Annotation of embedaddon/bird2/nest/rt-attr.c, revision 1.1
1.1 ! misho 1: /*
! 2: * BIRD -- Route Attribute Cache
! 3: *
! 4: * (c) 1998--2000 Martin Mares <mj@ucw.cz>
! 5: *
! 6: * Can be freely distributed and used under the terms of the GNU GPL.
! 7: */
! 8:
! 9: /**
! 10: * DOC: Route attribute cache
! 11: *
! 12: * Each route entry carries a set of route attributes. Several of them
! 13: * vary from route to route, but most attributes are usually common
! 14: * for a large number of routes. To conserve memory, we've decided to
! 15: * store only the varying ones directly in the &rte and hold the rest
! 16: * in a special structure called &rta which is shared among all the
! 17: * &rte's with these attributes.
! 18: *
! 19: * Each &rta contains all the static attributes of the route (i.e.,
! 20: * those which are always present) as structure members and a list of
! 21: * dynamic attributes represented by a linked list of &ea_list
! 22: * structures, each of them consisting of an array of &eattr's containing
! 23: * the individual attributes. An attribute can be specified more than once
! 24: * in the &ea_list chain and in such case the first occurrence overrides
! 25: * the others. This semantics is used especially when someone (for example
! 26: * a filter) wishes to alter values of several dynamic attributes, but
! 27: * it wants to preserve the original attribute lists maintained by
! 28: * another module.
! 29: *
! 30: * Each &eattr contains an attribute identifier (split to protocol ID and
! 31: * per-protocol attribute ID), protocol dependent flags, a type code (consisting
! 32: * of several bit fields describing attribute characteristics) and either an
! 33: * embedded 32-bit value or a pointer to a &adata structure holding attribute
! 34: * contents.
! 35: *
! 36: * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
! 37: * &rta's can have arbitrarily complex structure of &ea_list's and they
! 38: * can be modified by any module in the route processing chain. Cached
! 39: * &rta's have their attribute lists normalized (that means at most one
! 40: * &ea_list is present and its values are sorted in order to speed up
! 41: * searching), they are stored in a hash table to make fast lookup possible
! 42: * and they are provided with a use count to allow sharing.
! 43: *
! 44: * Routing tables always contain only cached &rta's.
! 45: */
! 46:
! 47: #include "nest/bird.h"
! 48: #include "nest/route.h"
! 49: #include "nest/protocol.h"
! 50: #include "nest/iface.h"
! 51: #include "nest/cli.h"
! 52: #include "nest/attrs.h"
! 53: #include "lib/alloca.h"
! 54: #include "lib/hash.h"
! 55: #include "lib/idm.h"
! 56: #include "lib/resource.h"
! 57: #include "lib/string.h"
! 58:
! 59: #include <stddef.h>
! 60:
! 61: const adata null_adata; /* adata of length 0 */
! 62:
! 63: const char * const rta_src_names[RTS_MAX] = {
! 64: [RTS_DUMMY] = "",
! 65: [RTS_STATIC] = "static",
! 66: [RTS_INHERIT] = "inherit",
! 67: [RTS_DEVICE] = "device",
! 68: [RTS_STATIC_DEVICE] = "static-device",
! 69: [RTS_REDIRECT] = "redirect",
! 70: [RTS_RIP] = "RIP",
! 71: [RTS_OSPF] = "OSPF",
! 72: [RTS_OSPF_IA] = "OSPF-IA",
! 73: [RTS_OSPF_EXT1] = "OSPF-E1",
! 74: [RTS_OSPF_EXT2] = "OSPF-E2",
! 75: [RTS_BGP] = "BGP",
! 76: [RTS_PIPE] = "pipe",
! 77: [RTS_BABEL] = "Babel",
! 78: [RTS_RPKI] = "RPKI",
! 79: };
! 80:
! 81: const char * rta_dest_names[RTD_MAX] = {
! 82: [RTD_NONE] = "",
! 83: [RTD_UNICAST] = "unicast",
! 84: [RTD_BLACKHOLE] = "blackhole",
! 85: [RTD_UNREACHABLE] = "unreachable",
! 86: [RTD_PROHIBIT] = "prohibited",
! 87: };
! 88:
! 89: pool *rta_pool;
! 90:
! 91: static slab *rta_slab_[4];
! 92: static slab *nexthop_slab_[4];
! 93: static slab *rte_src_slab;
! 94:
! 95: static struct idm src_ids;
! 96: #define SRC_ID_INIT_SIZE 4
! 97:
! 98: /* rte source hash */
! 99:
! 100: #define RSH_KEY(n) n->proto, n->private_id
! 101: #define RSH_NEXT(n) n->next
! 102: #define RSH_EQ(p1,n1,p2,n2) p1 == p2 && n1 == n2
! 103: #define RSH_FN(p,n) p->hash_key ^ u32_hash(n)
! 104:
! 105: #define RSH_REHASH rte_src_rehash
! 106: #define RSH_PARAMS /2, *2, 1, 1, 8, 20
! 107: #define RSH_INIT_ORDER 6
! 108:
! 109: static HASH(struct rte_src) src_hash;
! 110:
! 111: static void
! 112: rte_src_init(void)
! 113: {
! 114: rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
