    613:        (hh:mm:ss) for near times (up to 20 hours in the past) and the date
                    614:        format (YYYY-MM-DD) for far times. This is a shorthand for <cf/"%T"
                    615:        72000 "%F"/. And there are also <cf/iso short ms/ and <cf/iso short us/
                    616:        high-precision variants of that.
                    617: 
                    618:        By default, BIRD uses the <cf/iso short ms/ format for <cf/route/ and
                    619:        <cf/protocol/ times, and the <cf/iso long ms/ format for <cf/base/ and
                    620:        <cf/log/ times.
                    621: 
                    622:        <tag><label id="opt-table"><m/nettype/ table <m/name/ [sorted]</tag>
                    623:        Create a new routing table. The default routing tables <cf/master4/ and
                    624:        <cf/master6/ are created implicitly, other routing tables have to be
                    625:        added by this command.  Option <cf/sorted/ can be used to enable sorting
                    626:        of routes, see <ref id="dsc-table-sorted" name="sorted table">
                    627:        description for details.
                    628: 
                    629:        <tag><label id="opt-eval">eval <m/expr/</tag>
                    630:        Evaluates given filter expression. It is used by the developers for testing of filters.
                    631: </descrip>
                    632: 
                    633: 
                    634: <sect>Protocol options
                    635: <label id="protocol-opts">
                    636: 
                    637: <p>For each protocol instance, you can configure a bunch of options. Some of
                    638: them (those described in this section) are generic, some are specific to the
                    639: protocol (see sections talking about the protocols).
                    640: 
                    641: <p>Several options use a <m/switch/ argument. It can be either <cf/on/,
                    642: <cf/yes/ or a numeric expression with a non-zero value for the option to be
                    643: enabled or <cf/off/, <cf/no/ or a numeric expression evaluating to zero to
                    644: disable it. An empty <m/switch/ is equivalent to <cf/on/ ("silence means
                    645: agreement").
                    646: 
                    647: <descrip>
                    648:        <tag><label id="proto-disabled">disabled <m/switch/</tag>
                    649:        Disables the protocol. You can change the disable/enable status from the
                    650:        command line interface without needing to touch the configuration.
                    651:        Disabled protocols are not activated. Default: protocol is enabled.
                    652: 
                    653:        <tag><label id="proto-debug">debug all|off|{ states|routes|filters|interfaces|events|packets [, <m/.../] }</tag>
                    654:        Set protocol debugging options. If asked, each protocol is capable of
                    655:        writing trace messages about its work to the log (with category
                    656:        <cf/trace/). You can either request printing of <cf/all/ trace messages
                    657:        or only of the types selected: <cf/states/ for protocol state changes
                    658:        (protocol going up, down, starting, stopping etc.), <cf/routes/ for
                    659:        routes exchanged with the routing table, <cf/filters/ for details on
                    660:        route filtering, <cf/interfaces/ for interface change events sent to the
                    661:        protocol, <cf/events/ for events internal to the protocol and <cf/packets/
                    662:        for packets sent and received by the protocol. Default: off.
                    663: 
                    664:        <tag><label id="proto-mrtdump">mrtdump all|off|{ states|messages [, <m/.../] }</tag>
                    665:        Set protocol MRTdump flags. MRTdump is a standard binary format for
                    666:        logging information from routing protocols and daemons. These flags
                    667:        control what kind of information is logged from the protocol to the
                    668:        MRTdump file (which must be specified by global <cf/mrtdump/ option, see
                    669:        the previous section). Although these flags are similar to flags of
                    670:        <cf/debug/ option, their meaning is different and protocol-specific. For
                    671:        BGP protocol, <cf/states/ logs BGP state changes and <cf/messages/ logs
                    672:        received BGP messages. Other protocols does not support MRTdump yet.
                    673: 
                    674:        <tag><label id="proto-router-id">router id <m/IPv4 address/</tag>
                    675:        This option can be used to override global router id for a given
                    676:        protocol. Default: uses global router id.
                    677: 
                    678:        <tag><label id="proto-description">description "<m/text/"</tag>
                    679:        This is an optional description of the protocol. It is displayed as a
                    680:        part of the output of 'show protocols all' command.
                    681: 
                    682:        <tag><label id="proto-vrf">vrf "<m/text/"|default</tag>
                    683:        Associate the protocol with specific VRF. The protocol will be
                    684:        restricted to interfaces assigned to the VRF and will use sockets bound
                    685:        to the VRF. A corresponding VRF interface must exist on OS level. For
                    686:        kernel protocol, an appropriate table still must be explicitly selected
                    687:        by <cf/table/ option.
                    688: 
                    689:        By selecting <cf/default/, the protocol is associated with the default
                    690:        VRF; i.e., it will be restricted to interfaces not assigned to any
                    691:        regular VRF. That is different from not specifying <cf/vrf/ at all, in
                    692:        which case the protocol may use any interface regardless of its VRF
                    693:        status.
                    694: 
                    695:        Note that for proper VRF support it is necessary to use Linux kernel
                    696:        version at least 4.14, older versions have limited VRF implementation.
                    697:        Before Linux kernel 5.0, a socket bound to a port in default VRF collide
                    698:        with others in regular VRFs. In BGP, this can be avoided by using
                    699:        <ref id="bgp-strict-bind" name="strict bind"> option.
                    700: 
                    701:        <tag><label id="proto-channel"><m/channel name/ [{<m/channel config/}]</tag>
                    702:        Every channel must be explicitly stated. See the protocol-specific
                    703:        configuration for the list of supported channel names. See the
                    704:        <ref id="channel-opts" name="channel configuration section"> for channel
                    705:        definition.
                    706: </descrip>
                    707: 
                    708: <p>There are several options that give sense only with certain protocols:
                    709: 
                    710: <descrip>
                    711:        <tag><label id="proto-iface">interface [-] [ "<m/mask/" ] [ <m/prefix/ ] [, <m/.../] [ { <m/option/; [<m/.../] } ]</tag>
                    712:        Specifies a set of interfaces on which the protocol is activated with
                    713:        given interface-specific options. A set of interfaces specified by one
                    714:        interface option is described using an interface pattern. The interface
                    715:        pattern consists of a sequence of clauses (separated by commas), each
                    716:        clause is a mask specified as a shell-like pattern. Interfaces are
                    717:        matched by their name.
                    718: 
                    719:        An interface matches the pattern if it matches any of its clauses. If
                    720:        the clause begins with <cf/-/, matching interfaces are excluded. Patterns
                    721:        are processed left-to-right, thus <cf/interface "eth0", -"eth*", "*";/
                    722:        means eth0 and all non-ethernets.
                    723: 
                    724:        Some protocols (namely OSPFv2 and Direct) support extended clauses that
                    725:        may contain a mask, a prefix, or both of them. An interface matches such
                    726:        clause if its name matches the mask (if specified) and its address
                    727:        matches the prefix (if specified). Extended clauses are used when the
                    728:        protocol handles multiple addresses on an interface independently.
                    729: 
                    730:        An interface option can be used more times with different interface-specific
                    731:        options, in that case for given interface the first matching interface
                    732:        option is used.
                    733: 
                    734:        This option is allowed in Babel, BFD, Device, Direct, OSPF, RAdv and RIP
                    735:        protocols. In OSPF protocol it is used in the <cf/area/ subsection.
                    736: 
                    737:        Default: none.
                    738: 
                    739:        Examples:
                    740: 
                    741:        <cf>interface "*" { type broadcast; };</cf> - start the protocol on all
                    742:        interfaces with <cf>type broadcast</cf> option.
                    743: 
                    744:        <cf>interface "eth1", "eth4", "eth5" { type ptp; };</cf> - start the
                    745:        protocol on enumerated interfaces with <cf>type ptp</cf> option.
                    746: 
                    747:        <cf>interface -192.168.1.0/24, 192.168.0.0/16;</cf> - start the protocol
                    748:        on all interfaces that have address from 192.168.0.0/16, but not from
                    749:        192.168.1.0/24.
                    750: 
                    751:        <cf>interface "eth*" 192.168.1.0/24;</cf> - start the protocol on all
                    752:        ethernet interfaces that have address from 192.168.1.0/24.
                    753: 
                    754:        <tag><label id="proto-tx-class">tx class|dscp <m/num/</tag>
                    755:        This option specifies the value of ToS/DS/Class field in IP headers of
                    756:        the outgoing protocol packets. This may affect how the protocol packets
                    757:        are processed by the network relative to the other network traffic. With
                    758:        <cf/class/ keyword, the value (0-255) is used for the whole ToS/Class
                    759:        octet (but two bits reserved for ECN are ignored). With <cf/dscp/
                    760:        keyword, the value (0-63) is used just for the DS field in the octet.
                    761:        Default value is 0xc0 (DSCP 0x30 - CS6).
                    762: 
                    763:        <tag><label id="proto-tx-priority">tx priority <m/num/</tag>
                    764:        This option specifies the local packet priority. This may affect how the
                    765:        protocol packets are processed in the local TX queues. This option is
                    766:        Linux specific. Default value is 7 (highest priority, privileged traffic).
                    767: 
                    768:        <tag><label id="proto-pass">password "<m/password/" [ { <m>password options</m> } ]</tag>
                    769:        Specifies a password that can be used by the protocol as a shared secret
                    770:        key. Password option can be used more times to specify more passwords.
                    771:        If more passwords are specified, it is a protocol-dependent decision
                    772:        which one is really used. Specifying passwords does not mean that
                    773:        authentication is enabled, authentication can be enabled by separate,
                    774:        protocol-dependent <cf/authentication/ option.
                    775: 
                    776:        This option is allowed in BFD, OSPF and RIP protocols. BGP has also
                    777:        <cf/password/ option, but it is slightly different and described
                    778:        separately.
                    779:        Default: none.
                    780: </descrip>
                    781: 
                    782: <p>Password option can contain section with some (not necessary all) password sub-options:
                    783: 
                    784: <descrip>
                    785:        <tag><label id="proto-pass-id">id <M>num</M></tag>
                    786:        ID of the password, (1-255). If it is not used, BIRD will choose ID based
                    787:        on an order of the password item in the interface. For example, second
                    788:        password item in one interface will have default ID 2. ID is used by
                    789:        some routing protocols to identify which password was used to
                    790:        authenticate protocol packets.
                    791: 
                    792:        <tag><label id="proto-pass-gen-from">generate from "<m/time/"</tag>
                    793:        The start time of the usage of the password for packet signing.
                    794:        The format of <cf><m/time/</cf> is <tt>dd-mm-yyyy HH:MM:SS</tt>.
                    795: 
                    796:        <tag><label id="proto-pass-gen-to">generate to "<m/time/"</tag>
                    797:        The last time of the usage of the password for packet signing.
                    798: 
                    799:        <tag><label id="proto-pass-accept-from">accept from "<m/time/"</tag>
                    800:        The start time of the usage of the password for packet verification.
                    801: 
                    802:        <tag><label id="proto-pass-accept-to">accept to "<m/time/"</tag>
                    803:        The last time of the usage of the password for packet verification.
                    804: 
                    805:        <tag><label id="proto-pass-from">from "<m/time/"</tag>
                    806:        Shorthand for setting both <cf/generate from/ and <cf/accept from/.
                    807: 
                    808:        <tag><label id="proto-pass-to">to "<m/time/"</tag>
                    809:        Shorthand for setting both <cf/generate to/ and <cf/accept to/.
                    810: 
                    811:        <tag><label id="proto-pass-algorithm">algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 )</tag>
                    812:        The message authentication algorithm for the password when cryptographic
                    813:        authentication is enabled. The default value depends on the protocol.
                    814:        For RIP and OSPFv2 it is Keyed-MD5 (for compatibility), for OSPFv3
                    815:        protocol it is HMAC-SHA-256.
                    816: 
                    817: </descrip>
                    818: 
                    819: 
                    820: <sect>Channel options
                    821: <label id="channel-opts">
                    822: 
                    823: <p>Every channel belongs to a protocol and is configured inside its block. The
                    824: minimal channel config is empty, then it uses default values. The name of the
                    825: channel implies its nettype. Channel definitions can be inherited from protocol
                    826: templates. Multiple definitions of the same channel are forbidden, but channels
                    827: inherited from templates can be updated by new definitions.
                    828: 
                    829: <descrip>
                    830:        <tag><label id="proto-table">table <m/name/</tag>
                    831:        Specify a table to which the channel is connected. Default: the first
                    832:        table of given nettype.
                    833: 
                    834:        <tag><label id="proto-preference">preference <m/expr/</tag>
                    835:        Sets the preference of routes generated by the protocol and imported
                    836:        through this channel. Default: protocol dependent.
                    837: 
                    838:        <tag><label id="proto-import">import all | none | filter <m/name/ | filter { <m/filter commands/ } | where <m/boolean filter expression/</tag>
                    839:        Specify a filter to be used for filtering routes coming from the
                    840:        protocol to the routing table. <cf/all/ is for keeping all routes,
                    841:        <cf/none/ is for dropping all routes. Default: <cf/all/ (except for
                    842:        EBGP).
                    843: 
                    844:        <tag><label id="proto-export">export <m/filter/</tag>
                    845:        This is similar to the <cf>import</cf> keyword, except that it works in
                    846:        the direction from the routing table to the protocol. Default: <cf/none/
                    847:        (except for EBGP).
                    848: 
                    849:        <tag><label id="proto-import-keep-filtered">import keep filtered <m/switch/</tag>
                    850:        Usually, if an import filter rejects a route, the route is forgotten.
                    851:        When this option is active, these routes are kept in the routing table,
                    852:        but they are hidden and not propagated to other protocols. But it is
                    853:        possible to show them using <cf/show route filtered/. Note that this
                    854:        option does not work for the pipe protocol. Default: off.
                    855: 
                    856:        <tag><label id="proto-import-limit">import limit [<m/number/ | off ] [action warn | block | restart | disable]</tag>
                    857:        Specify an import route limit (a maximum number of routes imported from
                    858:        the protocol) and optionally the action to be taken when the limit is
                    859:        hit. Warn action just prints warning log message. Block action discards
                    860:        new routes coming from the protocol. Restart and disable actions shut
                    861:        the protocol down like appropriate commands. Disable is the default
                    862:        action if an action is not explicitly specified. Note that limits are
                    863:        reset during protocol reconfigure, reload or restart. Default: <cf/off/.
                    864: 
                    865:        <tag><label id="proto-receive-limit">receive limit [<m/number/ | off ] [action warn | block | restart | disable]</tag>
                    866:        Specify an receive route limit (a maximum number of routes received from
                    867:        the protocol and remembered). It works almost identically to <cf>import
                    868:        limit</cf> option, the only difference is that if <cf/import keep
                    869:        filtered/ option is active, filtered routes are counted towards the
                    870:        limit and blocked routes are forgotten, as the main purpose of the
                    871:        receive limit is to protect routing tables from overflow. Import limit,
                    872:        on the contrary, counts accepted routes only and routes blocked by the
                    873:        limit are handled like filtered routes. Default: <cf/off/.
                    874: 
                    875:        <tag><label id="proto-export-limit">export limit [ <m/number/ | off ] [action warn | block | restart | disable]</tag>
                    876:        Specify an export route limit, works similarly to the <cf>import
                    877:        limit</cf> option, but for the routes exported to the protocol. This
                    878:        option is experimental, there are some problems in details of its
                    879:        behavior -- the number of exported routes can temporarily exceed the
                    880:        limit without triggering it during protocol reload, exported routes
                    881:        counter ignores route blocking and block action also blocks route
                    882:        updates of already accepted routes -- and these details will probably
                    883:        change in the future. Default: <cf/off/.
                    884: </descrip>
                    885: 
                    886: <p>This is a trivial example of RIP configured for IPv6 on all interfaces:
                    887: <code>
                    888: protocol rip ng {
                    889:        ipv6;
                    890:        interface "*";
                    891: }
                    892: </code>
                    893: 
                    894: <p>This is a non-trivial example.
                    895: <code>
                    896: protocol rip ng {
                    897:        ipv6 {
                    898:                table mytable6;
                    899:                import filter { ... };
                    900:                export filter { ... };
                    901:                import limit 50;
                    902:        };
                    903:        interface "*";
                    904: }
                    905: </code>
                    906: 
                    907: <p>And this is even more complicated example using templates.
                    908: <code>
                    909: template bgp {
                    910:        local 198.51.100.14 as 65000;
                    911: 
                    912:        ipv4 {
                    913:                table mytable4;
                    914:                import filter { ... };
                    915:                export none;
                    916:        };
                    917:        ipv6 {
                    918:                table mytable6;
                    919:                import filter { ... };
                    920:                export none;
                    921:        };
                    922: }
                    923: 
                    924: protocol bgp from  {
                    925:        neighbor 198.51.100.130 as 64496;
                    926: 
                    927:        # IPv4 channel is inherited as-is, while IPv6
                    928:        # channel is adjusted by export filter option
                    929:        ipv6 {
                    930:                export filter { ... };
                    931:        };
                    932: }
                    933: </code>
                    934: 
                    935: 
                    936: <chapt>Remote control
                    937: <label id="remote-control">
                    938: 
                    939: <p>You can use the command-line client <file>birdc</file> to talk with a running
                    940: BIRD. Communication is done using a <file/bird.ctl/ UNIX domain socket (unless
                    941: changed with the <tt/-s/ option given to both the server and the client). The
                    942: commands can perform simple actions such as enabling/disabling of protocols,
                    943: telling BIRD to show various information, telling it to show routing table
                    944: filtered by filter, or asking BIRD to reconfigure. Press <tt/?/ at any time to
                    945: get online help. Option <tt/-r/ can be used to enable a restricted mode of BIRD
                    946: client, which allows just read-only commands (<cf/show .../). Option <tt/-v/ can
                    947: be passed to the client, to make it dump numeric return codes along with the
                    948: messages. You do not necessarily need to use <file/birdc/ to talk to BIRD, your
                    949: own applications could do that, too -- the format of communication between BIRD
                    950: and <file/birdc/ is stable (see the programmer's documentation).
                    951: 
                    952: <p>There is also lightweight variant of BIRD client called <file/birdcl/, which
                    953: does not support command line editing and history and has minimal dependencies.
                    954: This is useful for running BIRD in resource constrained environments, where
                    955: Readline library (required for regular BIRD client) is not available.
                    956: 
                    957: <p>Many commands have the <m/name/ of the protocol instance as an argument.
                    958: This argument can be omitted if there exists only a single instance.
                    959: 
                    960: <p>Here is a brief list of supported functions:
                    961: 
                    962: <descrip>
                    963:        <tag><label id="cli-show-status">show status</tag>
                    964:        Show router status, that is BIRD version, uptime and time from last
                    965:        reconfiguration.
                    966: 
                    967:        <tag><label id="cli-show-interfaces">show interfaces [summary]</tag>
                    968:        Show the list of interfaces. For each interface, print its type, state,
                    969:        MTU and addresses assigned.
                    970: 
                    971:        <tag><label id="cli-show-protocols">show protocols [all]</tag>
                    972:        Show list of protocol instances along with tables they are connected to
                    973:        and protocol status, possibly giving verbose information, if <cf/all/ is
                    974:        specified.
                    975: 
                    976:        <!-- TODO: Move these protocol-specific remote control commands to the protocol sections -->
                    977:        <tag><label id="cli-show-ospf-iface">show ospf interface [<m/name/] ["<m/interface/"]</tag>
                    978:        Show detailed information about OSPF interfaces.
                    979: 
                    980:        <tag><label id="cli-show-ospf-neighbors">show ospf neighbors [<m/name/] ["<m/interface/"]</tag>
                    981:        Show a list of OSPF neighbors and a state of adjacency to them.
                    982: 
                    983:        <tag><label id="cli-show-ospf-state">show ospf state [all] [<m/name/]</tag>
                    984:        Show detailed information about OSPF areas based on a content of the
                    985:        link-state database. It shows network topology, stub networks,
                    986:        aggregated networks and routers from other areas and external routes.
                    987:        The command shows information about reachable network nodes, use option
                    988:        <cf/all/ to show information about all network nodes in the link-state
                    989:        database.
                    990: 
                    991:        <tag><label id="cli-show-ospf-topology">show ospf topology [all] [<m/name/]</tag>
                    992:        Show a topology of OSPF areas based on a content of the link-state
                    993:        database. It is just a stripped-down version of 'show ospf state'.
                    994: 
                    995:        <tag><label id="cli-show-ospf-lsadb">show ospf lsadb [global | area <m/id/ | link] [type <m/num/] [lsid <m/id/] [self | router <m/id/] [<m/name/] </tag>
                    996:        Show contents of an OSPF LSA database. Options could be used to filter
                    997:        entries.
                    998: 
                    999:        <tag><label id="cli-show-rip-interfaces">show rip interfaces [<m/name/] ["<m/interface/"]</tag>
                   1000:        Show detailed information about RIP interfaces.
                   1001: 
                   1002:        <tag><label id="cli-show-rip-neighbors">show rip neighbors [<m/name/] ["<m/interface/"]</tag>
                   1003:        Show a list of RIP neighbors and associated state.
                   1004: 
                   1005:        <tag><label id="cli-show-static">show static [<m/name/]</tag>
                   1006:        Show detailed information about static routes.
                   1007: 
                   1008:        <tag><label id="cli-show-bfd-sessions">show bfd sessions [<m/name/]</tag>
                   1009:        Show information about BFD sessions.
                   1010: 
                   1011:        <tag><label id="cli-show-symbols">show symbols [table|filter|function|protocol|template|roa|<m/symbol/]</tag>
                   1012:        Show the list of symbols defined in the configuration (names of
                   1013:        protocols, routing tables etc.).
                   1014: 
                   1015:        <tag><label id="cli-show-route">show route [[for] <m/prefix/|<m/IP/] [table (<m/t/ | all)] [filter <m/f/|where <m/c/] [(export|preexport|noexport) <m/p/] [protocol <m/p/] [(stats|count)] [<m/options/]</tag>
                   1016:        Show contents of specified routing tables, that is routes, their metrics
                   1017:        and (in case the <cf/all/ switch is given) all their attributes.
                   1018: 
                   1019:        <p>You can specify a <m/prefix/ if you want to print routes for a
                   1020:        specific network. If you use <cf>for <m/prefix or IP/</cf>, you'll get
                   1021:        the entry which will be used for forwarding of packets to the given
                   1022:        destination. By default, all routes for each network are printed with
                   1023:        the selected one at the top, unless <cf/primary/ is given in which case
                   1024:        only the selected route is shown.
                   1025: 
                   1026:        <p>The <cf/show route/ command can process one or multiple routing
                   1027:        tables. The set of selected tables is determined on three levels: First,
                   1028:        tables can be explicitly selected by <cf/table/ switch, which could be
                   1029:        used multiple times, all tables are specified by <cf/table all/. Second,
                   1030:        tables can be implicitly selected by channels or protocols that are
                   1031:        arguments of several other switches (e.g., <cf/export/, <cf/protocol/).
                   1032:        Last, the set of default tables is used: <cf/master4/, <cf/master6/ and
                   1033:        each first table of any other network type.
                   1034: 
                   1035:        <p>You can also ask for printing only routes processed and accepted by
                   1036:        a given filter (<cf>filter <m/name/</cf> or <cf>filter { <m/filter/ }
                   1037:        </cf> or matching a given condition (<cf>where <m/condition/</cf>).
                   1038: 
                   1039:        The <cf/export/, <cf/preexport/ and <cf/noexport/ switches ask for
                   1040:        printing of routes that are exported to the specified protocol or
                   1041:        channel. With <cf/preexport/, the export filter of the channel is
                   1042:        skipped. With <cf/noexport/, routes rejected by the export filter are
                   1043:        printed instead. Note that routes not exported for other reasons
                   1044:        (e.g. secondary routes or routes imported from that protocol) are not
                   1045:        printed even with <cf/noexport/. These switches also imply that
                   1046:        associated routing tables are selected instead of default ones.
                   1047: 
                   1048:        <p>You can also select just routes added by a specific protocol.
                   1049:        <cf>protocol <m/p/</cf>. This switch also implies that associated
                   1050:        routing tables are selected instead of default ones.
                   1051: 
                   1052:        <p>If BIRD is configured to keep filtered routes (see <cf/import keep
                   1053:        filtered/ option), you can show them instead of routes by using
                   1054:        <cf/filtered/ switch.
                   1055: 
                   1056:        <p>The <cf/stats/ switch requests showing of route statistics (the
                   1057:        number of networks, number of routes before and after filtering). If
                   1058:        you use <cf/count/ instead, only the statistics will be printed.
                   1059: 
                   1060:        <tag><label id="cli-mrt-dump">mrt dump table <m/name/|"<m/pattern/" to "<m/filename/" [filter <m/f/|where <m/c/]</tag>
                   1061:        Dump content of a routing table to a specified file in MRT table dump
                   1062:        format. See <ref id="mrt" name="MRT protocol"> for details.
                   1063: 
                   1064:        <tag><label id="cli-configure">configure [soft] ["<m/config file/"] [timeout [<m/num/]]</tag>
                   1065:        Reload configuration from a given file. BIRD will smoothly switch itself
                   1066:        to the new configuration, protocols are reconfigured if possible,
                   1067:        restarted otherwise. Changes in filters usually lead to restart of
                   1068:        affected protocols.
                   1069: 
                   1070:        If <cf/soft/ option is used, changes in filters does not cause BIRD to
                   1071:        restart affected protocols, therefore already accepted routes (according
                   1072:        to old filters) would be still propagated, but new routes would be
                   1073:        processed according to the new filters.
                   1074: 
                   1075:        If <cf/timeout/ option is used, config timer is activated. The new
                   1076:        configuration could be either confirmed using <cf/configure confirm/
                   1077:        command, or it will be reverted to the old one when the config timer
                   1078:        expires. This is useful for cases when reconfiguration breaks current
                   1079:        routing and a router becomes inaccessible for an administrator. The
                   1080:        config timeout expiration is equivalent to <cf/configure undo/
                   1081:        command. The timeout duration could be specified, default is 300 s.
                   1082: 
                   1083:        <tag><label id="cli-configure-confirm">configure confirm</tag>
                   1084:        Deactivate the config undo timer and therefore confirm the current
                   1085:        configuration.
                   1086: 
                   1087:        <tag><label id="cli-configure-undo">configure undo</tag>
                   1088:        Undo the last configuration change and smoothly switch back to the
                   1089:        previous (stored) configuration. If the last configuration change was
                   1090:        soft, the undo change is also soft. There is only one level of undo, but
                   1091:        in some specific cases when several reconfiguration requests are given
                   1092:        immediately in a row and the intermediate ones are skipped then the undo
                   1093:        also skips them back.
                   1094: 
                   1095:        <tag><label id="cli-configure-check">configure check ["<m/config file/"]</tag>
                   1096:        Read and parse given config file, but do not use it. useful for checking
                   1097:        syntactic and some semantic validity of an config file.
                   1098: 
                   1099:        <tag><label id="cli-enable-disable-restart">enable|disable|restart <m/name/|"<m/pattern/"|all</tag>
                   1100:        Enable, disable or restart a given protocol instance, instances matching
                   1101:        the <cf><m/pattern/</cf> or <cf/all/ instances.
                   1102: 
                   1103:        <tag><label id="cli-reload">reload [in|out] <m/name/|"<m/pattern/"|all</tag>
                   1104:        Reload a given protocol instance, that means re-import routes from the
                   1105:        protocol instance and re-export preferred routes to the instance. If
                   1106:        <cf/in/ or <cf/out/ options are used, the command is restricted to one
                   1107:        direction (re-import or re-export).
                   1108: 
                   1109:        This command is useful if appropriate filters have changed but the
                   1110:        protocol instance was not restarted (or reloaded), therefore it still
                   1111:        propagates the old set of routes. For example when <cf/configure soft/
                   1112:        command was used to change filters.
                   1113: 
                   1114:        Re-export always succeeds, but re-import is protocol-dependent and might
                   1115:        fail (for example, if BGP neighbor does not support route-refresh
                   1116:        extension). In that case, re-export is also skipped. Note that for the
                   1117:        pipe protocol, both directions are always reloaded together (<cf/in/ or
                   1118:        <cf/out/ options are ignored in that case).
                   1119: 
                   1120:        <tag><label id="cli-down">down</tag>
                   1121:        Shut BIRD down.
                   1122: 
                   1123:        <tag><label id="cli-graceful-restart">graceful restart</tag>
                   1124:        Shut BIRD down for graceful restart. See <ref id="graceful-restart"
                   1125:        name="graceful restart"> section for details.
                   1126: 
                   1127:        <tag><label id="cli-debug">debug <m/protocol/|<m/pattern/|all all|off|{ states|routes|filters|events|packets [, <m/.../] }</tag>
                   1128:        Control protocol debugging.
                   1129: 
                   1130:        <tag><label id="cli-dump">dump resources|sockets|interfaces|neighbors|attributes|routes|protocols</tag>
                   1131:        Dump contents of internal data structures to the debugging output.
                   1132: 
                   1133:        <tag><label id="cli-echo">echo all|off|{ <m/list of log classes/ } [ <m/buffer-size/ ]</tag>
                   1134:        Control echoing of log messages to the command-line output.
                   1135:        See <ref id="opt-log" name="log option"> for a list of log classes.
                   1136: 
                   1137:        <tag><label id="cli-eval">eval <m/expr/</tag>
                   1138:        Evaluate given expression.
                   1139: </descrip>
                   1140: 
                   1141: 
                   1142: <chapt>Filters
                   1143: <label id="filters">
                   1144: 
                   1145: <sect>Introduction
                   1146: <label id="filters-intro">
                   1147: 
                   1148: <p>BIRD contains a simple programming language. (No, it can't yet read mail :-).
                   1149: There are two objects in this language: filters and functions. Filters are
                   1150: interpreted by BIRD core when a route is being passed between protocols and
                   1151: routing tables. The filter language contains control structures such as if's and
                   1152: switches, but it allows no loops. An example of a filter using many features can
                   1153: be found in <file>filter/test.conf</file>.
                   1154: 
                   1155: <p>Filter gets the route, looks at its attributes and modifies some of them if
                   1156: it wishes. At the end, it decides whether to pass the changed route through
                   1157: (using <cf/accept/) or whether to <cf/reject/ it. A simple filter looks like
                   1158: this:
                   1159: 
                   1160: <code>
                   1161: filter not_too_far
                   1162: int var;
                   1163: {
                   1164:        if defined( rip_metric ) then
                   1165:                var = rip_metric;
                   1166:        else {
                   1167:                var = 1;
                   1168:                rip_metric = 1;
                   1169:        }
                   1170:        if rip_metric &gt; 10 then
                   1171:                reject "RIP metric is too big";
                   1172:        else
                   1173:                accept "ok";
                   1174: }
                   1175: </code>
                   1176: 
                   1177: <p>As you can see, a filter has a header, a list of local variables, and a body.
                   1178: The header consists of the <cf/filter/ keyword followed by a (unique) name of
                   1179: filter. The list of local variables consists of <cf><M>type name</M>;</cf>
                   1180: pairs where each pair declares one local variable. The body consists of <cf>
                   1181: { <M>statements</M> }</cf>. Each <m/statement/ is terminated by a <cf/;/. You
                   1182: can group several statements to a single compound statement by using braces
                   1183: (<cf>{ <M>statements</M> }</cf>) which is useful if you want to make a bigger
                   1184: block of code conditional.
                   1185: 
                   1186: <p>BIRD supports functions, so that you don't have to repeat the same blocks of
                   1187: code over and over. Functions can have zero or more parameters and they can have
                   1188: local variables. Recursion is not allowed. Function definitions look like this:
                   1189: 
                   1190: <code>
                   1191: function name ()
                   1192: int local_variable;
                   1193: {
                   1194:        local_variable = 5;
                   1195: }
                   1196: 
                   1197: function with_parameters (int parameter)
                   1198: {
                   1199:        print parameter;
                   1200: }
                   1201: </code>
                   1202: 
                   1203: <p>Unlike in C, variables are declared after the <cf/function/ line, but before
                   1204: the first <cf/{/. You can't declare variables in nested blocks. Functions are
                   1205: called like in C: <cf>name(); with_parameters(5);</cf>. Function may return
                   1206: values using the <cf>return <m/[expr]/</cf> command. Returning a value exits
                   1207: from current function (this is similar to C).
