Annotation of embedaddon/bird2/nest/rt-attr.c, revision 1.1.1.1

1.1       misho       1: /*
                      2:  *     BIRD -- Route Attribute Cache
                      3:  *
                      4:  *     (c) 1998--2000 Martin Mares <mj@ucw.cz>
                      5:  *
                      6:  *     Can be freely distributed and used under the terms of the GNU GPL.
                      7:  */
                      8: 
                      9: /**
                     10:  * DOC: Route attribute cache
                     11:  *
                     12:  * Each route entry carries a set of route attributes. Several of them
                     13:  * vary from route to route, but most attributes are usually common
                     14:  * for a large number of routes. To conserve memory, we've decided to
                     15:  * store only the varying ones directly in the &rte and hold the rest
                     16:  * in a special structure called &rta which is shared among all the
                     17:  * &rte's with these attributes.
                     18:  *
                     19:  * Each &rta contains all the static attributes of the route (i.e.,
                     20:  * those which are always present) as structure members and a list of
                     21:  * dynamic attributes represented by a linked list of &ea_list
                     22:  * structures, each of them consisting of an array of &eattr's containing
                     23:  * the individual attributes. An attribute can be specified more than once
                     24:  * in the &ea_list chain and in such case the first occurrence overrides
                     25:  * the others. This semantics is used especially when someone (for example
                     26:  * a filter) wishes to alter values of several dynamic attributes, but
                     27:  * it wants to preserve the original attribute lists maintained by
                     28:  * another module.
                     29:  *
                     30:  * Each &eattr contains an attribute identifier (split to protocol ID and
                     31:  * per-protocol attribute ID), protocol dependent flags, a type code (consisting
                     32:  * of several bit fields describing attribute characteristics) and either an
                     33:  * embedded 32-bit value or a pointer to a &adata structure holding attribute
                     34:  * contents.
                     35:  *
                     36:  * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
                     37:  * &rta's can have arbitrarily complex structure of &ea_list's and they
                     38:  * can be modified by any module in the route processing chain. Cached
                     39:  * &rta's have their attribute lists normalized (that means at most one
                     40:  * &ea_list is present and its values are sorted in order to speed up
                     41:  * searching), they are stored in a hash table to make fast lookup possible
                     42:  * and they are provided with a use count to allow sharing.
                     43:  *
                     44:  * Routing tables always contain only cached &rta's.
                     45:  */
                     46: 
                     47: #include "nest/bird.h"
                     48: #include "nest/route.h"
                     49: #include "nest/protocol.h"
                     50: #include "nest/iface.h"
                     51: #include "nest/cli.h"
                     52: #include "nest/attrs.h"
                     53: #include "lib/alloca.h"
                     54: #include "lib/hash.h"
                     55: #include "lib/idm.h"
                     56: #include "lib/resource.h"
                     57: #include "lib/string.h"
                     58: 
                     59: #include <stddef.h>
                     60: 
                     61: const adata null_adata;                /* adata of length 0 */
                     62: 
                     63: const char * const rta_src_names[RTS_MAX] = {
                     64:   [RTS_DUMMY]          = "",
                     65:   [RTS_STATIC]         = "static",
                     66:   [RTS_INHERIT]                = "inherit",
                     67:   [RTS_DEVICE]         = "device",
                     68:   [RTS_STATIC_DEVICE]  = "static-device",
                     69:   [RTS_REDIRECT]       = "redirect",
                     70:   [RTS_RIP]            = "RIP",
                     71:   [RTS_OSPF]           = "OSPF",
                     72:   [RTS_OSPF_IA]                = "OSPF-IA",
                     73:   [RTS_OSPF_EXT1]      = "OSPF-E1",
                     74:   [RTS_OSPF_EXT2]      = "OSPF-E2",
                     75:   [RTS_BGP]            = "BGP",
                     76:   [RTS_PIPE]           = "pipe",
                     77:   [RTS_BABEL]          = "Babel",
                     78:   [RTS_RPKI]           = "RPKI",
                     79: };
                     80: 
                     81: const char * rta_dest_names[RTD_MAX] = {
                     82:   [RTD_NONE]           = "",
                     83:   [RTD_UNICAST]                = "unicast",
                     84:   [RTD_BLACKHOLE]      = "blackhole",
                     85:   [RTD_UNREACHABLE]    = "unreachable",
                     86:   [RTD_PROHIBIT]       = "prohibited",
                     87: };
                     88: 
                     89: pool *rta_pool;
                     90: 
                     91: static slab *rta_slab_[4];
                     92: static slab *nexthop_slab_[4];
                     93: static slab *rte_src_slab;
                     94: 