! 115:
! 116: idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
! 117:
! 118: HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
! 119: }
! 120:
! 121:
! 122: HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
! 123:
! 124: struct rte_src *
! 125: rt_find_source(struct proto *p, u32 id)
! 126: {
! 127: return HASH_FIND(src_hash, RSH, p, id);
! 128: }
! 129:
! 130: struct rte_src *
! 131: rt_get_source(struct proto *p, u32 id)
! 132: {
! 133: struct rte_src *src = rt_find_source(p, id);
! 134:
! 135: if (src)
! 136: return src;
! 137:
! 138: src = sl_alloc(rte_src_slab);
! 139: src->proto = p;
! 140: src->private_id = id;
! 141: src->global_id = idm_alloc(&src_ids);
! 142: src->uc = 0;
! 143:
! 144: HASH_INSERT2(src_hash, RSH, rta_pool, src);
! 145:
! 146: return src;
! 147: }
! 148:
! 149: void
! 150: rt_prune_sources(void)
! 151: {
! 152: HASH_WALK_FILTER(src_hash, next, src, sp)
! 153: {
! 154: if (src->uc == 0)
! 155: {
! 156: HASH_DO_REMOVE(src_hash, RSH, sp);
! 157: idm_free(&src_ids, src->global_id);
! 158: sl_free(rte_src_slab, src);
! 159: }
! 160: }
! 161: HASH_WALK_FILTER_END;
! 162:
! 163: HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
! 164: }
! 165:
! 166:
! 167: /*
! 168: * Multipath Next Hop
! 169: */
! 170:
! 171: static inline u32
! 172: nexthop_hash(struct nexthop *x)
! 173: {
! 174: u32 h = 0;
! 175: for (; x; x = x->next)
! 176: {
! 177: h ^= ipa_hash(x->gw) ^ (h << 5) ^ (h >> 9);
! 178:
! 179: for (int i = 0; i < x->labels; i++)
! 180: h ^= x->label[i] ^ (h << 6) ^ (h >> 7);
! 181: }
! 182:
! 183: return h;
! 184: }
! 185:
! 186: int
! 187: nexthop__same(struct nexthop *x, struct nexthop *y)
! 188: {
! 189: for (; x && y; x = x->next, y = y->next)
! 190: {
! 191: if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) ||
! 192: (x->flags != y->flags) || (x->weight != y->weight) ||
! 193: (x->labels_orig != y->labels_orig) || (x->labels != y->labels))
! 194: return 0;
! 195:
! 196: for (int i = 0; i < x->labels; i++)
! 197: if (x->label[i] != y->label[i])
! 198: return 0;
! 199: }
! 200:
! 201: return x == y;
! 202: }
! 203:
! 204: static int
! 205: nexthop_compare_node(const struct nexthop *x, const struct nexthop *y)
! 206: {
! 207: int r;
! 208:
! 209: if (!x)
! 210: return 1;
! 211:
! 212: if (!y)
! 213: return -1;
! 214:
! 215: /* Should we also compare flags ? */
! 216:
! 217: r = ((int) y->weight) - ((int) x->weight);
! 218: if (r)
! 219: return r;
! 220:
! 221: r = ipa_compare(x->gw, y->gw);
! 222: if (r)
! 223: return r;
! 224:
! 225: r = ((int) y->labels) - ((int) x->labels);
! 226: if (r)
! 227: return r;
! 228:
! 229: for (int i = 0; i < y->labels; i++)
! 230: {
! 231: r = ((int) y->label[i]) - ((int) x->label[i]);
! 232: if (r)
! 233: return r;
! 234: }
! 235:
! 236: return ((int) x->iface->index) - ((int) y->iface->index);
! 237: }
! 238:
! 239: static inline struct nexthop *
! 240: nexthop_copy_node(const struct nexthop *src, linpool *lp)
! 241: {
! 242: struct nexthop *n = lp_alloc(lp, nexthop_size(src));
! 243:
! 244: memcpy(n, src, nexthop_size(src));
! 245: n->next = NULL;
! 246:
! 247: return n;
! 248: }
! 249:
! 250: /**
! 251: * nexthop_merge - merge nexthop lists
! 252: * @x: list 1
! 253: * @y: list 2
! 254: * @rx: reusability of list @x
! 255: * @ry: reusability of list @y
! 256: * @max: max number of nexthops
! 257: * @lp: linpool for allocating nexthops
! 258: *
! 259: * The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
! 260: * eliminating possible duplicates. The input lists must be sorted and the
! 261: * result is sorted too. The number of nexthops in result is limited by @max.
! 262: * New nodes are allocated from linpool @lp.
! 263: *
! 264: * The arguments @rx and @ry specify whether corresponding input lists may be
! 265: * consumed by the function (i.e. their nodes reused in the resulting list), in
! 266: * that case the caller should not access these lists after that. To eliminate
! 267: * issues with deallocation of these lists, the caller should use some form of
! 268: * bulk deallocation (e.g. stack or linpool) to free these nodes when the
! 269: * resulting list is no longer needed. When reusability is not set, the
! 270: * corresponding lists are not modified nor linked from the resulting list.