                   1208: 
                   1209: <p>Filters are defined in a way similar to functions except they can't have
                   1210: explicit parameters. They get a route table entry as an implicit parameter, it
                   1211: is also passed automatically to any functions called. The filter must terminate
                   1212: with either <cf/accept/ or <cf/reject/ statement. If there's a runtime error in
                   1213: filter, the route is rejected.
                   1214: 
                   1215: <p>A nice trick to debug filters is to use <cf>show route filter <m/name/</cf>
                   1216: from the command line client. An example session might look like:
                   1217: 
                   1218: <code>
                   1219: pavel@bug:~/bird$ ./birdc -s bird.ctl
                   1220: BIRD 0.0.0 ready.
                   1221: bird> show route
                   1222: 10.0.0.0/8         dev eth0 [direct1 23:21] (240)
                   1223: 195.113.30.2/32    dev tunl1 [direct1 23:21] (240)
                   1224: 127.0.0.0/8        dev lo [direct1 23:21] (240)
                   1225: bird> show route ?
                   1226: show route [<prefix>] [table <t>] [filter <f>] [all] [primary]...
                   1227: bird> show route filter { if 127.0.0.5 &tilde; net then accept; }
                   1228: 127.0.0.0/8        dev lo [direct1 23:21] (240)
                   1229: bird>
                   1230: </code>
                   1231: 
                   1232: 
                   1233: <sect>Data types
                   1234: <label id="data-types">
                   1235: 
                   1236: <p>Each variable and each value has certain type. Booleans, integers and enums
                   1237: are incompatible with each other (that is to prevent you from shooting oneself
                   1238: in the foot).
                   1239: 
                   1240: <descrip>
                   1241:        <tag><label id="type-bool">bool</tag>
                   1242:        This is a boolean type, it can have only two values, <cf/true/ and
                   1243:        <cf/false/. Boolean is the only type you can use in <cf/if/ statements.
                   1244: 
                   1245:        <tag><label id="type-int">int</tag>
                   1246:        This is a general integer type. It is an unsigned 32bit type; i.e., you
                   1247:        can expect it to store values from 0 to 4294967295. Overflows are not
                   1248:        checked. You can use <cf/0x1234/ syntax to write hexadecimal values.
                   1249: 
                   1250:        <tag><label id="type-pair">pair</tag>
                   1251:        This is a pair of two short integers. Each component can have values
                   1252:        from 0 to 65535. Literals of this type are written as <cf/(1234,5678)/.
                   1253:        The same syntax can also be used to construct a pair from two arbitrary
                   1254:        integer expressions (for example <cf/(1+2,a)/).
                   1255: 
                   1256:        <tag><label id="type-quad">quad</tag>
                   1257:        This is a dotted quad of numbers used to represent router IDs (and
                   1258:        others). Each component can have a value from 0 to 255. Literals of
                   1259:        this type are written like IPv4 addresses.
                   1260: 
                   1261:        <tag><label id="type-string">string</tag>
                   1262:        This is a string of characters. There are no ways to modify strings in
                   1263:        filters. You can pass them between functions, assign them to variables
                   1264:        of type <cf/string/, print such variables, use standard string
                   1265:        comparison operations (e.g. <cf/=, !=, &lt;, &gt;, &lt;=, &gt;=/), but
                   1266:        you can't concatenate two strings. String literals are written as
                   1267:        <cf/"This is a string constant"/. Additionally matching (<cf/&tilde;,
                   1268:        !&tilde;/) operators could be used to match a string value against
                   1269:        a shell pattern (represented also as a string).
                   1270: 
                   1271:        <tag><label id="type-ip">ip</tag>
                   1272:        This type can hold a single IP address. The IPv4 addresses are stored as
                   1273:        IPv4-Mapped IPv6 addresses so one data type for both of them is used.
                   1274:        Whether the address is IPv4 or not may be checked by <cf>.is_ip4</cf>
                   1275:        which returns a <cf/bool/. IP addresses are written in the standard
                   1276:        notation (<cf/10.20.30.40/ or <cf/fec0:3:4::1/). You can apply special
                   1277:        operator <cf>.mask(<M>num</M>)</cf> on values of type ip. It masks out
                   1278:        all but first <cf><M>num</M></cf> bits from the IP address. So
                   1279:        <cf/1.2.3.4.mask(8) = 1.0.0.0/ is true.
                   1280: 
                   1281:        <tag><label id="type-prefix">prefix</tag>
                   1282:        This type can hold a network prefix consisting of IP address, prefix
                   1283:        length and several other values. This is the key in route tables.
                   1284: 
                   1285:        Prefixes may be of several types, which can be determined by the special
                   1286:        operator <cf/.type/. The type may be:
                   1287: 
                   1288:        <cf/NET_IP4/ and <cf/NET_IP6/ prefixes hold an IP prefix. The literals
                   1289:        are written as <cf><m/ipaddress//<m/pxlen/</cf>. There are two special
                   1290:        operators on these: <cf/.ip/ which extracts the IP address from the
                   1291:        pair, and <cf/.len/, which separates prefix length from the pair.
                   1292:        So <cf>1.2.0.0/16.len = 16</cf> is true.
                   1293: 
                   1294:        <cf/NET_IP6_SADR/ nettype holds both destination and source IPv6
                   1295:        prefix. The literals are written as <cf><m/ipaddress//<m/pxlen/ from
                   1296:        <m/ipaddress//<m/pxlen/</cf>, where the first part is the destination
                   1297:        prefix and the second art is the source prefix. They support the same
                   1298:        operators as IP prefixes, but just for the destination part.
                   1299: 
                   1300:        <cf/NET_VPN4/ and <cf/NET_VPN6/ prefixes hold an IP prefix with VPN
                   1301:        Route Distinguisher (<rfc id="4364">). They support the same special
                   1302:        operators as IP prefixes, and also <cf/.rd/ which extracts the Route
                   1303:        Distinguisher. Their literals are written
                   1304:        as <cf><m/vpnrd/ <m/ipprefix/</cf>
                   1305: 
                   1306:        <cf/NET_ROA4/ and <cf/NET_ROA6/ prefixes hold an IP prefix range
                   1307:        together with an ASN. They support the same special operators as IP
                   1308:        prefixes, and also <cf/.maxlen/ which extracts maximal prefix length,
                   1309:        and <cf/.asn/ which extracts the ASN.
                   1310: 
                   1311:        <cf/NET_FLOW4/ and <cf/NET_FLOW6/ hold an IP prefix together with a
                   1312:        flowspec rule. Filters currently don't support flowspec parsing.
                   1313: 
                   1314:        <cf/NET_MPLS/ holds a single MPLS label and its handling is currently
                   1315:        not implemented.
                   1316: 
                   1317:        <tag><label id="type-vpnrd">vpnrd</tag>
                   1318:        This is a route distinguisher according to <rfc id="4364">. There are
                   1319:        three kinds of RD's: <cf><m/asn/:<m/32bit int/</cf>, <cf><m/asn4/:<m/16bit int/</cf>
                   1320:        and <cf><m/IPv4 address/:<m/32bit int/</cf>
                   1321: 
                   1322:        <tag><label id="type-ec">ec</tag>
                   1323:        This is a specialized type used to represent BGP extended community
                   1324:        values. It is essentially a 64bit value, literals of this type are
                   1325:        usually written as <cf>(<m/kind/, <m/key/, <m/value/)</cf>, where
                   1326:        <cf/kind/ is a kind of extended community (e.g. <cf/rt/ / <cf/ro/ for a
                   1327:        route target / route origin communities), the format and possible values
                   1328:        of <cf/key/ and <cf/value/ are usually integers, but it depends on the
                   1329:        used kind. Similarly to pairs, ECs can be constructed using expressions
                   1330:        for <cf/key/ and <cf/value/ parts, (e.g. <cf/(ro, myas, 3*10)/, where
                   1331:        <cf/myas/ is an integer variable).
                   1332: 
                   1333:        <tag><label id="type-lc">lc</tag>
                   1334:        This is a specialized type used to represent BGP large community
                   1335:        values. It is essentially a triplet of 32bit values, where the first
                   1336:        value is reserved for the AS number of the issuer, while meaning of
                   1337:        remaining parts is defined by the issuer. Literals of this type are
                   1338:        written as <cf/(123, 456, 789)/, with any integer values. Similarly to
                   1339:        pairs, LCs can be constructed using expressions for its parts, (e.g.
                   1340:        <cf/(myas, 10+20, 3*10)/, where <cf/myas/ is an integer variable).
                   1341: 
                   1342:        <tag><label id="type-set">int|pair|quad|ip|prefix|ec|lc|enum set</tag>
                   1343:        Filters recognize four types of sets. Sets are similar to strings: you
                   1344:        can pass them around but you can't modify them. Literals of type <cf>int
                   1345:        set</cf> look like <cf> [ 1, 2, 5..7 ]</cf>. As you can see, both simple
                   1346:        values and ranges are permitted in sets.
                   1347: 
                   1348:        For pair sets, expressions like <cf/(123,*)/ can be used to denote
                   1349:        ranges (in that case <cf/(123,0)..(123,65535)/). You can also use
                   1350:        <cf/(123,5..100)/ for range <cf/(123,5)..(123,100)/. You can also use
                   1351:        <cf/*/ and <cf/a..b/ expressions in the first part of a pair, note that
                   1352:        such expressions are translated to a set of intervals, which may be
                   1353:        memory intensive. E.g. <cf/(*,4..20)/ is translated to <cf/(0,4..20),
                   1354:        (1,4..20), (2,4..20), ... (65535, 4..20)/.
                   1355: 
                   1356:        EC sets use similar expressions like pair sets, e.g. <cf/(rt, 123,
                   1357:        10..20)/ or <cf/(ro, 123, *)/. Expressions requiring the translation
                   1358:        (like <cf/(rt, *, 3)/) are not allowed (as they usually have 4B range
                   1359:        for ASNs).
                   1360: 
                   1361:        Also LC sets use similar expressions like pair sets. You can use ranges
                   1362:        and wildcards, but if one field uses that, more specific (later) fields
                   1363:        must be wildcards. E.g., <cf/(10, 20..30, *)/ or <cf/(10, 20, 30..40)/
                   1364:        is valid, while <cf/(10, *, 20..30)/ or <cf/(10, 20..30, 40)/ is not
                   1365:        valid.
                   1366: 
                   1367:        You can also use expressions for int, pair, EC and LC set values.
                   1368:        However, it must be possible to evaluate these expressions before daemon
                   1369:        boots. So you can use only constants inside them. E.g.
                   1370: 
                   1371:        <code>
                   1372:         define one=1;
                   1373:         define myas=64500;
                   1374:         int set odds;
                   1375:         pair set ps;
                   1376:         ec set es;
                   1377: 
                   1378:         odds = [ one, 2+1, 6-one, 2*2*2-1, 9, 11 ];
                   1379:         ps = [ (1,one+one), (3,4)..(4,8), (5,*), (6,3..6), (7..9,*) ];
                   1380:         es = [ (rt, myas, 3*10), (rt, myas+one, 0..16*16*16-1), (ro, myas+2, *) ];
                   1381:        </code>
                   1382: 
                   1383:        Sets of prefixes are special: their literals does not allow ranges, but
                   1384:        allows prefix patterns that are written
                   1385:        as <cf><M>ipaddress</M>/<M>pxlen</M>{<M>low</M>,<M>high</M>}</cf>.
                   1386:        Prefix <cf><m>ip1</m>/<m>len1</m></cf> matches prefix
                   1387:        pattern <cf><m>ip2</m>/<m>len2</m>{<m>l</m>,<m>h</m>}</cf> if the
                   1388:        first <cf>min(len1, len2)</cf> bits of <cf/ip1/ and <cf/ip2/ are
                   1389:        identical and <cf>len1 &lt;= ip1 &lt;= len2</cf>. A valid prefix pattern
                   1390:        has to satisfy <cf>low &lt;= high</cf>, but <cf/pxlen/ is not
                   1391:        constrained by <cf/low/ or <cf/high/. Obviously, a prefix matches a
                   1392:        prefix set literal if it matches any prefix pattern in the prefix set
                   1393:        literal.
                   1394: 
                   1395:        There are also two shorthands for prefix patterns: <cf><m/address//<m/len/+</cf>
                   1396:        is a shorthand for <cf><m/address//<m/len/{<m/len/,<m/maxlen/}</cf>
                   1397:        (where <cf><m/maxlen/</cf> is 32 for IPv4 and 128 for IPv6), that means
                   1398:        network prefix <cf><m/address//<m/len/</cf> and all its subnets.
                   1399:        <cf><m/address//<m/len/-</cf> is a shorthand for
                   1400:        <cf><m/address//<m/len/{0,<m/len/}</cf>, that means network prefix
                   1401:        <cf><m/address//<m/len/</cf> and all its supernets (network prefixes
                   1402:        that contain it).
                   1403: 
                   1404:        For example, <cf>[ 1.0.0.0/8, 2.0.0.0/8+, 3.0.0.0/8-, 4.0.0.0/8{16,24}
                   1405:        ]</cf> matches prefix <cf>1.0.0.0/8</cf>, all subprefixes of
                   1406:        <cf>2.0.0.0/8</cf>, all superprefixes of <cf>3.0.0.0/8</cf> and prefixes
                   1407:        <cf/4.X.X.X/ whose prefix length is 16 to 24. <cf>[ 0.0.0.0/0{20,24} ]</cf>
                   1408:        matches all prefixes (regardless of IP address) whose prefix length is
                   1409:        20 to 24, <cf>[ 1.2.3.4/32- ]</cf> matches any prefix that contains IP
                   1410:        address <cf>1.2.3.4</cf>. <cf>1.2.0.0/16 &tilde; [ 1.0.0.0/8{15,17} ]</cf>
                   1411:        is true, but <cf>1.0.0.0/16 &tilde; [ 1.0.0.0/8- ]</cf> is false.
                   1412: 
                   1413:        Cisco-style patterns like <cf>10.0.0.0/8 ge 16 le 24</cf> can be expressed
                   1414:        in BIRD as <cf>10.0.0.0/8{16,24}</cf>, <cf>192.168.0.0/16 le 24</cf> as
                   1415:        <cf>192.168.0.0/16{16,24}</cf> and <cf>192.168.0.0/16 ge 24</cf> as
                   1416:        <cf>192.168.0.0/16{24,32}</cf>.
                   1417: 
                   1418:        It is possible to mix IPv4 and IPv6 prefixes/addresses in a prefix/ip set
                   1419:        but its behavior may change between versions without any warning; don't do
                   1420:        it unless you are more than sure what you are doing. (Really, don't do it.)
                   1421: 
                   1422:        <tag><label id="type-enum">enum</tag>
                   1423:        Enumeration types are fixed sets of possibilities. You can't define your
                   1424:        own variables of such type, but some route attributes are of enumeration
                   1425:        type. Enumeration types are incompatible with each other.
                   1426: 
                   1427:        <tag><label id="type-bgppath">bgppath</tag>
                   1428:        BGP path is a list of autonomous system numbers. You can't write
                   1429:        literals of this type. There are several special operators on bgppaths:
                   1430: 
                   1431:        <cf><m/P/.first</cf> returns the first ASN (the neighbor ASN) in path <m/P/.
                   1432: 
                   1433:        <cf><m/P/.last</cf> returns the last ASN (the source ASN) in path <m/P/.
                   1434: 
                   1435:        <cf><m/P/.last_nonaggregated</cf> returns the last ASN in the non-aggregated part of the path <m/P/.
                   1436: 
                   1437:        Both <cf/first/ and <cf/last/ return zero if there is no appropriate
                   1438:        ASN, for example if the path contains an AS set element as the first (or
                   1439:        the last) part. If the path ends with an AS set, <cf/last_nonaggregated/
                   1440:        may be used to get last ASN before any AS set.
                   1441: 
                   1442:        <cf><m/P/.len</cf> returns the length of path <m/P/.
                   1443: 
                   1444:        <cf><m/P/.empty</cf> makes the path <m/P/ empty.
                   1445: 
                   1446:        <cf>prepend(<m/P/,<m/A/)</cf> prepends ASN <m/A/ to path <m/P/ and
                   1447:        returns the result.
                   1448: 
                   1449:        <cf>delete(<m/P/,<m/A/)</cf> deletes all instances of ASN <m/A/ from
                   1450:        from path <m/P/ and returns the result. <m/A/ may also be an integer
                   1451:        set, in that case the operator deletes all ASNs from path <m/P/ that are
                   1452:        also members of set <m/A/.
                   1453: 
                   1454:        <cf>filter(<m/P/,<m/A/)</cf> deletes all ASNs from path <m/P/ that are
                   1455:        not members of integer set <m/A/. I.e., <cf/filter/ do the same as
                   1456:        <cf/delete/ with inverted set <m/A/.
                   1457: 
                   1458:        Statement <cf><m/P/ = prepend(<m/P/, <m/A/);</cf> can be shortened to
                   1459:        <cf><m/P/.prepend(<m/A/);</cf> if <m/P/ is appropriate route attribute
                   1460:        (for example <cf/bgp_path/). Similarly for <cf/delete/ and <cf/filter/.
                   1461: 
                   1462:        <tag><label id="type-bgpmask">bgpmask</tag>
                   1463:        BGP masks are patterns used for BGP path matching (using <cf>path
                   1464:        &tilde; [= 2 3 5 * =]</cf> syntax). The masks resemble wildcard patterns
                   1465:        as used by UNIX shells. Autonomous system numbers match themselves,
                   1466:        <cf/*/ matches any (even empty) sequence of arbitrary AS numbers and
                   1467:        <cf/?/ matches one arbitrary AS number. For example, if <cf>bgp_path</cf>
                   1468:        is 4 3 2 1, then: <tt>bgp_path &tilde; [= * 4 3 * =]</tt> is true,
                   1469:        but <tt>bgp_path &tilde; [= * 4 5 * =]</tt> is false. BGP mask
                   1470:        expressions can also contain integer expressions enclosed in parenthesis
                   1471:        and integer variables, for example <tt>[= * 4 (1+2) a =]</tt>. You can
                   1472:        also use ranges (e.g. <tt>[= * 3..5 2 100..200 * =]</tt>) and sets
                   1473:        (e.g. <tt>[= 1 2 [3, 5, 7] * =]</tt>).
                   1474: 
                   1475:        <tag><label id="type-clist">clist</tag>
                   1476:        Clist is similar to a set, except that unlike other sets, it can be
                   1477:        modified. The type is used for community list (a set of pairs) and for
                   1478:        cluster list (a set of quads). There exist no literals of this type.
                   1479:        There are three special operators on clists:
                   1480: 
                   1481:        <cf><m/C/.len</cf> returns the length of clist <m/C/.
                   1482: 
                   1483:        <cf><m/C/.empty</cf> makes the list <m/C/ empty.
                   1484: 
                   1485:        <cf>add(<m/C/,<m/P/)</cf> adds pair (or quad) <m/P/ to clist <m/C/ and
                   1486:        returns the result. If item <m/P/ is already in clist <m/C/, it does
                   1487:        nothing. <m/P/ may also be a clist, in that case all its members are
                   1488:        added; i.e., it works as clist union.
                   1489: 
                   1490:        <cf>delete(<m/C/,<m/P/)</cf> deletes pair (or quad) <m/P/ from clist
                   1491:        <m/C/ and returns the result. If clist <m/C/ does not contain item
                   1492:        <m/P/, it does nothing. <m/P/ may also be a pair (or quad) set, in that
                   1493:        case the operator deletes all items from clist <m/C/ that are also
                   1494:        members of set <m/P/. Moreover, <m/P/ may also be a clist, which works
                   1495:        analogously; i.e., it works as clist difference.
                   1496: 
                   1497:        <cf>filter(<m/C/,<m/P/)</cf> deletes all items from clist <m/C/ that are
                   1498:        not members of pair (or quad) set <m/P/. I.e., <cf/filter/ do the same
                   1499:        as <cf/delete/ with inverted set <m/P/. <m/P/ may also be a clist, which
                   1500:        works analogously; i.e., it works as clist intersection.
                   1501: 
                   1502:        Statement <cf><m/C/ = add(<m/C/, <m/P/);</cf> can be shortened to
                   1503:        <cf><m/C/.add(<m/P/);</cf> if <m/C/ is appropriate route attribute (for
                   1504:        example <cf/bgp_community/). Similarly for <cf/delete/ and <cf/filter/.
                   1505: 
                   1506:        <tag><label id="type-eclist">eclist</tag>
                   1507:        Eclist is a data type used for BGP extended community lists. Eclists
                   1508:        are very similar to clists, but they are sets of ECs instead of pairs.
                   1509:        The same operations (like <cf/add/, <cf/delete/ or <cf/&tilde;/ and
                   1510:        <cf/!&tilde;/ membership operators) can be used to modify or test
                   1511:        eclists, with ECs instead of pairs as arguments.
                   1512: 
                   1513:        <tag><label id="type-lclist">lclist</tag>
                   1514:        Lclist is a data type used for BGP large community lists. Like eclists,
                   1515:        lclists are very similar to clists, but they are sets of LCs instead of
                   1516:        pairs. The same operations (like <cf/add/, <cf/delete/ or <cf/&tilde;/
                   1517:        and <cf/!&tilde;/ membership operators) can be used to modify or test
                   1518:        lclists, with LCs instead of pairs as arguments.
                   1519: </descrip>
                   1520: 
                   1521: 
                   1522: <sect>Operators
                   1523: <label id="operators">
                   1524: 
                   1525: <p>The filter language supports common integer operators <cf>(+,-,*,/)</cf>,
                   1526: parentheses <cf/(a*(b+c))/, comparison <cf/(a=b, a!=b, a&lt;b, a&gt;=b)/.
                   1527: Logical operations include unary not (<cf/!/), and (<cf/&amp;&amp;/), and or
                   1528: (<cf/&verbar;&verbar;/). Special operators include (<cf/&tilde;/,
                   1529: <cf/!&tilde;/) for "is (not) element of a set" operation - it can be used on
                   1530: element and set of elements of the same type (returning true if element is
                   1531: contained in the given set), or on two strings (returning true if first string
                   1532: matches a shell-like pattern stored in second string) or on IP and prefix
                   1533: (returning true if IP is within the range defined by that prefix), or on prefix
                   1534: and prefix (returning true if first prefix is more specific than second one) or
                   1535: on bgppath and bgpmask (returning true if the path matches the mask) or on
                   1536: number and bgppath (returning true if the number is in the path) or on bgppath
                   1537: and int (number) set (returning true if any ASN from the path is in the set) or
                   1538: on pair/quad and clist (returning true if the pair/quad is element of the
                   1539: clist) or on clist and pair/quad set (returning true if there is an element of
                   1540: the clist that is also a member of the pair/quad set).
                   1541: 
                   1542: <p>There is one operator related to ROA infrastructure - <cf/roa_check()/. It
                   1543: examines a ROA table and does <rfc id="6483"> route origin validation for a
                   1544: given network prefix. The basic usage is <cf>roa_check(<m/table/)</cf>, which
                   1545: checks the current route (which should be from BGP to have AS_PATH argument) in
                   1546: the specified ROA table and returns ROA_UNKNOWN if there is no relevant ROA,
                   1547: ROA_VALID if there is a matching ROA, or ROA_INVALID if there are some relevant
                   1548: ROAs but none of them match. There is also an extended variant
                   1549: <cf>roa_check(<m/table/, <m/prefix/, <m/asn/)</cf>, which allows to specify a
                   1550: prefix and an ASN as arguments.
                   1551: 
                   1552: 
                   1553: <sect>Control structures
                   1554: <label id="control-structures">
                   1555: 
                   1556: <p>Filters support two control structures: conditions and case switches.
                   1557: 
                   1558: <p>Syntax of a condition is: <cf>if <M>boolean expression</M> then <m/commandT/;
                   1559: else <m/commandF/;</cf> and you can use <cf>{ <m/command1/; <m/command2/;
                   1560: <M>...</M> }</cf> instead of either command. The <cf>else</cf> clause may be
                   1561: omitted. If the <cf><m>boolean expression</m></cf> is true, <m/commandT/ is
                   1562: executed, otherwise <m/commandF/ is executed.
                   1563: 
                   1564: <p>The <cf>case</cf> is similar to case from Pascal. Syntax is <cf>case
                   1565: <m/expr/ { else: | <m/num_or_prefix [ .. num_or_prefix]/: <m/statement/ ; [
                   1566: ... ] }</cf>. The expression after <cf>case</cf> can be of any type which can be
                   1567: on the left side of the &tilde; operator and anything that could be a member of
                   1568: a set is allowed before <cf/:/. Multiple commands are allowed without <cf/{}/
                   1569: grouping. If <cf><m/expr/</cf> matches one of the <cf/:/ clauses, statements
                   1570: between it and next <cf/:/ statement are executed. If <cf><m/expr/</cf> matches
                   1571: neither of the <cf/:/ clauses, the statements after <cf/else:/ are executed.
                   1572: 
                   1573: <p>Here is example that uses <cf/if/ and <cf/case/ structures:
                   1574: 
                   1575: <code>
                   1576: case arg1 {
                   1577:        2: print "two"; print "I can do more commands without {}";
                   1578:        3 .. 5: print "three to five";
                   1579:        else: print "something else";
                   1580: }
                   1581: 
                   1582: if 1234 = i then printn "."; else {
                   1583:   print "not 1234";
                   1584:   print "You need {} around multiple commands";
                   1585: }
                   1586: </code>
                   1587: 
                   1588: 
                   1589: <sect>Route attributes
                   1590: <label id="route-attributes">
                   1591: 
                   1592: <p>A filter is implicitly passed a route, and it can access its attributes just
                   1593: like it accesses variables. There are common route attributes, protocol-specific
                   1594: route attributes and custom route attributes. Most common attributes are
                   1595: mandatory (always defined), while remaining are optional.  Attempts to access
                   1596: undefined attribute result in a runtime error; you can check if an attribute is
                   1597: defined by using the <cf>defined( <m>attribute</m> )</cf> operator. One notable
                   1598: exception to this rule are attributes of bgppath and *clist types, where
                   1599: undefined value is regarded as empty bgppath/*clist for most purposes.
                   1600: 
                   1601: Attributes can be defined by just setting them in filters. Custom attributes
                   1602: have to be first declared by <ref id="opt-attribute" name="attribute"> global
                   1603: option. You can also undefine optional attribute back to non-existence by using
                   1604: the <cf>unset( <m/attribute/ )</cf> operator.
                   1605: 
                   1606: Common route attributes are:
                   1607: 
                   1608: <descrip>
                   1609:        <tag><label id="rta-net"><m/prefix/ net</tag>
                   1610:        The network prefix or anything else the route is talking about. The
                   1611:        primary key of the routing table. Read-only. (See the <ref id="routes"
                   1612:        name="chapter about routes">.)
                   1613: 
                   1614:        <tag><label id="rta-scope"><m/enum/ scope</tag>
                   1615:        The scope of the route. Possible values: <cf/SCOPE_HOST/ for routes
                   1616:        local to this host, <cf/SCOPE_LINK/ for those specific for a physical
                   1617:        link, <cf/SCOPE_SITE/ and <cf/SCOPE_ORGANIZATION/ for private routes and
                   1618:        <cf/SCOPE_UNIVERSE/ for globally visible routes. This attribute is not
                   1619:        interpreted by BIRD and can be used to mark routes in filters. The
                   1620:        default value for new routes is <cf/SCOPE_UNIVERSE/.
                   1621: 
                   1622:        <tag><label id="rta-preference"><m/int/ preference</tag>
                   1623:        Preference of the route. Valid values are 0-65535. (See the chapter
                   1624:        about routing tables.)
                   1625: 
                   1626:        <tag><label id="rta-from"><m/ip/ from</tag>
                   1627:        The router which the route has originated from.
                   1628: 
                   1629:        <tag><label id="rta-gw"><m/ip/ gw</tag>
                   1630:        Next hop packets routed using this route should be forwarded to.
                   1631: 
                   1632:        <tag><label id="rta-proto"><m/string/ proto</tag>
                   1633:        The name of the protocol which the route has been imported from.
                   1634:        Read-only.
                   1635: 
                   1636:        <tag><label id="rta-source"><m/enum/ source</tag>
                   1637:        what protocol has told me about this route. Possible values:
                   1638:        <cf/RTS_DUMMY/, <cf/RTS_STATIC/, <cf/RTS_INHERIT/, <cf/RTS_DEVICE/,
                   1639:        <cf/RTS_STATIC_DEVICE/, <cf/RTS_REDIRECT/, <cf/RTS_RIP/, <cf/RTS_OSPF/,
                   1640:        <cf/RTS_OSPF_IA/, <cf/RTS_OSPF_EXT1/, <cf/RTS_OSPF_EXT2/, <cf/RTS_BGP/,
                   1641:        <cf/RTS_PIPE/, <cf/RTS_BABEL/.
                   1642: 
                   1643:        <tag><label id="rta-dest"><m/enum/ dest</tag>
                   1644:        Type of destination the packets should be sent to
                   1645:        (<cf/RTD_ROUTER/ for forwarding to a neighboring router,
                   1646:        <cf/RTD_DEVICE/ for routing to a directly-connected network,
                   1647:        <cf/RTD_MULTIPATH/ for multipath destinations,
                   1648:        <cf/RTD_BLACKHOLE/ for packets to be silently discarded,
                   1649:        <cf/RTD_UNREACHABLE/, <cf/RTD_PROHIBIT/ for packets that should be
                   1650:        returned with ICMP host unreachable / ICMP administratively prohibited
                   1651:        messages). Can be changed, but only to <cf/RTD_BLACKHOLE/,
                   1652:        <cf/RTD_UNREACHABLE/ or <cf/RTD_PROHIBIT/.
                   1653: 
                   1654:        <tag><label id="rta-ifname"><m/string/ ifname</tag>
                   1655:        Name of the outgoing interface. Sink routes (like blackhole, unreachable
                   1656:        or prohibit) and multipath routes have no interface associated with
                   1657:        them, so <cf/ifname/ returns an empty string for such routes. Setting it
                   1658:        would also change route to a direct one (remove gateway).
                   1659: 
                   1660:        <tag><label id="rta-ifindex"><m/int/ ifindex</tag>
                   1661:        Index of the outgoing interface. System wide index of the interface. May
                   1662:        be used for interface matching, however indexes might change on interface
                   1663:        creation/removal. Zero is returned for routes with undefined outgoing
                   1664:        interfaces. Read-only.
                   1665: 
                   1666:        <tag><label id="rta-igp-metric"><m/int/ igp_metric</tag>
                   1667:        The optional attribute that can be used to specify a distance to the
                   1668:        network for routes that do not have a native protocol metric attribute
                   1669:        (like <cf/ospf_metric1/ for OSPF routes). It is used mainly by BGP to
                   1670:        compare internal distances to boundary routers (see below).
                   1671: </descrip>
                   1672: 
                   1673: <p>Protocol-specific route attributes are described in the corresponding
                   1674: protocol sections.
                   1675: 
                   1676: 
                   1677: <sect>Other statements
                   1678: <label id="other-statements">
                   1679: 
                   1680: <p>The following statements are available:
                   1681: 
                   1682: <descrip>
                   1683:        <tag><label id="assignment"><m/variable/ = <m/expr/</tag>
                   1684:        Set variable (or route attribute) to a given value.
                   1685: 
                   1686:        <tag><label id="filter-accept-reject">accept|reject [ <m/expr/ ]</tag>
                   1687:        Accept or reject the route, possibly printing <cf><m>expr</m></cf>.
                   1688: 
                   1689:        <tag><label id="return">return <m/expr/</tag>
                   1690:        Return <cf><m>expr</m></cf> from the current function, the function ends
                   1691:        at this point.
                   1692: 
                   1693:        <tag><label id="print">print|printn <m/expr/ [<m/, expr.../]</tag>
                   1694:        Prints given expressions; useful mainly while debugging filters. The
                   1695:        <cf/printn/ variant does not terminate the line.
                   1696: 
                   1697:        <tag><label id="quitbird">quitbird</tag>
                   1698:        Terminates BIRD. Useful when debugging the filter interpreter.
