Annotation of embedaddon/bird2/filter/trie.c, revision 1.1.1.1

1.1       misho       1: /*
                      2:  *     Filters: Trie for prefix sets
                      3:  *
                      4:  *     Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
                      5:  *
                      6:  *     Can be freely distributed and used under the terms of the GNU GPL.
                      7:  */
                      8: 
                      9: /**
                     10:  * DOC: Trie for prefix sets
                     11:  *
                     12:  * We use a (compressed) trie to represent prefix sets. Every node
                     13:  * in the trie represents one prefix (&addr/&plen) and &plen also
                     14:  * indicates the index of the bit in the address that is used to
                     15:  * branch at the node. If we need to represent just a set of
                     16:  * prefixes, it would be simple, but we have to represent a
                     17:  * set of prefix patterns. Each prefix pattern consists of
                     18:  * &ppaddr/&pplen and two integers: &low and &high, and a prefix
                     19:  * &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
                     20:  * bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
                     21:  *
                     22:  * We use a bitmask (&accept) to represent accepted prefix lengths
                     23:  * at a node. As there are 33 prefix lengths (0..32 for IPv4), but
                     24:  * there is just one prefix of zero length in the whole trie so we
                     25:  * have &zero flag in &f_trie (indicating whether the trie accepts
                     26:  * prefix 0.0.0.0/0) as a special case, and &accept bitmask
                     27:  * represents accepted prefix lengths from 1 to 32.
                     28:  *
                     29:  * There are two cases in prefix matching - a match when the length
                     30:  * of the prefix is smaller that the length of the prefix pattern,
                     31:  * (&plen < &pplen) and otherwise. The second case is simple - we
                     32:  * just walk through the trie and look at every visited node
                     33:  * whether that prefix accepts our prefix length (&plen). The
                     34:  * first case is tricky - we don't want to examine every descendant
                     35:  * of a final node, so (when we create the trie) we have to propagate
                     36:  * that information from nodes to their ascendants.
                     37:  *
                     38:  * Suppose that we have two masks (M1 and M2) for a node. Mask M1
                     39:  * represents accepted prefix lengths by just the node and mask M2
                     40:  * represents accepted prefix lengths by the node or any of its
                     41:  * descendants. Therefore M2 is a bitwise or of M1 and children's
                     42:  * M2 and this is a maintained invariant during trie building.
                     43:  * Basically, when we want to match a prefix, we walk through the trie,
                     44:  * check mask M1 for our prefix length and when we came to
                     45:  * final node, we check mask M2.
                     46:  *
                     47:  * There are two differences in the real implementation. First,
                     48:  * we use a compressed trie so there is a case that we skip our
                     49:  * final node (if it is not in the trie) and we came to node that
                     50:  * is either extension of our prefix, or completely out of path
                     51:  * In the first case, we also have to check M2.
                     52:  *
                     53:  * Second, we really need not to maintain two separate bitmasks.
                     54:  * Checks for mask M1 are always larger than &applen and we need
                     55:  * just the first &pplen bits of mask M2 (if trie compression
                     56:  * hadn't been used it would suffice to know just $applen-th bit),
                     57:  * so we have to store them together in &accept mask - the first
                     58:  * &pplen bits of mask M2 and then mask M1.
                     59:  *
                     60:  * There are four cases when we walk through a trie:
                     61:  *
                     62:  * - we are in NULL
                     63:  * - we are out of path (prefixes are inconsistent)
                     64:  * - we are in the wanted (final) node (node length == &plen)
                     65:  * - we are beyond the end of path (node length > &plen)
                     66:  * - we are still on path and keep walking (node length < &plen)
                     67:  *
                     68:  * The walking code in trie_match_prefix() is structured according to
                     69:  * these cases.
                     70:  */
                     71: 
                     72: #include "nest/bird.h"
                     73: #include "lib/string.h"
                     74: #include "conf/conf.h"
                     75: #include "filter/filter.h"
                     76: #include "filter/data.h"
                     77: 
                     78: 
                     79: /*
                     80:  * In the trie code, the prefix length is internally treated as for the whole
                     81:  * ip_addr, regardless whether it contains an IPv4 or IPv6 address. Therefore,
                     82:  * remaining definitions make sense.