! 271: */
! 272: struct nexthop *
! 273: nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp)
! 274: {
! 275: struct nexthop *root = NULL;
! 276: struct nexthop **n = &root;
! 277:
! 278: while ((x || y) && max--)
! 279: {
! 280: int cmp = nexthop_compare_node(x, y);
! 281: if (cmp < 0)
! 282: {
! 283: *n = rx ? x : nexthop_copy_node(x, lp);
! 284: x = x->next;
! 285: }
! 286: else if (cmp > 0)
! 287: {
! 288: *n = ry ? y : nexthop_copy_node(y, lp);
! 289: y = y->next;
! 290: }
! 291: else
! 292: {
! 293: *n = rx ? x : (ry ? y : nexthop_copy_node(x, lp));
! 294: x = x->next;
! 295: y = y->next;
! 296: }
! 297: n = &((*n)->next);
! 298: }
! 299: *n = NULL;
! 300:
! 301: return root;
! 302: }
! 303:
! 304: void
! 305: nexthop_insert(struct nexthop **n, struct nexthop *x)
! 306: {
! 307: for (; *n; n = &((*n)->next))
! 308: {
! 309: int cmp = nexthop_compare_node(*n, x);
! 310:
! 311: if (cmp < 0)
! 312: continue;
! 313: else if (cmp > 0)
! 314: break;
! 315: else
! 316: return;
! 317: }
! 318:
! 319: x->next = *n;
! 320: *n = x;
! 321: }
! 322:
! 323: struct nexthop *
! 324: nexthop_sort(struct nexthop *x)
! 325: {
! 326: struct nexthop *s = NULL;
! 327:
! 328: /* Simple insert-sort */
! 329: while (x)
! 330: {
! 331: struct nexthop *n = x;
! 332: x = n->next;
! 333: n->next = NULL;
! 334:
! 335: nexthop_insert(&s, n);
! 336: }
! 337:
! 338: return s;
! 339: }
! 340:
! 341: int
! 342: nexthop_is_sorted(struct nexthop *x)
! 343: {
! 344: for (; x && x->next; x = x->next)
! 345: if (nexthop_compare_node(x, x->next) >= 0)
! 346: return 0;
! 347:
! 348: return 1;
! 349: }
! 350:
! 351: static inline slab *
! 352: nexthop_slab(struct nexthop *nh)
! 353: {
! 354: return nexthop_slab_[MIN(nh->labels, 3)];
! 355: }
! 356:
! 357: static struct nexthop *
! 358: nexthop_copy(struct nexthop *o)
! 359: {
! 360: struct nexthop *first = NULL;
! 361: struct nexthop **last = &first;
! 362:
! 363: for (; o; o = o->next)
! 364: {
! 365: struct nexthop *n = sl_alloc(nexthop_slab(o));
! 366: n->gw = o->gw;
! 367: n->iface = o->iface;
! 368: n->next = NULL;
! 369: n->flags = o->flags;
! 370: n->weight = o->weight;
! 371: n->labels_orig = o->labels_orig;
! 372: n->labels = o->labels;
! 373: for (int i=0; i<o->labels; i++)
! 374: n->label[i] = o->label[i];
! 375:
! 376: *last = n;
! 377: last = &(n->next);
! 378: }
! 379:
! 380: return first;
! 381: }
! 382:
! 383: static void
! 384: nexthop_free(struct nexthop *o)
! 385: {
! 386: struct nexthop *n;
! 387:
! 388: while (o)
! 389: {
! 390: n = o->next;
! 391: sl_free(nexthop_slab(o), o);
! 392: o = n;
! 393: }
! 394: }
! 395:
! 396:
! 397: /*
! 398: * Extended Attributes
! 399: */
! 400:
! 401: static inline eattr *
! 402: ea__find(ea_list *e, unsigned id)
! 403: {
! 404: eattr *a;
! 405: int l, r, m;
! 406:
! 407: while (e)
! 408: {
! 409: if (e->flags & EALF_BISECT)
! 410: {
! 411: l = 0;
! 412: r = e->count - 1;
! 413: while (l <= r)
! 414: {
! 415: m = (l+r) / 2;
! 416: a = &e->attrs[m];
! 417: if (a->id == id)
! 418: return a;
! 419: else if (a->id < id)
! 420: l = m+1;
! 421: else
! 422: r = m-1;
! 423: }
! 424: }
! 425: else
! 426: for(m=0; m<e->count; m++)
! 427: if (e->attrs[m].id == id)
! 428: return &e->attrs[m];
! 429: e = e->next;
! 430: }
! 431: return NULL;
! 432: }
! 433:
! 434: /**
! 435: * ea_find - find an extended attribute
! 436: * @e: attribute list to search in
! 437: * @id: attribute ID to search for
! 438: *
! 439: * Given an extended attribute list, ea_find() searches for a first
! 440: * occurrence of an attribute with specified ID, returning either a pointer
! 441: * to its &eattr structure or %NULL if no such attribute exists.
! 442: */
! 443: eattr *
! 444: ea_find(ea_list *e, unsigned id)
! 445: {
! 446: eattr *a = ea__find(e, id & EA_CODE_MASK);
! 447:
! 448: if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
! 449: !(id & EA_ALLOW_UNDEF))
! 450: return NULL;
! 451: return a;
! 452: }
! 453:
! 454: /**
! 455: * ea_walk - walk through extended attributes
! 456: * @s: walk state structure
! 457: * @id: start of attribute ID interval
! 458: * @max: length of attribute ID interval
! 459: *
! 460: * Given an extended attribute list, ea_walk() walks through the list looking
! 461: * for first occurrences of attributes with ID in specified interval from @id to
! 462: * (@id + @max - 1), returning pointers to found &eattr structures, storing its
! 463: * walk state in @s for subsequent calls.
! 464: *
! 465: * The function ea_walk() is supposed to be called in a loop, with initially
! 466: * zeroed walk state structure @s with filled the initial extended attribute
! 467: * list, returning one found attribute in each call or %NULL when no other
! 468: * attribute exists. The extended attribute list or the arguments should not be
! 469: * modified between calls. The maximum value of @max is 128.
! 470: */
! 471: eattr *
! 472: ea_walk(struct ea_walk_state *s, uint id, uint max)
! 473: {
! 474: ea_list *e = s->eattrs;
! 475: eattr *a = s->ea;
! 476: eattr *a_max;
! 477:
! 478: max = id + max;
! 479:
! 480: if (a)
! 481: goto step;
! 482:
! 483: for (; e; e = e->next)
! 484: {
! 485: if (e->flags & EALF_BISECT)
! 486: {
! 487: int l, r, m;
! 488:
! 489: l = 0;
! 490: r = e->count - 1;
! 491: while (l < r)
! 492: {
! 493: m = (l+r) / 2;
! 494: if (e->attrs[m].id < id)
! 495: l = m + 1;
! 496: else
! 497: r = m;
! 498: }
! 499: a = e->attrs + l;
! 500: }
! 501: else
! 502: a = e->attrs;
! 503:
! 504: step:
! 505: a_max = e->attrs + e->count;
! 506: for (; a < a_max; a++)
! 507: if ((a->id >= id) && (a->id < max))
! 508: {
! 509: int n = a->id - id;
! 510:
! 511: if (BIT32_TEST(s->visited, n))
! 512: continue;
! 513:
! 514: BIT32_SET(s->visited, n);
! 515:
! 516: if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
! 517: continue;
! 518:
! 519: s->eattrs = e;
! 520: s->ea = a;
! 521: return a;
! 522: }
! 523: else if (e->flags & EALF_BISECT)
! 524: break;
! 525: }
! 526:
! 527: return NULL;
! 528: }
! 529:
! 530: /**
! 531: * ea_get_int - fetch an integer attribute
! 532: * @e: attribute list
! 533: * @id: attribute ID
! 534: * @def: default value
! 535: *
! 536: * This function is a shortcut for retrieving a value of an integer attribute
! 537: * by calling ea_find() to find the attribute, extracting its value or returning
! 538: * a provided default if no such attribute is present.