                   1699: </descrip>
                   1700: 
                   1701: 
                   1702: <chapt>Protocols
                   1703: <label id="protocols">
                   1704: 
                   1705: <sect>Babel
                   1706: <label id="babel">
                   1707: 
                   1708: <sect1>Introduction
                   1709: <label id="babel-intro">
                   1710: 
                   1711: <p>The Babel protocol
                   1712: (<rfc id="6126">) is a loop-avoiding distance-vector routing protocol that is
                   1713: robust and efficient both in ordinary wired networks and in wireless mesh
                   1714: networks. Babel is conceptually very simple in its operation and "just works"
                   1715: in its default configuration, though some configuration is possible and in some
                   1716: cases desirable.
                   1717: 
                   1718: <p>The Babel protocol is dual stack; i.e., it can carry both IPv4 and IPv6
                   1719: routes over the same IPv6 transport. For sending and receiving Babel packets,
                   1720: only a link-local IPv6 address is needed.
                   1721: 
                   1722: <p>BIRD implements an extension for IPv6 source-specific routing (SSR or SADR),
                   1723: but must be configured accordingly to use it. SADR-enabled Babel router can
                   1724: interoperate with non-SADR Babel router, but the later would ignore routes
                   1725: with specific (non-zero) source prefix.
                   1726: 
                   1727: <sect1>Configuration
                   1728: <label id="babel-config">
                   1729: 
                   1730: <p>The Babel protocol support both IPv4 and IPv6 channels; both can be
                   1731: configured simultaneously. It can also be configured with <ref
                   1732: id="ip-sadr-routes" name="IPv6 SADR"> channel instead of regular IPv6
                   1733: channel, in such case SADR support is enabled. Babel supports no global
                   1734: configuration options apart from those common to all other protocols, but
                   1735: supports the following per-interface configuration options:
                   1736: 
                   1737: <code>
                   1738: protocol babel [<name>] {
                   1739:        ipv4 { <channel config> };
                   1740:        ipv6 [sadr] { <channel config> };
                   1741:         randomize router id <switch>;
                   1742:        interface <interface pattern> {
                   1743:                type <wired|wireless>;
                   1744:                rxcost <number>;
                   1745:                limit <number>;
                   1746:                hello interval <time>;
                   1747:                update interval <time>;
                   1748:                port <number>;
                   1749:                tx class|dscp <number>;
                   1750:                tx priority <number>;
                   1751:                rx buffer <number>;
                   1752:                tx length <number>;
                   1753:                check link <switch>;
                   1754:                next hop ipv4 <address>;
                   1755:                next hop ipv6 <address>;
                   1756:        };
                   1757: }
                   1758: </code>
                   1759: 
                   1760: <descrip>
                   1761:       <tag><label id="babel-channel">ipv4 | ipv6 [sadr] <m/channel config/</tag>
                   1762:       The supported channels are IPv4, IPv6, and IPv6 SADR.
                   1763: 
                   1764:       <tag><label id="babel-random-router-id">randomize router id <m/switch/</tag>
                   1765:       If enabled, Bird will randomize the top 32 bits of its router ID whenever
                   1766:       the protocol instance starts up. If a Babel node restarts, it loses its
                   1767:       sequence number, which can cause its routes to be rejected by peers until
                   1768:       the state is cleared out by other nodes in the network (which can take on
                   1769:       the order of minutes). Enabling this option causes Bird to pick a random
                   1770:       router ID every time it starts up, which avoids this problem at the cost
                   1771:       of not having stable router IDs in the network. Default: no.
                   1772: 
                   1773:       <tag><label id="babel-type">type wired|wireless </tag>
                   1774:       This option specifies the interface type: Wired or wireless. On wired
                   1775:       interfaces a neighbor is considered unreachable after a small number of
                   1776:       Hello packets are lost, as described by <cf/limit/ option. On wireless
                   1777:       interfaces the ETX link quality estimation technique is used to compute
                   1778:       the metrics of routes discovered over this interface. This technique will
                   1779:       gradually degrade the metric of routes when packets are lost rather than
                   1780:       the more binary up/down mechanism of wired type links. Default:
                   1781:       <cf/wired/.
                   1782: 
                   1783:       <tag><label id="babel-rxcost">rxcost <m/num/</tag>
                   1784:       This option specifies the nominal RX cost of the interface. The effective
                   1785:       neighbor costs for route metrics will be computed from this value with a
                   1786:       mechanism determined by the interface <cf/type/. Note that in contrast to
                   1787:       other routing protocols like RIP or OSPF, the <cf/rxcost/ specifies the
                   1788:       cost of RX instead of TX, so it affects primarily neighbors' route
                   1789:       selection and not local route selection. Default: 96 for wired interfaces,
                   1790:       256 for wireless.
                   1791: 
                   1792:       <tag><label id="babel-limit">limit <m/num/</tag>
                   1793:       BIRD keeps track of received Hello messages from each neighbor to
                   1794:       establish neighbor reachability. For wired type interfaces, this option
                   1795:       specifies how many of last 16 hellos have to be correctly received in
                   1796:       order to neighbor is assumed to be up. The option is ignored on wireless
                   1797:       type interfaces, where gradual cost degradation is used instead of sharp
                   1798:       limit. Default: 12.
                   1799: 
                   1800:       <tag><label id="babel-hello">hello interval <m/time/ s|ms</tag>
                   1801:       Interval at which periodic Hello messages are sent on this interface,
                   1802:       with time units. Default: 4 seconds.
                   1803: 
                   1804:       <tag><label id="babel-update">update interval <m/time/ s|ms</tag>
                   1805:       Interval at which periodic (full) updates are sent, with time
                   1806:       units. Default: 4 times the hello interval.
                   1807: 
                   1808:       <tag><label id="babel-port">port <m/number/</tag>
                   1809:       This option selects an UDP port to operate on. The default is to operate
                   1810:       on port 6696 as specified in the Babel RFC.
                   1811: 
                   1812:       <tag><label id="babel-tx-class">tx class|dscp|priority <m/number/</tag>
                   1813:       These options specify the ToS/DiffServ/Traffic class/Priority of the
                   1814:       outgoing Babel packets. See <ref id="proto-tx-class" name="tx class"> common
                   1815:       option for detailed description.
                   1816: 
                   1817:       <tag><label id="babel-rx-buffer">rx buffer <m/number/</tag>
                   1818:       This option specifies the size of buffers used for packet processing.
                   1819:       The buffer size should be bigger than maximal size of received packets.
                   1820:       The default value is the interface MTU, and the value will be clamped to a
                   1821:       minimum of 512 bytes + IP packet overhead.
                   1822: 
                   1823:       <tag><label id="babel-tx-length">tx length <m/number/</tag>
                   1824:       This option specifies the maximum length of generated Babel packets. To
                   1825:       avoid IP fragmentation, it should not exceed the interface MTU value.
                   1826:       The default value is the interface MTU value, and the value will be
                   1827:       clamped to a minimum of 512 bytes + IP packet overhead.
                   1828: 
                   1829:       <tag><label id="babel-check-link">check link <m/switch/</tag>
                   1830:       If set, the hardware link state (as reported by OS) is taken into
                   1831:       consideration. When the link disappears (e.g. an ethernet cable is
                   1832:       unplugged), neighbors are immediately considered unreachable and all
                   1833:       routes received from them are withdrawn. It is possible that some
                   1834:       hardware drivers or platforms do not implement this feature. Default:
                   1835:       yes.
                   1836: 
                   1837:       <tag><label id="babel-next-hop-ipv4">next hop ipv4 <m/address/</tag>
                   1838:       Set the next hop address advertised for IPv4 routes advertised on this
                   1839:       interface. Default: the preferred IPv4 address of the interface.
                   1840: 
                   1841:       <tag><label id="babel-next-hop-ipv6">next hop ipv6 <m/address/</tag>
                   1842:       Set the next hop address advertised for IPv6 routes advertised on this
                   1843:       interface. If not set, the same link-local address that is used as the
                   1844:       source for Babel packets will be used. In normal operation, it should not
                   1845:       be necessary to set this option.
                   1846: </descrip>
                   1847: 
                   1848: <sect1>Attributes
                   1849: <label id="babel-attr">
                   1850: 
                   1851: <p>Babel defines just one attribute: the internal babel metric of the route. It
                   1852: is exposed as the <cf/babel_metric/ attribute and has range from 1 to infinity
                   1853: (65535).
                   1854: 
                   1855: <sect1>Example
                   1856: <label id="babel-exam">
                   1857: 
                   1858: <p><code>
                   1859: protocol babel {
                   1860:        interface "eth*" {
                   1861:                type wired;
                   1862:        };
                   1863:        interface "wlan0", "wlan1" {
                   1864:                type wireless;
                   1865:                hello interval 1;
                   1866:                rxcost 512;
                   1867:        };
                   1868:        interface "tap0";
                   1869: 
                   1870:        # This matches the default of babeld: redistribute all addresses
                   1871:        # configured on local interfaces, plus re-distribute all routes received
                   1872:        # from other babel peers.
                   1873: 
                   1874:        ipv4 {
                   1875:                export where (source = RTS_DEVICE) || (source = RTS_BABEL);
                   1876:        };
                   1877:        ipv6 {
                   1878:                export where (source = RTS_DEVICE) || (source = RTS_BABEL);
                   1879:        };
                   1880: }
                   1881: </code>
                   1882: 
                   1883: <sect1>Known issues
                   1884: <label id="babel-issues">
                   1885: 
                   1886: <p>When retracting a route, Babel generates an unreachable route for a little
                   1887: while (according to RFC). The interaction of this behavior with other protocols
                   1888: is not well tested and strange things may happen.
                   1889: 
                   1890: 
                   1891: <sect>BFD
                   1892: <label id="bfd">
                   1893: 
                   1894: <sect1>Introduction
                   1895: <label id="bfd-intro">
                   1896: 
                   1897: <p>Bidirectional Forwarding Detection (BFD) is not a routing protocol itself, it
                   1898: is an independent tool providing liveness and failure detection. Routing
                   1899: protocols like OSPF and BGP use integrated periodic "hello" messages to monitor
                   1900: liveness of neighbors, but detection times of these mechanisms are high (e.g. 40
                   1901: seconds by default in OSPF, could be set down to several seconds). BFD offers
                   1902: universal, fast and low-overhead mechanism for failure detection, which could be
                   1903: attached to any routing protocol in an advisory role.
                   1904: 
                   1905: <p>BFD consists of mostly independent BFD sessions. Each session monitors an
                   1906: unicast bidirectional path between two BFD-enabled routers. This is done by
                   1907: periodically sending control packets in both directions. BFD does not handle
                   1908: neighbor discovery, BFD sessions are created on demand by request of other
                   1909: protocols (like OSPF or BGP), which supply appropriate information like IP
                   1910: addresses and associated interfaces. When a session changes its state, these
                   1911: protocols are notified and act accordingly (e.g. break an OSPF adjacency when
                   1912: the BFD session went down).
                   1913: 
                   1914: <p>BIRD implements basic BFD behavior as defined in <rfc id="5880"> (some
                   1915: advanced features like the echo mode or authentication are not implemented), IP
                   1916: transport for BFD as defined in <rfc id="5881"> and <rfc id="5883"> and
                   1917: interaction with client protocols as defined in <rfc id="5882">.
                   1918: 
                   1919: <p>BFD packets are sent with a dynamic source port number. Linux systems use by
                   1920: default a bit different dynamic port range than the IANA approved one
                   1921: (49152-65535). If you experience problems with compatibility, please adjust
                   1922: <cf>/proc/sys/net/ipv4/ip_local_port_range</cf>.
                   1923: 
                   1924: <sect1>Configuration
                   1925: <label id="bfd-config">
                   1926: 
                   1927: <p>BFD configuration consists mainly of multiple definitions of interfaces.
                   1928: Most BFD config options are session specific. When a new session is requested
                   1929: and dynamically created, it is configured from one of these definitions. For
                   1930: sessions to directly connected neighbors, <cf/interface/ definitions are chosen
                   1931: based on the interface associated with the session, while <cf/multihop/
                   1932: definition is used for multihop sessions. If no definition is relevant, the
                   1933: session is just created with the default configuration. Therefore, an empty BFD
                   1934: configuration is often sufficient.
                   1935: 
                   1936: <p>Note that to use BFD for other protocols like OSPF or BGP, these protocols
                   1937: also have to be configured to request BFD sessions, usually by <cf/bfd/ option.
                   1938: 
                   1939: <p>A BFD instance not associated with any VRF handles session requests from all
                   1940: other protocols, even ones associated with a VRF. Such setup would work for
                   1941: single-hop BFD sessions if <cf/net.ipv4.udp_l3mdev_accept/ sysctl is enabled,
                   1942: but does not currently work for multihop sessions. Another approach is to
                   1943: configure multiple BFD instances, one for each VRF (including the default VRF).
                   1944: Each BFD instance associated with a VRF (regular or default) only handles
                   1945: session requests from protocols in the same VRF.
                   1946: 
                   1947: <p>Some of BFD session options require <m/time/ value, which has to be specified
                   1948: with the appropriate unit: <m/num/ <cf/s/|<cf/ms/|<cf/us/. Although microseconds
                   1949: are allowed as units, practical minimum values are usually in order of tens of
                   1950: milliseconds.
                   1951: 
                   1952: <code>
                   1953: protocol bfd [&lt;name&gt;] {
                   1954:        interface &lt;interface pattern&gt; {
                   1955:                interval &lt;time&gt;;
                   1956:                min rx interval &lt;time&gt;;
                   1957:                min tx interval &lt;time&gt;;
                   1958:                idle tx interval &lt;time&gt;;
                   1959:                multiplier &lt;num&gt;;
                   1960:                passive &lt;switch&gt;;
                   1961:                authentication none;
                   1962:                authentication simple;
                   1963:                authentication [meticulous] keyed md5|sha1;
                   1964:                password "&lt;text&gt;";
                   1965:                password "&lt;text&gt;" {
                   1966:                        id &lt;num&gt;;
                   1967:                        generate from "&lt;date&gt;";
                   1968:                        generate to "&lt;date&gt;";
                   1969:                        accept from "&lt;date&gt;";
                   1970:                        accept to "&lt;date&gt;";
                   1971:                        from "&lt;date&gt;";
                   1972:                        to "&lt;date&gt;";
                   1973:                };
                   1974:        };
                   1975:        multihop {
                   1976:                interval &lt;time&gt;;
                   1977:                min rx interval &lt;time&gt;;
                   1978:                min tx interval &lt;time&gt;;
                   1979:                idle tx interval &lt;time&gt;;
                   1980:                multiplier &lt;num&gt;;
                   1981:                passive &lt;switch&gt;;
                   1982:        };
                   1983:        neighbor &lt;ip&gt; [dev "&lt;interface&gt;"] [local &lt;ip&gt;] [multihop &lt;switch&gt;];
                   1984: }
                   1985: </code>
                   1986: 
                   1987: <descrip>
                   1988:        <tag><label id="bfd-iface">interface <m/pattern/ [, <m/.../] { <m/options/ }</tag>
                   1989:        Interface definitions allow to specify options for sessions associated
                   1990:        with such interfaces and also may contain interface specific options.
                   1991:        See <ref id="proto-iface" name="interface"> common option for a detailed
                   1992:        description of interface patterns. Note that contrary to the behavior of
                   1993:        <cf/interface/ definitions of other protocols, BFD protocol would accept
                   1994:        sessions (in default configuration) even on interfaces not covered by
                   1995:        such definitions.
                   1996: 
                   1997:        <tag><label id="bfd-multihop">multihop { <m/options/ }</tag>
                   1998:        Multihop definitions allow to specify options for multihop BFD sessions,
                   1999:        in the same manner as <cf/interface/ definitions are used for directly
                   2000:        connected sessions. Currently only one such definition (for all multihop
                   2001:        sessions) could be used.
                   2002: 
                   2003:        <tag><label id="bfd-neighbor">neighbor <m/ip/ [dev "<m/interface/"] [local <m/ip/] [multihop <m/switch/]</tag>
                   2004:        BFD sessions are usually created on demand as requested by other
                   2005:        protocols (like OSPF or BGP). This option allows to explicitly add
                   2006:        a BFD session to the specified neighbor regardless of such requests.
                   2007: 
                   2008:        The session is identified by the IP address of the neighbor, with
                   2009:        optional specification of used interface and local IP. By default
                   2010:        the neighbor must be directly connected, unless the session is
                   2011:        configured as multihop. Note that local IP must be specified for
                   2012:        multihop sessions.
                   2013: </descrip>
                   2014: 
                   2015: <p>Session specific options (part of <cf/interface/ and <cf/multihop/ definitions):
                   2016: 
                   2017: <descrip>
                   2018:        <tag><label id="bfd-interval">interval <m/time/</tag>
                   2019:        BFD ensures availability of the forwarding path associated with the
                   2020:        session by periodically sending BFD control packets in both
                   2021:        directions. The rate of such packets is controlled by two options,
                   2022:        <cf/min rx interval/ and <cf/min tx interval/ (see below). This option
                   2023:        is just a shorthand to set both of these options together.
                   2024: 
                   2025:        <tag><label id="bfd-min-rx-interval">min rx interval <m/time/</tag>
                   2026:        This option specifies the minimum RX interval, which is announced to the
                   2027:        neighbor and used there to limit the neighbor's rate of generated BFD
                   2028:        control packets. Default: 10 ms.
                   2029: 
                   2030:        <tag><label id="bfd-min-tx-interval">min tx interval <m/time/</tag>
                   2031:        This option specifies the desired TX interval, which controls the rate
                   2032:        of generated BFD control packets (together with <cf/min rx interval/
                   2033:        announced by the neighbor). Note that this value is used only if the BFD
                   2034:        session is up, otherwise the value of <cf/idle tx interval/ is used
                   2035:        instead. Default: 100 ms.
                   2036: 
                   2037:        <tag><label id="bfd-idle-tx-interval">idle tx interval <m/time/</tag>
                   2038:        In order to limit unnecessary traffic in cases where a neighbor is not
                   2039:        available or not running BFD, the rate of generated BFD control packets
                   2040:        is lower when the BFD session is not up. This option specifies the
                   2041:        desired TX interval in such cases instead of <cf/min tx interval/.
                   2042:        Default: 1 s.
                   2043: 
                   2044:        <tag><label id="bfd-multiplier">multiplier <m/num/</tag>
                   2045:        Failure detection time for BFD sessions is based on established rate of
                   2046:        BFD control packets (<cf>min rx/tx interval</cf>) multiplied by this
                   2047:        multiplier, which is essentially (ignoring jitter) a number of missed
                   2048:        packets after which the session is declared down. Note that rates and
                   2049:        multipliers could be different in each direction of a BFD session.
                   2050:        Default: 5.
                   2051: 
                   2052:        <tag><label id="bfd-passive">passive <m/switch/</tag>
                   2053:        Generally, both BFD session endpoints try to establish the session by
                   2054:        sending control packets to the other side. This option allows to enable
                   2055:        passive mode, which means that the router does not send BFD packets
                   2056:        until it has received one from the other side. Default: disabled.
                   2057: 
                   2058:        <tag>authentication none</tag>
                   2059:        No passwords are sent in BFD packets. This is the default value.
                   2060: 
                   2061:        <tag>authentication simple</tag>
                   2062:        Every packet carries 16 bytes of password. Received packets lacking this
                   2063:        password are ignored. This authentication mechanism is very weak.
                   2064: 
                   2065:        <tag>authentication [meticulous] keyed md5|sha1</tag>
                   2066:        An authentication code is appended to each packet. The cryptographic
                   2067:        algorithm is keyed MD5 or keyed SHA-1. Note that the algorithm is common
                   2068:        for all keys (on one interface), in contrast to OSPF or RIP, where it
                   2069:        is a per-key option. Passwords (keys) are not sent open via network.
                   2070: 
                   2071:        The <cf/meticulous/ variant means that cryptographic sequence numbers
                   2072:        are increased for each sent packet, while in the basic variant they are
                   2073:        increased about once per second. Generally, the <cf/meticulous/ variant
                   2074:        offers better resistance to replay attacks but may require more
                   2075:        computation.
                   2076: 
                   2077:        <tag>password "<M>text</M>"</tag>
                   2078:        Specifies a password used for authentication. See <ref id="proto-pass"
                   2079:        name="password"> common option for detailed description. Note that
                   2080:        password option <cf/algorithm/ is not available in BFD protocol. The
                   2081:        algorithm is selected by <cf/authentication/ option for all passwords.
                   2082: 
                   2083: </descrip>
                   2084: 
                   2085: <sect1>Example
                   2086: <label id="bfd-exam">
                   2087: 
                   2088: <p><code>
                   2089: protocol bfd {
                   2090:        interface "eth*" {
                   2091:                min rx interval 20 ms;
                   2092:                min tx interval 50 ms;
                   2093:                idle tx interval 300 ms;
                   2094:        };
                   2095:        interface "gre*" {
                   2096:                interval 200 ms;
                   2097:                multiplier 10;
                   2098:                passive;
                   2099:        };
                   2100:        multihop {
                   2101:                interval 200 ms;
                   2102:                multiplier 10;
                   2103:        };
                   2104: 
                   2105:        neighbor 192.168.1.10;
                   2106:        neighbor 192.168.2.2 dev "eth2";
                   2107:        neighbor 192.168.10.1 local 192.168.1.1 multihop;
                   2108: }
                   2109: </code>
                   2110: 
                   2111: 
                   2112: <sect>BGP
                   2113: <label id="bgp">
                   2114: 
                   2115: <p>The Border Gateway Protocol is the routing protocol used for backbone level
                   2116: routing in the today's Internet. Contrary to other protocols, its convergence
                   2117: does not rely on all routers following the same rules for route selection,
                   2118: making it possible to implement any routing policy at any router in the network,
                   2119: the only restriction being that if a router advertises a route, it must accept
                   2120: and forward packets according to it.
                   2121: 
                   2122: <p>BGP works in terms of autonomous systems (often abbreviated as AS). Each AS
                   2123: is a part of the network with common management and common routing policy. It is
                   2124: identified by a unique 16-bit number (ASN). Routers within each AS usually
                   2125: exchange AS-internal routing information with each other using an interior
                   2126: gateway protocol (IGP, such as OSPF or RIP). Boundary routers at the border of
                   2127: the AS communicate global (inter-AS) network reachability information with their
                   2128: neighbors in the neighboring AS'es via exterior BGP (eBGP) and redistribute
                   2129: received information to other routers in the AS via interior BGP (iBGP).
                   2130: 
                   2131: <p>Each BGP router sends to its neighbors updates of the parts of its routing
                   2132: table it wishes to export along with complete path information (a list of AS'es
                   2133: the packet will travel through if it uses the particular route) in order to
                   2134: avoid routing loops.
                   2135: 
                   2136: <sect1>Supported standards
                   2137: <label id="bgp-standards">
                   2138: 
                   2139: <p>
                   2140: <itemize>
                   2141: <item> <rfc id="4271"> - Border Gateway Protocol 4 (BGP)
                   2142: <item> <rfc id="1997"> - BGP Communities Attribute
                   2143: <item> <rfc id="2385"> - Protection of BGP Sessions via TCP MD5 Signature
                   2144: <item> <rfc id="2545"> - Use of BGP Multiprotocol Extensions for IPv6
                   2145: <item> <rfc id="2918"> - Route Refresh Capability
                   2146: <item> <rfc id="3107"> - Carrying Label Information in BGP
                   2147: <item> <rfc id="4360"> - BGP Extended Communities Attribute
                   2148: <item> <rfc id="4364"> - BGP/MPLS IPv4 Virtual Private Networks
                   2149: <item> <rfc id="4456"> - BGP Route Reflection
                   2150: <item> <rfc id="4486"> - Subcodes for BGP Cease Notification Message
                   2151: <item> <rfc id="4659"> - BGP/MPLS IPv6 Virtual Private Networks
                   2152: <item> <rfc id="4724"> - Graceful Restart Mechanism for BGP
                   2153: <item> <rfc id="4760"> - Multiprotocol extensions for BGP
                   2154: <item> <rfc id="4798"> - Connecting IPv6 Islands over IPv4 MPLS
                   2155: <item> <rfc id="5065"> - AS confederations for BGP
                   2156: <item> <rfc id="5082"> - Generalized TTL Security Mechanism
                   2157: <item> <rfc id="5492"> - Capabilities Advertisement with BGP
                   2158: <item> <rfc id="5549"> - Advertising IPv4 NLRI with an IPv6 Next Hop
                   2159: <item> <rfc id="5575"> - Dissemination of Flow Specification Rules
                   2160: <item> <rfc id="5668"> - 4-Octet AS Specific BGP Extended Community
                   2161: <item> <rfc id="6286"> - AS-Wide Unique BGP Identifier
                   2162: <item> <rfc id="6608"> - Subcodes for BGP Finite State Machine Error
                   2163: <item> <rfc id="6793"> - BGP Support for 4-Octet AS Numbers
                   2164: <item> <rfc id="7311"> - Accumulated IGP Metric Attribute for BGP
                   2165: <item> <rfc id="7313"> - Enhanced Route Refresh Capability for BGP
                   2166: <item> <rfc id="7606"> - Revised Error Handling for BGP UPDATE Messages
                   2167: <item> <rfc id="7911"> - Advertisement of Multiple Paths in BGP
                   2168: <item> <rfc id="7947"> - Internet Exchange BGP Route Server
                   2169: <item> <rfc id="8092"> - BGP Large Communities Attribute
                   2170: <item> <rfc id="8203"> - BGP Administrative Shutdown Communication
                   2171: <item> <rfc id="8212"> - Default EBGP Route Propagation Behavior without Policies
                   2172: </itemize>
                   2173: 
                   2174: <sect1>Route selection rules
                   2175: <label id="bgp-route-select-rules">
                   2176: 
                   2177: <p>BGP doesn't have any simple metric, so the rules for selection of an optimal
                   2178: route among multiple BGP routes with the same preference are a bit more complex
                   2179: and they are implemented according to the following algorithm. It starts the
                   2180: first rule, if there are more "best" routes, then it uses the second rule to
                   2181: choose among them and so on.
                   2182: 
                   2183: <itemize>
                   2184:        <item>Prefer route with the highest Local Preference attribute.
                   2185:        <item>Prefer route with the shortest AS path.
                   2186:        <item>Prefer IGP origin over EGP and EGP origin over incomplete.
                   2187:        <item>Prefer the lowest value of the Multiple Exit Discriminator.
                   2188:        <item>Prefer routes received via eBGP over ones received via iBGP.
                   2189:        <item>Prefer routes with lower internal distance to a boundary router.
                   2190:        <item>Prefer the route with the lowest value of router ID of the
                   2191:        advertising router.
                   2192: </itemize>
                   2193: 
                   2194: <sect1>IGP routing table
                   2195: <label id="bgp-igp-routing-table">
                   2196: 
                   2197: <p>BGP is mainly concerned with global network reachability and with routes to
                   2198: other autonomous systems. When such routes are redistributed to routers in the
                   2199: AS via BGP, they contain IP addresses of a boundary routers (in route attribute
                   2200: NEXT_HOP). BGP depends on existing IGP routing table with AS-internal routes to
                   2201: determine immediate next hops for routes and to know their internal distances to
                   2202: boundary routers for the purpose of BGP route selection. In BIRD, there is
                   2203: usually one routing table used for both IGP routes and BGP routes.
                   2204: 
                   2205: <sect1>Protocol configuration
                   2206: <label id="bgp-proto-config">
                   2207: 
                   2208: <p>Each instance of the BGP corresponds to one neighboring router. This allows
                   2209: to set routing policy and all the other parameters differently for each neighbor
                   2210: using the following configuration parameters:
                   2211: 
                   2212: <descrip>
                   2213:        <tag><label id="bgp-local">local [<m/ip/] [port <m/number/] [as <m/number/]</tag>
                   2214:        Define which AS we are part of. (Note that contrary to other IP routers,
                   2215:        BIRD is able to act as a router located in multiple AS'es simultaneously,
                   2216:        but in such cases you need to tweak the BGP paths manually in the filters
                   2217:        to get consistent behavior.) Optional <cf/ip/ argument specifies a source
                   2218:        address, equivalent to the <cf/source address/ option (see below).
                   2219:        Optional <cf/port/ argument specifies the local BGP port instead of
                   2220:        standard port 179. The parameter may be used multiple times with
                   2221:        different sub-options (e.g., both <cf/local 10.0.0.1 as 65000;/ and
                   2222:        <cf/local 10.0.0.1; local as 65000;/ are valid). This parameter is
                   2223:        mandatory.
                   2224: 
                   2225:        <tag><label id="bgp-neighbor">neighbor [<m/ip/ | range <m/prefix/] [port <m/number/] [as <m/number/] [internal|external]</tag>
                   2226:        Define neighboring router this instance will be talking to and what AS
                   2227:        it is located in. In case the neighbor is in the same AS as we are, we
                   2228:        automatically switch to IBGP. Alternatively, it is possible to specify
                   2229:        just <cf/internal/ or <cf/external/ instead of AS number, in that case
                   2230:        either local AS number, or any external AS number is accepted.
                   2231:        Optionally, the remote port may also be specified. Like <cf/local/
                   2232:        parameter, this parameter may also be used multiple times with different
                   2233:        sub-options. This parameter is mandatory.
                   2234: 
                   2235:        It is possible to specify network prefix (with <cf/range/ keyword)
                   2236:        instead of explicit neighbor IP address. This enables dynamic BGP
                   2237:        behavior, where the BGP instance listens on BGP port, but new BGP
                   2238:        instances are spawned for incoming BGP connections (if source address
                   2239:        matches the network prefix). It is possible to mix regular BGP instances
                   2240:        with dynamic BGP instances and have multiple dynamic BGP instances with
                   2241:        different ranges.
                   2242: 
                   2243:        <tag><label id="bgp-iface">interface <m/string/</tag>
                   2244:        Define interface we should use for link-local BGP IPv6 sessions.
                   2245:        Interface can also be specified as a part of <cf/neighbor address/
                   2246:        (e.g., <cf/neighbor fe80::1234%eth0 as 65000;/). The option may also be
                   2247:        used for non link-local sessions when it is necessary to explicitly
                   2248:        specify an interface, but only for direct (not multihop) sessions.
                   2249: 
                   2250:        <tag><label id="bgp-direct">direct</tag>
                   2251:        Specify that the neighbor is directly connected. The IP address of the
                   2252:        neighbor must be from a directly reachable IP range (i.e. associated
                   2253:        with one of your router's interfaces), otherwise the BGP session
                   2254:        wouldn't start but it would wait for such interface to appear. The
                   2255:        alternative is the <cf/multihop/ option. Default: enabled for eBGP.
                   2256: 
                   2257:        <tag><label id="bgp-multihop">multihop [<m/number/]</tag>
                   2258:        Configure multihop BGP session to a neighbor that isn't directly
                   2259:        connected. Accurately, this option should be used if the configured
                   2260:        neighbor IP address does not match with any local network subnets. Such
                   2261:        IP address have to be reachable through system routing table. The
                   2262:        alternative is the <cf/direct/ option. For multihop BGP it is
                   2263:        recommended to explicitly configure the source address to have it
                   2264:        stable. Optional <cf/number/ argument can be used to specify the number
                   2265:        of hops (used for TTL). Note that the number of networks (edges) in a
                   2266:        path is counted; i.e., if two BGP speakers are separated by one router,
                   2267:        the number of hops is 2. Default: enabled for iBGP.
                   2268: 
                   2269:        <tag><label id="bgp-source-address">source address <m/ip/</tag>
                   2270:        Define local address we should use as a source address for the BGP
                   2271:        session. Default: the address of the local end of the interface our
                   2272:        neighbor is connected to.
                   2273: 
                   2274:        <tag><label id="bgp-dynamic-name">dynamic name "<m/text/"</tag>
                   2275:        Define common prefix of names used for new BGP instances spawned when
                   2276:        dynamic BGP behavior is active. Actual names also contain numeric
                   2277:        index to distinguish individual instances.  Default: "dynbgp".
                   2278: 
                   2279:        <tag><label id="bgp-dynamic-name-digits">dynamic name digits <m/number/</tag>
                   2280:        Define minimum number of digits for index in names of spawned dynamic
                   2281:        BGP instances. E.g., if set to 2, then the first name would be
                   2282:        "dynbgp01". Default: 0.