                     95: static struct idm src_ids;
                     96: #define SRC_ID_INIT_SIZE 4
                     97: 
                     98: /* rte source hash */
                     99: 
                    100: #define RSH_KEY(n)             n->proto, n->private_id
                    101: #define RSH_NEXT(n)            n->next
                    102: #define RSH_EQ(p1,n1,p2,n2)    p1 == p2 && n1 == n2
                    103: #define RSH_FN(p,n)            p->hash_key ^ u32_hash(n)
                    104: 
                    105: #define RSH_REHASH             rte_src_rehash
                    106: #define RSH_PARAMS             /2, *2, 1, 1, 8, 20
                    107: #define RSH_INIT_ORDER         6
                    108: 
                    109: static HASH(struct rte_src) src_hash;
                    110: 
                    111: static void
                    112: rte_src_init(void)
                    113: {
                    114:   rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
                    115: 
                    116:   idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
                    117: 
                    118:   HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
                    119: }
                    120: 
                    121: 
                    122: HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
                    123: 
                    124: struct rte_src *
                    125: rt_find_source(struct proto *p, u32 id)
                    126: {
                    127:   return HASH_FIND(src_hash, RSH, p, id);
                    128: }
                    129: 
                    130: struct rte_src *
                    131: rt_get_source(struct proto *p, u32 id)
                    132: {
                    133:   struct rte_src *src = rt_find_source(p, id);
                    134: 
                    135:   if (src)
                    136:     return src;
                    137: 
                    138:   src = sl_alloc(rte_src_slab);
                    139:   src->proto = p;
                    140:   src->private_id = id;
                    141:   src->global_id = idm_alloc(&src_ids);
                    142:   src->uc = 0;
                    143: 
                    144:   HASH_INSERT2(src_hash, RSH, rta_pool, src);
                    145: 
                    146:   return src;
                    147: }
                    148: 
                    149: void
                    150: rt_prune_sources(void)
                    151: {
                    152:   HASH_WALK_FILTER(src_hash, next, src, sp)
                    153:   {
                    154:     if (src->uc == 0)
                    155:     {
                    156:       HASH_DO_REMOVE(src_hash, RSH, sp);
                    157:       idm_free(&src_ids, src->global_id);
                    158:       sl_free(rte_src_slab, src);
                    159:     }
                    160:   }
                    161:   HASH_WALK_FILTER_END;
                    162: 
                    163:   HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
                    164: }
                    165: 
                    166: 
                    167: /*
                    168:  *     Multipath Next Hop
                    169:  */
                    170: 
                    171: static inline u32
                    172: nexthop_hash(struct nexthop *x)
                    173: {
                    174:   u32 h = 0;
                    175:   for (; x; x = x->next)
                    176:   {
                    177:     h ^= ipa_hash(x->gw) ^ (h << 5) ^ (h >> 9);
                    178: 
                    179:     for (int i = 0; i < x->labels; i++)
                    180:       h ^= x->label[i] ^ (h << 6) ^ (h >> 7);
                    181:   }
                    182: 
                    183:   return h;
                    184: }
                    185: 
                    186: int
                    187: nexthop__same(struct nexthop *x, struct nexthop *y)
                    188: {
                    189:   for (; x && y; x = x->next, y = y->next)
                    190:   {
                    191:     if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) ||
                    192:        (x->flags != y->flags) || (x->weight != y->weight) ||
                    193:        (x->labels_orig != y->labels_orig) || (x->labels != y->labels))
                    194:       return 0;
                    195: 
                    196:     for (int i = 0; i < x->labels; i++)
                    197:       if (x->label[i] != y->label[i])
                    198:        return 0;
                    199:   }
                    200: 
                    201:   return x == y;
                    202: }
                    203: 
                    204: static int
                    205: nexthop_compare_node(const struct nexthop *x, const  struct nexthop *y)
                    206: {
                    207:   int r;
                    208: 
                    209:   if (!x)
                    210:     return 1;
                    211: 
                    212:   if (!y)
                    213:     return -1;
                    214: 
                    215:   /* Should we also compare flags ? */
                    216: 
                    217:   r = ((int) y->weight) - ((int) x->weight);
                    218:   if (r)
                    219:     return r;
                    220: 
                    221:   r = ipa_compare(x->gw, y->gw);
                    222:   if (r)
                    223:     return r;
                    224: 
                    225:   r = ((int) y->labels) - ((int) x->labels);