! 539: */
! 540: int
! 541: ea_get_int(ea_list *e, unsigned id, int def)
! 542: {
! 543: eattr *a = ea_find(e, id);
! 544: if (!a)
! 545: return def;
! 546: return a->u.data;
! 547: }
! 548:
! 549: static inline void
! 550: ea_do_sort(ea_list *e)
! 551: {
! 552: unsigned n = e->count;
! 553: eattr *a = e->attrs;
! 554: eattr *b = alloca(n * sizeof(eattr));
! 555: unsigned s, ss;
! 556:
! 557: /* We need to use a stable sorting algorithm, hence mergesort */
! 558: do
! 559: {
! 560: s = ss = 0;
! 561: while (s < n)
! 562: {
! 563: eattr *p, *q, *lo, *hi;
! 564: p = b;
! 565: ss = s;
! 566: *p++ = a[s++];
! 567: while (s < n && p[-1].id <= a[s].id)
! 568: *p++ = a[s++];
! 569: if (s < n)
! 570: {
! 571: q = p;
! 572: *p++ = a[s++];
! 573: while (s < n && p[-1].id <= a[s].id)
! 574: *p++ = a[s++];
! 575: lo = b;
! 576: hi = q;
! 577: s = ss;
! 578: while (lo < q && hi < p)
! 579: if (lo->id <= hi->id)
! 580: a[s++] = *lo++;
! 581: else
! 582: a[s++] = *hi++;
! 583: while (lo < q)
! 584: a[s++] = *lo++;
! 585: while (hi < p)
! 586: a[s++] = *hi++;
! 587: }
! 588: }
! 589: }
! 590: while (ss);
! 591: }
! 592:
! 593: /**
! 594: * In place discard duplicates and undefs in sorted ea_list. We use stable sort
! 595: * for this reason.
! 596: **/
! 597: static inline void
! 598: ea_do_prune(ea_list *e)
! 599: {
! 600: eattr *s, *d, *l, *s0;
! 601: int i = 0;
! 602:
! 603: s = d = e->attrs; /* Beginning of the list. @s is source, @d is destination. */
! 604: l = e->attrs + e->count; /* End of the list */
! 605:
! 606: /* Walk from begin to end. */
! 607: while (s < l)
! 608: {
! 609: s0 = s++;
! 610: /* Find a consecutive block of the same attribute */
! 611: while (s < l && s->id == s[-1].id)
! 612: s++;
! 613:
! 614: /* Now s0 is the most recent version, s[-1] the oldest one */
! 615: /* Drop undefs */
! 616: if ((s0->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
! 617: continue;
! 618:
! 619: /* Copy the newest version to destination */
! 620: *d = *s0;
! 621:
! 622: /* Preserve info whether it originated locally */
! 623: d->type = (d->type & ~(EAF_ORIGINATED|EAF_FRESH)) | (s[-1].type & EAF_ORIGINATED);
! 624:
! 625: /* Next destination */
! 626: d++;
! 627: i++;
! 628: }
! 629:
! 630: e->count = i;
! 631: }
! 632:
! 633: /**
! 634: * ea_sort - sort an attribute list
! 635: * @e: list to be sorted
! 636: *
! 637: * This function takes a &ea_list chain and sorts the attributes
! 638: * within each of its entries.
! 639: *
! 640: * If an attribute occurs multiple times in a single &ea_list,
! 641: * ea_sort() leaves only the first (the only significant) occurrence.
! 642: */
! 643: void
! 644: ea_sort(ea_list *e)
! 645: {
! 646: while (e)
! 647: {
! 648: if (!(e->flags & EALF_SORTED))
! 649: {
! 650: ea_do_sort(e);
! 651: ea_do_prune(e);
! 652: e->flags |= EALF_SORTED;
! 653: }
! 654: if (e->count > 5)
! 655: e->flags |= EALF_BISECT;
! 656: e = e->next;
! 657: }
! 658: }
! 659:
! 660: /**
! 661: * ea_scan - estimate attribute list size
! 662: * @e: attribute list
! 663: *
! 664: * This function calculates an upper bound of the size of
! 665: * a given &ea_list after merging with ea_merge().
! 666: */
! 667: unsigned
! 668: ea_scan(ea_list *e)
! 669: {
! 670: unsigned cnt = 0;
! 671:
! 672: while (e)
! 673: {
! 674: cnt += e->count;
! 675: e = e->next;
! 676: }
! 677: return sizeof(ea_list) + sizeof(eattr)*cnt;
! 678: }
! 679:
! 680: /**
! 681: * ea_merge - merge segments of an attribute list
! 682: * @e: attribute list
! 683: * @t: buffer to store the result to
! 684: *
! 685: * This function takes a possibly multi-segment attribute list
! 686: * and merges all of its segments to one.
! 687: *
! 688: * The primary use of this function is for &ea_list normalization:
! 689: * first call ea_scan() to determine how much memory will the result
! 690: * take, then allocate a buffer (usually using alloca()), merge the
! 691: * segments with ea_merge() and finally sort and prune the result
! 692: * by calling ea_sort().