                   2283: 
                   2284:        <tag><label id="bgp-strict-bind">strict bind <m/switch/</tag>
                   2285:        Specify whether BGP listening socket should be bound to a specific local
                   2286:        address (the same as the <cf/source address/) and associated interface,
                   2287:        or to all addresses. Binding to a specific address could be useful in
                   2288:        cases like running multiple BIRD instances on a machine, each using its
                   2289:        IP address. Note that listening sockets bound to a specific address and
                   2290:        to all addresses collide, therefore either all BGP protocols (of the
                   2291:        same address family and using the same local port) should have set
                   2292:        <cf/strict bind/, or none of them. Default: disabled.
                   2293: 
                   2294:        <tag><label id="bgp-check-link">check link <M>switch</M></tag>
                   2295:        BGP could use hardware link state into consideration.  If enabled,
                   2296:        BIRD tracks the link state of the associated interface and when link
                   2297:        disappears (e.g. an ethernet cable is unplugged), the BGP session is
                   2298:        immediately shut down. Note that this option cannot be used with
                   2299:        multihop BGP. Default: enabled for direct BGP, disabled otherwise.
                   2300: 
                   2301:        <tag><label id="bgp-bfd">bfd <M>switch</M>|graceful</tag>
                   2302:        BGP could use BFD protocol as an advisory mechanism for neighbor
                   2303:        liveness and failure detection. If enabled, BIRD setups a BFD session
                   2304:        for the BGP neighbor and tracks its liveness by it. This has an
                   2305:        advantage of an order of magnitude lower detection times in case of
                   2306:        failure. When a neighbor failure is detected, the BGP session is
                   2307:        restarted. Optionally, it can be configured (by <cf/graceful/ argument)
                   2308:        to trigger graceful restart instead of regular restart. Note that BFD
                   2309:        protocol also has to be configured, see <ref id="bfd" name="BFD">
                   2310:        section for details. Default: disabled.
                   2311: 
                   2312:        <tag><label id="bgp-ttl-security">ttl security <m/switch/</tag>
                   2313:        Use GTSM (<rfc id="5082"> - the generalized TTL security mechanism). GTSM
                   2314:        protects against spoofed packets by ignoring received packets with a
                   2315:        smaller than expected TTL. To work properly, GTSM have to be enabled on
                   2316:        both sides of a BGP session. If both <cf/ttl security/ and
                   2317:        <cf/multihop/ options are enabled, <cf/multihop/ option should specify
                   2318:        proper hop value to compute expected TTL. Kernel support required:
                   2319:        Linux: 2.6.34+ (IPv4), 2.6.35+ (IPv6), BSD: since long ago, IPv4 only.
                   2320:        Note that full (ICMP protection, for example) <rfc id="5082"> support is
                   2321:        provided by Linux only. Default: disabled.
                   2322: 
                   2323:        <tag><label id="bgp-password">password <m/string/</tag>
                   2324:        Use this password for MD5 authentication of BGP sessions (<rfc id="2385">). When
                   2325:        used on BSD systems, see also <cf/setkey/ option below. Default: no
                   2326:        authentication.
                   2327: 
                   2328:        <tag><label id="bgp-setkey">setkey <m/switch/</tag>
                   2329:        On BSD systems, keys for TCP MD5 authentication are stored in the global
                   2330:        SA/SP database, which can be accessed by external utilities (e.g.
                   2331:        setkey(8)). BIRD configures security associations in the SA/SP database
                   2332:        automatically based on <cf/password/ options (see above), this option
                   2333:        allows to disable automatic updates by BIRD when manual configuration by
                   2334:        external utilities is preferred. Note that automatic SA/SP database
                   2335:        updates are currently implemented only for FreeBSD. Passwords have to be
                   2336:        set manually by an external utility on NetBSD and OpenBSD. Default:
                   2337:        enabled (ignored on non-FreeBSD).
                   2338: 
                   2339:        <tag><label id="bgp-passive">passive <m/switch/</tag>
                   2340:        Standard BGP behavior is both initiating outgoing connections and
                   2341:        accepting incoming connections. In passive mode, outgoing connections
                   2342:        are not initiated. Default: off.
                   2343: 
                   2344:        <tag><label id="bgp-confederation">confederation <m/number/</tag>
                   2345:        BGP confederations (<rfc id="5065">) are collections of autonomous
                   2346:        systems that act as one entity to external systems, represented by one
                   2347:        confederation identifier (instead of AS numbers). This option allows to
                   2348:        enable BGP confederation behavior and to specify the local confederation
                   2349:        identifier. When BGP confederations are used, all BGP speakers that are
                   2350:        members of the BGP confederation should have the same confederation
                   2351:        identifier configured. Default: 0 (no confederation).
                   2352: 
                   2353:        <tag><label id="bgp-confederation-member">confederation member <m/switch/</tag>
                   2354:        When BGP confederations are used, this option allows to specify whether
                   2355:        the BGP neighbor is a member of the same confederation as the local BGP
                   2356:        speaker. The option is unnecessary (and ignored) for IBGP sessions, as
                   2357:        the same AS number implies the same confederation. Default: no.
                   2358: 
                   2359:        <tag><label id="bgp-rr-client">rr client</tag>
                   2360:        Be a route reflector and treat the neighbor as a route reflection
                   2361:        client. Default: disabled.
                   2362: 
                   2363:        <tag><label id="bgp-rr-cluster-id">rr cluster id <m/IPv4 address/</tag>
                   2364:        Route reflectors use cluster id to avoid route reflection loops. When
                   2365:        there is one route reflector in a cluster it usually uses its router id
                   2366:        as a cluster id, but when there are more route reflectors in a cluster,
                   2367:        these need to be configured (using this option) to use a common cluster
                   2368:        id. Clients in a cluster need not know their cluster id and this option
                   2369:        is not allowed for them. Default: the same as router id.
                   2370: 
                   2371:        <tag><label id="bgp-rs-client">rs client</tag>
                   2372:        Be a route server and treat the neighbor as a route server client.
                   2373:        A route server is used as a replacement for full mesh EBGP routing in
                   2374:        Internet exchange points in a similar way to route reflectors used in
                   2375:        IBGP routing. BIRD does not implement obsoleted <rfc id="1863">, but
                   2376:        uses ad-hoc implementation, which behaves like plain EBGP but reduces
                   2377:        modifications to advertised route attributes to be transparent (for
                   2378:        example does not prepend its AS number to AS PATH attribute and
                   2379:        keeps MED attribute). Default: disabled.
                   2380: 
                   2381:        <tag><label id="bgp-allow-local-pref">allow bgp_local_pref <m/switch/</tag>
                   2382:        A standard BGP implementation do not send the Local Preference attribute
                   2383:        to eBGP neighbors and ignore this attribute if received from eBGP
                   2384:        neighbors, as per <rfc id="4271">.  When this option is enabled on an
                   2385:        eBGP session, this attribute will be sent to and accepted from the peer,
                   2386:        which is useful for example if you have a setup like in <rfc id="7938">.
                   2387:        The option does not affect iBGP sessions. Default: off.
                   2388: 
                   2389:        <tag><label id="bgp-allow-local-as">allow local as [<m/number/]</tag>
                   2390:        BGP prevents routing loops by rejecting received routes with the local
                   2391:        AS number in the AS path. This option allows to loose or disable the
                   2392:        check. Optional <cf/number/ argument can be used to specify the maximum
                   2393:        number of local ASNs in the AS path that is allowed for received
                   2394:        routes. When the option is used without the argument, the check is
                   2395:        completely disabled and you should ensure loop-free behavior by some
                   2396:        other means. Default: 0 (no local AS number allowed).
                   2397: 
                   2398:        <tag><label id="bgp-enable-route-refresh">enable route refresh <m/switch/</tag>
                   2399:        After the initial route exchange, BGP protocol uses incremental updates
                   2400:        to keep BGP speakers synchronized. Sometimes (e.g., if BGP speaker
                   2401:        changes its import filter, or if there is suspicion of inconsistency) it
                   2402:        is necessary to do a new complete route exchange. BGP protocol extension
                   2403:        Route Refresh (<rfc id="2918">) allows BGP speaker to request
                   2404:        re-advertisement of all routes from its neighbor. BGP protocol
                   2405:        extension Enhanced Route Refresh (<rfc id="7313">) specifies explicit
                   2406:        begin and end for such exchanges, therefore the receiver can remove
                   2407:        stale routes that were not advertised during the exchange. This option
                   2408:        specifies whether BIRD advertises these capabilities and supports
                   2409:        related procedures. Note that even when disabled, BIRD can send route
                   2410:        refresh requests.  Default: on.
                   2411: 
                   2412:        <tag><label id="bgp-graceful-restart">graceful restart <m/switch/|aware</tag>
                   2413:        When a BGP speaker restarts or crashes, neighbors will discard all
                   2414:        received paths from the speaker, which disrupts packet forwarding even
                   2415:        when the forwarding plane of the speaker remains intact. <rfc id="4724">
                   2416:        specifies an optional graceful restart mechanism to alleviate this
                   2417:        issue. This option controls the mechanism. It has three states:
                   2418:        Disabled, when no support is provided. Aware, when the graceful restart
                   2419:        support is announced and the support for restarting neighbors is
                   2420:        provided, but no local graceful restart is allowed (i.e. receiving-only
                   2421:        role). Enabled, when the full graceful restart support is provided
                   2422:        (i.e. both restarting and receiving role). Restarting role could be also
                   2423:        configured per-channel. Note that proper support for local graceful
                   2424:        restart requires also configuration of other protocols. Default: aware.
                   2425: 
                   2426:        <tag><label id="bgp-graceful-restart-time">graceful restart time <m/number/</tag>
                   2427:        The restart time is announced in the BGP graceful restart capability
                   2428:        and specifies how long the neighbor would wait for the BGP session to
                   2429:        re-establish after a restart before deleting stale routes. Default:
                   2430:        120 seconds.
                   2431: 
                   2432:        <tag><label id="bgp-long-lived-graceful-restart">long lived graceful restart <m/switch/|aware</tag>
                   2433:        The long-lived graceful restart is an extension of the traditional
                   2434:        <ref id="bgp-graceful-restart" name="BGP graceful restart">, where stale
                   2435:        routes are kept even after the <ref id="bgp-graceful-restart-time"
                   2436:        name="restart time"> expires for additional long-lived stale time, but
                   2437:        they are marked with the LLGR_STALE community, depreferenced, and
                   2438:        withdrawn from routers not supporting LLGR. Like traditional BGP
                   2439:        graceful restart, it has three states: disabled, aware (receiving-only),
                   2440:        and enabled. Note that long-lived graceful restart requires at least
                   2441:        aware level of traditional BGP graceful restart. Default: aware, unless
                   2442:        graceful restart is disabled.
                   2443: 
                   2444:        <tag><label id="bgp-long-lived-stale-time">long lived stale time <m/number/</tag>
                   2445:        The long-lived stale time is announced in the BGP long-lived graceful
                   2446:        restart capability and specifies how long the neighbor would keep stale
                   2447:        routes depreferenced during long-lived graceful restart until either the
                   2448:        session is re-stablished and synchronized or the stale time expires and
                   2449:        routes are removed. Default: 3600 seconds.
                   2450: 
                   2451:        <tag><label id="bgp-interpret-communities">interpret communities <m/switch/</tag>
                   2452:        <rfc id="1997"> demands that BGP speaker should process well-known
                   2453:        communities like no-export (65535, 65281) or no-advertise (65535,
                   2454:        65282). For example, received route carrying a no-adverise community
                   2455:        should not be advertised to any of its neighbors. If this option is
                   2456:        enabled (which is by default), BIRD has such behavior automatically (it
                   2457:        is evaluated when a route is exported to the BGP protocol just before
                   2458:        the export filter).  Otherwise, this integrated processing of
                   2459:        well-known communities is disabled. In that case, similar behavior can
                   2460:        be implemented in the export filter.  Default: on.
                   2461: 
                   2462:        <tag><label id="bgp-enable-as4">enable as4 <m/switch/</tag>
                   2463:        BGP protocol was designed to use 2B AS numbers and was extended later to
                   2464:        allow 4B AS number. BIRD supports 4B AS extension, but by disabling this
                   2465:        option it can be persuaded not to advertise it and to maintain old-style
                   2466:        sessions with its neighbors. This might be useful for circumventing bugs
                   2467:        in neighbor's implementation of 4B AS extension. Even when disabled
                   2468:        (off), BIRD behaves internally as AS4-aware BGP router. Default: on.
                   2469: 
                   2470:        <tag><label id="bgp-enable-extended-messages">enable extended messages <m/switch/</tag>
                   2471:        The BGP protocol uses maximum message length of 4096 bytes. This option
                   2472:        provides an extension to allow extended messages with length up
                   2473:        to 65535 bytes. Default: off.
                   2474: 
                   2475:        <tag><label id="bgp-capabilities">capabilities <m/switch/</tag>
                   2476:        Use capability advertisement to advertise optional capabilities. This is
                   2477:        standard behavior for newer BGP implementations, but there might be some
                   2478:        older BGP implementations that reject such connection attempts. When
                   2479:        disabled (off), features that request it (4B AS support) are also
                   2480:        disabled. Default: on, with automatic fallback to off when received
                   2481:        capability-related error.
                   2482: 
                   2483:        <tag><label id="bgp-advertise-ipv4">advertise ipv4 <m/switch/</tag>
                   2484:        Advertise IPv4 multiprotocol capability. This is not a correct behavior
                   2485:        according to the strict interpretation of <rfc id="4760">, but it is
                   2486:        widespread and required by some BGP implementations (Cisco and Quagga).
                   2487:        This option is relevant to IPv4 mode with enabled capability
                   2488:        advertisement only. Default: on.
                   2489: 
                   2490:        <tag><label id="bgp-disable-after-error">disable after error <m/switch/</tag>
                   2491:        When an error is encountered (either locally or by the other side),
                   2492:        disable the instance automatically and wait for an administrator to fix
                   2493:        the problem manually. Default: off.
                   2494: 
                   2495:        <tag><label id="bgp-disable-after-cease">disable after cease <m/switch/|<m/set-of-flags/</tag>
                   2496:        When a Cease notification is received, disable the instance
                   2497:        automatically and wait for an administrator to fix the problem manually.
                   2498:        When used with <m/switch/ argument, it means handle every Cease subtype
                   2499:        with the exception of <cf/connection collision/. Default: off.
                   2500: 
                   2501:        The <m/set-of-flags/ allows to narrow down relevant Cease subtypes. The
                   2502:        syntax is <cf>{<m/flag/ [, <m/.../] }</cf>, where flags are: <cf/cease/,
                   2503:        <cf/prefix limit hit/, <cf/administrative shutdown/,
                   2504:        <cf/peer deconfigured/, <cf/administrative reset/,
                   2505:        <cf/connection rejected/, <cf/configuration change/,
                   2506:        <cf/connection collision/, <cf/out of resources/.
                   2507: 
                   2508:        <tag><label id="bgp-hold-time">hold time <m/number/</tag>
                   2509:        Time in seconds to wait for a Keepalive message from the other side
                   2510:        before considering the connection stale. Default: depends on agreement
                   2511:        with the neighboring router, we prefer 240 seconds if the other side is
                   2512:        willing to accept it.
                   2513: 
                   2514:        <tag><label id="bgp-startup-hold-time">startup hold time <m/number/</tag>
                   2515:        Value of the hold timer used before the routers have a chance to exchange
                   2516:        open messages and agree on the real value. Default: 240 seconds.
                   2517: 
                   2518:        <tag><label id="bgp-keepalive-time">keepalive time <m/number/</tag>
                   2519:        Delay in seconds between sending of two consecutive Keepalive messages.
                   2520:        Default: One third of the hold time.
                   2521: 
                   2522:        <tag><label id="bgp-connect-delay-time">connect delay time <m/number/</tag>
                   2523:        Delay in seconds between protocol startup and the first attempt to
                   2524:        connect. Default: 5 seconds.
                   2525: 
                   2526:        <tag><label id="bgp-connect-retry-time">connect retry time <m/number/</tag>
                   2527:        Time in seconds to wait before retrying a failed attempt to connect.
                   2528:        Default: 120 seconds.
                   2529: 
                   2530:        <tag><label id="bgp-error-wait-time">error wait time <m/number/,<m/number/</tag>
                   2531:        Minimum and maximum delay in seconds between a protocol failure (either
                   2532:        local or reported by the peer) and automatic restart. Doesn't apply
                   2533:        when <cf/disable after error/ is configured. If consecutive errors
                   2534:        happen, the delay is increased exponentially until it reaches the
                   2535:        maximum. Default: 60, 300.
                   2536: 
                   2537:        <tag><label id="bgp-error-forget-time">error forget time <m/number/</tag>
                   2538:        Maximum time in seconds between two protocol failures to treat them as a
                   2539:        error sequence which makes <cf/error wait time/ increase exponentially.
                   2540:        Default: 300 seconds.
                   2541: 
                   2542:        <tag><label id="bgp-path-metric">path metric <m/switch/</tag>
                   2543:        Enable comparison of path lengths when deciding which BGP route is the
                   2544:        best one. Default: on.
                   2545: 
                   2546:        <tag><label id="bgp-med-metric">med metric <m/switch/</tag>
                   2547:        Enable comparison of MED attributes (during best route selection) even
                   2548:        between routes received from different ASes. This may be useful if all
                   2549:        MED attributes contain some consistent metric, perhaps enforced in
                   2550:        import filters of AS boundary routers. If this option is disabled, MED
                   2551:        attributes are compared only if routes are received from the same AS
                   2552:        (which is the standard behavior). Default: off.
                   2553: 
                   2554:        <tag><label id="bgp-deterministic-med">deterministic med <m/switch/</tag>
                   2555:        BGP route selection algorithm is often viewed as a comparison between
                   2556:        individual routes (e.g. if a new route appears and is better than the
                   2557:        current best one, it is chosen as the new best one). But the proper
                   2558:        route selection, as specified by <rfc id="4271">, cannot be fully
                   2559:        implemented in that way. The problem is mainly in handling the MED
                   2560:        attribute. BIRD, by default, uses an simplification based on individual
                   2561:        route comparison, which in some cases may lead to temporally dependent
                   2562:        behavior (i.e. the selection is dependent on the order in which routes
                   2563:        appeared). This option enables a different (and slower) algorithm
                   2564:        implementing proper <rfc id="4271"> route selection, which is
                   2565:        deterministic. Alternative way how to get deterministic behavior is to
                   2566:        use <cf/med metric/ option. This option is incompatible with <ref
                   2567:        id="dsc-table-sorted" name="sorted tables">.  Default: off.
                   2568: 
                   2569:        <tag><label id="bgp-igp-metric">igp metric <m/switch/</tag>
                   2570:        Enable comparison of internal distances to boundary routers during best
                   2571:        route selection. Default: on.
                   2572: 
                   2573:        <tag><label id="bgp-prefer-older">prefer older <m/switch/</tag>
                   2574:        Standard route selection algorithm breaks ties by comparing router IDs.
                   2575:        This changes the behavior to prefer older routes (when both are external
                   2576:        and from different peer). For details, see <rfc id="5004">. Default: off.
                   2577: 
                   2578:        <tag><label id="bgp-default-med">default bgp_med <m/number/</tag>
                   2579:        Value of the Multiple Exit Discriminator to be used during route
                   2580:        selection when the MED attribute is missing. Default: 0.
                   2581: 
                   2582:        <tag><label id="bgp-default-local-pref">default bgp_local_pref <m/number/</tag>
                   2583:        A default value for the Local Preference attribute. It is used when
                   2584:        a new Local Preference attribute is attached to a route by the BGP
                   2585:        protocol itself (for example, if a route is received through eBGP and
                   2586:        therefore does not have such attribute). Default: 100 (0 in pre-1.2.0
                   2587:        versions of BIRD).
                   2588: </descrip>
                   2589: 
                   2590: <sect1>Channel configuration
                   2591: <label id="bgp-channel-config">
                   2592: 
                   2593: <p>BGP supports several AFIs and SAFIs over one connection. Every AFI/SAFI
                   2594: announced to the peer corresponds to one channel. The table of supported AFI/SAFIs
                   2595: together with their appropriate channels follows.
                   2596: 
                   2597: <table loc="h">
                   2598: <tabular ca="l|l|l|r|r">
                   2599:   <bf/Channel name/   | <bf/Table nettype/ | <bf/IGP table allowed/  | <bf/AFI/ | <bf/SAFI/
                   2600: @<hline>
                   2601:   <cf/ipv4/          | <cf/ipv4/          | <cf/ipv4/ and <cf/ipv6/ | 1        | 1
                   2602: @ <cf/ipv6/           | <cf/ipv6/          | <cf/ipv4/ and <cf/ipv6/ | 2        | 1
                   2603: @ <cf/ipv4 multicast/ | <cf/ipv4/          | <cf/ipv4/ and <cf/ipv6/ | 1        | 2
                   2604: @ <cf/ipv6 multicast/ | <cf/ipv6/          | <cf/ipv4/ and <cf/ipv6/ | 2        | 2
                   2605: @ <cf/ipv4 mpls/      | <cf/ipv4/          | <cf/ipv4/ and <cf/ipv6/ | 1        | 4
                   2606: @ <cf/ipv6 mpls/      | <cf/ipv6/          | <cf/ipv4/ and <cf/ipv6/ | 2        | 4
                   2607: @ <cf/vpn4 mpls/      | <cf/vpn4/          | <cf/ipv4/ and <cf/ipv6/ | 1        | 128
                   2608: @ <cf/vpn6 mpls/      | <cf/vpn6/          | <cf/ipv4/ and <cf/ipv6/ | 2        | 128
                   2609: @ <cf/vpn4 multicast/ | <cf/vpn4/          | <cf/ipv4/ and <cf/ipv6/ | 1        | 129
                   2610: @ <cf/vpn6 multicast/ | <cf/vpn6/          | <cf/ipv4/ and <cf/ipv6/ | 2        | 129
                   2611: @ <cf/flow4/         | <cf/flow4/         | ---                     | 1        | 133
                   2612: @ <cf/flow6/          | <cf/flow6/         | ---                     | 2        | 133
                   2613: </tabular>
                   2614: </table>
                   2615: 
                   2616: <p>Due to <rfc id="8212">, external BGP protocol requires explicit configuration
                   2617: of import and export policies (in contrast to other protocols, where default
                   2618: policies of <cf/import all/ and <cf/export none/ are used in absence of explicit
                   2619: configuration). Note that blanket policies like <cf/all/ or <cf/none/ can still
                   2620: be used in explicit configuration.
                   2621: 
                   2622: <p>BGP channels have additional config options (together with the common ones):
                   2623: 
                   2624: <descrip>
                   2625:        <tag><label id="bgp-mandatory">mandatory <m/switch/</tag>
                   2626:        When local and neighbor sets of configured AFI/SAFI pairs differ,
                   2627:        capability negotiation ensures that a common subset is used. For
                   2628:        mandatory channels their associated AFI/SAFI must be negotiated
                   2629:        (i.e., also announced by the neighbor), otherwise BGP session
                   2630:        negotiation fails with <it/'Required capability missing'/ error.
                   2631:        Regardless, at least one AFI/SAFI must be negotiated in order to BGP
                   2632:        session be successfully established. Default: off.
                   2633: 
                   2634:        <tag><label id="bgp-next-hop-keep">next hop keep <m/switch/|ibgp|ebgp</tag>
                   2635:        Do not modify the Next Hop attribute and advertise the current one
                   2636:        unchanged even in cases where our own local address should be used
                   2637:        instead. This is necessary when the BGP speaker does not forward network
                   2638:        traffic (route servers and some route reflectors) and also can be useful
                   2639:        in some other cases (e.g. multihop EBGP sessions). Can be enabled for
                   2640:        all routes, or just for routes received from IBGP / EBGP neighbors.
                   2641:        Default: disabled for regular BGP, enabled for route servers,
                   2642:        <cf/ibgp/ for route reflectors.
                   2643: 
                   2644:        <tag><label id="bgp-next-hop-self">next hop self <m/switch/|ibgp|ebgp</tag>
                   2645:        Always advertise our own local address as a next hop, even in cases
                   2646:        where the current Next Hop attribute should be used unchanged. This is
                   2647:        sometimes used for routes propagated from EBGP to IBGP when IGP routing
                   2648:        does not cover inter-AS links, therefore IP addreses of EBGP neighbors
                   2649:        are not resolvable through IGP. Can be enabled for all routes, or just
                   2650:        for routes received from IBGP / EBGP neighbors. Default: disabled.
                   2651: 
                   2652:        <tag><label id="bgp-next-hop-address">next hop address <m/ip/</tag>
                   2653:        Specify which address to use when our own local address should be
                   2654:        announced in the Next Hop attribute. Default: the source address of the
                   2655:        BGP session (if acceptable), or the preferred address of an associated
                   2656:        interface.
                   2657: 
                   2658:        <tag><label id="bgp-missing-lladdr">missing lladdr self|drop|ignore</tag>
                   2659:        Next Hop attribute in BGP-IPv6 sometimes contains just the global IPv6
                   2660:        address, but sometimes it has to contain both global and link-local IPv6
                   2661:        addresses. This option specifies what to do if BIRD have to send both
                   2662:        addresses but does not know link-local address. This situation might
                   2663:        happen when routes from other protocols are exported to BGP, or when
                   2664:        improper updates are received from BGP peers. <cf/self/ means that BIRD
                   2665:        advertises its own local address instead. <cf/drop/ means that BIRD
                   2666:        skips that prefixes and logs error. <cf/ignore/ means that BIRD ignores
                   2667:        the problem and sends just the global address (and therefore forms
                   2668:        improper BGP update). Default: <cf/self/, unless BIRD is configured as a
                   2669:        route server (option <cf/rs client/), in that case default is <cf/ignore/,
                   2670:        because route servers usually do not forward packets themselves.
                   2671: 
                   2672:        <tag><label id="bgp-gateway">gateway direct|recursive</tag>
                   2673:        For received routes, their <cf/gw/ (immediate next hop) attribute is
                   2674:        computed from received <cf/bgp_next_hop/ attribute. This option
                   2675:        specifies how it is computed. Direct mode means that the IP address from
                   2676:        <cf/bgp_next_hop/ is used if it is directly reachable, otherwise the
                   2677:        neighbor IP address is used. Recursive mode means that the gateway is
                   2678:        computed by an IGP routing table lookup for the IP address from
                   2679:        <cf/bgp_next_hop/. Note that there is just one level of indirection in
                   2680:        recursive mode - the route obtained by the lookup must not be recursive
                   2681:        itself, to prevent mutually recursive routes.
                   2682: 
                   2683:        Recursive mode is the behavior specified by the BGP
                   2684:        standard. Direct mode is simpler, does not require any routes in a
                   2685:        routing table, and was used in older versions of BIRD, but does not
                   2686:        handle well nontrivial iBGP setups and multihop. Recursive mode is
                   2687:        incompatible with <ref id="dsc-table-sorted" name="sorted tables">. Default:
                   2688:        <cf/direct/ for direct sessions, <cf/recursive/ for multihop sessions.
                   2689: 
                   2690:        <tag><label id="bgp-igp-table">igp table <m/name/</tag>
                   2691:        Specifies a table that is used as an IGP routing table. The type of this
                   2692:        table must be as allowed in the table above. This option is allowed once
                   2693:        for every allowed table type. Default: the same as the main table
                   2694:        the channel is connected to (if eligible).
                   2695: 
                   2696:        <tag><label id="bgp-import-table">import table <m/switch/</tag>
                   2697:        A BGP import table contains all received routes from given BGP neighbor,
                   2698:        before application of import filters. It is also called <em/Adj-RIB-In/
                   2699:        in BGP terminology. BIRD BGP by default operates without import tables,
                   2700:        in which case received routes are just processed by import filters,
                   2701:        accepted ones are stored in the master table, and the rest is forgotten.
                   2702:        Enabling <cf/import table/ allows to store unprocessed routes, which can
                   2703:        be examined later by <cf/show route/, and can be used to reconfigure
                   2704:        import filters without full route refresh. Default: off.
                   2705: 
                   2706:        <tag><label id="bgp-export-table">export table <m/switch/</tag>
                   2707:        A BGP export table contains all routes sent to given BGP neighbor, after
                   2708:        application of export filters. It is also called <em/Adj-RIB-Out/ in BGP
                   2709:        terminology. BIRD BGP by default operates without export tables, in
                   2710:        which case routes from master table are just processed by export filters
                   2711:        and then announced by BGP. Enabling <cf/export table/ allows to store
                   2712:        routes after export filter processing, so they can be examined later by
                   2713:        <cf/show route/, and can be used to eliminate unnecessary updates or
                   2714:        withdraws. Default: off.
                   2715: 
                   2716:        <tag><label id="bgp-secondary">secondary <m/switch/</tag>
                   2717:        Usually, if an export filter rejects a selected route, no other route is
                   2718:        propagated for that network. This option allows to try the next route in
                   2719:        order until one that is accepted is found or all routes for that network
                   2720:        are rejected. This can be used for route servers that need to propagate
                   2721:        different tables to each client but do not want to have these tables
                   2722:        explicitly (to conserve memory). This option requires that the connected
                   2723:        routing table is <ref id="dsc-table-sorted" name="sorted">. Default: off.
                   2724: 
                   2725:        <tag><label id="bgp-extended-next-hop">extended next hop <m/switch/</tag>
                   2726:        BGP expects that announced next hops have the same address family as
                   2727:        associated network prefixes. This option provides an extension to use
                   2728:        IPv4 next hops with IPv6 prefixes and vice versa. For IPv4 / VPNv4
                   2729:        channels, the behavior is controlled by the Extended Next Hop Encoding
                   2730:        capability, as described in <rfc id="5549">. For IPv6 / VPNv6 channels,
                   2731:        just IPv4-mapped IPv6 addresses are used, as described in
                   2732:        <rfc id="4798"> and <rfc id="4659">. Default: off.
                   2733: 
                   2734:        <tag><label id="bgp-add-paths">add paths <m/switch/|rx|tx</tag>
                   2735:        Standard BGP can propagate only one path (route) per destination network
                   2736:        (usually the selected one). This option controls the add-path protocol
                   2737:        extension, which allows to advertise any number of paths to a
                   2738:        destination. Note that to be active, add-path has to be enabled on both
                   2739:        sides of the BGP session, but it could be enabled separately for RX and
                   2740:        TX direction. When active, all available routes accepted by the export
                   2741:        filter are advertised to the neighbor. Default: off.
                   2742: 
                   2743:        <tag><label id="bgp-aigp">aigp <m/switch/|originate</tag>
                   2744:        The BGP protocol does not use a common metric like other routing
                   2745:        protocols, instead it uses a set of criteria for route selection
                   2746:        consisting both overall AS path length and a distance to the nearest AS
                   2747:        boundary router. Assuming that metrics of different autonomous systems
                   2748:        are incomparable, once a route is propagated from an AS to a next one,
                   2749:        the distance in the old AS does not matter.
                   2750: 
                   2751:        The AIGP extension (<rfc id="7311">) allows to propagate accumulated
                   2752:        IGP metric (in the AIGP attribute) through both IBGP and EBGP links,
                   2753:        computing total distance through multiple autonomous systems (assuming
                   2754:        they use comparable IGP metric). The total AIGP metric is compared in
                   2755:        the route selection process just after Local Preference comparison (and
                   2756:        before AS path length comparison).
                   2757: 
                   2758:        This option controls whether AIGP attribute propagation is allowed on
                   2759:        the session. Optionally, it can be set to <cf/originate/, which not only
                   2760:        allows AIGP attribute propagation, but also new AIGP attributes are
                   2761:        automatically attached to non-BGP routes with valid IGP metric (e.g.
                   2762:        <cf/ospf_metric1/) as they are exported to the BGP session. Default:
                   2763:        enabled for IBGP (and intra-confederation EBGP), disabled for regular
                   2764:        EBGP.