                    226:   if (r)
                    227:     return r;
                    228: 
                    229:   for (int i = 0; i < y->labels; i++)
                    230:   {
                    231:     r = ((int) y->label[i]) - ((int) x->label[i]);
                    232:     if (r)
                    233:       return r;
                    234:   }
                    235: 
                    236:   return ((int) x->iface->index) - ((int) y->iface->index);
                    237: }
                    238: 
                    239: static inline struct nexthop *
                    240: nexthop_copy_node(const struct nexthop *src, linpool *lp)
                    241: {
                    242:   struct nexthop *n = lp_alloc(lp, nexthop_size(src));
                    243: 
                    244:   memcpy(n, src, nexthop_size(src));
                    245:   n->next = NULL;
                    246: 
                    247:   return n;
                    248: }
                    249: 
                    250: /**
                    251:  * nexthop_merge - merge nexthop lists
                    252:  * @x: list 1
                    253:  * @y: list 2
                    254:  * @rx: reusability of list @x
                    255:  * @ry: reusability of list @y
                    256:  * @max: max number of nexthops
                    257:  * @lp: linpool for allocating nexthops
                    258:  *
                    259:  * The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
                    260:  * eliminating possible duplicates. The input lists must be sorted and the
                    261:  * result is sorted too. The number of nexthops in result is limited by @max.
                    262:  * New nodes are allocated from linpool @lp.
                    263:  *
                    264:  * The arguments @rx and @ry specify whether corresponding input lists may be
                    265:  * consumed by the function (i.e. their nodes reused in the resulting list), in
                    266:  * that case the caller should not access these lists after that. To eliminate
                    267:  * issues with deallocation of these lists, the caller should use some form of
                    268:  * bulk deallocation (e.g. stack or linpool) to free these nodes when the
                    269:  * resulting list is no longer needed. When reusability is not set, the
                    270:  * corresponding lists are not modified nor linked from the resulting list.
                    271:  */
                    272: struct nexthop *
                    273: nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp)
                    274: {
                    275:   struct nexthop *root = NULL;
                    276:   struct nexthop **n = &root;
                    277: 
                    278:   while ((x || y) && max--)
                    279:   {
                    280:     int cmp = nexthop_compare_node(x, y);
                    281:     if (cmp < 0)
                    282:     {
                    283:       *n = rx ? x : nexthop_copy_node(x, lp);
                    284:       x = x->next;
                    285:     }
                    286:     else if (cmp > 0)
                    287:     {
                    288:       *n = ry ? y : nexthop_copy_node(y, lp);
                    289:       y = y->next;
                    290:     }
                    291:     else
                    292:     {
                    293:       *n = rx ? x : (ry ? y : nexthop_copy_node(x, lp));
                    294:       x = x->next;
                    295:       y = y->next;
                    296:     }
                    297:     n = &((*n)->next);
                    298:   }
                    299:   *n = NULL;
                    300: 
                    301:   return root;
                    302: }
                    303: 
                    304: void
                    305: nexthop_insert(struct nexthop **n, struct nexthop *x)
                    306: {
                    307:   for (; *n; n = &((*n)->next))
                    308:   {
                    309:     int cmp = nexthop_compare_node(*n, x);
                    310: 
                    311:     if (cmp < 0)
                    312:       continue;
                    313:     else if (cmp > 0)
                    314:       break;
                    315:     else
                    316:       return;
                    317:   }
                    318: 
                    319:   x->next = *n;
                    320:   *n = x;
                    321: }
                    322: 
                    323: struct nexthop *
                    324: nexthop_sort(struct nexthop *x)
                    325: {
                    326:   struct nexthop *s = NULL;
                    327: 
                    328:   /* Simple insert-sort */
                    329:   while (x)
                    330:   {
                    331:     struct nexthop *n = x;
                    332:     x = n->next;
                    333:     n->next = NULL;
                    334: 
                    335:     nexthop_insert(&s, n);
                    336:   }
                    337: 
                    338:   return s;
                    339: }
                    340: 
                    341: int
                    342: nexthop_is_sorted(struct nexthop *x)
                    343: {
                    344:   for (; x && x->next; x = x->next)
                    345:     if (nexthop_compare_node(x, x->next) >= 0)
                    346:       return 0;
                    347: 
                    348:   return 1;
                    349: }