! 693: */
! 694: void
! 695: ea_merge(ea_list *e, ea_list *t)
! 696: {
! 697: eattr *d = t->attrs;
! 698:
! 699: t->flags = 0;
! 700: t->count = 0;
! 701: t->next = NULL;
! 702: while (e)
! 703: {
! 704: memcpy(d, e->attrs, sizeof(eattr)*e->count);
! 705: t->count += e->count;
! 706: d += e->count;
! 707: e = e->next;
! 708: }
! 709: }
! 710:
! 711: /**
! 712: * ea_same - compare two &ea_list's
! 713: * @x: attribute list
! 714: * @y: attribute list
! 715: *
! 716: * ea_same() compares two normalized attribute lists @x and @y and returns
! 717: * 1 if they contain the same attributes, 0 otherwise.
! 718: */
! 719: int
! 720: ea_same(ea_list *x, ea_list *y)
! 721: {
! 722: int c;
! 723:
! 724: if (!x || !y)
! 725: return x == y;
! 726: ASSERT(!x->next && !y->next);
! 727: if (x->count != y->count)
! 728: return 0;
! 729: for(c=0; c<x->count; c++)
! 730: {
! 731: eattr *a = &x->attrs[c];
! 732: eattr *b = &y->attrs[c];
! 733:
! 734: if (a->id != b->id ||
! 735: a->flags != b->flags ||
! 736: a->type != b->type ||
! 737: ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
! 738: return 0;
! 739: }
! 740: return 1;
! 741: }
! 742:
! 743: static inline ea_list *
! 744: ea_list_copy(ea_list *o)
! 745: {
! 746: ea_list *n;
! 747: unsigned i, len;
! 748:
! 749: if (!o)
! 750: return NULL;
! 751: ASSERT(!o->next);
! 752: len = sizeof(ea_list) + sizeof(eattr) * o->count;
! 753: n = mb_alloc(rta_pool, len);
! 754: memcpy(n, o, len);
! 755: n->flags |= EALF_CACHED;
! 756: for(i=0; i<o->count; i++)
! 757: {
! 758: eattr *a = &n->attrs[i];
! 759: if (!(a->type & EAF_EMBEDDED))
! 760: {
! 761: unsigned size = sizeof(struct adata) + a->u.ptr->length;
! 762: struct adata *d = mb_alloc(rta_pool, size);
! 763: memcpy(d, a->u.ptr, size);
! 764: a->u.ptr = d;
! 765: }
! 766: }
! 767: return n;
! 768: }
! 769:
! 770: static inline void
! 771: ea_free(ea_list *o)
! 772: {
! 773: int i;
! 774:
! 775: if (o)
! 776: {
! 777: ASSERT(!o->next);
! 778: for(i=0; i<o->count; i++)
! 779: {
! 780: eattr *a = &o->attrs[i];
! 781: if (!(a->type & EAF_EMBEDDED))
! 782: mb_free((void *) a->u.ptr);
! 783: }
! 784: mb_free(o);
! 785: }
! 786: }
! 787:
! 788: static int
! 789: get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
! 790: {
! 791: if (a->id == EA_GEN_IGP_METRIC)
! 792: {
! 793: *buf += bsprintf(*buf, "igp_metric");
! 794: return GA_NAME;
! 795: }
! 796:
! 797: return GA_UNKNOWN;
! 798: }
! 799:
! 800: void
! 801: ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
! 802: {
! 803: byte *bound = buf + bufsize - 32;
! 804: u32 data = a->u.data;
! 805: int i;
! 806:
! 807: for (i = min; i < max; i++)
! 808: if ((data & (1u << i)) && names[i])
! 809: {
! 810: if (buf > bound)
! 811: {
! 812: strcpy(buf, " ...");
! 813: return;
! 814: }
! 815:
! 816: buf += bsprintf(buf, " %s", names[i]);
! 817: data &= ~(1u << i);
! 818: }
! 819:
! 820: if (data)
! 821: bsprintf(buf, " %08x", data);
! 822:
! 823: return;
! 824: }
! 825:
! 826: static inline void
! 827: opaque_format(const struct adata *ad, byte *buf, uint size)
! 828: {
! 829: byte *bound = buf + size - 10;
! 830: uint i;
! 831:
! 832: for(i = 0; i < ad->length; i++)
! 833: {
! 834: if (buf > bound)
! 835: {
! 836: strcpy(buf, " ...");
! 837: return;
! 838: }
! 839: if (i)
! 840: *buf++ = ' ';
! 841:
! 842: buf += bsprintf(buf, "%02x", ad->data[i]);
! 843: }
! 844:
! 845: *buf = 0;
! 846: return;
! 847: }
! 848:
! 849: static inline void
! 850: ea_show_int_set(struct cli *c, const struct adata *ad, int way, byte *pos, byte *buf, byte *end)
! 851: {
! 852: int i = int_set_format(ad, way, 0, pos, end - pos);
! 853: cli_printf(c, -1012, "\t%s", buf);
! 854: while (i)
! 855: {
! 856: i = int_set_format(ad, way, i, buf, end - buf - 1);
! 857: cli_printf(c, -1012, "\t\t%s", buf);
! 858: }
! 859: }
! 860:
! 861: static inline void
! 862: ea_show_ec_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
! 863: {
! 864: int i = ec_set_format(ad, 0, pos, end - pos);
! 865: cli_printf(c, -1012, "\t%s", buf);
! 866: while (i)
! 867: {
! 868: i = ec_set_format(ad, i, buf, end - buf - 1);
! 869: cli_printf(c, -1012, "\t\t%s", buf);
! 870: }
! 871: }
! 872:
! 873: static inline void
! 874: ea_show_lc_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
! 875: {
! 876: int i = lc_set_format(ad, 0, pos, end - pos);
! 877: cli_printf(c, -1012, "\t%s", buf);
! 878: while (i)
! 879: {
! 880: i = lc_set_format(ad, i, buf, end - buf - 1);
! 881: cli_printf(c, -1012, "\t\t%s", buf);
! 882: }
! 883: }
! 884:
! 885: /**
! 886: * ea_show - print an &eattr to CLI
! 887: * @c: destination CLI
! 888: * @e: attribute to be printed
! 889: *
! 890: * This function takes an extended attribute represented by its &eattr
! 891: * structure and prints it to the CLI according to the type information.