                   2765: 
                   2766:        <tag><label id="bgp-cost">cost <m/number/</tag>
                   2767:        When BGP <ref id="bgp-gateway" name="gateway mode"> is <cf/recursive/
                   2768:        (mainly multihop IBGP sessions), then the distance to BGP next hop is
                   2769:        based on underlying IGP metric. This option specifies the distance to
                   2770:        BGP next hop for BGP sessions in direct gateway mode (mainly direct
                   2771:        EBGP sessions).
                   2772: 
                   2773:        <tag><label id="bgp-graceful-restart-c">graceful restart <m/switch/</tag>
                   2774:        Although BGP graceful restart is configured mainly by protocol-wide
                   2775:        <ref id="bgp-graceful-restart" name="options">, it is possible to
                   2776:        configure restarting role per AFI/SAFI pair by this channel option.
                   2777:        The option is ignored if graceful restart is disabled by protocol-wide
                   2778:        option. Default: off in aware mode, on in full mode.
                   2779: 
                   2780:        <tag><label id="bgp-long-lived-graceful-restart-c">long lived graceful restart <m/switch/</tag>
                   2781:        BGP long-lived graceful restart is configured mainly by protocol-wide
                   2782:        <ref id="bgp-long-lived-graceful-restart" name="options">, but the
                   2783:        restarting role can be set per AFI/SAFI pair by this channel option.
                   2784:        The option is ignored if long-lived graceful restart is disabled by
                   2785:        protocol-wide option. Default: off in aware mode, on in full mode.
                   2786: 
                   2787:        <tag><label id="bgp-long-lived-stale-time-c">long lived stale time <m/number/</tag>
                   2788:        Like previous graceful restart channel options, this option allows to
                   2789:        set <ref id="bgp-long-lived-stale-time" name="long lived stale time">
                   2790:        per AFI/SAFI pair instead of per protocol. Default: set by protocol-wide
                   2791:        option.
                   2792: </descrip>
                   2793: 
                   2794: <sect1>Attributes
                   2795: <label id="bgp-attr">
                   2796: 
                   2797: <p>BGP defines several route attributes. Some of them (those marked with
                   2798: `<tt/I/' in the table below) are available on internal BGP connections only,
                   2799: some of them (marked with `<tt/O/') are optional.
                   2800: 
                   2801: <descrip>
                   2802:        <tag><label id="rta-bgp-path">bgppath bgp_path</tag>
                   2803:        Sequence of AS numbers describing the AS path the packet will travel
                   2804:        through when forwarded according to the particular route. In case of
                   2805:        internal BGP it doesn't contain the number of the local AS.
                   2806: 
                   2807:        <tag><label id="rta-bgp-local-pref">int bgp_local_pref [I]</tag>
                   2808:        Local preference value used for selection among multiple BGP routes (see
                   2809:        the selection rules above). It's used as an additional metric which is
                   2810:        propagated through the whole local AS.
                   2811: 
                   2812:        <tag><label id="rta-bgp-med">int bgp_med [O]</tag>
                   2813:        The Multiple Exit Discriminator of the route is an optional attribute
                   2814:        which is used on external (inter-AS) links to convey to an adjacent AS
                   2815:        the optimal entry point into the local AS. The received attribute is
                   2816:        also propagated over internal BGP links. The attribute value is zeroed
                   2817:        when a route is exported to an external BGP instance to ensure that the
                   2818:        attribute received from a neighboring AS is not propagated to other
                   2819:        neighboring ASes. A new value might be set in the export filter of an
                   2820:        external BGP instance. See <rfc id="4451"> for further discussion of
                   2821:        BGP MED attribute.
                   2822: 
                   2823:        <tag><label id="rta-bgp-origin">enum bgp_origin</tag>
                   2824:        Origin of the route: either <cf/ORIGIN_IGP/ if the route has originated
                   2825:        in an interior routing protocol or <cf/ORIGIN_EGP/ if it's been imported
                   2826:        from the <tt>EGP</tt> protocol (nowadays it seems to be obsolete) or
                   2827:        <cf/ORIGIN_INCOMPLETE/ if the origin is unknown.
                   2828: 
                   2829:        <tag><label id="rta-bgp-next-hop">ip bgp_next_hop</tag>
                   2830:        Next hop to be used for forwarding of packets to this destination. On
                   2831:        internal BGP connections, it's an address of the originating router if
                   2832:        it's inside the local AS or a boundary router the packet will leave the
                   2833:        AS through if it's an exterior route, so each BGP speaker within the AS
                   2834:        has a chance to use the shortest interior path possible to this point.
                   2835: 
                   2836:        <tag><label id="rta-bgp-atomic-aggr">void bgp_atomic_aggr [O]</tag>
                   2837:        This is an optional attribute which carries no value, but the sole
                   2838:        presence of which indicates that the route has been aggregated from
                   2839:        multiple routes by some router on the path from the originator.
                   2840: 
                   2841:        <tag><label id="rta-bgp-aggregator">void bgp_aggregator [O]</tag>
                   2842:        This is an optional attribute specifying AS number and IP address of the
                   2843:        BGP router that created the route by aggregating multiple BGP routes.
                   2844:        Currently, the attribute is not accessible from filters.
                   2845: 
                   2846:        <tag><label id="rta-bgp-community">clist bgp_community [O]</tag>
                   2847:        List of community values associated with the route. Each such value is a
                   2848:        pair (represented as a <cf/pair/ data type inside the filters) of 16-bit
                   2849:        integers, the first of them containing the number of the AS which
                   2850:        defines the community and the second one being a per-AS identifier.
                   2851:        There are lots of uses of the community mechanism, but generally they
                   2852:        are used to carry policy information like "don't export to USA peers".
                   2853:        As each AS can define its own routing policy, it also has a complete
                   2854:        freedom about which community attributes it defines and what will their
                   2855:        semantics be.
                   2856: 
                   2857:        <tag><label id="rta-bgp-ext-community">eclist bgp_ext_community [O]</tag>
                   2858:        List of extended community values associated with the route. Extended
                   2859:        communities have similar usage as plain communities, but they have an
                   2860:        extended range (to allow 4B ASNs) and a nontrivial structure with a type
                   2861:        field. Individual community values are represented using an <cf/ec/ data
                   2862:        type inside the filters.
                   2863: 
                   2864:        <tag><label id="rta-bgp-large-community">lclist bgp_large_community [O]</tag>
                   2865:        List of large community values associated with the route. Large BGP
                   2866:        communities is another variant of communities, but contrary to extended
                   2867:        communities they behave very much the same way as regular communities,
                   2868:        just larger -- they are uniform untyped triplets of 32bit numbers.
                   2869:        Individual community values are represented using an <cf/lc/ data type
                   2870:        inside the filters.
                   2871: 
                   2872:        <tag><label id="rta-bgp-originator-id">quad bgp_originator_id [I, O]</tag>
                   2873:        This attribute is created by the route reflector when reflecting the
                   2874:        route and contains the router ID of the originator of the route in the
                   2875:        local AS.
                   2876: 
                   2877:        <tag><label id="rta-bgp-cluster-list">clist bgp_cluster_list [I, O]</tag>
                   2878:        This attribute contains a list of cluster IDs of route reflectors. Each
                   2879:        route reflector prepends its cluster ID when reflecting the route.
                   2880: 
                   2881:        <tag><label id="rta-bgp-aigp">void bgp_aigp [O]</tag>
                   2882:        This attribute contains accumulated IGP metric, which is a total
                   2883:        distance to the destination through multiple autonomous systems.
                   2884:        Currently, the attribute is not accessible from filters.
                   2885: </descrip>
                   2886: 
                   2887: <sect1>Example
                   2888: <label id="bgp-exam">
                   2889: 
                   2890: <p><code>
                   2891: protocol bgp {
                   2892:        local 198.51.100.14 as 65000;        # Use a private AS number
                   2893:        neighbor 198.51.100.130 as 64496;    # Our neighbor ...
                   2894:        multihop;                            # ... which is connected indirectly
                   2895:        ipv4 {
                   2896:                export filter {                      # We use non-trivial export rules
                   2897:                        if source = RTS_STATIC then { # Export only static routes
                   2898:                                # Assign our community
                   2899:                                bgp_community.add((65000,64501));
                   2900:                                # Artificially increase path length
                   2901:                                # by advertising local AS number twice
                   2902:                                if bgp_path ~ [= 65000 =] then
                   2903:                                        bgp_path.prepend(65000);
                   2904:                                accept;
                   2905:                        }
                   2906:                        reject;
                   2907:                };
                   2908:                import all;
                   2909:                next hop self; # advertise this router as next hop
                   2910:                igp table myigptable4; # IGP table for routes with IPv4 nexthops
                   2911:                igp table myigptable6; # IGP table for routes with IPv6 nexthops
                   2912:        };
                   2913:        ipv6 {
                   2914:                export filter mylargefilter; # We use a named filter
                   2915:                import all;
                   2916:                missing lladdr self;
                   2917:                igp table myigptable4; # IGP table for routes with IPv4 nexthops
                   2918:                igp table myigptable6; # IGP table for routes with IPv6 nexthops
                   2919:        };
                   2920:        ipv4 multicast {
                   2921:                import all;
                   2922:                export filter someotherfilter;
                   2923:                table mymulticasttable4; # Another IPv4 table, dedicated for multicast
                   2924:                igp table myigptable4;
                   2925:        };
                   2926: }
                   2927: </code>
                   2928: 
                   2929: 
                   2930: <sect>Device
                   2931: <label id="device">
                   2932: 
                   2933: <p>The Device protocol is not a real routing protocol. It doesn't generate any
                   2934: routes and it only serves as a module for getting information about network
                   2935: interfaces from the kernel. This protocol supports no channel.
                   2936: 
                   2937: <p>Except for very unusual circumstances, you probably should include this
                   2938: protocol in the configuration since almost all other protocols require network
                   2939: interfaces to be defined for them to work with.
                   2940: 
                   2941: <sect1>Configuration
                   2942: <label id="device-config">
                   2943: 
                   2944: <p><descrip>
                   2945:        <tag><label id="device-scan-time">scan time <m/number/</tag>
                   2946:        Time in seconds between two scans of the network interface list. On
                   2947:        systems where we are notified about interface status changes
                   2948:        asynchronously (such as newer versions of Linux), we need to scan the
                   2949:        list only in order to avoid confusion by lost notification messages,
                   2950:        so the default time is set to a large value.
                   2951: 
                   2952:        <tag><label id="device-iface">interface <m/pattern/ [, <m/.../]</tag>
                   2953:        By default, the Device protocol handles all interfaces without any
                   2954:        configuration. Interface definitions allow to specify optional
                   2955:        parameters for specific interfaces. See <ref id="proto-iface"
                   2956:        name="interface"> common option for detailed description. Currently only
                   2957:        one interface option is available:
                   2958: 
                   2959:        <tag><label id="device-preferred">preferred <m/ip/</tag>
                   2960:        If a network interface has more than one IP address, BIRD chooses one of
                   2961:        them as a preferred one. Preferred IP address is used as source address
                   2962:        for packets or announced next hop by routing protocols. Precisely, BIRD
                   2963:        chooses one preferred IPv4 address, one preferred IPv6 address and one
                   2964:        preferred link-local IPv6 address. By default, BIRD chooses the first
                   2965:        found IP address as the preferred one.
                   2966: 
                   2967:        This option allows to specify which IP address should be preferred. May
                   2968:        be used multiple times for different address classes (IPv4, IPv6, IPv6
                   2969:        link-local). In all cases, an address marked by operating system as
                   2970:        secondary cannot be chosen as the primary one.
                   2971: </descrip>
                   2972: 
                   2973: <p>As the Device protocol doesn't generate any routes, it cannot have
                   2974: any attributes. Example configuration looks like this:
                   2975: 
                   2976: <p><code>
                   2977: protocol device {
                   2978:        scan time 10;           # Scan the interfaces often
                   2979:        interface "eth0" {
                   2980:                preferred 192.168.1.1;
                   2981:                preferred 2001:db8:1:10::1;
                   2982:        };
                   2983: }
                   2984: </code>
                   2985: 
                   2986: 
                   2987: <sect>Direct
                   2988: <label id="direct">
                   2989: 
                   2990: <p>The Direct protocol is a simple generator of device routes for all the
                   2991: directly connected networks according to the list of interfaces provided by the
                   2992: kernel via the Device protocol. The Direct protocol supports both IPv4 and IPv6
                   2993: channels; both can be configured simultaneously. It can also be configured with
                   2994: <ref id="ip-sadr-routes" name="IPv6 SADR"> channel instead of regular IPv6
                   2995: channel in order to be used together with SADR-enabled Babel protocol.
                   2996: 
                   2997: <p>The question is whether it is a good idea to have such device routes in BIRD
                   2998: routing table. OS kernel usually handles device routes for directly connected
                   2999: networks by itself so we don't need (and don't want) to export these routes to
                   3000: the kernel protocol. OSPF protocol creates device routes for its interfaces
                   3001: itself and BGP protocol is usually used for exporting aggregate routes. But the
                   3002: Direct protocol is necessary for distance-vector protocols like RIP or Babel to
                   3003: announce local networks.
                   3004: 
                   3005: <p>There are just few configuration options for the Direct protocol:
                   3006: 
                   3007: <p><descrip>
                   3008:        <tag><label id="direct-iface">interface <m/pattern/ [, <m/.../]</tag>
                   3009:        By default, the Direct protocol will generate device routes for all the
                   3010:        interfaces available. If you want to restrict it to some subset of
                   3011:        interfaces or addresses (e.g. if you're using multiple routing tables
                   3012:        for policy routing and some of the policy domains don't contain all
                   3013:        interfaces), just use this clause. See <ref id="proto-iface" name="interface">
                   3014:        common option for detailed description. The Direct protocol uses
                   3015:        extended interface clauses.
                   3016: 
                   3017:        <tag><label id="direct-check-link">check link <m/switch/</tag>
                   3018:        If enabled, a hardware link state (reported by OS) is taken into
                   3019:        consideration. Routes for directly connected networks are generated only
                   3020:        if link up is reported and they are withdrawn when link disappears
                   3021:        (e.g., an ethernet cable is unplugged). Default value is no.
                   3022: </descrip>
                   3023: 
                   3024: <p>Direct device routes don't contain any specific attributes.
                   3025: 
                   3026: <p>Example config might look like this:
                   3027: 
                   3028: <p><code>
                   3029: protocol direct {
                   3030:        ipv4;
                   3031:        ipv6;
                   3032:        interface "-arc*", "*";         # Exclude the ARCnets
                   3033: }
                   3034: </code>
                   3035: 
                   3036: 
                   3037: <sect>Kernel
                   3038: <label id="krt">
                   3039: 
                   3040: <p>The Kernel protocol is not a real routing protocol. Instead of communicating
                   3041: with other routers in the network, it performs synchronization of BIRD's routing
                   3042: tables with the OS kernel. Basically, it sends all routing table updates to the
                   3043: kernel and from time to time it scans the kernel tables to see whether some
                   3044: routes have disappeared (for example due to unnoticed up/down transition of an
                   3045: interface) or whether an `alien' route has been added by someone else (depending
                   3046: on the <cf/learn/ switch, such routes are either ignored or accepted to our
                   3047: table).
                   3048: 
                   3049: <p>Note that routes created by OS kernel itself, namely direct routes
                   3050: representing IP subnets of associated interfaces, are not imported even with
                   3051: <cf/learn/ enabled. You can use <ref id="direct" name="Direct protocol"> to
                   3052: generate these direct routes.
                   3053: 
                   3054: <p>If your OS supports only a single routing table, you can configure only one
                   3055: instance of the Kernel protocol. If it supports multiple tables (in order to
                   3056: allow policy routing; such an OS is for example Linux), you can run as many
                   3057: instances as you want, but each of them must be connected to a different BIRD
                   3058: routing table and to a different kernel table.
                   3059: 
                   3060: <p>Because the kernel protocol is partially integrated with the connected
                   3061: routing table, there are two limitations - it is not possible to connect more
                   3062: kernel protocols to the same routing table and changing route destination
                   3063: (gateway) in an export filter of a kernel protocol does not work. Both
                   3064: limitations can be overcome using another routing table and the pipe protocol.
                   3065: 
                   3066: <p>The Kernel protocol supports both IPv4 and IPv6 channels; only one channel
                   3067: can be configured in each protocol instance. On Linux, it also supports <ref
                   3068: id="ip-sadr-routes" name="IPv6 SADR"> and <ref id="mpls-routes" name="MPLS">
                   3069: channels.
                   3070: 
                   3071: <sect1>Configuration
                   3072: <label id="krt-config">
                   3073: 
                   3074: <p><descrip>
                   3075:        <tag><label id="krt-persist">persist <m/switch/</tag>
                   3076:        Tell BIRD to leave all its routes in the routing tables when it exits
                   3077:        (instead of cleaning them up).
                   3078: 
                   3079:        <tag><label id="krt-scan-time">scan time <m/number/</tag>
                   3080:        Time in seconds between two consecutive scans of the kernel routing
                   3081:        table.
                   3082: 
                   3083:        <tag><label id="krt-learn">learn <m/switch/</tag>
                   3084:        Enable learning of routes added to the kernel routing tables by other
                   3085:        routing daemons or by the system administrator. This is possible only on
                   3086:        systems which support identification of route authorship.
                   3087: 
                   3088:        <tag><label id="krt-kernel-table">kernel table <m/number/</tag>
                   3089:        Select which kernel table should this particular instance of the Kernel
                   3090:        protocol work with. Available only on systems supporting multiple
                   3091:        routing tables.
                   3092: 
                   3093:        <tag><label id="krt-metric">metric <m/number/</tag> (Linux)
                   3094:        Use specified value as a kernel metric (priority) for all routes sent to
                   3095:        the kernel. When multiple routes for the same network are in the kernel
                   3096:        routing table, the Linux kernel chooses one with lower metric. Also,
                   3097:        routes with different metrics do not clash with each other, therefore
                   3098:        using dedicated metric value is a reliable way to avoid overwriting
                   3099:        routes from other sources (e.g. kernel device routes). Metric 0 has a
                   3100:        special meaning of undefined metric, in which either OS default is used,
                   3101:        or per-route metric can be set using <cf/krt_metric/ attribute. Default:
                   3102:        32.
                   3103: 
                   3104:        <tag><label id="krt-graceful-restart">graceful restart <m/switch/</tag>
                   3105:        Participate in graceful restart recovery. If this option is enabled and
                   3106:        a graceful restart recovery is active, the Kernel protocol will defer
                   3107:        synchronization of routing tables until the end of the recovery. Note
                   3108:        that import of kernel routes to BIRD is not affected.
                   3109: 
                   3110:        <tag><label id="krt-merge-paths">merge paths <M>switch</M> [limit <M>number</M>]</tag>
                   3111:        Usually, only best routes are exported to the kernel protocol. With path
                   3112:        merging enabled, both best routes and equivalent non-best routes are
                   3113:        merged during export to generate one ECMP (equal-cost multipath) route
                   3114:        for each network. This is useful e.g. for BGP multipath. Note that best
                   3115:        routes are still pivotal for route export (responsible for most
                   3116:        properties of resulting ECMP routes), while exported non-best routes are
                   3117:        responsible just for additional multipath next hops. This option also
                   3118:        allows to specify a limit on maximal number of nexthops in one route. By
                   3119:        default, multipath merging is disabled. If enabled, default value of the
                   3120:        limit is 16.
                   3121: </descrip>
                   3122: 
                   3123: <sect1>Attributes
                   3124: <label id="krt-attr">
                   3125: 
                   3126: <p>The Kernel protocol defines several attributes. These attributes are
                   3127: translated to appropriate system (and OS-specific) route attributes. We support
                   3128: these attributes:
                   3129: 
                   3130: <descrip>
                   3131:        <tag><label id="rta-krt-source">int krt_source</tag>
                   3132:        The original source of the imported kernel route. The value is
                   3133:        system-dependent. On Linux, it is a value of the protocol field of the
                   3134:        route. See /etc/iproute2/rt_protos for common values. On BSD, it is
                   3135:        based on STATIC and PROTOx flags. The attribute is read-only.
                   3136: 
                   3137:        <tag><label id="rta-krt-metric">int krt_metric</tag> (Linux)
                   3138:        The kernel metric of the route. When multiple same routes are in a
                   3139:        kernel routing table, the Linux kernel chooses one with lower metric.
                   3140:        Note that preferred way to set kernel metric is to use protocol option
                   3141:        <cf/metric/, unless per-route metric values are needed.
                   3142: 
                   3143:        <tag><label id="rta-krt-prefsrc">ip krt_prefsrc</tag> (Linux)
                   3144:        The preferred source address. Used in source address selection for
                   3145:        outgoing packets. Has to be one of the IP addresses of the router.
                   3146: 
                   3147:        <tag><label id="rta-krt-realm">int krt_realm</tag> (Linux)
                   3148:        The realm of the route. Can be used for traffic classification.
                   3149: 
                   3150:        <tag><label id="rta-krt-scope">int krt_scope</tag> (Linux IPv4)
                   3151:        The scope of the route. Valid values are 0-254, although Linux kernel
                   3152:        may reject some values depending on route type and nexthop. It is
                   3153:        supposed to represent `indirectness' of the route, where nexthops of
                   3154:        routes are resolved through routes with a higher scope, but in current
                   3155:        kernels anything below <it/link/ (253) is treated as <it/global/ (0).
                   3156:        When not present, global scope is implied for all routes except device
                   3157:        routes, where link scope is used by default.
                   3158: </descrip>
                   3159: 
                   3160: <p>In Linux, there is also a plenty of obscure route attributes mostly focused
                   3161: on tuning TCP performance of local connections. BIRD supports most of these
                   3162: attributes, see Linux or iproute2 documentation for their meaning. Attributes
                   3163: <cf/krt_lock_*/ and <cf/krt_feature_*/ have type bool, others have type int.
                   3164: Supported attributes are:
                   3165: 
                   3166: <cf/krt_mtu/, <cf/krt_lock_mtu/, <cf/krt_window/, <cf/krt_lock_window/,
                   3167: <cf/krt_rtt/, <cf/krt_lock_rtt/, <cf/krt_rttvar/, <cf/krt_lock_rttvar/,
                   3168: <cf/krt_sstresh/, <cf/krt_lock_sstresh/, <cf/krt_cwnd/, <cf/krt_lock_cwnd/,
                   3169: <cf/krt_advmss/, <cf/krt_lock_advmss/, <cf/krt_reordering/, <cf/krt_lock_reordering/,
                   3170: <cf/krt_hoplimit/, <cf/krt_lock_hoplimit/, <cf/krt_rto_min/, <cf/krt_lock_rto_min/,
                   3171: <cf/krt_initcwnd/, <cf/krt_initrwnd/, <cf/krt_quickack/,
                   3172: <cf/krt_feature_ecn/, <cf/krt_feature_allfrag/
                   3173: 
                   3174: <sect1>Example
                   3175: <label id="krt-exam">
                   3176: 
                   3177: <p>A simple configuration can look this way:
                   3178: 
                   3179: <p><code>
                   3180: protocol kernel {
                   3181:        export all;
                   3182: }
                   3183: </code>
                   3184: 
                   3185: <p>Or for a system with two routing tables:
                   3186: 
                   3187: <p><code>
                   3188: protocol kernel {              # Primary routing table
                   3189:        learn;                  # Learn alien routes from the kernel
                   3190:        persist;                # Don't remove routes on bird shutdown
                   3191:        scan time 10;           # Scan kernel routing table every 10 seconds
                   3192:        ipv4 {
                   3193:                import all;
                   3194:                export all;
                   3195:        };
                   3196: }
                   3197: 
                   3198: protocol kernel {              # Secondary routing table
                   3199:        kernel table 100;
                   3200:        ipv4 {
                   3201:                table auxtable;
                   3202:                export all;
                   3203:        };
                   3204: }
                   3205: </code>
                   3206: 
                   3207: 
                   3208: <sect>MRT
                   3209: <label id="mrt">
                   3210: 
                   3211: <sect1>Introduction
                   3212: <label id="mrt-intro">
                   3213: 
                   3214: <p>The MRT protocol is a component responsible for handling the Multi-Threaded
                   3215: Routing Toolkit (MRT) routing information export format, which is mainly used
                   3216: for collecting and analyzing of routing information from BGP routers. The MRT
                   3217: protocol can be configured to do periodic dumps of routing tables, created MRT
                   3218: files can be analyzed later by other tools. Independent MRT table dumps can also
                   3219: be requested from BIRD client. There is also a feature to save incoming BGP
                   3220: messages in MRT files, but it is controlled by <ref id="proto-mrtdump"
                   3221: name="mrtdump"> options independently of MRT protocol, although that might
                   3222: change in the future.
                   3223: 
                   3224: BIRD implements the main MRT format specification as defined in <rfc id="6396">
                   3225: and the ADD_PATH extension (<rfc id="8050">).
                   3226: 
                   3227: <sect1>Configuration
                   3228: <label id="mrt-config">
                   3229: 
                   3230: <p>MRT configuration consists of several statements describing routing table
                   3231: dumps. Multiple independent periodic dumps can be done as multiple MRT protocol
                   3232: instances. The MRT protocol does not use channels. There are two mandatory
                   3233: statements: <cf/filename/ and <cf/period/.
                   3234: 
                   3235: The behavior can be modified by following configuration parameters:
                   3236: 
                   3237: <descrip>
                   3238:        <tag><label id="mrt-table">table <m/name/ | "<m/pattern/"</tag>
                   3239:        Specify a routing table (or a set of routing tables described by a
                   3240:        wildcard pattern) that are to be dumped by the MRT protocol instance.
                   3241:        Default: the master table.
                   3242: 
                   3243:        <tag><label id="mrt-filter">filter { <m/filter commands/ }</tag>
                   3244:        The MRT protocol allows to specify a filter that is applied to routes as
                   3245:        they are dumped. Rejected routes are ignored and not saved to the MRT
                   3246:        dump file. Default: no filter.
                   3247: 
                   3248:        <tag><label id="mrt-where">where <m/filter expression/</tag>
                   3249:        An alternative way to specify a filter for the MRT protocol.
                   3250: 
                   3251:        <tag><label id="mrt-filename">filename "<m/filename/"</tag>
                   3252:        Specify a filename for MRT dump files. The filename may contain time
                   3253:        format sequences with <it/strftime(3)/ notation (see <it/man strftime/
                   3254:        for details), there is also a sequence "%N" that is expanded to the name
                   3255:        of dumped table. Therefore, each periodic dump of each table can be
                   3256:        saved to a different file. Mandatory, see example below.
                   3257: 
                   3258:        <tag><label id="mrt-period">period <m/number/</tag>
                   3259:        Specify the time interval (in seconds) between periodic dumps.
                   3260:        Mandatory.
                   3261: 
                   3262:        <tag><label id="mrt-always-add-path">always add path <m/switch/</tag>
                   3263:        The MRT format uses special records (specified in <rfc id="8050">) for
                   3264:        routes received using BGP ADD_PATH extension to keep Path ID, while
                   3265:        other routes use regular records. This has advantage of better
                   3266:        compatibility with tools that do not know special records, but it loses
                   3267:        information about which route is the best route. When this option is
                   3268:        enabled, both ADD_PATH and non-ADD_PATH routes are stored in ADD_PATH
                   3269:        records and order of routes for network is preserved. Default: disabled.
                   3270: </descrip>
                   3271: 
                   3272: <sect1>Example
                   3273: <label id="mrt-exam">
                   3274: 
                   3275: <p><code>
                   3276: protocol mrt {
                   3277:        table "tab*";
                   3278:        where source = RTS_BGP;
                   3279:        filename "/var/log/bird/%N_%F_%T.mrt";
                   3280:        period 300;
                   3281: }
                   3282: </code>
                   3283: 
                   3284: 
                   3285: <sect>OSPF
                   3286: <label id="ospf">
                   3287: 
                   3288: <sect1>Introduction
                   3289: <label id="ospf-intro">
                   3290: 
                   3291: <p>Open Shortest Path First (OSPF) is a quite complex interior gateway
                   3292: protocol. The current IPv4 version (OSPFv2) is defined in <rfc id="2328"> and
                   3293: the current IPv6 version (OSPFv3) is defined in <rfc id="5340"> It's a link
                   3294: state (a.k.a. shortest path first) protocol -- each router maintains a database
                   3295: describing the autonomous system's topology. Each participating router has an
                   3296: identical copy of the database and all routers run the same algorithm
                   3297: calculating a shortest path tree with themselves as a root. OSPF chooses the
                   3298: least cost path as the best path.
                   3299: 
                   3300: <p>In OSPF, the autonomous system can be split to several areas in order to
                   3301: reduce the amount of resources consumed for exchanging the routing information
                   3302: and to protect the other areas from incorrect routing data. Topology of the area
                   3303: is hidden to the rest of the autonomous system.
                   3304: 
                   3305: <p>Another very important feature of OSPF is that it can keep routing information
                   3306: from other protocols (like Static or BGP) in its link state database as external
                   3307: routes. Each external route can be tagged by the advertising router, making it
                   3308: possible to pass additional information between routers on the boundary of the
                   3309: autonomous system.
                   3310: 
                   3311: <p>OSPF quickly detects topological changes in the autonomous system (such as
                   3312: router interface failures) and calculates new loop-free routes after a short
                   3313: period of convergence. Only a minimal amount of routing traffic is involved.
                   3314: 
                   3315: <p>Each router participating in OSPF routing periodically sends Hello messages
                   3316: to all its interfaces. This allows neighbors to be discovered dynamically. Then
                   3317: the neighbors exchange theirs parts of the link state database and keep it
                   3318: identical by flooding updates. The flooding process is reliable and ensures that
                   3319: each router detects all changes.
                   3320: 
                   3321: <sect1>Configuration
                   3322: <label id="ospf-config">
                   3323: 
                   3324: <p>First, the desired OSPF version can be specified by using <cf/ospf v2/ or
                   3325: <cf/ospf v3/ as a protocol type. By default, OSPFv2 is used. In the main part of
                   3326: configuration, there can be multiple definitions of OSPF areas, each with a
                   3327: different id. These definitions includes many other switches and multiple
                   3328: definitions of interfaces. Definition of interface may contain many switches and
                   3329: constant definitions and list of neighbors on nonbroadcast networks.
                   3330: 
                   3331: <p>OSPFv2 needs one IPv4 channel. OSPFv3 needs either one IPv6 channel, or one
                   3332: IPv4 channel (<rfc id="5838">). Therefore, it is possible to use OSPFv3 for both
                   3333: IPv4 and Pv6 routing, but it is necessary to have two protocol instances anyway.
                   3334: If no channel is configured, appropriate channel is defined with default
                   3335: parameters.