                     83:  */
                     84: 
                     85: #define ipa_mkmask(x) ip6_mkmask(x)
                     86: #define ipa_masklen(x) ip6_masklen(&x)
                     87: #define ipa_pxlen(x,y) ip6_pxlen(x,y)
                     88: #define ipa_getbit(x,n) ip6_getbit(x,n)
                     89: 
                     90: 
                     91: /**
                     92:  * f_new_trie - allocates and returns a new empty trie
                     93:  * @lp: linear pool to allocate items from
                     94:  * @node_size: node size to be used (&f_trie_node and user data)
                     95:  */
                     96: struct f_trie *
                     97: f_new_trie(linpool *lp, uint node_size)
                     98: {
                     99:   struct f_trie * ret;
                    100:   ret = lp_allocz(lp, sizeof(struct f_trie) + node_size);
                    101:   ret->lp = lp;
                    102:   ret->node_size = node_size;
                    103:   return ret;
                    104: }
                    105: 
                    106: static inline struct f_trie_node *
                    107: new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
                    108: {
                    109:   struct f_trie_node *n = lp_allocz(t->lp, t->node_size);
                    110:   n->plen = plen;
                    111:   n->addr = paddr;
                    112:   n->mask = pmask;
                    113:   n->accept = amask;
                    114:   return n;
                    115: }
                    116: 
                    117: static inline void
                    118: attach_node(struct f_trie_node *parent, struct f_trie_node *child)
                    119: {
                    120:   parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
                    121: }
                    122: 
                    123: /**
                    124:  * trie_add_prefix
                    125:  * @t: trie to add to
                    126:  * @net: IP network prefix
                    127:  * @l: prefix lower bound
                    128:  * @h: prefix upper bound
                    129:  *
                    130:  * Adds prefix (prefix pattern) @n to trie @t.  @l and @h are lower
                    131:  * and upper bounds on accepted prefix lengths, both inclusive.
                    132:  * 0 <= l, h <= 32 (128 for IPv6).
                    133:  *
                    134:  * Returns a pointer to the allocated node. The function can return a pointer to
                    135:  * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
                    136:  * a pointer to the root node is returned.
                    137:  */
                    138: 
                    139: void *
                    140: trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
                    141: {
                    142:   ip_addr px = net_prefix(net);
                    143:   uint plen = net_pxlen(net);
                    144: 
                    145:   if (net->type == NET_IP4)
                    146:   {
                    147:     const uint delta = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
                    148:     plen += delta;
                    149:     l += delta;
                    150:     h += delta;
                    151:   }
                    152: 
                    153:   if (l == 0)
                    154:     t->zero = 1;
                    155:   else
                    156:     l--;
                    157: 
                    158:   if (h < plen)
                    159:     plen = h;
                    160: 
                    161:   ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
                    162:   ip_addr pmask = ipa_mkmask(plen);
                    163:   ip_addr paddr = ipa_and(px, pmask);
                    164:   struct f_trie_node *o = NULL;
                    165:   struct f_trie_node *n = t->root;
                    166: 
                    167:   while (n)
                    168:     {
                    169:       ip_addr cmask = ipa_and(n->mask, pmask);
                    170: 
                    171:       if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
                    172:        {
                    173:          /* We are out of path - we have to add branching node 'b'
                    174:             between node 'o' and node 'n', and attach new node 'a'
                    175:             as the other child of 'b'. */
                    176:          int blen = ipa_pxlen(paddr, n->addr);
                    177:          ip_addr bmask = ipa_mkmask(blen);
                    178:          ip_addr baddr = ipa_and(px, bmask);
                    179: 
                    180:          /* Merge accept masks from children to get accept mask for node 'b' */
                    181:          ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);
                    182: 
                    183:          struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
                    184:          struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
                    185:          attach_node(o, b);
                    186:          attach_node(b, n);
                    187:          attach_node(b, a);
                    188:          return a;
                    189:        }
                    190: 
                    191:       if (plen < n->plen)
                    192:        {
                    193:          /* We add new node 'a' between node 'o' and node 'n' */
                    194:          amask = ipa_or(amask, ipa_and(n->accept, pmask));
                    195:          struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
                    196:          attach_node(o, a);
                    197:          attach_node(a, n);
                    198:          return a;
                    199:        }
                    200: 
                    201:       if (plen == n->plen)
                    202:        {
                    203:          /* We already found added node in trie. Just update accept mask */
                    204:          n->accept = ipa_or(n->accept, amask);
                    205:          return n;
                    206:        }
                    207: 
                    208:       /* Update accept mask part M2 and go deeper */