! 892: *
! 893: * If the protocol defining the attribute provides its own
! 894: * get_attr() hook, it's consulted first.
! 895: */
! 896: void
! 897: ea_show(struct cli *c, eattr *e)
! 898: {
! 899: struct protocol *p;
! 900: int status = GA_UNKNOWN;
! 901: const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
! 902: byte buf[CLI_MSG_SIZE];
! 903: byte *pos = buf, *end = buf + sizeof(buf);
! 904:
! 905: if (EA_IS_CUSTOM(e->id))
! 906: {
! 907: const char *name = ea_custom_name(e->id);
! 908: if (name)
! 909: {
! 910: pos += bsprintf(pos, "%s", name);
! 911: status = GA_NAME;
! 912: }
! 913: else
! 914: pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
! 915: }
! 916: else if (p = class_to_protocol[EA_PROTO(e->id)])
! 917: {
! 918: pos += bsprintf(pos, "%s.", p->name);
! 919: if (p->get_attr)
! 920: status = p->get_attr(e, pos, end - pos);
! 921: pos += strlen(pos);
! 922: }
! 923: else if (EA_PROTO(e->id))
! 924: pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
! 925: else
! 926: status = get_generic_attr(e, &pos, end - pos);
! 927:
! 928: if (status < GA_NAME)
! 929: pos += bsprintf(pos, "%02x", EA_ID(e->id));
! 930: if (status < GA_FULL)
! 931: {
! 932: *pos++ = ':';
! 933: *pos++ = ' ';
! 934: switch (e->type & EAF_TYPE_MASK)
! 935: {
! 936: case EAF_TYPE_INT:
! 937: bsprintf(pos, "%u", e->u.data);
! 938: break;
! 939: case EAF_TYPE_OPAQUE:
! 940: opaque_format(ad, pos, end - pos);
! 941: break;
! 942: case EAF_TYPE_IP_ADDRESS:
! 943: bsprintf(pos, "%I", *(ip_addr *) ad->data);
! 944: break;
! 945: case EAF_TYPE_ROUTER_ID:
! 946: bsprintf(pos, "%R", e->u.data);
! 947: break;
! 948: case EAF_TYPE_AS_PATH:
! 949: as_path_format(ad, pos, end - pos);
! 950: break;
! 951: case EAF_TYPE_BITFIELD:
! 952: bsprintf(pos, "%08x", e->u.data);
! 953: break;
! 954: case EAF_TYPE_INT_SET:
! 955: ea_show_int_set(c, ad, 1, pos, buf, end);
! 956: return;
! 957: case EAF_TYPE_EC_SET:
! 958: ea_show_ec_set(c, ad, pos, buf, end);
! 959: return;
! 960: case EAF_TYPE_LC_SET:
! 961: ea_show_lc_set(c, ad, pos, buf, end);
! 962: return;
! 963: case EAF_TYPE_UNDEF:
! 964: default:
! 965: bsprintf(pos, "<type %02x>", e->type);
! 966: }
! 967: }
! 968: cli_printf(c, -1012, "\t%s", buf);
! 969: }
! 970:
! 971: /**
! 972: * ea_dump - dump an extended attribute
! 973: * @e: attribute to be dumped
! 974: *
! 975: * ea_dump() dumps contents of the extended attribute given to
! 976: * the debug output.
! 977: */
! 978: void
! 979: ea_dump(ea_list *e)
! 980: {
! 981: int i;
! 982:
! 983: if (!e)
! 984: {
! 985: debug("NONE");
! 986: return;
! 987: }
! 988: while (e)
! 989: {
! 990: debug("[%c%c%c]",
! 991: (e->flags & EALF_SORTED) ? 'S' : 's',
! 992: (e->flags & EALF_BISECT) ? 'B' : 'b',
! 993: (e->flags & EALF_CACHED) ? 'C' : 'c');
! 994: for(i=0; i<e->count; i++)
! 995: {
! 996: eattr *a = &e->attrs[i];
! 997: debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
! 998: debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
! 999: if (a->type & EAF_ORIGINATED)
! 1000: debug("o");
! 1001: if (a->type & EAF_EMBEDDED)
! 1002: debug(":%08x", a->u.data);
! 1003: else
! 1004: {
! 1005: int j, len = a->u.ptr->length;
! 1006: debug("[%d]:", len);
! 1007: for(j=0; j<len; j++)
! 1008: debug("%02x", a->u.ptr->data[j]);
! 1009: }
! 1010: }
! 1011: if (e = e->next)
! 1012: debug(" | ");
! 1013: }
! 1014: }
! 1015:
! 1016: /**
! 1017: * ea_hash - calculate an &ea_list hash key
! 1018: * @e: attribute list
! 1019: *
! 1020: * ea_hash() takes an extended attribute list and calculated a hopefully
! 1021: * uniformly distributed hash value from its contents.
! 1022: */
! 1023: inline uint
! 1024: ea_hash(ea_list *e)
! 1025: {
! 1026: const u64 mul = 0x68576150f3d6847;
! 1027: u64 h = 0xafcef24eda8b29;
! 1028: int i;
! 1029:
! 1030: if (e) /* Assuming chain of length 1 */
! 1031: {
! 1032: for(i=0; i<e->count; i++)
! 1033: {
! 1034: struct eattr *a = &e->attrs[i];
! 1035: h ^= a->id; h *= mul;
! 1036: if (a->type & EAF_EMBEDDED)
! 1037: h ^= a->u.data;
! 1038: else
! 1039: {
! 1040: const struct adata *d = a->u.ptr;
! 1041: h ^= mem_hash(d->data, d->length);
! 1042: }
! 1043: h *= mul;
! 1044: }
! 1045: }
! 1046: return (h >> 32) ^ (h & 0xffffffff);
! 1047: }
! 1048:
! 1049: /**
! 1050: * ea_append - concatenate &ea_list's
! 1051: * @to: destination list (can be %NULL)
! 1052: * @what: list to be appended (can be %NULL)
! 1053: *
! 1054: * This function appends the &ea_list @what at the end of
! 1055: * &ea_list @to and returns a pointer to the resulting list.