                   3336: 
                   3337: <code>
                   3338: protocol ospf [v2|v3] &lt;name&gt; {
                   3339:        rfc1583compat &lt;switch&gt;;
                   3340:        rfc5838 &lt;switch&gt;;
                   3341:        instance id &lt;num&gt;;
                   3342:        stub router &lt;switch&gt;;
                   3343:        tick &lt;num&gt;;
                   3344:        ecmp &lt;switch&gt; [limit &lt;num&gt;];
                   3345:        merge external &lt;switch&gt;;
                   3346:        graceful restart &lt;switch&gt;|aware;
                   3347:        graceful restart time &lt;num&gt;;
                   3348:        area &lt;id&gt; {
                   3349:                stub;
                   3350:                nssa;
                   3351:                summary &lt;switch&gt;;
                   3352:                default nssa &lt;switch&gt;;
                   3353:                default cost &lt;num&gt;;
                   3354:                default cost2 &lt;num&gt;;
                   3355:                translator &lt;switch&gt;;
                   3356:                translator stability &lt;num&gt;;
                   3357: 
                   3358:                 networks {
                   3359:                        &lt;prefix&gt;;
                   3360:                        &lt;prefix&gt; hidden;
                   3361:                }
                   3362:                 external {
                   3363:                        &lt;prefix&gt;;
                   3364:                        &lt;prefix&gt; hidden;
                   3365:                        &lt;prefix&gt; tag &lt;num&gt;;
                   3366:                }
                   3367:                stubnet &lt;prefix&gt;;
                   3368:                stubnet &lt;prefix&gt; {
                   3369:                        hidden &lt;switch&gt;;
                   3370:                        summary &lt;switch&gt;;
                   3371:                        cost &lt;num&gt;;
                   3372:                }
                   3373:                interface &lt;interface pattern&gt; [instance &lt;num&gt;] {
                   3374:                        cost &lt;num&gt;;
                   3375:                        stub &lt;switch&gt;;
                   3376:                        hello &lt;num&gt;;
                   3377:                        poll &lt;num&gt;;
                   3378:                        retransmit &lt;num&gt;;
                   3379:                        priority &lt;num&gt;;
                   3380:                        wait &lt;num&gt;;
                   3381:                        dead count &lt;num&gt;;
                   3382:                        dead &lt;num&gt;;
                   3383:                        secondary &lt;switch&gt;;
                   3384:                        rx buffer [normal|large|&lt;num&gt;];
                   3385:                        tx length &lt;num&gt;;
                   3386:                        type [broadcast|bcast|pointopoint|ptp|
                   3387:                                nonbroadcast|nbma|pointomultipoint|ptmp];
                   3388:                        link lsa suppression &lt;switch&gt;;
                   3389:                        strict nonbroadcast &lt;switch&gt;;
                   3390:                        real broadcast &lt;switch&gt;;
                   3391:                        ptp netmask &lt;switch&gt;;
                   3392:                        check link &lt;switch&gt;;
                   3393:                        bfd &lt;switch&gt;;
                   3394:                        ecmp weight &lt;num&gt;;
                   3395:                        ttl security [&lt;switch&gt;; | tx only]
                   3396:                        tx class|dscp &lt;num&gt;;
                   3397:                        tx priority &lt;num&gt;;
                   3398:                        authentication none|simple|cryptographic;
                   3399:                        password "&lt;text&gt;";
                   3400:                        password "&lt;text&gt;" {
                   3401:                                id &lt;num&gt;;
                   3402:                                generate from "&lt;date&gt;";
                   3403:                                generate to "&lt;date&gt;";
                   3404:                                accept from "&lt;date&gt;";
                   3405:                                accept to "&lt;date&gt;";
                   3406:                                from "&lt;date&gt;";
                   3407:                                to "&lt;date&gt;";
                   3408:                                algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 );
                   3409:                        };
                   3410:                        neighbors {
                   3411:                                &lt;ip&gt;;
                   3412:                                &lt;ip&gt; eligible;
                   3413:                        };
                   3414:                };
                   3415:                virtual link &lt;id&gt; [instance &lt;num&gt;] {
                   3416:                        hello &lt;num&gt;;
                   3417:                        retransmit &lt;num&gt;;
                   3418:                        wait &lt;num&gt;;
                   3419:                        dead count &lt;num&gt;;
                   3420:                        dead &lt;num&gt;;
                   3421:                        authentication none|simple|cryptographic;
                   3422:                        password "&lt;text&gt;";
                   3423:                        password "&lt;text&gt;" {
                   3424:                                id &lt;num&gt;;
                   3425:                                generate from "&lt;date&gt;";
                   3426:                                generate to "&lt;date&gt;";
                   3427:                                accept from "&lt;date&gt;";
                   3428:                                accept to "&lt;date&gt;";
                   3429:                                from "&lt;date&gt;";
                   3430:                                to "&lt;date&gt;";
                   3431:                                algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 );
                   3432:                        };
                   3433:                };
                   3434:        };
                   3435: }
                   3436: </code>
                   3437: 
                   3438: <descrip>
                   3439:        <tag><label id="ospf-rfc1583compat">rfc1583compat <M>switch</M></tag>
                   3440:        This option controls compatibility of routing table calculation with
                   3441:        <rfc id="1583">. Default value is no.
                   3442: 
                   3443:        <tag><label id="ospf-rfc5838">rfc5838 <m/switch/</tag>
                   3444:        Basic OSPFv3 is limited to IPv6 unicast routing. The <rfc id="5838">
                   3445:        extension defines support for more address families (IPv4, IPv6, both
                   3446:        unicast and multicast). The extension is enabled by default, but can be
                   3447:        disabled if necessary, as it restricts the range of available instance
                   3448:        IDs. Default value is yes.
                   3449: 
                   3450:        <tag><label id="ospf-instance-id">instance id <m/num/</tag>
                   3451:        When multiple OSPF protocol instances are active on the same links, they
                   3452:        should use different instance IDs to distinguish their packets. Although
                   3453:        it could be done on per-interface basis, it is often preferred to set
                   3454:        one instance ID to whole OSPF domain/topology (e.g., when multiple
                   3455:        instances are used to represent separate logical topologies on the same
                   3456:        physical network). This option specifies the instance ID for all
                   3457:        interfaces of the OSPF instance, but can be overridden by
                   3458:        <cf/interface/ option. Default value is 0 unless OSPFv3-AF extended
                   3459:        address families are used, see <rfc id="5838"> for that case.
                   3460: 
                   3461:        <tag><label id="ospf-stub-router">stub router <M>switch</M></tag>
                   3462:        This option configures the router to be a stub router, i.e., a router
                   3463:        that participates in the OSPF topology but does not allow transit
                   3464:        traffic. In OSPFv2, this is implemented by advertising maximum metric
                   3465:        for outgoing links. In OSPFv3, the stub router behavior is announced by
                   3466:        clearing the R-bit in the router LSA. See <rfc id="6987"> for details.
                   3467:        Default value is no.
                   3468: 
                   3469:        <tag><label id="ospf-tick">tick <M>num</M></tag>
                   3470:        The routing table calculation and clean-up of areas' databases is not
                   3471:        performed when a single link state change arrives. To lower the CPU
                   3472:        utilization, it's processed later at periodical intervals of <m/num/
                   3473:        seconds. The default value is 1.
                   3474: 
                   3475:        <tag><label id="ospf-ecmp">ecmp <M>switch</M> [limit <M>number</M>]</tag>
                   3476:        This option specifies whether OSPF is allowed to generate ECMP
                   3477:        (equal-cost multipath) routes. Such routes are used when there are
                   3478:        several directions to the destination, each with the same (computed)
                   3479:        cost. This option also allows to specify a limit on maximum number of
                   3480:        nexthops in one route. By default, ECMP is enabled if supported by
                   3481:        Kernel. Default value of the limit is 16.
                   3482: 
                   3483:        <tag><label id="ospf-merge-external">merge external <M>switch</M></tag>
                   3484:        This option specifies whether OSPF should merge external routes from
                   3485:        different routers/LSAs for the same destination. When enabled together
                   3486:        with <cf/ecmp/, equal-cost external routes will be combined to multipath
                   3487:        routes in the same way as regular routes. When disabled, external routes
                   3488:        from different LSAs are treated as separate even if they represents the
                   3489:        same destination. Default value is no.
                   3490: 
                   3491:        <tag><label id="ospf-graceful-restart">graceful restart <m/switch/|aware</tag>
                   3492:        When an OSPF instance is restarted, neighbors break adjacencies and
                   3493:        recalculate their routing tables, which disrupts packet forwarding even
                   3494:        when the forwarding plane of the restarting router remains intact.
                   3495:        <rfc id="3623"> specifies a graceful restart mechanism to alleviate this
                   3496:        issue. For OSPF graceful restart, restarting router originates
                   3497:        Grace-LSAs, announcing intent to do graceful restart. Neighbors
                   3498:        receiving these LSAs enter helper mode, in which they ignore breakdown
                   3499:        of adjacencies, behave as if nothing is happening and keep old routes.
                   3500:        When adjacencies are reestablished, the restarting router flushes
                   3501:        Grace-LSAs and graceful restart is ended.
                   3502: 
                   3503:        This option controls the graceful restart mechanism. It has three
                   3504:        states: Disabled, when no support is provided. Aware, when graceful
                   3505:        restart helper mode is supported, but no local graceful restart is
                   3506:        allowed (i.e. helper-only role). Enabled, when the full graceful restart
                   3507:        support is provided (i.e. both restarting and helper role). Note that
                   3508:        proper support for local graceful restart requires also configuration of
                   3509:        other protocols. Default: aware.
                   3510: 
                   3511:        <tag><label id="ospf-graceful-restart-time">graceful restart time <m/num/</tag>
                   3512:        The restart time is announced in the Grace-LSA and specifies how long
                   3513:        neighbors should wait for proper end of the graceful restart before
                   3514:        exiting helper mode prematurely. Default: 120 seconds.
                   3515: 
                   3516:        <tag><label id="ospf-area">area <M>id</M></tag>
                   3517:        This defines an OSPF area with given area ID (an integer or an IPv4
                   3518:        address, similarly to a router ID). The most important area is the
                   3519:        backbone (ID 0) to which every other area must be connected.
                   3520: 
                   3521:        <tag><label id="ospf-stub">stub</tag>
                   3522:        This option configures the area to be a stub area. External routes are
                   3523:        not flooded into stub areas. Also summary LSAs can be limited in stub
                   3524:        areas (see option <cf/summary/). By default, the area is not a stub
                   3525:        area.
                   3526: 
                   3527:        <tag><label id="ospf-nssa">nssa</tag>
                   3528:        This option configures the area to be a NSSA (Not-So-Stubby Area). NSSA
                   3529:        is a variant of a stub area which allows a limited way of external route
                   3530:        propagation. Global external routes are not propagated into a NSSA, but
                   3531:        an external route can be imported into NSSA as a (area-wide) NSSA-LSA
                   3532:        (and possibly translated and/or aggregated on area boundary). By
                   3533:        default, the area is not NSSA.
                   3534: 
                   3535:        <tag><label id="ospf-summary">summary <M>switch</M></tag>
                   3536:        This option controls propagation of summary LSAs into stub or NSSA
                   3537:        areas. If enabled, summary LSAs are propagated as usual, otherwise just
                   3538:        the default summary route (0.0.0.0/0) is propagated (this is sometimes
                   3539:        called totally stubby area). If a stub area has more area boundary
                   3540:        routers, propagating summary LSAs could lead to more efficient routing
                   3541:        at the cost of larger link state database. Default value is no.
                   3542: 
                   3543:        <tag><label id="ospf-default-nssa">default nssa <M>switch</M></tag>
                   3544:        When <cf/summary/ option is enabled, default summary route is no longer
                   3545:        propagated to the NSSA. In that case, this option allows to originate
                   3546:        default route as NSSA-LSA to the NSSA. Default value is no.
                   3547: 
                   3548:        <tag><label id="ospf-default-cost">default cost <M>num</M></tag>
                   3549:        This option controls the cost of a default route propagated to stub and
                   3550:        NSSA areas. Default value is 1000.
                   3551: 
                   3552:        <tag><label id="ospf-default-cost2">default cost2 <M>num</M></tag>
                   3553:        When a default route is originated as NSSA-LSA, its cost can use either
                   3554:        type 1 or type 2 metric. This option allows to specify the cost of a
                   3555:        default route in type 2 metric. By default, type 1 metric (option
                   3556:        <cf/default cost/) is used.
                   3557: 
                   3558:        <tag><label id="ospf-translator">translator <M>switch</M></tag>
                   3559:        This option controls translation of NSSA-LSAs into external LSAs. By
                   3560:        default, one translator per NSSA is automatically elected from area
                   3561:        boundary routers. If enabled, this area boundary router would
                   3562:        unconditionally translate all NSSA-LSAs regardless of translator
                   3563:        election. Default value is no.
                   3564: 
                   3565:        <tag><label id="ospf-translator-stability">translator stability <M>num</M></tag>
                   3566:        This option controls the translator stability interval (in seconds).
                   3567:        When the new translator is elected, the old one keeps translating until
                   3568:        the interval is over. Default value is 40.
                   3569: 
                   3570:        <tag><label id="ospf-networks">networks { <m/set/ }</tag>
                   3571:        Definition of area IP ranges. This is used in summary LSA origination.
                   3572:        Hidden networks are not propagated into other areas.
                   3573: 
                   3574:        <tag><label id="ospf-external">external { <m/set/ }</tag>
                   3575:        Definition of external area IP ranges for NSSAs. This is used for
                   3576:        NSSA-LSA translation. Hidden networks are not translated into external
                   3577:        LSAs. Networks can have configured route tag.
                   3578: 
                   3579:        <tag><label id="ospf-stubnet">stubnet <m/prefix/ { <m/options/ }</tag>
                   3580:        Stub networks are networks that are not transit networks between OSPF
                   3581:        routers. They are also propagated through an OSPF area as a part of a
                   3582:        link state database. By default, BIRD generates a stub network record
                   3583:        for each primary network address on each OSPF interface that does not
                   3584:        have any OSPF neighbors, and also for each non-primary network address
                   3585:        on each OSPF interface. This option allows to alter a set of stub
                   3586:        networks propagated by this router.
                   3587: 
                   3588:        Each instance of this option adds a stub network with given network
                   3589:        prefix to the set of propagated stub network, unless option <cf/hidden/
                   3590:        is used. It also suppresses default stub networks for given network
                   3591:        prefix. When option <cf/summary/ is used, also default stub networks
                   3592:        that are subnetworks of given stub network are suppressed. This might be
                   3593:        used, for example, to aggregate generated stub networks.
                   3594: 
                   3595:        <tag><label id="ospf-iface">interface <M>pattern</M> [instance <m/num/]</tag>
                   3596:        Defines that the specified interfaces belong to the area being defined.
                   3597:        See <ref id="proto-iface" name="interface"> common option for detailed
                   3598:        description. In OSPFv2, extended interface clauses are used, because
                   3599:        each network prefix is handled as a separate virtual interface.
                   3600: 
                   3601:        You can specify alternative instance ID for the interface definition,
                   3602:        therefore it is possible to have several instances of that interface
                   3603:        with different options or even in different areas. For OSPFv2, instance
                   3604:        ID support is an extension (<rfc id="6549">) and is supposed to be set
                   3605:        per-protocol. For OSPFv3, it is an integral feature.
                   3606: 
                   3607:        <tag><label id="ospf-virtual-link">virtual link <M>id</M> [instance <m/num/]</tag>
                   3608:        Virtual link to router with the router id. Virtual link acts as a
                   3609:        point-to-point interface belonging to backbone. The actual area is used
                   3610:        as a transport area. This item cannot be in the backbone. Like with
                   3611:        <cf/interface/ option, you could also use several virtual links to one
                   3612:        destination with different instance IDs.
                   3613: 
                   3614:        <tag><label id="ospf-cost">cost <M>num</M></tag>
                   3615:        Specifies output cost (metric) of an interface. Default value is 10.
                   3616: 
                   3617:        <tag><label id="ospf-stub-iface">stub <M>switch</M></tag>
                   3618:        If set to interface it does not listen to any packet and does not send
                   3619:        any hello. Default value is no.
                   3620: 
                   3621:        <tag><label id="ospf-hello">hello <M>num</M></tag>
                   3622:        Specifies interval in seconds between sending of Hello messages. Beware,
                   3623:        all routers on the same network need to have the same hello interval.
                   3624:        Default value is 10.
                   3625: 
                   3626:        <tag><label id="ospf-poll">poll <M>num</M></tag>
                   3627:        Specifies interval in seconds between sending of Hello messages for some
                   3628:        neighbors on NBMA network. Default value is 20.
                   3629: 
                   3630:        <tag><label id="ospf-retransmit">retransmit <M>num</M></tag>
                   3631:        Specifies interval in seconds between retransmissions of unacknowledged
                   3632:        updates. Default value is 5.
                   3633: 
                   3634:        <tag><label id="ospf-transmit-delay">transmit delay <M>num</M></tag>
                   3635:        Specifies estimated transmission delay of link state updates send over
                   3636:        the interface. The value is added to LSA age of LSAs propagated through
                   3637:        it. Default value is 1.
                   3638: 
                   3639:        <tag><label id="ospf-priority">priority <M>num</M></tag>
                   3640:        On every multiple access network (e.g., the Ethernet) Designated Router
                   3641:        and Backup Designated router are elected. These routers have some special
                   3642:        functions in the flooding process. Higher priority increases preferences
                   3643:        in this election. Routers with priority 0 are not eligible. Default
                   3644:        value is 1.
                   3645: 
                   3646:        <tag><label id="ospf-wait">wait <M>num</M></tag>
                   3647:        After start, router waits for the specified number of seconds between
                   3648:        starting election and building adjacency. Default value is 4*<m/hello/.
                   3649: 
                   3650:        <tag><label id="ospf-dead-count">dead count <M>num</M></tag>
                   3651:        When the router does not receive any messages from a neighbor in
                   3652:        <m/dead count/*<m/hello/ seconds, it will consider the neighbor down.
                   3653: 
                   3654:        <tag><label id="ospf-dead">dead <M>num</M></tag>
                   3655:        When the router does not receive any messages from a neighbor in
                   3656:        <m/dead/ seconds, it will consider the neighbor down. If both directives
                   3657:        <cf/dead count/ and <cf/dead/ are used, <cf/dead/ has precedence.
                   3658: 
                   3659:        <tag><label id="ospf-rx-buffer">rx buffer <M>num</M></tag>
                   3660:        This option allows to specify the size of buffers used for packet
                   3661:        processing. The buffer size should be bigger than maximal size of any
                   3662:        packets. By default, buffers are dynamically resized as needed, but a
                   3663:        fixed value could be specified. Value <cf/large/ means maximal allowed
                   3664:        packet size - 65535.
                   3665: 
                   3666:        <tag><label id="ospf-tx-length">tx length <M>num</M></tag>
                   3667:        Transmitted OSPF messages that contain large amount of information are
                   3668:        segmented to separate OSPF packets to avoid IP fragmentation. This
                   3669:        option specifies the soft ceiling for the length of generated OSPF
                   3670:        packets. Default value is the MTU of the network interface. Note that
                   3671:        larger OSPF packets may still be generated if underlying OSPF messages
                   3672:        cannot be splitted (e.g. when one large LSA is propagated).
                   3673: 
                   3674:        <tag><label id="ospf-type-bcast">type broadcast|bcast</tag>
                   3675:        BIRD detects a type of a connected network automatically, but sometimes
                   3676:        it's convenient to force use of a different type manually. On broadcast
                   3677:        networks (like ethernet), flooding and Hello messages are sent using
                   3678:        multicasts (a single packet for all the neighbors). A designated router
                   3679:        is elected and it is responsible for synchronizing the link-state
                   3680:        databases and originating network LSAs. This network type cannot be used
                   3681:        on physically NBMA networks and on unnumbered networks (networks without
                   3682:        proper IP prefix).
                   3683: 
                   3684:        <tag><label id="ospf-type-ptp">type pointopoint|ptp</tag>
                   3685:        Point-to-point networks connect just 2 routers together. No election is
                   3686:        performed and no network LSA is originated, which makes it simpler and
                   3687:        faster to establish. This network type is useful not only for physically
                   3688:        PtP ifaces (like PPP or tunnels), but also for broadcast networks used
                   3689:        as PtP links. This network type cannot be used on physically NBMA
                   3690:        networks.
                   3691: 
                   3692:        <tag><label id="ospf-type-nbma">type nonbroadcast|nbma</tag>
                   3693:        On NBMA networks, the packets are sent to each neighbor separately
                   3694:        because of lack of multicast capabilities. Like on broadcast networks,
                   3695:        a designated router is elected, which plays a central role in propagation
                   3696:        of LSAs. This network type cannot be used on unnumbered networks.
                   3697: 
                   3698:        <tag><label id="ospf-type-ptmp">type pointomultipoint|ptmp</tag>
                   3699:        This is another network type designed to handle NBMA networks. In this
                   3700:        case the NBMA network is treated as a collection of PtP links. This is
                   3701:        useful if not every pair of routers on the NBMA network has direct
                   3702:        communication, or if the NBMA network is used as an (possibly
                   3703:        unnumbered) PtP link.
                   3704: 
                   3705:        <tag><label id="ospf-link-lsa-suppression">link lsa suppression <m/switch/</tag>
                   3706:        In OSPFv3, link LSAs are generated for each link, announcing link-local
                   3707:        IPv6 address of the router to its local neighbors. These are useless on
                   3708:        PtP or PtMP networks and this option allows to suppress the link LSA
                   3709:        origination for such interfaces. The option is ignored on other than PtP
                   3710:        or PtMP interfaces. Default value is no.
                   3711: 
                   3712:        <tag><label id="ospf-strict-nonbroadcast">strict nonbroadcast <m/switch/</tag>
                   3713:        If set, don't send hello to any undefined neighbor. This switch is
                   3714:        ignored on other than NBMA or PtMP interfaces. Default value is no.
                   3715: 
                   3716:        <tag><label id="ospf-real-broadcast">real broadcast <m/switch/</tag>
                   3717:        In <cf/type broadcast/ or <cf/type ptp/ network configuration, OSPF
                   3718:        packets are sent as IP multicast packets. This option changes the
                   3719:        behavior to using old-fashioned IP broadcast packets. This may be useful
                   3720:        as a workaround if IP multicast for some reason does not work or does
                   3721:        not work reliably. This is a non-standard option and probably is not
                   3722:        interoperable with other OSPF implementations. Default value is no.
                   3723: 
                   3724:        <tag><label id="ospf-ptp-netmask">ptp netmask <m/switch/</tag>
                   3725:        In <cf/type ptp/ network configurations, OSPFv2 implementations should
                   3726:        ignore received netmask field in hello packets and should send hello
                   3727:        packets with zero netmask field on unnumbered PtP links. But some OSPFv2
                   3728:        implementations perform netmask checking even for PtP links. This option
                   3729:        specifies whether real netmask will be used in hello packets on <cf/type
                   3730:        ptp/ interfaces. You should ignore this option unless you meet some
                   3731:        compatibility problems related to this issue. Default value is no for
                   3732:        unnumbered PtP links, yes otherwise.
                   3733: 
                   3734:        <tag><label id="ospf-check-link">check link <M>switch</M></tag>
                   3735:        If set, a hardware link state (reported by OS) is taken into consideration.
                   3736:        When a link disappears (e.g. an ethernet cable is unplugged), neighbors
                   3737:        are immediately considered unreachable and only the address of the iface
                   3738:        (instead of whole network prefix) is propagated. It is possible that
                   3739:        some hardware drivers or platforms do not implement this feature.
                   3740:        Default value is yes.
                   3741: 
                   3742:        <tag><label id="ospf-bfd">bfd <M>switch</M></tag>
                   3743:        OSPF could use BFD protocol as an advisory mechanism for neighbor
                   3744:        liveness and failure detection. If enabled, BIRD setups a BFD session
                   3745:        for each OSPF neighbor and tracks its liveness by it. This has an
                   3746:        advantage of an order of magnitude lower detection times in case of
                   3747:        failure. Note that BFD protocol also has to be configured, see
                   3748:        <ref id="bfd" name="BFD"> section for details. Default value is no.
                   3749: 
                   3750:        <tag><label id="ospf-ttl-security">ttl security [<m/switch/ | tx only]</tag>
                   3751:        TTL security is a feature that protects routing protocols from remote
                   3752:        spoofed packets by using TTL 255 instead of TTL 1 for protocol packets
                   3753:        destined to neighbors. Because TTL is decremented when packets are
                   3754:        forwarded, it is non-trivial to spoof packets with TTL 255 from remote
                   3755:        locations. Note that this option would interfere with OSPF virtual
                   3756:        links.
                   3757: 
                   3758:        If this option is enabled, the router will send OSPF packets with TTL
                   3759:        255 and drop received packets with TTL less than 255. If this option si
                   3760:        set to <cf/tx only/, TTL 255 is used for sent packets, but is not
                   3761:        checked for received packets. Default value is no.
                   3762: 
                   3763:        <tag><label id="ospf-tx-class">tx class|dscp|priority <m/num/</tag>
                   3764:        These options specify the ToS/DiffServ/Traffic class/Priority of the
                   3765:        outgoing OSPF packets. See <ref id="proto-tx-class" name="tx class"> common
                   3766:        option for detailed description.
                   3767: 
                   3768:        <tag><label id="ospf-ecmp-weight">ecmp weight <M>num</M></tag>
                   3769:        When ECMP (multipath) routes are allowed, this value specifies a
                   3770:        relative weight used for nexthops going through the iface. Allowed
                   3771:        values are 1-256. Default value is 1.
                   3772: 
                   3773:        <tag><label id="ospf-auth-none">authentication none</tag>
                   3774:        No passwords are sent in OSPF packets. This is the default value.
                   3775: 
                   3776:        <tag><label id="ospf-auth-simple">authentication simple</tag>
                   3777:        Every packet carries 8 bytes of password. Received packets lacking this
                   3778:        password are ignored. This authentication mechanism is very weak.
                   3779:        This option is not available in OSPFv3.
                   3780: 
                   3781:        <tag><label id="ospf-auth-cryptographic">authentication cryptographic</tag>
                   3782:        An authentication code is appended to every packet. The specific
                   3783:        cryptographic algorithm is selected by option <cf/algorithm/ for each
                   3784:        key. The default cryptographic algorithm for OSPFv2 keys is Keyed-MD5
                   3785:        and for OSPFv3 keys is HMAC-SHA-256. Passwords are not sent open via
                   3786:        network, so this mechanism is quite secure. Packets can still be read by
                   3787:        an attacker.
                   3788: 
                   3789:        <tag><label id="ospf-pass">password "<M>text</M>"</tag>
                   3790:        Specifies a password used for authentication. See
                   3791:        <ref id="proto-pass" name="password"> common option for detailed
                   3792:        description.
                   3793: 
                   3794:        <tag><label id="ospf-neighbors">neighbors { <m/set/ } </tag>
                   3795:        A set of neighbors to which Hello messages on NBMA or PtMP networks are
                   3796:        to be sent. For NBMA networks, some of them could be marked as eligible.
                   3797:        In OSPFv3, link-local addresses should be used, using global ones is
                   3798:        possible, but it is nonstandard and might be problematic. And definitely,
                   3799:        link-local and global addresses should not be mixed.
                   3800: </descrip>
                   3801: 
                   3802: <sect1>Attributes
                   3803: <label id="ospf-attr">
                   3804: 
                   3805: <p>OSPF defines four route attributes. Each internal route has a <cf/metric/.
                   3806: 
                   3807: <p>Metric is ranging from 1 to infinity (65535). External routes use
                   3808: <cf/metric type 1/ or <cf/metric type 2/. A <cf/metric of type 1/ is comparable
                   3809: with internal <cf/metric/, a <cf/metric of type 2/ is always longer than any
                   3810: <cf/metric of type 1/ or any <cf/internal metric/. <cf/Internal metric/ or
                   3811: <cf/metric of type 1/ is stored in attribute <cf/ospf_metric1/, <cf/metric type
                   3812: 2/ is stored in attribute <cf/ospf_metric2/.
                   3813: 
                   3814: When both metrics are specified then <cf/metric of type 2/ is used. This is
                   3815: relevant e.g. when a type 2 external route is propagated from one OSPF domain to
                   3816: another and <cf/ospf_metric1/ is an internal distance to the original ASBR,
                   3817: while <cf/ospf_metric2/ stores the type 2 metric. Note that in such cases if
                   3818: <cf/ospf_metric1/ is non-zero then <cf/ospf_metric2/ is increased by one to
                   3819: ensure monotonicity of metric, as internal distance is reset to zero when an
                   3820: external route is announced.
                   3821: 
                   3822: <p>Each external route can also carry attribute <cf/ospf_tag/ which is a 32-bit
                   3823: integer which is used when exporting routes to other protocols; otherwise, it
                   3824: doesn't affect routing inside the OSPF domain at all. The fourth attribute
                   3825: <cf/ospf_router_id/ is a router ID of the router advertising that route /
                   3826: network. This attribute is read-only. Default is <cf/ospf_metric2 = 10000/ and
                   3827: <cf/ospf_tag = 0/.
                   3828: 
                   3829: <sect1>Example
                   3830: <label id="ospf-exam">
                   3831: 
                   3832: <p><code>
                   3833: protocol ospf MyOSPF {
                   3834:        ipv4 {
                   3835:                export filter {
                   3836:                        if source = RTS_BGP then {
                   3837:                                ospf_metric1 = 100;
                   3838:                                accept;
                   3839:                        }
                   3840:                        reject;
                   3841:                };
                   3842:        };
                   3843:        area 0.0.0.0 {
                   3844:                interface "eth*" {
                   3845:                        cost 11;
                   3846:                        hello 15;
                   3847:                        priority 100;
                   3848:                        retransmit 7;
                   3849:                        authentication simple;
                   3850:                        password "aaa";
                   3851:                };
                   3852:                interface "ppp*" {
                   3853:                        cost 100;
                   3854:                        authentication cryptographic;
                   3855:                        password "abc" {
                   3856:                                id 1;
                   3857:                                generate to "22-04-2003 11:00:06";
                   3858:                                accept from "17-01-2001 12:01:05";
                   3859:                                algorithm hmac sha384;
                   3860:                        };
                   3861:                        password "def" {
                   3862:                                id 2;
                   3863:                                generate to "22-07-2005 17:03:21";
                   3864:                                accept from "22-02-2001 11:34:06";
                   3865:                                algorithm hmac sha512;
                   3866:                        };
                   3867:                };
                   3868:                interface "arc0" {
                   3869:                        cost 10;
                   3870:                        stub yes;
                   3871:                };
                   3872:                interface "arc1";
                   3873:        };
                   3874:        area 120 {
                   3875:                stub yes;
                   3876:                networks {
                   3877:                        172.16.1.0/24;
                   3878:                        172.16.2.0/24 hidden;
                   3879:                }
                   3880:                interface "-arc0" , "arc*" {
                   3881:                        type nonbroadcast;
                   3882:                        authentication none;
                   3883:                        strict nonbroadcast yes;
                   3884:                        wait 120;
                   3885:                        poll 40;
                   3886:                        dead count 8;
                   3887:                        neighbors {
                   3888:                                192.168.120.1 eligible;
                   3889:                                192.168.120.2;
                   3890:                                192.168.120.10;
                   3891:                        };
                   3892:                };
                   3893:        };
                   3894: }
                   3895: </code>
                   3896: 
                   3897: <sect>Perf
                   3898: <label id="perf">
                   3899: 
                   3900: <sect1>Introduction
                   3901: <label id="perf-intro">
                   3902: 
                   3903: <p>The Perf protocol is a generator of fake routes together with a time measurement
                   3904: framework. Its purpose is to check BIRD performance and to benchmark filters.
                   3905: 
                   3906: <p>Import mode of this protocol runs in several steps. In each step, it generates 2^x routes,
                   3907: imports them into the appropriate table and withdraws them. The exponent x is configurable.
                   3908: It runs the benchmark several times for the same x, then it increases x by one
                   3909: until it gets too high, then it stops.
                   3910: 
                   3911: <p>Export mode of this protocol repeats route refresh from table and measures how long it takes.
                   3912: 
                   3913: <p>Output data is logged on info level. There is a Perl script <cf>proto/perf/parse.pl</cf>
                   3914: which may be handy to parse the data and draw some plots.
                   3915: 
                   3916: <p>Implementation of this protocol is experimental. Use with caution and do not keep
                   3917: any instance of Perf in production configs for long time. The config interface is also unstable
                   3918: and may change in future versions without warning.
                   3919: 
                   3920: <sect1>Configuration
                   3921: <label id="perf-config">
                   3922: 
                   3923: <p><descrip>
                   3924:        <tag><label id="perf-mode">mode import|export</tag>
                   3925:        Set perf mode. Default: import
                   3926: 
                   3927:        <tag><label id="perf-repeat">repeat <m/number/</tag>
                   3928:        Run this amount of iterations of the benchmark for every amount step. Default: 4
                   3929: 
                   3930:        <tag><label id="perf-from">exp from <m/number/</tag>
                   3931:        Begin benchmarking on this exponent for number of generated routes in one step.