                    350: 
                    351: static inline slab *
                    352: nexthop_slab(struct nexthop *nh)
                    353: {
                    354:   return nexthop_slab_[MIN(nh->labels, 3)];
                    355: }
                    356: 
                    357: static struct nexthop *
                    358: nexthop_copy(struct nexthop *o)
                    359: {
                    360:   struct nexthop *first = NULL;
                    361:   struct nexthop **last = &first;
                    362: 
                    363:   for (; o; o = o->next)
                    364:     {
                    365:       struct nexthop *n = sl_alloc(nexthop_slab(o));
                    366:       n->gw = o->gw;
                    367:       n->iface = o->iface;
                    368:       n->next = NULL;
                    369:       n->flags = o->flags;
                    370:       n->weight = o->weight;
                    371:       n->labels_orig = o->labels_orig;
                    372:       n->labels = o->labels;
                    373:       for (int i=0; i<o->labels; i++)
                    374:        n->label[i] = o->label[i];
                    375: 
                    376:       *last = n;
                    377:       last = &(n->next);
                    378:     }
                    379: 
                    380:   return first;
                    381: }
                    382: 
                    383: static void
                    384: nexthop_free(struct nexthop *o)
                    385: {
                    386:   struct nexthop *n;
                    387: 
                    388:   while (o)
                    389:     {
                    390:       n = o->next;
                    391:       sl_free(nexthop_slab(o), o);
                    392:       o = n;
                    393:     }
                    394: }
                    395: 
                    396: 
                    397: /*
                    398:  *     Extended Attributes
                    399:  */
                    400: 
                    401: static inline eattr *
                    402: ea__find(ea_list *e, unsigned id)
                    403: {
                    404:   eattr *a;
                    405:   int l, r, m;
                    406: 
                    407:   while (e)
                    408:     {
                    409:       if (e->flags & EALF_BISECT)
                    410:        {
                    411:          l = 0;
                    412:          r = e->count - 1;
                    413:          while (l <= r)
                    414:            {
                    415:              m = (l+r) / 2;
                    416:              a = &e->attrs[m];
                    417:              if (a->id == id)
                    418:                return a;
                    419:              else if (a->id < id)
                    420:                l = m+1;
                    421:              else
                    422:                r = m-1;
                    423:            }
                    424:        }
                    425:       else
                    426:        for(m=0; m<e->count; m++)
                    427:          if (e->attrs[m].id == id)
                    428:            return &e->attrs[m];
                    429:       e = e->next;
                    430:     }
                    431:   return NULL;
                    432: }
                    433: 
                    434: /**
                    435:  * ea_find - find an extended attribute
                    436:  * @e: attribute list to search in
                    437:  * @id: attribute ID to search for
                    438:  *
                    439:  * Given an extended attribute list, ea_find() searches for a first
                    440:  * occurrence of an attribute with specified ID, returning either a pointer
                    441:  * to its &eattr structure or %NULL if no such attribute exists.
                    442:  */
                    443: eattr *
                    444: ea_find(ea_list *e, unsigned id)
                    445: {
                    446:   eattr *a = ea__find(e, id & EA_CODE_MASK);
                    447: 
                    448:   if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
                    449:       !(id & EA_ALLOW_UNDEF))
                    450:     return NULL;
                    451:   return a;
                    452: }
                    453: 
                    454: /**
                    455:  * ea_walk - walk through extended attributes
                    456:  * @s: walk state structure
                    457:  * @id: start of attribute ID interval
                    458:  * @max: length of attribute ID interval
                    459:  *
                    460:  * Given an extended attribute list, ea_walk() walks through the list looking
                    461:  * for first occurrences of attributes with ID in specified interval from @id to
                    462:  * (@id + @max - 1), returning pointers to found &eattr structures, storing its
                    463:  * walk state in @s for subsequent calls.
                    464:  *
                    465:  * The function ea_walk() is supposed to be called in a loop, with initially
                    466:  * zeroed walk state structure @s with filled the initial extended attribute
                    467:  * list, returning one found attribute in each call or %NULL when no other
                    468:  * attribute exists. The extended attribute list or the arguments should not be
                    469:  * modified between calls. The maximum value of @max is 128.