! 1056: */
! 1057: ea_list *
! 1058: ea_append(ea_list *to, ea_list *what)
! 1059: {
! 1060: ea_list *res;
! 1061:
! 1062: if (!to)
! 1063: return what;
! 1064: res = to;
! 1065: while (to->next)
! 1066: to = to->next;
! 1067: to->next = what;
! 1068: return res;
! 1069: }
! 1070:
! 1071: /*
! 1072: * rta's
! 1073: */
! 1074:
! 1075: static uint rta_cache_count;
! 1076: static uint rta_cache_size = 32;
! 1077: static uint rta_cache_limit;
! 1078: static uint rta_cache_mask;
! 1079: static rta **rta_hash_table;
! 1080:
! 1081: static void
! 1082: rta_alloc_hash(void)
! 1083: {
! 1084: rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
! 1085: if (rta_cache_size < 32768)
! 1086: rta_cache_limit = rta_cache_size * 2;
! 1087: else
! 1088: rta_cache_limit = ~0;
! 1089: rta_cache_mask = rta_cache_size - 1;
! 1090: }
! 1091:
! 1092: static inline uint
! 1093: rta_hash(rta *a)
! 1094: {
! 1095: u64 h;
! 1096: mem_hash_init(&h);
! 1097: #define MIX(f) mem_hash_mix(&h, &(a->f), sizeof(a->f));
! 1098: MIX(src);
! 1099: MIX(hostentry);
! 1100: MIX(from);
! 1101: MIX(igp_metric);
! 1102: MIX(source);
! 1103: MIX(scope);
! 1104: MIX(dest);
! 1105: #undef MIX
! 1106:
! 1107: return mem_hash_value(&h) ^ nexthop_hash(&(a->nh)) ^ ea_hash(a->eattrs);
! 1108: }
! 1109:
! 1110: static inline int
! 1111: rta_same(rta *x, rta *y)
! 1112: {
! 1113: return (x->src == y->src &&
! 1114: x->source == y->source &&
! 1115: x->scope == y->scope &&
! 1116: x->dest == y->dest &&
! 1117: x->igp_metric == y->igp_metric &&
! 1118: ipa_equal(x->from, y->from) &&
! 1119: x->hostentry == y->hostentry &&
! 1120: nexthop_same(&(x->nh), &(y->nh)) &&
! 1121: ea_same(x->eattrs, y->eattrs));
! 1122: }
! 1123:
! 1124: static inline slab *
! 1125: rta_slab(rta *a)
! 1126: {
! 1127: return rta_slab_[a->nh.labels > 2 ? 3 : a->nh.labels];
! 1128: }
! 1129:
! 1130: static rta *
! 1131: rta_copy(rta *o)
! 1132: {
! 1133: rta *r = sl_alloc(rta_slab(o));
! 1134:
! 1135: memcpy(r, o, rta_size(o));
! 1136: r->uc = 1;
! 1137: r->nh.next = nexthop_copy(o->nh.next);
! 1138: r->eattrs = ea_list_copy(o->eattrs);
! 1139: return r;
! 1140: }
! 1141:
! 1142: static inline void
! 1143: rta_insert(rta *r)
! 1144: {
! 1145: uint h = r->hash_key & rta_cache_mask;
! 1146: r->next = rta_hash_table[h];
! 1147: if (r->next)
! 1148: r->next->pprev = &r->next;
! 1149: r->pprev = &rta_hash_table[h];
! 1150: rta_hash_table[h] = r;
! 1151: }
! 1152:
! 1153: static void
! 1154: rta_rehash(void)
! 1155: {
! 1156: uint ohs = rta_cache_size;
! 1157: uint h;
! 1158: rta *r, *n;
! 1159: rta **oht = rta_hash_table;
! 1160:
! 1161: rta_cache_size = 2*rta_cache_size;
! 1162: DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
! 1163: rta_alloc_hash();
! 1164: for(h=0; h<ohs; h++)
! 1165: for(r=oht[h]; r; r=n)
! 1166: {
! 1167: n = r->next;
! 1168: rta_insert(r);
! 1169: }
! 1170: mb_free(oht);
! 1171: }
! 1172:
! 1173: /**
! 1174: * rta_lookup - look up a &rta in attribute cache
! 1175: * @o: a un-cached &rta
! 1176: *
! 1177: * rta_lookup() gets an un-cached &rta structure and returns its cached
! 1178: * counterpart. It starts with examining the attribute cache to see whether
! 1179: * there exists a matching entry. If such an entry exists, it's returned and
! 1180: * its use count is incremented, else a new entry is created with use count
! 1181: * set to 1.
! 1182: *
! 1183: * The extended attribute lists attached to the &rta are automatically
! 1184: * converted to the normalized form.