                   3932:        Default: 10
                   3933: 
                   3934:        <tag><label id="perf-to">exp to <m/number/</tag>
                   3935:        Stop benchmarking on this exponent. Default: 20
                   3936: 
                   3937:        <tag><label id="perf-threshold-min">threshold min <m/time/</tag>
                   3938:        If a run for the given exponent took less than this time for route import,
                   3939:        increase the exponent immediately. Default: 1 ms
                   3940: 
                   3941:        <tag><label id="perf-threshold-max">threshold max <m/time/</tag>
                   3942:        If every run for the given exponent took at least this time for route import,
                   3943:        stop benchmarking. Default: 500 ms
                   3944: </descrip>
                   3945: 
                   3946: <sect>Pipe
                   3947: <label id="pipe">
                   3948: 
                   3949: <sect1>Introduction
                   3950: <label id="pipe-intro">
                   3951: 
                   3952: <p>The Pipe protocol serves as a link between two routing tables, allowing
                   3953: routes to be passed from a table declared as primary (i.e., the one the pipe is
                   3954: connected to using the <cf/table/ configuration keyword) to the secondary one
                   3955: (declared using <cf/peer table/) and vice versa, depending on what's allowed by
                   3956: the filters. Export filters control export of routes from the primary table to
                   3957: the secondary one, import filters control the opposite direction. Both tables
                   3958: must be of the same nettype.
                   3959: 
                   3960: <p>The Pipe protocol retransmits all routes from one table to the other table,
                   3961: retaining their original source and attributes. If import and export filters
                   3962: are set to accept, then both tables would have the same content.
                   3963: 
                   3964: <p>The primary use of multiple routing tables and the Pipe protocol is for
                   3965: policy routing, where handling of a single packet doesn't depend only on its
                   3966: destination address, but also on its source address, source interface, protocol
                   3967: type and other similar parameters. In many systems (Linux being a good example),
                   3968: the kernel allows to enforce routing policies by defining routing rules which
                   3969: choose one of several routing tables to be used for a packet according to its
                   3970: parameters. Setting of these rules is outside the scope of BIRD's work (on
                   3971: Linux, you can use the <tt/ip/ command), but you can create several routing
                   3972: tables in BIRD, connect them to the kernel ones, use filters to control which
                   3973: routes appear in which tables and also you can employ the Pipe protocol for
                   3974: exporting a selected subset of one table to another one.
                   3975: 
                   3976: <sect1>Configuration
                   3977: <label id="pipe-config">
                   3978: 
                   3979: <p>Essentially, the Pipe protocol is just a channel connected to a table on both
                   3980: sides. Therefore, the configuration block for <cf/protocol pipe/ shall directly
                   3981: include standard channel config options; see the example below.
                   3982: 
                   3983: <p><descrip>
                   3984:        <tag><label id="pipe-peer-table">peer table <m/table/</tag>
                   3985:        Defines secondary routing table to connect to. The primary one is
                   3986:        selected by the <cf/table/ keyword.
                   3987: </descrip>
                   3988: 
                   3989: <sect1>Attributes
                   3990: <label id="pipe-attr">
                   3991: 
                   3992: <p>The Pipe protocol doesn't define any route attributes.
                   3993: 
                   3994: <sect1>Example
                   3995: <label id="pipe-exam">
                   3996: 
                   3997: <p>Let's consider a router which serves as a boundary router of two different
                   3998: autonomous systems, each of them connected to a subset of interfaces of the
                   3999: router, having its own exterior connectivity and wishing to use the other AS as
                   4000: a backup connectivity in case of outage of its own exterior line.
                   4001: 
                   4002: <p>Probably the simplest solution to this situation is to use two routing tables
                   4003: (we'll call them <cf/as1/ and <cf/as2/) and set up kernel routing rules, so that
                   4004: packets having arrived from interfaces belonging to the first AS will be routed
                   4005: according to <cf/as1/ and similarly for the second AS. Thus we have split our
                   4006: router to two logical routers, each one acting on its own routing table, having
                   4007: its own routing protocols on its own interfaces. In order to use the other AS's
                   4008: routes for backup purposes, we can pass the routes between the tables through a
                   4009: Pipe protocol while decreasing their preferences and correcting their BGP paths
                   4010: to reflect the AS boundary crossing.
                   4011: 
                   4012: <code>
                   4013: ipv4 table as1;                                # Define the tables
                   4014: ipv4 table as2;
                   4015: 
                   4016: protocol kernel kern1 {                        # Synchronize them with the kernel
                   4017:        ipv4 { table as1; export all; };
                   4018:        kernel table 1;
                   4019: }
                   4020: 
                   4021: protocol kernel kern2 {
                   4022:        ipv4 { table as2; export all; };
                   4023:        kernel table 2;
                   4024: }
                   4025: 
                   4026: protocol bgp bgp1 {                    # The outside connections
                   4027:        ipv4 { table as1; import all; export all; };
                   4028:        local as 1;
                   4029:        neighbor 192.168.0.1 as 1001;
                   4030: }
                   4031: 
                   4032: protocol bgp bgp2 {
                   4033:        ipv4 { table as2; import all; export all; };
                   4034:        local as 2;
                   4035:        neighbor 10.0.0.1 as 1002;
                   4036: }
                   4037: 
                   4038: protocol pipe {                                # The Pipe
                   4039:        table as1;
                   4040:        peer table as2;
                   4041:        export filter {
                   4042:                if net ~ [ 1.0.0.0/8+] then {   # Only AS1 networks
                   4043:                        if preference>10 then preference = preference-10;
                   4044:                        if source=RTS_BGP then bgp_path.prepend(1);
                   4045:                        accept;
                   4046:                }
                   4047:                reject;
                   4048:        };
                   4049:        import filter {
                   4050:                if net ~ [ 2.0.0.0/8+] then {   # Only AS2 networks
                   4051:                        if preference>10 then preference = preference-10;
                   4052:                        if source=RTS_BGP then bgp_path.prepend(2);
                   4053:                        accept;
                   4054:                }
                   4055:                reject;
                   4056:        };
                   4057: }
                   4058: </code>
                   4059: 
                   4060: 
                   4061: <sect>RAdv
                   4062: <label id="radv">
                   4063: 
                   4064: <sect1>Introduction
                   4065: <label id="radv-intro">
                   4066: 
                   4067: <p>The RAdv protocol is an implementation of Router Advertisements, which are
                   4068: used in the IPv6 stateless autoconfiguration. IPv6 routers send (in irregular
                   4069: time intervals or as an answer to a request) advertisement packets to connected
                   4070: networks. These packets contain basic information about a local network (e.g. a
                   4071: list of network prefixes), which allows network hosts to autoconfigure network
                   4072: addresses and choose a default route. BIRD implements router behavior as defined
                   4073: in <rfc id="4861">, router preferences and specific routes (<rfc id="4191">),
                   4074: and DNS extensions (<rfc id="6106">).
                   4075: 
                   4076: <p>The RAdv protocols supports just IPv6 channel.
                   4077: 
                   4078: <sect1>Configuration
                   4079: <label id="radv-config">
                   4080: 
                   4081: <p>There are several classes of definitions in RAdv configuration -- interface
                   4082: definitions, prefix definitions and DNS definitions:
                   4083: 
                   4084: <descrip>
                   4085:        <tag><label id="radv-iface">interface <m/pattern/ [, <m/.../] { <m/options/ }</tag>
                   4086:        Interface definitions specify a set of interfaces on which the
                   4087:        protocol is activated and contain interface specific options.
                   4088:        See <ref id="proto-iface" name="interface"> common options for
                   4089:        detailed description.
                   4090: 
                   4091:        <tag><label id="radv-prefix">prefix <m/prefix/ { <m/options/ }</tag>
                   4092:        Prefix definitions allow to modify a list of advertised prefixes. By
                   4093:        default, the advertised prefixes are the same as the network prefixes
                   4094:        assigned to the interface. For each network prefix, the matching prefix
                   4095:        definition is found and its options are used. If no matching prefix
                   4096:        definition is found, the prefix is used with default options.
                   4097: 
                   4098:        Prefix definitions can be either global or interface-specific. The
                   4099:        second ones are part of interface options. The prefix definition
                   4100:        matching is done in the first-match style, when interface-specific
                   4101:        definitions are processed before global definitions. As expected, the
                   4102:        prefix definition is matching if the network prefix is a subnet of the
                   4103:        prefix in prefix definition.
                   4104: 
                   4105:        <tag><label id="radv-rdnss">rdnss { <m/options/ }</tag>
                   4106:        RDNSS definitions allow to specify a list of advertised recursive DNS
                   4107:        servers together with their options. As options are seldom necessary,
                   4108:        there is also a short variant <cf>rdnss <m/address/</cf> that just
                   4109:        specifies one DNS server. Multiple definitions are cumulative. RDNSS
                   4110:        definitions may also be interface-specific when used inside interface
                   4111:        options. By default, interface uses both global and interface-specific
                   4112:        options, but that can be changed by <cf/rdnss local/ option.
                   4113: 
                   4114:        <tag><label id="radv-dnssl">dnssl { <m/options/ }</tag>
                   4115:        DNSSL definitions allow to specify a list of advertised DNS search
                   4116:        domains together with their options. Like <cf/rdnss/ above, multiple
                   4117:        definitions are cumulative, they can be used also as interface-specific
                   4118:        options and there is a short variant <cf>dnssl <m/domain/</cf> that just
                   4119:        specifies one DNS search domain.
                   4120: 
                   4121:        <tag><label id="radv-trigger">trigger <m/prefix/</tag>
                   4122:        RAdv protocol could be configured to change its behavior based on
                   4123:        availability of routes. When this option is used, the protocol waits in
                   4124:        suppressed state until a <it/trigger route/ (for the specified network)
                   4125:        is exported to the protocol, the protocol also returns to suppressed
                   4126:        state if the <it/trigger route/ disappears. Note that route export
                   4127:        depends on specified export filter, as usual. This option could be used,
                   4128:        e.g., for handling failover in multihoming scenarios.
                   4129: 
                   4130:        During suppressed state, router advertisements are generated, but with
                   4131:        some fields zeroed. Exact behavior depends on which fields are zeroed,
                   4132:        this can be configured by <cf/sensitive/ option for appropriate
                   4133:        fields. By default, just <cf/default lifetime/ (also called <cf/router
                   4134:        lifetime/) is zeroed, which means hosts cannot use the router as a
                   4135:        default router. <cf/preferred lifetime/ and <cf/valid lifetime/ could
                   4136:        also be configured as <cf/sensitive/ for a prefix, which would cause
                   4137:        autoconfigured IPs to be deprecated or even removed.
                   4138: 
                   4139:        <tag><label id="radv-propagate-routes">propagate routes <m/switch/</tag>
                   4140:        This option controls propagation of more specific routes, as defined in
                   4141:        <rfc id="4191">. If enabled, all routes exported to the RAdv protocol,
                   4142:        with the exception of the trigger prefix, are added to advertisments as
                   4143:        additional options. The lifetime and preference of advertised routes can
                   4144:        be set individually by <cf/ra_lifetime/ and <cf/ra_preference/ route
                   4145:        attributes, or per interface by <cf/route lifetime/ and
                   4146:        <cf/route preference/ options. Default: disabled.
                   4147: 
                   4148:        Note that the RFC discourages from sending more than 17 routes and
                   4149:        recommends the routes to be configured manually.
                   4150: </descrip>
                   4151: 
                   4152: <p>Interface specific options:
                   4153: 
                   4154: <descrip>
                   4155:        <tag><label id="radv-iface-max-ra-interval">max ra interval <m/expr/</tag>
                   4156:        Unsolicited router advertisements are sent in irregular time intervals.
                   4157:        This option specifies the maximum length of these intervals, in seconds.
                   4158:        Valid values are 4-1800. Default: 600
                   4159: 
                   4160:        <tag><label id="radv-iface-min-ra-interval">min ra interval <m/expr/</tag>
                   4161:        This option specifies the minimum length of that intervals, in seconds.
                   4162:        Must be at least 3 and at most 3/4 * <cf/max ra interval/. Default:
                   4163:        about 1/3 * <cf/max ra interval/.
                   4164: 
                   4165:        <tag><label id="radv-iface-min-delay">min delay <m/expr/</tag>
                   4166:        The minimum delay between two consecutive router advertisements, in
                   4167:        seconds. Default: 3
                   4168: 
                   4169:        <tag><label id="radv-solicited-ra-unicast">solicited ra unicast <m/switch/</tag>
                   4170:        Solicited router advertisements are usually sent to all-nodes multicast
                   4171:        group like unsolicited ones, but the router can be configured to send
                   4172:        them as unicast directly to soliciting nodes instead. This is especially
                   4173:        useful on wireless networks (see <rfc id="7772">). Default: no
                   4174: 
                   4175:        <tag><label id="radv-iface-managed">managed <m/switch/</tag>
                   4176:        This option specifies whether hosts should use DHCPv6 for IP address
                   4177:        configuration. Default: no
                   4178: 
                   4179:        <tag><label id="radv-iface-other-config">other config <m/switch/</tag>
                   4180:        This option specifies whether hosts should use DHCPv6 to receive other
                   4181:        configuration information. Default: no
                   4182: 
                   4183:        <tag><label id="radv-iface-link-mtu">link mtu <m/expr/</tag>
                   4184:        This option specifies which value of MTU should be used by hosts. 0
                   4185:        means unspecified. Default: 0
                   4186: 
                   4187:        <tag><label id="radv-iface-reachable-time">reachable time <m/expr/</tag>
                   4188:        This option specifies the time (in milliseconds) how long hosts should
                   4189:        assume a neighbor is reachable (from the last confirmation). Maximum is
                   4190:        3600000, 0 means unspecified. Default 0.
                   4191: 
                   4192:        <tag><label id="radv-iface-retrans-timer">retrans timer <m/expr/</tag>
                   4193:        This option specifies the time (in milliseconds) how long hosts should
                   4194:        wait before retransmitting Neighbor Solicitation messages. 0 means
                   4195:        unspecified. Default 0.
                   4196: 
                   4197:        <tag><label id="radv-iface-current-hop-limit">current hop limit <m/expr/</tag>
                   4198:        This option specifies which value of Hop Limit should be used by
                   4199:        hosts. Valid values are 0-255, 0 means unspecified. Default: 64
                   4200: 
                   4201:        <tag><label id="radv-iface-default-lifetime">default lifetime <m/expr/ [sensitive <m/switch/]</tag>
                   4202:        This option specifies the time (in seconds) how long (since the receipt
                   4203:        of RA) hosts may use the router as a default router. 0 means do not use
                   4204:        as a default router. For <cf/sensitive/ option, see <ref id="radv-trigger" name="trigger">.
                   4205:        Default: 3 * <cf/max ra interval/, <cf/sensitive/ yes.
                   4206: 
                   4207:        <tag><label id="radv-iface-default-preference">default preference low|medium|high</tag>
                   4208:        This option specifies the Default Router Preference value to advertise
                   4209:        to hosts. Default: medium.
                   4210: 
                   4211:        <tag><label id="radv-iface-route-lifetime">route lifetime <m/expr/ [sensitive <m/switch/]</tag>
                   4212:        This option specifies the default value of advertised lifetime for
                   4213:        specific routes; i.e., the time (in seconds) for how long (since the
                   4214:        receipt of RA) hosts should consider these routes valid. A special value
                   4215:        0xffffffff represents infinity. The lifetime can be overriden on a per
                   4216:        route basis by the <ref id="rta-ra-lifetime" name="ra_lifetime"> route
                   4217:        attribute. Default: 3 * <cf/max ra interval/, <cf/sensitive/ no.
                   4218: 
                   4219:        For the <cf/sensitive/ option, see <ref id="radv-trigger" name="trigger">.
                   4220:        If <cf/sensitive/ is enabled, even the routes with the <cf/ra_lifetime/
                   4221:        attribute become sensitive to the trigger.
                   4222: 
                   4223:        <tag><label id="radv-iface-route-preference">route preference low|medium|high</tag>
                   4224:        This option specifies the default value of advertised route preference
                   4225:        for specific routes. The value can be overriden on a per route basis by
                   4226:        the <ref id="rta-ra-preference" name="ra_preference"> route attribute.
                   4227:        Default: medium.
                   4228: 
                   4229:        <tag><label id="radv-prefix-linger-time">prefix linger time <m/expr/</tag>
                   4230:        When a prefix or a route disappears, it is advertised for some time with
                   4231:        zero lifetime, to inform clients it is no longer valid. This option
                   4232:        specifies the time (in seconds) for how long prefixes are advertised
                   4233:        that way. Default: 3 * <cf/max ra interval/.
                   4234: 
                   4235:        <tag><label id="radv-route-linger-time">route linger time <m/expr/</tag>
                   4236:        When a prefix or a route disappears, it is advertised for some time with
                   4237:        zero lifetime, to inform clients it is no longer valid. This option
                   4238:        specifies the time (in seconds) for how long routes are advertised
                   4239:        that way. Default: 3 * <cf/max ra interval/.
                   4240: 
                   4241:        <tag><label id="radv-iface-rdnss-local">rdnss local <m/switch/</tag>
                   4242:        Use only local (interface-specific) RDNSS definitions for this
                   4243:        interface. Otherwise, both global and local definitions are used. Could
                   4244:        also be used to disable RDNSS for given interface if no local definitons
                   4245:        are specified. Default: no.
                   4246: 
                   4247:        <tag><label id="radv-iface-dnssl-local">dnssl local <m/switch/</tag>
                   4248:        Use only local DNSSL definitions for this interface. See <cf/rdnss local/
                   4249:        option above. Default: no.
                   4250: </descrip>
                   4251: 
                   4252: <p>Prefix specific options
                   4253: 
                   4254: <descrip>
                   4255:        <tag><label id="radv-prefix-skip">skip <m/switch/</tag>
                   4256:        This option allows to specify that given prefix should not be
                   4257:        advertised. This is useful for making exceptions from a default policy
                   4258:        of advertising all prefixes. Note that for withdrawing an already
                   4259:        advertised prefix it is more useful to advertise it with zero valid
                   4260:        lifetime. Default: no
                   4261: 
                   4262:        <tag><label id="radv-prefix-onlink">onlink <m/switch/</tag>
                   4263:        This option specifies whether hosts may use the advertised prefix for
                   4264:        onlink determination. Default: yes
                   4265: 
                   4266:        <tag><label id="radv-prefix-autonomous">autonomous <m/switch/</tag>
                   4267:        This option specifies whether hosts may use the advertised prefix for
                   4268:        stateless autoconfiguration. Default: yes
                   4269: 
                   4270:        <tag><label id="radv-prefix-valid-lifetime">valid lifetime <m/expr/ [sensitive <m/switch/]</tag>
                   4271:        This option specifies the time (in seconds) how long (after the
                   4272:        receipt of RA) the prefix information is valid, i.e., autoconfigured
                   4273:        IP addresses can be assigned and hosts with that IP addresses are
                   4274:        considered directly reachable. 0 means the prefix is no longer
                   4275:        valid. For <cf/sensitive/ option, see <ref id="radv-trigger" name="trigger">.
                   4276:        Default: 86400 (1 day), <cf/sensitive/ no.
                   4277: 
                   4278:        <tag><label id="radv-prefix-preferred-lifetime">preferred lifetime <m/expr/ [sensitive <m/switch/]</tag>
                   4279:        This option specifies the time (in seconds) how long (after the
                   4280:        receipt of RA) IP addresses generated from the prefix using stateless
                   4281:        autoconfiguration remain preferred. For <cf/sensitive/ option,
                   4282:        see <ref id="radv-trigger" name="trigger">. Default: 14400 (4 hours),
                   4283:        <cf/sensitive/ no.
                   4284: </descrip>
                   4285: 
                   4286: <p>RDNSS specific options:
                   4287: 
                   4288: <descrip>
                   4289:        <tag><label id="radv-rdnss-ns">ns <m/address/</tag>
                   4290:        This option specifies one recursive DNS server. Can be used multiple
                   4291:        times for multiple servers. It is mandatory to have at least one
                   4292:        <cf/ns/ option in <cf/rdnss/ definition.
                   4293: 
                   4294:        <tag><label id="radv-rdnss-lifetime">lifetime [mult] <m/expr/</tag>
                   4295:        This option specifies the time how long the RDNSS information may be
                   4296:        used by clients after the receipt of RA. It is expressed either in
                   4297:        seconds or (when <cf/mult/ is used) in multiples of <cf/max ra
                   4298:        interval/. Note that RDNSS information is also invalidated when
                   4299:        <cf/default lifetime/ expires. 0 means these addresses are no longer
                   4300:        valid DNS servers. Default: 3 * <cf/max ra interval/.
                   4301: </descrip>
                   4302: 
                   4303: <p>DNSSL specific options:
                   4304: 
                   4305: <descrip>
                   4306:        <tag><label id="radv-dnssl-domain">domain <m/address/</tag>
                   4307:        This option specifies one DNS search domain. Can be used multiple times
                   4308:        for multiple domains. It is mandatory to have at least one <cf/domain/
                   4309:        option in <cf/dnssl/ definition.
                   4310: 
                   4311:        <tag><label id="radv-dnssl-lifetime">lifetime [mult] <m/expr/</tag>
                   4312:        This option specifies the time how long the DNSSL information may be
                   4313:        used by clients after the receipt of RA. Details are the same as for
                   4314:        RDNSS <cf/lifetime/ option above. Default: 3 * <cf/max ra interval/.
                   4315: </descrip>
                   4316: 
                   4317: <sect1>Attributes
                   4318: <label id="radv-attr">
                   4319: 
                   4320: <p>RAdv defines two route attributes:
                   4321: 
                   4322: <descrip>
                   4323:        <tag><label id="rta-ra-preference">enum ra_preference</tag>
                   4324:        The preference of the route. The value can be <it/RA_PREF_LOW/,
                   4325:        <it/RA_PREF_MEDIUM/ or <it/RA_PREF_HIGH/. If the attribute is not set,
                   4326:        the <ref id="radv-iface-route-preference" name="route preference">
                   4327:        option is used.
                   4328: 
                   4329:        <tag><label id="rta-ra-lifetime">int ra_lifetime</tag>
                   4330:        The advertised lifetime of the route, in seconds. The special value of
                   4331:        0xffffffff represents infinity. If the attribute is not set, the
                   4332:        <ref id="radv-iface-route-lifetime" name="route lifetime">
                   4333:        option is used.
                   4334: </descrip>
                   4335: 
                   4336: <sect1>Example
                   4337: <label id="radv-exam">
                   4338: 
                   4339: <p><code>
                   4340: ipv6 table radv_routes;                        # Manually configured routes go here
                   4341: 
                   4342: protocol static {
                   4343:        ipv6 { table radv_routes; };
                   4344: 
                   4345:        route 2001:0DB8:4000::/48 unreachable;
                   4346:        route 2001:0DB8:4010::/48 unreachable;
                   4347: 
                   4348:        route 2001:0DB8:4020::/48 unreachable {
                   4349:                ra_preference = RA_PREF_HIGH;
                   4350:                ra_lifetime = 3600;
                   4351:        };
                   4352: }
                   4353: 
                   4354: protocol radv {
                   4355:        propagate routes yes;           # Propagate the routes from the radv_routes table
                   4356:        ipv6 { table radv_routes; export all; };
                   4357: 
                   4358:        interface "eth2" {
                   4359:                max ra interval 5;      # Fast failover with more routers
                   4360:                managed yes;            # Using DHCPv6 on eth2
                   4361:                prefix ::/0 {
                   4362:                        autonomous off; # So do not autoconfigure any IP
                   4363:                };
                   4364:        };
                   4365: 
                   4366:        interface "eth*";               # No need for any other options
                   4367: 
                   4368:        prefix 2001:0DB8:1234::/48 {
                   4369:                preferred lifetime 0;   # Deprecated address range
                   4370:        };
                   4371: 
                   4372:        prefix 2001:0DB8:2000::/48 {
                   4373:                autonomous off;         # Do not autoconfigure
                   4374:        };
                   4375: 
                   4376:        rdnss 2001:0DB8:1234::10;       # Short form of RDNSS
                   4377: 
                   4378:        rdnss {
                   4379:                lifetime mult 10;
                   4380:                ns 2001:0DB8:1234::11;
                   4381:                ns 2001:0DB8:1234::12;
                   4382:        };
                   4383: 
                   4384:        dnssl {
                   4385:                lifetime 3600;
                   4386:                domain "abc.com";
                   4387:                domain "xyz.com";
                   4388:        };
                   4389: }
                   4390: </code>
                   4391: 
                   4392: 
                   4393: <sect>RIP
                   4394: <label id="rip">
                   4395: 
                   4396: <sect1>Introduction
                   4397: <label id="rip-intro">
                   4398: 
                   4399: <p>The RIP protocol (also sometimes called Rest In Pieces) is a simple protocol,
                   4400: where each router broadcasts (to all its neighbors) distances to all networks it
                   4401: can reach. When a router hears distance to another network, it increments it and
                   4402: broadcasts it back. Broadcasts are done in regular intervals. Therefore, if some
                   4403: network goes unreachable, routers keep telling each other that its distance is
                   4404: the original distance plus 1 (actually, plus interface metric, which is usually
                   4405: one). After some time, the distance reaches infinity (that's 15 in RIP) and all
                   4406: routers know that network is unreachable. RIP tries to minimize situations where
                   4407: counting to infinity is necessary, because it is slow. Due to infinity being 16,
                   4408: you can't use RIP on networks where maximal distance is higher than 15
                   4409: hosts.
                   4410: 
                   4411: <p>BIRD supports RIPv1 (<rfc id="1058">), RIPv2 (<rfc id="2453">), RIPng (<rfc
                   4412: id="2080">), and RIP cryptographic authentication (<rfc id="4822">).
                   4413: 
                   4414: <p>RIP is a very simple protocol, and it has a lot of shortcomings. Slow
                   4415: convergence, big network load and inability to handle larger networks makes it
                   4416: pretty much obsolete. It is still usable on very small networks.
                   4417: 
                   4418: <sect1>Configuration
                   4419: <label id="rip-config">
                   4420: 
                   4421: <p>RIP configuration consists mainly of common protocol options and interface
                   4422: definitions, most RIP options are interface specific. RIPng (RIP for IPv6)
                   4423: protocol instance can be configured by using <cf/rip ng/ instead of just
                   4424: <cf/rip/ as a protocol type.
                   4425: 
                   4426: <p>RIP needs one IPv4 channel. RIPng needs one IPv6 channel. If no channel is
                   4427: configured, appropriate channel is defined with default parameters.
                   4428: 
                   4429: <code>
                   4430: protocol rip [ng] [&lt;name&gt;] {
                   4431:        infinity &lt;number&gt;;
                   4432:        ecmp &lt;switch&gt; [limit &lt;number&gt;];
                   4433:        interface &lt;interface pattern&gt; {
                   4434:                metric &lt;number&gt;;
                   4435:                mode multicast|broadcast;
                   4436:                passive &lt;switch&gt;;
                   4437:                address &lt;ip&gt;;
                   4438:                port &lt;number&gt;;
                   4439:                version 1|2;
                   4440:                split horizon &lt;switch&gt;;
                   4441:                poison reverse &lt;switch&gt;;
                   4442:                check zero &lt;switch&gt;;
                   4443:                update time &lt;number&gt;;
                   4444:                timeout time &lt;number&gt;;
                   4445:                garbage time &lt;number&gt;;
                   4446:                ecmp weight &lt;number&gt;;
                   4447:                ttl security &lt;switch&gt;; | tx only;
                   4448:                tx class|dscp &lt;number&gt;;
                   4449:                tx priority &lt;number&gt;;
                   4450:                rx buffer &lt;number&gt;;
                   4451:                tx length &lt;number&gt;;
                   4452:                check link &lt;switch&gt;;
                   4453:                authentication none|plaintext|cryptographic;
                   4454:                password "&lt;text&gt;";
                   4455:                password "&lt;text&gt;" {
                   4456:                        id &lt;num&gt;;
                   4457:                        generate from "&lt;date&gt;";
                   4458:                        generate to "&lt;date&gt;";
                   4459:                        accept from "&lt;date&gt;";
                   4460:                        accept to "&lt;date&gt;";
                   4461:                        from "&lt;date&gt;";
                   4462:                        to "&lt;date&gt;";
                   4463:                        algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 );
                   4464:                };
                   4465:        };
                   4466: }
                   4467: </code>
                   4468: 
                   4469: <descrip>
                   4470:        <tag><label id="rip-infinity">infinity <M>number</M></tag>
                   4471:        Selects the distance of infinity. Bigger values will make
                   4472:        protocol convergence even slower. The default value is 16.
                   4473: 
                   4474:        <tag><label id="rip-ecmp">ecmp <M>switch</M> [limit <M>number</M>]</tag>
                   4475:        This option specifies whether RIP is allowed to generate ECMP
                   4476:        (equal-cost multipath) routes. Such routes are used when there are
                   4477:        several directions to the destination, each with the same (computed)
                   4478:        cost. This option also allows to specify a limit on maximum number of
                   4479:        nexthops in one route. By default, ECMP is enabled if supported by
                   4480:        Kernel. Default value of the limit is 16.
                   4481: 
                   4482:        <tag><label id="rip-iface">interface <m/pattern/ [, <m/.../] { <m/options/ }</tag>
                   4483:        Interface definitions specify a set of interfaces on which the
                   4484:        protocol is activated and contain interface specific options.
                   4485:        See <ref id="proto-iface" name="interface"> common options for
                   4486:        detailed description.
                   4487: </descrip>
                   4488: 
                   4489: <p>Interface specific options:
                   4490: 
                   4491: <descrip>
                   4492:        <tag><label id="rip-iface-metric">metric <m/num/</tag>
                   4493:        This option specifies the metric of the interface. When a route is
                   4494:        received from the interface, its metric is increased by this value
                   4495:        before further processing. Valid values are 1-255, but values higher
                   4496:        than infinity has no further meaning. Default: 1.
                   4497: 
                   4498:        <tag><label id="rip-iface-mode">mode multicast|broadcast</tag>
                   4499:        This option selects the mode for RIP to use on the interface. The
                   4500:        default is multicast mode for RIPv2 and broadcast mode for RIPv1.
                   4501:        RIPng always uses the multicast mode.
                   4502: 
                   4503:        <tag><label id="rip-iface-passive">passive <m/switch/</tag>
                   4504:        Passive interfaces receive routing updates but do not transmit any
                   4505:        messages. Default: no.
                   4506: 
                   4507:        <tag><label id="rip-iface-address">address <m/ip/</tag>
                   4508:        This option specifies a destination address used for multicast or
                   4509:        broadcast messages, the default is the official RIP (224.0.0.9) or RIPng
                   4510:        (ff02::9) multicast address, or an appropriate broadcast address in the
                   4511:        broadcast mode.
                   4512: 
                   4513:        <tag><label id="rip-iface-port">port <m/number/</tag>
                   4514:        This option selects an UDP port to operate on, the default is the
                   4515:        official RIP (520) or RIPng (521) port.
                   4516: 
                   4517:        <tag><label id="rip-iface-version">version 1|2</tag>
                   4518:        This option selects the version of RIP used on the interface. For RIPv1,
                   4519:        automatic subnet aggregation is not implemented, only classful network
                   4520:        routes and host routes are propagated. Note that BIRD allows RIPv1 to be
                   4521:        configured with features that are defined for RIPv2 only, like
                   4522:        authentication or using multicast sockets. The default is RIPv2 for IPv4
                   4523:        RIP, the option is not supported for RIPng, as no further versions are
                   4524:        defined.
                   4525: 
                   4526:        <tag><label id="rip-iface-version-only">version only <m/switch/</tag>
                   4527:        Regardless of RIP version configured for the interface, BIRD accepts
                   4528:        incoming packets of any RIP version. This option restrict accepted
                   4529:        packets to the configured version. Default: no.
                   4530: 
                   4531:        <tag><label id="rip-iface-split-horizon">split horizon <m/switch/</tag>
                   4532:        Split horizon is a scheme for preventing routing loops. When split
                   4533:        horizon is active, routes are not regularly propagated back to the
                   4534:        interface from which they were received. They are either not propagated
                   4535:        back at all (plain split horizon) or propagated back with an infinity
                   4536:        metric (split horizon with poisoned reverse). Therefore, other routers
                   4537:        on the interface will not consider the router as a part of an
                   4538:        independent path to the destination of the route. Default: yes.
                   4539: 
                   4540:        <tag><label id="rip-iface-poison-reverse">poison reverse <m/switch/</tag>
                   4541:        When split horizon is active, this option specifies whether the poisoned
                   4542:        reverse variant (propagating routes back with an infinity metric) is
                   4543:        used. The poisoned reverse has some advantages in faster convergence,
                   4544:        but uses more network traffic. Default: yes.