                    470:  */
                    471: eattr *
                    472: ea_walk(struct ea_walk_state *s, uint id, uint max)
                    473: {
                    474:   ea_list *e = s->eattrs;
                    475:   eattr *a = s->ea;
                    476:   eattr *a_max;
                    477: 
                    478:   max = id + max;
                    479: 
                    480:   if (a)
                    481:     goto step;
                    482: 
                    483:   for (; e; e = e->next)
                    484:   {
                    485:     if (e->flags & EALF_BISECT)
                    486:     {
                    487:       int l, r, m;
                    488: 
                    489:       l = 0;
                    490:       r = e->count - 1;
                    491:       while (l < r)
                    492:       {
                    493:        m = (l+r) / 2;
                    494:        if (e->attrs[m].id < id)
                    495:          l = m + 1;
                    496:        else
                    497:          r = m;
                    498:       }
                    499:       a = e->attrs + l;
                    500:     }
                    501:     else
                    502:       a = e->attrs;
                    503: 
                    504:   step:
                    505:     a_max = e->attrs + e->count;
                    506:     for (; a < a_max; a++)
                    507:       if ((a->id >= id) && (a->id < max))
                    508:       {
                    509:        int n = a->id - id;
                    510: 
                    511:        if (BIT32_TEST(s->visited, n))
                    512:          continue;
                    513: 
                    514:        BIT32_SET(s->visited, n);
                    515: 
                    516:        if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
                    517:          continue;
                    518: 
                    519:        s->eattrs = e;
                    520:        s->ea = a;
                    521:        return a;
                    522:       }
                    523:       else if (e->flags & EALF_BISECT)
                    524:        break;
                    525:   }
                    526: 
                    527:   return NULL;
                    528: }
                    529: 
                    530: /**
                    531:  * ea_get_int - fetch an integer attribute
                    532:  * @e: attribute list
                    533:  * @id: attribute ID
                    534:  * @def: default value
                    535:  *
                    536:  * This function is a shortcut for retrieving a value of an integer attribute
                    537:  * by calling ea_find() to find the attribute, extracting its value or returning
                    538:  * a provided default if no such attribute is present.
                    539:  */
                    540: int
                    541: ea_get_int(ea_list *e, unsigned id, int def)
                    542: {
                    543:   eattr *a = ea_find(e, id);
                    544:   if (!a)
                    545:     return def;
                    546:   return a->u.data;
                    547: }
                    548: 
                    549: static inline void
                    550: ea_do_sort(ea_list *e)
                    551: {
                    552:   unsigned n = e->count;
                    553:   eattr *a = e->attrs;
                    554:   eattr *b = alloca(n * sizeof(eattr));
                    555:   unsigned s, ss;
                    556: 
                    557:   /* We need to use a stable sorting algorithm, hence mergesort */
                    558:   do
                    559:     {
                    560:       s = ss = 0;
                    561:       while (s < n)
                    562:        {
                    563:          eattr *p, *q, *lo, *hi;
                    564:          p = b;
                    565:          ss = s;
                    566:          *p++ = a[s++];
                    567:          while (s < n && p[-1].id <= a[s].id)
                    568:            *p++ = a[s++];
                    569:          if (s < n)
                    570:            {
                    571:              q = p;
                    572:              *p++ = a[s++];
                    573:              while (s < n && p[-1].id <= a[s].id)
                    574:                *p++ = a[s++];
                    575:              lo = b;
                    576:              hi = q;
                    577:              s = ss;
                    578:              while (lo < q && hi < p)
                    579:                if (lo->id <= hi->id)
                    580:                  a[s++] = *lo++;
                    581:                else
                    582:                  a[s++] = *hi++;
                    583:              while (lo < q)
                    584:                a[s++] = *lo++;
                    585:              while (hi < p)
                    586:                a[s++] = *hi++;
                    587:            }
                    588:        }
                    589:     }
                    590:   while (ss);
                    591: }
                    592: 
                    593: /**
                    594:  * In place discard duplicates and undefs in sorted ea_list. We use stable sort
                    595:  * for this reason.