! 1185: */
! 1186: rta *
! 1187: rta_lookup(rta *o)
! 1188: {
! 1189: rta *r;
! 1190: uint h;
! 1191:
! 1192: ASSERT(!(o->aflags & RTAF_CACHED));
! 1193: if (o->eattrs)
! 1194: ea_normalize(o->eattrs);
! 1195:
! 1196: h = rta_hash(o);
! 1197: for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
! 1198: if (r->hash_key == h && rta_same(r, o))
! 1199: return rta_clone(r);
! 1200:
! 1201: r = rta_copy(o);
! 1202: r->hash_key = h;
! 1203: r->aflags = RTAF_CACHED;
! 1204: rt_lock_source(r->src);
! 1205: rt_lock_hostentry(r->hostentry);
! 1206: rta_insert(r);
! 1207:
! 1208: if (++rta_cache_count > rta_cache_limit)
! 1209: rta_rehash();
! 1210:
! 1211: return r;
! 1212: }
! 1213:
! 1214: void
! 1215: rta__free(rta *a)
! 1216: {
! 1217: ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
! 1218: rta_cache_count--;
! 1219: *a->pprev = a->next;
! 1220: if (a->next)
! 1221: a->next->pprev = a->pprev;
! 1222: rt_unlock_hostentry(a->hostentry);
! 1223: rt_unlock_source(a->src);
! 1224: if (a->nh.next)
! 1225: nexthop_free(a->nh.next);
! 1226: ea_free(a->eattrs);
! 1227: a->aflags = 0; /* Poison the entry */
! 1228: sl_free(rta_slab(a), a);
! 1229: }
! 1230:
! 1231: rta *
! 1232: rta_do_cow(rta *o, linpool *lp)
! 1233: {
! 1234: rta *r = lp_alloc(lp, rta_size(o));
! 1235: memcpy(r, o, rta_size(o));
! 1236: for (struct nexthop **nhn = &(r->nh.next), *nho = o->nh.next; nho; nho = nho->next)
! 1237: {
! 1238: *nhn = lp_alloc(lp, nexthop_size(nho));
! 1239: memcpy(*nhn, nho, nexthop_size(nho));
! 1240: nhn = &((*nhn)->next);
! 1241: }
! 1242: r->aflags = 0;
! 1243: r->uc = 0;
! 1244: return r;
! 1245: }
! 1246:
! 1247: /**
! 1248: * rta_dump - dump route attributes
! 1249: * @a: attribute structure to dump
! 1250: *
! 1251: * This function takes a &rta and dumps its contents to the debug output.
! 1252: */
! 1253: void
! 1254: rta_dump(rta *a)
! 1255: {
! 1256: static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
! 1257: "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
! 1258: "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
! 1259: "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
! 1260: static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
! 1261:
! 1262: debug("p=%s uc=%d %s %s%s h=%04x",
! 1263: a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope),
! 1264: rtd[a->dest], a->hash_key);
! 1265: if (!(a->aflags & RTAF_CACHED))
! 1266: debug(" !CACHED");
! 1267: debug(" <-%I", a->from);
! 1268: if (a->dest == RTD_UNICAST)
! 1269: for (struct nexthop *nh = &(a->nh); nh; nh = nh->next)
! 1270: {
! 1271: if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
! 1272: if (nh->labels) debug(" L %d", nh->label[0]);
! 1273: for (int i=1; i<nh->labels; i++)
! 1274: debug("/%d", nh->label[i]);
! 1275: debug(" [%s]", nh->iface ? nh->iface->name : "???");
! 1276: }
! 1277: if (a->eattrs)
! 1278: {
! 1279: debug(" EA: ");
! 1280: ea_dump(a->eattrs);
! 1281: }
! 1282: }
! 1283:
! 1284: /**
! 1285: * rta_dump_all - dump attribute cache
! 1286: *
! 1287: * This function dumps the whole contents of route attribute cache
! 1288: * to the debug output.
! 1289: */
! 1290: void
! 1291: rta_dump_all(void)
! 1292: {
! 1293: rta *a;
! 1294: uint h;
! 1295:
! 1296: debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
! 1297: for(h=0; h<rta_cache_size; h++)
! 1298: for(a=rta_hash_table[h]; a; a=a->next)
! 1299: {
! 1300: debug("%p ", a);
! 1301: rta_dump(a);
! 1302: debug("\n");
! 1303: }
! 1304: debug("\n");
! 1305: }
! 1306:
! 1307: void
! 1308: rta_show(struct cli *c, rta *a)
! 1309: {
! 1310: cli_printf(c, -1008, "\tType: %s %s", rta_src_names[a->source], ip_scope_text(a->scope));
! 1311:
! 1312: for(ea_list *eal = a->eattrs; eal; eal=eal->next)
! 1313: for(int i=0; i<eal->count; i++)
! 1314: ea_show(c, &eal->attrs[i]);
! 1315: }
! 1316:
! 1317: /**
! 1318: * rta_init - initialize route attribute cache
! 1319: *
! 1320: * This function is called during initialization of the routing
! 1321: * table module to set up the internals of the attribute cache.
! 1322: */
! 1323: void
! 1324: rta_init(void)
! 1325: {
! 1326: rta_pool = rp_new(&root_pool, "Attributes");
! 1327:
! 1328: rta_slab_[0] = sl_new(rta_pool, sizeof(rta));
! 1329: rta_slab_[1] = sl_new(rta_pool, sizeof(rta) + sizeof(u32));
! 1330: rta_slab_[2] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*2);
! 1331: rta_slab_[3] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
! 1332:
! 1333: nexthop_slab_[0] = sl_new(rta_pool, sizeof(struct nexthop));
! 1334: nexthop_slab_[1] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32));
! 1335: nexthop_slab_[2] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*2);
! 1336: nexthop_slab_[3] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
! 1337:
! 1338: rta_alloc_hash();
! 1339: rte_src_init();
! 1340: }
! 1341:
! 1342: /*
! 1343: * Documentation for functions declared inline in route.h
! 1344: */
! 1345: #if 0
! 1346:
! 1347: /**
! 1348: * rta_clone - clone route attributes
! 1349: * @r: a &rta to be cloned
! 1350: *
! 1351: * rta_clone() takes a cached &rta and returns its identical cached
! 1352: * copy. Currently it works by just returning the original &rta with
! 1353: * its use count incremented.
! 1354: */
! 1355: static inline rta *rta_clone(rta *r)
! 1356: { DUMMY; }
! 1357:
! 1358: /**
! 1359: * rta_free - free route attributes
! 1360: * @r: a &rta to be freed
! 1361: *
! 1362: * If you stop using a &rta (for example when deleting a route which uses
! 1363: * it), you need to call rta_free() to notify the attribute cache the
! 1364: * attribute is no longer in use and can be freed if you were the last
! 1365: * user (which rta_free() tests by inspecting the use count).
! 1366: */
! 1367: static inline void rta_free(rta *r)
! 1368: { DUMMY; }
! 1369:
! 1370: #endif
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>