                   4545: 
                   4546:        <tag><label id="rip-iface-check-zero">check zero <m/switch/</tag>
                   4547:        Received RIPv1 packets with non-zero values in reserved fields should
                   4548:        be discarded. This option specifies whether the check is performed or
                   4549:        such packets are just processed as usual. Default: yes.
                   4550: 
                   4551:        <tag><label id="rip-iface-update-time">update time <m/number/</tag>
                   4552:        Specifies the number of seconds between periodic updates. A lower number
                   4553:        will mean faster convergence but bigger network load. Default: 30.
                   4554: 
                   4555:        <tag><label id="rip-iface-timeout-time">timeout time <m/number/</tag>
                   4556:        Specifies the time interval (in seconds) between the last received route
                   4557:        announcement and the route expiration. After that, the network is
                   4558:        considered unreachable, but still is propagated with infinity distance.
                   4559:        Default: 180.
                   4560: 
                   4561:        <tag><label id="rip-iface-garbage-time">garbage time <m/number/</tag>
                   4562:        Specifies the time interval (in seconds) between the route expiration
                   4563:        and the removal of the unreachable network entry. The garbage interval,
                   4564:        when a route with infinity metric is propagated, is used for both
                   4565:        internal (after expiration) and external (after withdrawal) routes.
                   4566:        Default: 120.
                   4567: 
                   4568:        <tag><label id="rip-iface-ecmp-weight">ecmp weight <m/number/</tag>
                   4569:        When ECMP (multipath) routes are allowed, this value specifies a
                   4570:        relative weight used for nexthops going through the iface. Valid
                   4571:        values are 1-256. Default value is 1.
                   4572: 
                   4573:        <tag><label id="rip-iface-auth">authentication none|plaintext|cryptographic</tag>
                   4574:        Selects authentication method to be used. <cf/none/ means that packets
                   4575:        are not authenticated at all, <cf/plaintext/ means that a plaintext
                   4576:        password is embedded into each packet, and <cf/cryptographic/ means that
                   4577:        packets are authenticated using some cryptographic hash function
                   4578:        selected by option <cf/algorithm/ for each key. The default
                   4579:        cryptographic algorithm for RIP keys is Keyed-MD5. If you set
                   4580:        authentication to not-none, it is a good idea to add <cf>password</cf>
                   4581:        section. Default: none.
                   4582: 
                   4583:        <tag><label id="rip-iface-pass">password "<m/text/"</tag>
                   4584:        Specifies a password used for authentication. See <ref id="proto-pass"
                   4585:        name="password"> common option for detailed description.
                   4586: 
                   4587:        <tag><label id="rip-iface-ttl-security">ttl security [<m/switch/ | tx only]</tag>
                   4588:        TTL security is a feature that protects routing protocols from remote
                   4589:        spoofed packets by using TTL 255 instead of TTL 1 for protocol packets
                   4590:        destined to neighbors. Because TTL is decremented when packets are
                   4591:        forwarded, it is non-trivial to spoof packets with TTL 255 from remote
                   4592:        locations.
                   4593: 
                   4594:        If this option is enabled, the router will send RIP packets with TTL 255
                   4595:        and drop received packets with TTL less than 255. If this option si set
                   4596:        to <cf/tx only/, TTL 255 is used for sent packets, but is not checked
                   4597:        for received packets. Such setting does not offer protection, but offers
                   4598:        compatibility with neighbors regardless of whether they use ttl
                   4599:        security.
                   4600: 
                   4601:        For RIPng, TTL security is a standard behavior (required by <rfc
                   4602:        id="2080">) and therefore default value is yes. For IPv4 RIP, default
                   4603:        value is no.
                   4604: 
                   4605:        <tag><label id="rip-iface-tx-class">tx class|dscp|priority <m/number/</tag>
                   4606:        These options specify the ToS/DiffServ/Traffic class/Priority of the
                   4607:        outgoing RIP packets. See <ref id="proto-tx-class" name="tx class"> common
                   4608:        option for detailed description.
                   4609: 
                   4610:        <tag><label id="rip-iface-rx-buffer">rx buffer <m/number/</tag>
                   4611:        This option specifies the size of buffers used for packet processing.
                   4612:        The buffer size should be bigger than maximal size of received packets.
                   4613:        The default value is 532 for IPv4 RIP and interface MTU value for RIPng.
                   4614: 
                   4615:        <tag><label id="rip-iface-tx-length">tx length <m/number/</tag>
                   4616:        This option specifies the maximum length of generated RIP packets. To
                   4617:        avoid IP fragmentation, it should not exceed the interface MTU value.
                   4618:        The default value is 532 for IPv4 RIP and interface MTU value for RIPng.
                   4619: 
                   4620:        <tag><label id="rip-iface-check-link">check link <m/switch/</tag>
                   4621:        If set, the hardware link state (as reported by OS) is taken into
                   4622:        consideration. When the link disappears (e.g. an ethernet cable is
                   4623:        unplugged), neighbors are immediately considered unreachable and all
                   4624:        routes received from them are withdrawn. It is possible that some
                   4625:        hardware drivers or platforms do not implement this feature.
                   4626:        Default: yes.
                   4627: </descrip>
                   4628: 
                   4629: <sect1>Attributes
                   4630: <label id="rip-attr">
                   4631: 
                   4632: <p>RIP defines two route attributes:
                   4633: 
                   4634: <descrip>
                   4635:        <tag><label id="rta-rip-metric">int rip_metric</tag>
                   4636:        RIP metric of the route (ranging from 0 to <cf/infinity/). When routes
                   4637:        from different RIP instances are available and all of them have the same
                   4638:        preference, BIRD prefers the route with lowest <cf/rip_metric/. When a
                   4639:        non-RIP route is exported to RIP, the default metric is 1.
                   4640: 
                   4641:        <tag><label id="rta-rip-tag">int rip_tag</tag>
                   4642:        RIP route tag: a 16-bit number which can be used to carry additional
                   4643:        information with the route (for example, an originating AS number in
                   4644:        case of external routes). When a non-RIP route is exported to RIP, the
                   4645:        default tag is 0.
                   4646: </descrip>
                   4647: 
                   4648: <sect1>Example
                   4649: <label id="rip-exam">
                   4650: 
                   4651: <p><code>
                   4652: protocol rip {
                   4653:        ipv4 {
                   4654:                import all;
                   4655:                export all;
                   4656:        };
                   4657:        interface "eth*" {
                   4658:                metric 2;
                   4659:                port 1520;
                   4660:                mode multicast;
                   4661:                update time 12;
                   4662:                timeout time 60;
                   4663:                authentication cryptographic;
                   4664:                password "secret" { algorithm hmac sha256; };
                   4665:        };
                   4666: }
                   4667: </code>
                   4668: 
                   4669: 
                   4670: <sect>RPKI
                   4671: <label id="rpki">
                   4672: 
                   4673: <sect1>Introduction
                   4674: 
                   4675: <p>The Resource Public Key Infrastructure (RPKI) is mechanism for origin
                   4676: validation of BGP routes (RFC 6480). BIRD supports only so-called RPKI-based
                   4677: origin validation. There is implemented RPKI to Router (RPKI-RTR) protocol (RFC
                   4678: 6810). It uses some of the RPKI data to allow a router to verify that the
                   4679: autonomous system announcing an IP address prefix is in fact authorized to do
                   4680: so. This is not crypto checked so can be violated. But it should prevent the
                   4681: vast majority of accidental hijackings on the Internet today, e.g. the famous
                   4682: Pakastani accidental announcement of YouTube's address space.
                   4683: 
                   4684: <p>The RPKI-RTR protocol receives and maintains a set of ROAs from a cache
                   4685: server (also called validator). You can validate routes (RFC 6483) using
                   4686: function <cf/roa_check()/ in filter and set it as import filter at the BGP
                   4687: protocol. BIRD should re-validate all of affected routes after RPKI update by
                   4688: RFC 6811, but we don't support it yet! You can use a BIRD's client command
                   4689: <cf>reload in <m/bgp_protocol_name/</cf> for manual call of revalidation of all
                   4690: routes.
                   4691: 
                   4692: <sect1>Supported transports
                   4693: <p>
                   4694: <itemize>
                   4695:         <item>Unprotected transport over TCP uses a port 323. The cache server
                   4696:         and BIRD router should be on the same trusted and controlled network
                   4697:         for security reasons.
                   4698:         <item>SSHv2 encrypted transport connection uses the normal SSH port
                   4699:         22.
                   4700: </itemize>
                   4701: 
                   4702: <sect1>Configuration
                   4703: 
                   4704: <p>We currently support just one cache server per protocol. However you can
                   4705: define more RPKI protocols generally.
                   4706: 
                   4707: <code>
                   4708: protocol rpki [&lt;name&gt;] {
                   4709:         roa4 { table &lt;tab&gt;; };
                   4710:         roa6 { table &lt;tab&gt;; };
                   4711:         remote &lt;ip&gt; | "&lt;domain&gt;" [port &lt;num&gt;];
                   4712:         port &lt;num&gt;;
                   4713:         refresh [keep] &lt;num&gt;;
                   4714:         retry [keep] &lt;num&gt;;
                   4715:         expire [keep] &lt;num&gt;;
                   4716:         transport tcp;
                   4717:         transport ssh {
                   4718:                 bird private key "&lt;/path/to/id_rsa&gt;";
                   4719:                 remote public key "&lt;/path/to/known_host&gt;";
                   4720:                 user "&lt;name&gt;";
                   4721:         };
                   4722: }
                   4723: </code>
                   4724: 
                   4725: <p>Alse note that you have to specify the ROA channel. If you want to import
                   4726: only IPv4 prefixes you have to specify only roa4 channel. Similarly with IPv6
                   4727: prefixes only. If you want to fetch both IPv4 and even IPv6 ROAs you have to
                   4728: specify both channels.
                   4729: 
                   4730: <sect2>RPKI protocol options
                   4731: <p>
                   4732: <descrip>
                   4733:         <tag>remote <m/ip/ | "<m/hostname/" [port <m/num/]</tag> Specifies
                   4734:         a destination address of the cache server.  Can be specified by an IP
                   4735:         address or by full domain name string.  Only one cache can be specified
                   4736:         per protocol. This option is required.
                   4737: 
                   4738:         <tag>port <m/num/</tag> Specifies the port number. The default port
                   4739:         number is 323 for transport without any encryption and 22 for transport
                   4740:         with SSH encryption.
                   4741: 
                   4742:         <tag>refresh [keep] <m/num/</tag> Time period in seconds. Tells how
                   4743:         long to wait before next attempting to poll the cache using a Serial
                   4744:         Query or a Reset Query packet. Must be lower than 86400 seconds (one
                   4745:         day). Too low value can caused a false positive detection of
                   4746:         network connection problems.  A keyword <cf/keep/ suppresses updating
                   4747:         this value by a cache server.
                   4748:         Default: 3600 seconds
                   4749: 
                   4750:         <tag>retry [keep] <m/num/</tag> Time period in seconds between a failed
                   4751:         Serial/Reset Query and a next attempt.  Maximum allowed value is 7200
                   4752:         seconds (two hours). Too low value can caused a false positive
                   4753:         detection of network connection problems.  A keyword <cf/keep/
                   4754:         suppresses updating this value by a cache server.
                   4755:         Default: 600 seconds
                   4756: 
                   4757:         <tag>expire [keep] <m/num/</tag> Time period in seconds. Received
                   4758:         records are deleted if the client was unable to successfully refresh
                   4759:         data for this time period.  Must be in range from 600 seconds (ten
                   4760:         minutes) to 172800 seconds (two days).  A keyword <cf/keep/
                   4761:         suppresses updating this value by a cache server.
                   4762:         Default: 7200 seconds
                   4763: 
                   4764:         <tag>transport tcp</tag> Unprotected transport over TCP. It's a default
                   4765:         transport. Should be used only on secure private networks.
                   4766:         Default: tcp
                   4767: 
                   4768:         <tag>transport ssh { <m/SSH transport options.../ }</tag> It enables a
                   4769:         SSHv2 transport encryption. Cannot be combined with a TCP transport.
                   4770:         Default: off
                   4771: </descrip>
                   4772: 
                   4773: <sect3>SSH transport options
                   4774: <p>
                   4775: <descrip>
                   4776:        <tag>bird private key "<m>/path/to/id_rsa</m>"</tag>
                   4777:        A path to the BIRD's private SSH key for authentication.
                   4778:        It can be a <cf><m>id_rsa</m></cf> file.
                   4779: 
                   4780:        <tag>remote public key "<m>/path/to/known_host</m>"</tag>
                   4781:        A path to the cache's public SSH key for verification identity
                   4782:        of the cache server. It could be a path to <cf><m>known_host</m></cf> file.
                   4783: 
                   4784:        <tag>user "<m/name/"</tag>
                   4785:        A SSH user name for authentication. This option is a required.
                   4786: </descrip>
                   4787: 
                   4788: <sect1>Examples
                   4789: <sect2>BGP origin validation
                   4790: <p>Policy: Don't import <cf/ROA_INVALID/ routes.
                   4791: <code>
                   4792: roa4 table r4;
                   4793: roa6 table r6;
                   4794: 
                   4795: protocol rpki {
                   4796:        debug all;
                   4797: 
                   4798:        roa4 { table r4; };
                   4799:        roa6 { table r6; };
                   4800: 
                   4801:        # Please, do not use rpki-validator.realmv6.org in production
                   4802:        remote "rpki-validator.realmv6.org" port 8282;
                   4803: 
                   4804:        retry keep 5;
                   4805:        refresh keep 30;
                   4806:        expire 600;
                   4807: }
                   4808: 
                   4809: filter peer_in_v4 {
                   4810:        if (roa_check(r4, net, bgp_path.last) = ROA_INVALID) then
                   4811:        {
                   4812:                print "Ignore RPKI invalid ", net, " for ASN ", bgp_path.last;
                   4813:                reject;
                   4814:        }
                   4815:        accept;
                   4816: }
                   4817: 
                   4818: protocol bgp {
                   4819:        debug all;
                   4820:        local as 65000;
                   4821:        neighbor 192.168.2.1 as 65001;
                   4822:        ipv4 {
                   4823:                import filter peer_in_v4;
                   4824:                export none;
                   4825:        };
                   4826: }
                   4827: </code>
                   4828: 
                   4829: <sect2>SSHv2 transport encryption
                   4830: <p>
                   4831: <code>
                   4832: roa4 table r4;
                   4833: roa6 table r6;
                   4834: 
                   4835: protocol rpki {
                   4836:        debug all;
                   4837: 
                   4838:        roa4 { table r4; };
                   4839:        roa6 { table r6; };
                   4840: 
                   4841:        remote 127.0.0.1 port 2345;
                   4842:        transport ssh {
                   4843:                bird private key "/home/birdgeek/.ssh/id_rsa";
                   4844:                remote public key "/home/birdgeek/.ssh/known_hosts";
                   4845:                user "birdgeek";
                   4846:        };
                   4847: 
                   4848:        # Default interval values
                   4849: }
                   4850: </code>
                   4851: 
                   4852: 
                   4853: <sect>Static
                   4854: <label id="static">
                   4855: 
                   4856: <p>The Static protocol doesn't communicate with other routers in the network,
                   4857: but instead it allows you to define routes manually. This is often used for
                   4858: specifying how to forward packets to parts of the network which don't use
                   4859: dynamic routing at all and also for defining sink routes (i.e., those telling to
                   4860: return packets as undeliverable if they are in your IP block, you don't have any
                   4861: specific destination for them and you don't want to send them out through the
                   4862: default route to prevent routing loops).
                   4863: 
                   4864: <p>There are three classes of definitions in Static protocol configuration --
                   4865: global options, static route definitions, and per-route options. Usually, the
                   4866: definition of the protocol contains mainly a list of static routes.
                   4867: Static routes have no specific attributes.
                   4868: 
                   4869: <p>Global options:
                   4870: 
                   4871: <descrip>
                   4872:        <tag><label id="static-check-link">check link <m/switch/</tag>
                   4873:        If set, hardware link states of network interfaces are taken into
                   4874:        consideration.  When link disappears (e.g. ethernet cable is unplugged),
                   4875:        static routes directing to that interface are removed. It is possible
                   4876:        that some hardware drivers or platforms do not implement this feature.
                   4877:        Default: off.
                   4878: 
                   4879:        <tag><label id="static-igp-table">igp table <m/name/</tag>
                   4880:        Specifies a table that is used for route table lookups of recursive
                   4881:        routes. Default: the same table as the protocol is connected to.
                   4882: </descrip>
                   4883: 
                   4884: <p>Route definitions (each may also contain a block of per-route options):
                   4885: 
                   4886: <sect1>Regular routes; MPLS switching rules
                   4887: 
                   4888: <p>There exist several types of routes; keep in mind that <m/prefix/ syntax is
                   4889: <ref id="type-prefix" name="dependent on network type">.
                   4890: 
                   4891: <descrip>
                   4892:        <tag>route <m/prefix/ via <m/ip/|<m/"interface"/ [mpls <m/num/[/<m/num/[/<m/num/[...]]]]</tag>
                   4893:        Next hop routes may bear one or more <ref id="route-next-hop" name="next hops">.
                   4894:        Every next hop is preceded by <cf/via/ and configured as shown.
                   4895: 
                   4896:        <tag>route <m/prefix/ recursive <m/ip/ [mpls <m/num/[/<m/num/[/<m/num/[...]]]]</tag>
                   4897:        Recursive nexthop resolves the given IP in the configured IGP table and
                   4898:        uses that route's next hop. The MPLS stacks are concatenated; on top is
                   4899:        the IGP's nexthop stack and on bottom is this route's stack.
                   4900: 
                   4901:        <tag>route <m/prefix/ blackhole|unreachable|prohibit</tag>
                   4902:        Special routes specifying to silently drop the packet, return it as
                   4903:        unreachable or return it as administratively prohibited. First two
                   4904:        targets are also known as <cf/drop/ and <cf/reject/.
                   4905: </descrip>
                   4906: 
                   4907: <p>When the particular destination is not available (the interface is down or
                   4908: the next hop of the route is not a neighbor at the moment), Static just
                   4909: uninstalls the route from the table it is connected to and adds it again as soon
                   4910: as the destination becomes adjacent again.
                   4911: 
                   4912: <sect1>Route Origin Authorization
                   4913: 
                   4914: <p>The ROA config is just <cf>route <m/prefix/ max <m/int/ as <m/int/</cf> with no nexthop.
                   4915: 
                   4916: <sect1>Flowspec
                   4917: <label id="flowspec-network-type">
                   4918: 
                   4919: <p>The flow specification are rules for routers and firewalls for filtering
                   4920: purpose. It is described by <rfc id="5575">. There are 3 types of arguments:
                   4921: <m/inet4/ or <m/inet6/ prefixes, bitmasks matching expressions and numbers
                   4922: matching expressions.
                   4923: 
                   4924: Bitmasks matching is written using <m/value/<cf>/</cf><m/mask/ or
                   4925: <cf/!/<m/value/<cf>/</cf><m/mask/ pairs. It means that <cf/(/<m/data/ <cf/&/
                   4926: <m/mask/<cf/)/ is or is not equal to <m/value/.
                   4927: 
                   4928: Numbers matching is a matching sequence of numbers and ranges separeted by a
                   4929: commas (<cf/,/) (e.g. <cf/10,20,30/). Ranges can be written using double dots
                   4930: <cf/../ notation (e.g. <cf/80..90,120..124/). An alternative notation are
                   4931: sequence of one or more pairs of relational operators and values separated by
                   4932: logical operators <cf/&&/ or <cf/||/. Allowed relational operators are <cf/=/,
                   4933: <cf/!=/, <cf/</, <cf/<=/, <cf/>/, <cf/>=/, <cf/true/ and <cf/false/.
                   4934: 
                   4935: <sect2>IPv4 Flowspec
                   4936: 
                   4937: <p><descrip>
                   4938:        <tag><label id="flow-dst">dst <m/inet4/</tag>
                   4939:        Set a matching destination prefix (e.g. <cf>dst 192.168.0.0/16</cf>).
                   4940:        Only this option is mandatory in IPv4 Flowspec.
                   4941: 
                   4942:        <tag><label id="flow-src">src <m/inet4/</tag>
                   4943:        Set a matching source prefix (e.g. <cf>src 10.0.0.0/8</cf>).
                   4944: 
                   4945:        <tag><label id="flow-proto">proto <m/numbers-match/</tag>
                   4946:        Set a matching IP protocol numbers (e.g.  <cf/proto 6/).
                   4947: 
                   4948:        <tag><label id="flow-port">port <m/numbers-match/</tag>
                   4949:        Set a matching source or destination TCP/UDP port numbers (e.g.
                   4950:        <cf>port 1..1023,1194,3306</cf>).
                   4951: 
                   4952:        <tag><label id="flow-dport">dport <m/numbers-match/</tag>
                   4953:        Set a mating destination port numbers (e.g. <cf>dport 49151</cf>).
                   4954: 
                   4955:        <tag><label id="flow-sport">sport <m/numbers-match/</tag>
                   4956:        Set a matching source port numbers (e.g. <cf>sport = 0</cf>).
                   4957: 
                   4958:        <tag><label id="flow-icmp-type">icmp type <m/numbers-match/</tag>
                   4959:        Set a matching type field number of an ICMP packet (e.g. <cf>icmp type
                   4960:        3</cf>)
                   4961: 
                   4962:        <tag><label id="flow-icmp-code">icmp code <m/numbers-match/</tag>
                   4963:        Set a matching code field number of an ICMP packet (e.g. <cf>icmp code
                   4964:        1</cf>)
                   4965: 
                   4966:        <tag><label id="flow-tcp-flags">tcp flags <m/bitmask-match/</tag>
                   4967:        Set a matching bitmask for TCP header flags (aka control bits) (e.g.
                   4968:        <cf>tcp flags 0x03/0x0f;</cf>). The maximum length of mask is 12 bits
                   4969:        (0xfff).
                   4970: 
                   4971:        <tag><label id="flow-length">length <m/numbers-match/</tag>
                   4972:        Set a matching packet length (e.g. <cf>length > 1500;</cf>)
                   4973: 
                   4974:        <tag><label id="flow-dscp">dscp <m/numbers-match/</tag>
                   4975:        Set a matching DiffServ Code Point number (e.g. <cf>length > 1500;</cf>).
                   4976: 
                   4977:        <tag><label id="flow-fragment">fragment <m/fragmentation-type/</tag>
                   4978:        Set a matching type of packet fragmentation. Allowed fragmentation
                   4979:        types are <cf/dont_fragment/, <cf/is_fragment/, <cf/first_fragment/,
                   4980:        <cf/last_fragment/ (e.g. <cf>fragment is_fragment &&
                   4981:        !dont_fragment</cf>).
                   4982: </descrip>
                   4983: 
                   4984: <p><code>
                   4985: protocol static {
                   4986:        flow4;
                   4987: 
                   4988:        route flow4 {
                   4989:                dst 10.0.0.0/8;
                   4990:                port > 24 && < 30 || 40..50,60..70,80 && >= 90;
                   4991:                tcp flags 0x03/0x0f;
                   4992:                length > 1024;
                   4993:                dscp = 63;
                   4994:                fragment dont_fragment, is_fragment || !first_fragment;
                   4995:        };
                   4996: }
                   4997: </code>
                   4998: 
                   4999: <sect2>Differences for IPv6 Flowspec
                   5000: 
                   5001: <p>Flowspec IPv6 are same as Flowspec IPv4 with a few exceptions.
                   5002: <itemize>
                   5003:        <item>Prefixes <m/inet6/ can be specified not only with prefix length,
                   5004:        but with prefix <cf/offset/ <m/num/ too (e.g.
                   5005:        <cf>::1234:5678:9800:0000/101 offset 64</cf>). Offset means to don't
                   5006:        care of <m/num/ first bits.
                   5007:        <item>IPv6 Flowspec hasn't mandatory any flowspec component.
                   5008:        <item>In IPv6 packets, there is a matching the last next header value
                   5009:        for a matching IP protocol number (e.g. <cf>next header 6</cf>).
                   5010:        <item>It is not possible to set <cf>dont_fragment</cf> as a type of
                   5011:        packet fragmentation.
                   5012: </itemize>
                   5013: 
                   5014: <p><descrip>
                   5015:        <tag><label id="flow6-dst">dst <m/inet6/ [offset <m/num/]</tag>
                   5016:        Set a matching destination IPv6 prefix (e.g. <cf>dst
                   5017:        ::1c77:3769:27ad:a11a/128 offset 64</cf>).
                   5018: 
                   5019:        <tag><label id="flow6-src">src <m/inet6/ [offset <m/num/]</tag>
                   5020:        Set a matching source IPv6 prefix (e.g. <cf>src fe80::/64</cf>).
                   5021: 
                   5022:        <tag><label id="flow6-next-header">next header <m/numbers-match/</tag>
                   5023:        Set a matching IP protocol numbers (e.g. <cf>next header != 6</cf>).
                   5024: 
                   5025:        <tag><label id="flow6-label">label <m/bitmask-match/</tag>
                   5026:        Set a 20-bit bitmask for matching Flow Label field in IPv6 packets
                   5027:        (e.g. <cf>label 0x8e5/0x8e5</cf>).
                   5028: </descrip>
                   5029: 
                   5030: <p><code>
                   5031: protocol static {
                   5032:        flow6 { table myflow6; };
                   5033: 
                   5034:        route flow6 {
                   5035:                dst fec0:1122:3344:5566:7788:99aa:bbcc:ddee/128;
                   5036:                src 0000:0000:0000:0001:1234:5678:9800:0000/101 offset 63;
                   5037:                next header = 23;
                   5038:                sport > 24 && < 30 || = 40 || 50,60,70..80;
                   5039:                dport = 50;
                   5040:                tcp flags 0x03/0x0f, !0/0xff || 0x33/0x33;
                   5041:                fragment !is_fragment || !first_fragment;
                   5042:                label 0xaaaa/0xaaaa && 0x33/0x33;
                   5043:        };
                   5044: }
                   5045: </code>
                   5046: 
                   5047: <sect1>Per-route options
                   5048: <p>
                   5049: <descrip>
                   5050:        <tag><label id="static-route-bfd">bfd <m/switch/</tag>
                   5051:        The Static protocol could use BFD protocol for next hop liveness
                   5052:        detection. If enabled, a BFD session to the route next hop is created
                   5053:        and the static route is BFD-controlled -- the static route is announced
                   5054:        only if the next hop liveness is confirmed by BFD. If the BFD session
                   5055:        fails, the static route is removed. Note that this is a bit different
                   5056:        compared to other protocols, which may use BFD as an advisory mechanism
                   5057:        for fast failure detection but ignores it if a BFD session is not even
                   5058:        established.
                   5059: 
                   5060:        This option can be used for static routes with a direct next hop, or
                   5061:        also for for individual next hops in a static multipath route (see
                   5062:        above). Note that BFD protocol also has to be configured, see
                   5063:        <ref id="bfd" name="BFD"> section for details. Default value is no.
                   5064: 
                   5065:        <tag><label id="static-route-filter"><m/filter expression/</tag>
                   5066:        This is a special option that allows filter expressions to be configured
                   5067:        on per-route basis. Can be used multiple times. These expressions are
                   5068:        evaluated when the route is originated, similarly to the import filter
                   5069:        of the static protocol. This is especially useful for configuring route
                   5070:        attributes, e.g., <cf/ospf_metric1 = 100;/ for a route that will be
                   5071:        exported to the OSPF protocol.
                   5072: </descrip>
                   5073: 
                   5074: <sect1>Example static config
                   5075: 
                   5076: <p><code>
                   5077: protocol static {
                   5078:        ipv4 { table testable; };       # Connect to a non-default routing table
                   5079:        check link;                     # Advertise routes only if link is up
                   5080:        route 0.0.0.0/0 via 198.51.100.130; # Default route
                   5081:        route 10.0.0.0/8                # Multipath route
                   5082:                via 198.51.100.10 weight 2
                   5083:                via 198.51.100.20 bfd   # BFD-controlled next hop
                   5084:                via 192.0.2.1;
                   5085:        route 203.0.113.0/24 unreachable; # Sink route
                   5086:        route 10.2.0.0/24 via "arc0";   # Secondary network
                   5087:        route 192.168.10.0/24 via 198.51.100.100 {
                   5088:                ospf_metric1 = 20;      # Set extended attribute
                   5089:        }
                   5090:        route 192.168.10.0/24 via 198.51.100.100 {
                   5091:                ospf_metric2 = 100;     # Set extended attribute
                   5092:                ospf_tag = 2;           # Set extended attribute
                   5093:                bfd;                    # BFD-controlled route
                   5094:        }
                   5095: }
                   5096: </code>
                   5097: 
                   5098: 
                   5099: <chapt>Conclusions
                   5100: <label id="conclusion">
                   5101: 
                   5102: <sect>Future work
                   5103: <label id="future-work">
                   5104: 
                   5105: <p>Although BIRD supports all the commonly used routing protocols, there are
                   5106: still some features which would surely deserve to be implemented in future
                   5107: versions of BIRD:
                   5108: 
                   5109: <itemize>
                   5110: <item>Opaque LSA's
                   5111: <item>Route aggregation and flap dampening
                   5112: <item>Multicast routing protocols
                   5113: <item>Ports to other systems
                   5114: </itemize>
                   5115: 
                   5116: 
                   5117: <sect>Getting more help
                   5118: <label id="help">
                   5119: 
                   5120: <p>If you use BIRD, you're welcome to join the bird-users mailing list
                   5121: (<HTMLURL URL="mailto:bird-users@network.cz" name="bird-users@network.cz">)
                   5122: where you can share your experiences with the other users and consult
                   5123: your problems with the authors. To subscribe to the list, visit
                   5124: <HTMLURL URL="http://bird.network.cz/?m_list" name="http://bird.network.cz/?m_list">.
                   5125: The home page of BIRD can be found at <HTMLURL URL="http://bird.network.cz/" name="http://bird.network.cz/">.
                   5126: 
                   5127: <p>BIRD is a relatively young system and it probably contains some bugs. You can
                   5128: report any problems to the bird-users list and the authors will be glad to solve
                   5129: them, but before you do so, please make sure you have read the available
                   5130: documentation and that you are running the latest version (available at
                   5131: <HTMLURL URL="ftp://bird.network.cz/pub/bird" name="bird.network.cz:/pub/bird">).
                   5132: (Of course, a patch which fixes the bug is always welcome as an attachment.)
                   5133: 
                   5134: <p>If you want to understand what is going inside, Internet standards are a good
                   5135: and interesting reading. You can get them from
                   5136: <HTMLURL URL="ftp://ftp.rfc-editor.org/" name="ftp.rfc-editor.org"> (or a
                   5137: nicely sorted version from <HTMLURL URL="ftp://atrey.karlin.mff.cuni.cz/pub/rfc"
                   5138: name="atrey.karlin.mff.cuni.cz:/pub/rfc">).
                   5139: 
                   5140: <p><it/Good luck!/
                   5141: 
                   5142: </book>
                   5143: 
                   5144: <!--
                   5145: LocalWords:  GPL IPv GateD BGPv RIPv OSPFv Linux sgml html dvi sgmltools Pavel
                   5146: LocalWords:  linuxdoc dtd descrip config conf syslog stderr auth ospf bgp Mbps
                   5147: LocalWords:  router's eval expr num birdc ctl UNIX if's enums bool int ip GCC
                   5148: LocalWords:  len ipaddress pxlen netmask enum bgppath bgpmask clist gw md eth
                   5149: LocalWords:  RTS printn quitbird iBGP AS'es eBGP RFC multiprotocol IGP Machek
                   5150: LocalWords:  EGP misconfigurations keepalive pref aggr aggregator BIRD's RTC
                   5151: LocalWords:  OS'es AS's multicast nolisten misconfigured UID blackhole MRTD MTU
                   5152: LocalWords:  uninstalls ethernets IP binutils ANYCAST anycast dest RTD ICMP rfc
                   5153: LocalWords:  compat multicasts nonbroadcast pointopoint loopback sym stats
                   5154: LocalWords:  Perl SIGHUP dd mm yy HH MM SS EXT IA UNICAST multihop Discriminator txt
                   5155: LocalWords:  proto wildcard Ondrej Filip
                   5156: -->

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>