                    596:  **/
                    597: static inline void
                    598: ea_do_prune(ea_list *e)
                    599: {
                    600:   eattr *s, *d, *l, *s0;
                    601:   int i = 0;
                    602: 
                    603:   s = d = e->attrs;        /* Beginning of the list. @s is source, @d is destination. */
                    604:   l = e->attrs + e->count;  /* End of the list */
                    605: 
                    606:   /* Walk from begin to end. */
                    607:   while (s < l)
                    608:     {
                    609:       s0 = s++;
                    610:       /* Find a consecutive block of the same attribute */
                    611:       while (s < l && s->id == s[-1].id)
                    612:        s++;
                    613: 
                    614:       /* Now s0 is the most recent version, s[-1] the oldest one */
                    615:       /* Drop undefs */
                    616:       if ((s0->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
                    617:        continue;
                    618: 
                    619:       /* Copy the newest version to destination */
                    620:       *d = *s0;
                    621: 
                    622:       /* Preserve info whether it originated locally */
                    623:       d->type = (d->type & ~(EAF_ORIGINATED|EAF_FRESH)) | (s[-1].type & EAF_ORIGINATED);
                    624: 
                    625:       /* Next destination */
                    626:       d++;
                    627:       i++;
                    628:     }
                    629: 
                    630:   e->count = i;
                    631: }
                    632: 
                    633: /**
                    634:  * ea_sort - sort an attribute list
                    635:  * @e: list to be sorted
                    636:  *
                    637:  * This function takes a &ea_list chain and sorts the attributes
                    638:  * within each of its entries.
                    639:  *
                    640:  * If an attribute occurs multiple times in a single &ea_list,
                    641:  * ea_sort() leaves only the first (the only significant) occurrence.
                    642:  */
                    643: void
                    644: ea_sort(ea_list *e)
                    645: {
                    646:   while (e)
                    647:     {
                    648:       if (!(e->flags & EALF_SORTED))
                    649:        {
                    650:          ea_do_sort(e);
                    651:          ea_do_prune(e);
                    652:          e->flags |= EALF_SORTED;
                    653:        }
                    654:       if (e->count > 5)
                    655:        e->flags |= EALF_BISECT;
                    656:       e = e->next;
                    657:     }
                    658: }
                    659: 
                    660: /**
                    661:  * ea_scan - estimate attribute list size
                    662:  * @e: attribute list
                    663:  *
                    664:  * This function calculates an upper bound of the size of
                    665:  * a given &ea_list after merging with ea_merge().
                    666:  */
                    667: unsigned
                    668: ea_scan(ea_list *e)
                    669: {
                    670:   unsigned cnt = 0;
                    671: 
                    672:   while (e)
                    673:     {
                    674:       cnt += e->count;
                    675:       e = e->next;
                    676:     }
                    677:   return sizeof(ea_list) + sizeof(eattr)*cnt;
                    678: }
                    679: 
                    680: /**
                    681:  * ea_merge - merge segments of an attribute list
                    682:  * @e: attribute list
                    683:  * @t: buffer to store the result to
                    684:  *
                    685:  * This function takes a possibly multi-segment attribute list
                    686:  * and merges all of its segments to one.
                    687:  *
                    688:  * The primary use of this function is for &ea_list normalization:
                    689:  * first call ea_scan() to determine how much memory will the result
                    690:  * take, then allocate a buffer (usually using alloca()), merge the
                    691:  * segments with ea_merge() and finally sort and prune the result
                    692:  * by calling ea_sort().
                    693:  */
                    694: void
                    695: ea_merge(ea_list *e, ea_list *t)
                    696: {
                    697:   eattr *d = t->attrs;
                    698: 
                    699:   t->flags = 0;
                    700:   t->count = 0;
                    701:   t->next = NULL;
                    702:   while (e)
                    703:     {
                    704:       memcpy(d, e->attrs, sizeof(eattr)*e->count);
                    705:       t->count += e->count;
                    706:       d += e->count;
                    707:       e = e->next;
                    708:     }
                    709: }
                    710: 
                    711: /**
                    712:  * ea_same - compare two &ea_list's
                    713:  * @x: attribute list
                    714:  * @y: attribute list
                    715:  *
                    716:  * ea_same() compares two normalized attribute lists @x and @y and returns
                    717:  * 1 if they contain the same attributes, 0 otherwise.