                    209:       n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));
                    210: 
                    211:       /* n->plen < plen and plen <= 32 (128) */
                    212:       o = n;
                    213:       n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
                    214:     }
                    215: 
                    216:   /* We add new tail node 'a' after node 'o' */
                    217:   struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
                    218:   attach_node(o, a);
                    219: 
                    220:   return a;
                    221: }
                    222: 
                    223: static int
                    224: trie_match_prefix(const struct f_trie *t, ip_addr px, uint plen)
                    225: {
                    226:   ip_addr pmask = ipa_mkmask(plen);
                    227:   ip_addr paddr = ipa_and(px, pmask);
                    228: 
                    229:   if (plen == 0)
                    230:     return t->zero;
                    231: 
                    232:   int plentest = plen - 1;
                    233:   const struct f_trie_node *n = t->root;
                    234: 
                    235:   while(n)
                    236:     {
                    237:       ip_addr cmask = ipa_and(n->mask, pmask);
                    238: 
                    239:       /* We are out of path */
                    240:       if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
                    241:        return 0;
                    242: 
                    243:       /* Check accept mask */
                    244:       if (ipa_getbit(n->accept, plentest))
                    245:        return 1;
                    246: 
                    247:       /* We finished trie walk and still no match */
                    248:       if (plen <= n->plen)
                    249:        return 0;
                    250: 
                    251:       /* Choose children */
                    252:       n =  n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
                    253:     }
                    254: 
                    255:   return 0;
                    256: }
                    257: 
                    258: /**
                    259:  * trie_match_net
                    260:  * @t: trie
                    261:  * @n: net address
                    262:  *
                    263:  * Tries to find a matching net in the trie such that
                    264:  * prefix @n matches that prefix pattern. Returns 1 if there
                    265:  * is such prefix pattern in the trie.
                    266:  */
                    267: int
                    268: trie_match_net(const struct f_trie *t, const net_addr *n)
                    269: {
                    270:   uint add = 0;
                    271: 
                    272:   switch (n->type) {
                    273:     case NET_IP4:
                    274:     case NET_VPN4:
                    275:     case NET_ROA4:
                    276:       add = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
                    277:   }
                    278: 
                    279:   return trie_match_prefix(t, net_prefix(n), net_pxlen(n) + add);
                    280: }
                    281: 
                    282: static int
                    283: trie_node_same(const struct f_trie_node *t1, const struct f_trie_node *t2)
                    284: {
                    285:   if ((t1 == NULL) && (t2 == NULL))
                    286:     return 1;
                    287: 
                    288:   if ((t1 == NULL) || (t2 == NULL))
                    289:     return 0;
                    290: 
                    291:   if ((t1->plen != t2->plen) ||
                    292:       (! ipa_equal(t1->addr, t2->addr)) ||
                    293:       (! ipa_equal(t1->accept, t2->accept)))
                    294:     return 0;
                    295: 
                    296:   return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
                    297: }
                    298: 
                    299: /**
                    300:  * trie_same
                    301:  * @t1: first trie to be compared
                    302:  * @t2: second one
                    303:  *
                    304:  * Compares two tries and returns 1 if they are same
                    305:  */
                    306: int
                    307: trie_same(const struct f_trie *t1, const struct f_trie *t2)
                    308: {
                    309:   return (t1->zero == t2->zero) && trie_node_same(t1->root, t2->root);
                    310: }
                    311: 
                    312: static void
                    313: trie_node_format(const struct f_trie_node *t, buffer *buf)
                    314: {
                    315:   if (t == NULL)
                    316:     return;
                    317: 
                    318:   if (ipa_nonzero(t->accept))
                    319:     buffer_print(buf, "%I/%d{%I}, ", t->addr, t->plen, t->accept);
                    320: 
                    321:   trie_node_format(t->c[0], buf);
                    322:   trie_node_format(t->c[1], buf);
                    323: }
                    324: 
                    325: /**
                    326:  * trie_format
                    327:  * @t: trie to be formatted
                    328:  * @buf: destination buffer
                    329:  *
                    330:  * Prints the trie to the supplied buffer.
                    331:  */
                    332: void
                    333: trie_format(const struct f_trie *t, buffer *buf)
                    334: {
                    335:   buffer_puts(buf, "[");
                    336: 
                    337:   if (t->zero)
                    338:     buffer_print(buf, "%I/%d, ", IPA_NONE, 0);
                    339:   trie_node_format(t->root, buf);
                    340: 
                    341:   if (buf->pos == buf->end)
                    342:     return;
                    343: 
                    344:   /* Undo last separator */
                    345:   if (buf->pos[-1] != '[')
                    346:     buf->pos -= 2;
                    347: 
                    348:   buffer_puts(buf, "]");
                    349: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>