                    718:  */
                    719: int
                    720: ea_same(ea_list *x, ea_list *y)
                    721: {
                    722:   int c;
                    723: 
                    724:   if (!x || !y)
                    725:     return x == y;
                    726:   ASSERT(!x->next && !y->next);
                    727:   if (x->count != y->count)
                    728:     return 0;
                    729:   for(c=0; c<x->count; c++)
                    730:     {
                    731:       eattr *a = &x->attrs[c];
                    732:       eattr *b = &y->attrs[c];
                    733: 
                    734:       if (a->id != b->id ||
                    735:          a->flags != b->flags ||
                    736:          a->type != b->type ||
                    737:          ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
                    738:        return 0;
                    739:     }
                    740:   return 1;
                    741: }
                    742: 
                    743: static inline ea_list *
                    744: ea_list_copy(ea_list *o)
                    745: {
                    746:   ea_list *n;
                    747:   unsigned i, len;
                    748: 
                    749:   if (!o)
                    750:     return NULL;
                    751:   ASSERT(!o->next);
                    752:   len = sizeof(ea_list) + sizeof(eattr) * o->count;
                    753:   n = mb_alloc(rta_pool, len);
                    754:   memcpy(n, o, len);
                    755:   n->flags |= EALF_CACHED;
                    756:   for(i=0; i<o->count; i++)
                    757:     {
                    758:       eattr *a = &n->attrs[i];
                    759:       if (!(a->type & EAF_EMBEDDED))
                    760:        {
                    761:          unsigned size = sizeof(struct adata) + a->u.ptr->length;
                    762:          struct adata *d = mb_alloc(rta_pool, size);
                    763:          memcpy(d, a->u.ptr, size);
                    764:          a->u.ptr = d;
                    765:        }
                    766:     }
                    767:   return n;
                    768: }
                    769: 
                    770: static inline void
                    771: ea_free(ea_list *o)
                    772: {
                    773:   int i;
                    774: 
                    775:   if (o)
                    776:     {
                    777:       ASSERT(!o->next);
                    778:       for(i=0; i<o->count; i++)
                    779:        {
                    780:          eattr *a = &o->attrs[i];
                    781:          if (!(a->type & EAF_EMBEDDED))
                    782:            mb_free((void *) a->u.ptr);
                    783:        }
                    784:       mb_free(o);
                    785:     }
                    786: }
                    787: 
                    788: static int
                    789: get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
                    790: {
                    791:   if (a->id == EA_GEN_IGP_METRIC)
                    792:     {
                    793:       *buf += bsprintf(*buf, "igp_metric");
                    794:       return GA_NAME;
                    795:     }
                    796: 
                    797:   return GA_UNKNOWN;
                    798: }
                    799: 
                    800: void
                    801: ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
                    802: {
                    803:   byte *bound = buf + bufsize - 32;
                    804:   u32 data = a->u.data;
                    805:   int i;
                    806: 
                    807:   for (i = min; i < max; i++)
                    808:     if ((data & (1u << i)) && names[i])
                    809:     {
                    810:       if (buf > bound)
                    811:       {
                    812:        strcpy(buf, " ...");
                    813:        return;
                    814:       }
                    815: 
                    816:       buf += bsprintf(buf, " %s", names[i]);
                    817:       data &= ~(1u << i);
                    818:     }
                    819: 
                    820:   if (data)
                    821:     bsprintf(buf, " %08x", data);
                    822: 
                    823:   return;
                    824: }
                    825: 
                    826: static inline void
                    827: opaque_format(const struct adata *ad, byte *buf, uint size)
                    828: {
                    829:   byte *bound = buf + size - 10;
                    830:   uint i;
                    831: 
                    832:   for(i = 0; i < ad->length; i++)
                    833:     {
                    834:       if (buf > bound)
                    835:        {
                    836:          strcpy(buf, " ...");
                    837:          return;
                    838:        }
                    839:       if (i)
                    840:        *buf++ = ' ';
                    841: 
                    842:       buf += bsprintf(buf, "%02x", ad->data[i]);
                    843:     }
                    844: 
                    845:   *buf = 0;
                    846:   return;
                    847: }
                    848: 
                    849: static inline void
                    850: ea_show_int_set(struct cli *c, const struct adata *ad, int way, byte *pos, byte *buf, byte *end)
                    851: {
                    852:   int i = int_set_format(ad, way, 0, pos, end - pos);
                    853:   cli_printf(c, -1012, "\t%s", buf);
                    854:   while (i)
                    855:     {
                    856:       i = int_set_format(ad, way, i, buf, end - buf - 1);
                    857:       cli_printf(c, -1012, "\t\t%s", buf);
                    858:     }
                    859: }
                    860: 
                    861: static inline void
                    862: ea_show_ec_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
                    863: {
                    864:   int i = ec_set_format(ad, 0, pos, end - pos);
                    865:   cli_printf(c, -1012, "\t%s", buf);
                    866:   while (i)
                    867:     {
                    868:       i = ec_set_format(ad, i, buf, end - buf - 1);
                    869:       cli_printf(c, -1012, "\t\t%s", buf);
                    870:     }
                    871: }
                    872: 
                    873: static inline void
                    874: ea_show_lc_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
                    875: {
                    876:   int i = lc_set_format(ad, 0, pos, end - pos);
                    877:   cli_printf(c, -1012, "\t%s", buf);
                    878:   while (i)
                    879:     {
                    880:       i = lc_set_format(ad, i, buf, end - buf - 1);
                    881:       cli_printf(c, -1012, "\t\t%s", buf);
                    882:     }
                    883: }
                    884: 
                    885: /**
                    886:  * ea_show - print an &eattr to CLI
                    887:  * @c: destination CLI
                    888:  * @e: attribute to be printed
                    889:  *
                    890:  * This function takes an extended attribute represented by its &eattr
                    891:  * structure and prints it to the CLI according to the type information.
                    892:  *
                    893:  * If the protocol defining the attribute provides its own
                    894:  * get_attr() hook, it's consulted first.
                    895:  */
                    896: void
                    897: ea_show(struct cli *c, eattr *e)
                    898: {
                    899:   struct protocol *p;
                    900:   int status = GA_UNKNOWN;
                    901:   const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
                    902:   byte buf[CLI_MSG_SIZE];
                    903:   byte *pos = buf, *end = buf + sizeof(buf);
                    904: 
                    905:   if (EA_IS_CUSTOM(e->id))
                    906:     {
                    907:       const char *name = ea_custom_name(e->id);
                    908:       if (name)
                    909:         {
                    910:          pos += bsprintf(pos, "%s", name);
                    911:          status = GA_NAME;
                    912:        }
                    913:       else
                    914:        pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
                    915:     }
                    916:   else if (p = class_to_protocol[EA_PROTO(e->id)])
                    917:     {
                    918:       pos += bsprintf(pos, "%s.", p->name);
                    919:       if (p->get_attr)
                    920:        status = p->get_attr(e, pos, end - pos);
                    921:       pos += strlen(pos);
                    922:     }
                    923:   else if (EA_PROTO(e->id))
                    924:     pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
                    925:   else
                    926:     status = get_generic_attr(e, &pos, end - pos);
                    927: 
                    928:   if (status < GA_NAME)
                    929:     pos += bsprintf(pos, "%02x", EA_ID(e->id));
                    930:   if (status < GA_FULL)
                    931:     {
                    932:       *pos++ = ':';
                    933:       *pos++ = ' ';
                    934:       switch (e->type & EAF_TYPE_MASK)
                    935:        {
                    936:        case EAF_TYPE_INT:
                    937:          bsprintf(pos, "%u", e->u.data);
                    938:          break;
                    939:        case EAF_TYPE_OPAQUE:
                    940:          opaque_format(ad, pos, end - pos);
                    941:          break;
                    942:        case EAF_TYPE_IP_ADDRESS:
                    943:          bsprintf(pos, "%I", *(ip_addr *) ad->data);
                    944:          break;
                    945:        case EAF_TYPE_ROUTER_ID:
                    946:          bsprintf(pos, "%R", e->u.data);
                    947:          break;
                    948:        case EAF_TYPE_AS_PATH:
                    949:          as_path_format(ad, pos, end - pos);
                    950:          break;
                    951:        case EAF_TYPE_BITFIELD:
                    952:          bsprintf(pos, "%08x", e->u.data);
                    953:          break;
                    954:        case EAF_TYPE_INT_SET:
                    955:          ea_show_int_set(c, ad, 1, pos, buf, end);
                    956:          return;
                    957:        case EAF_TYPE_EC_SET:
                    958:          ea_show_ec_set(c, ad, pos, buf, end);
                    959:          return;
                    960:        case EAF_TYPE_LC_SET:
                    961:          ea_show_lc_set(c, ad, pos, buf, end);
                    962:          return;
                    963:        case EAF_TYPE_UNDEF:
                    964:        default:
                    965:          bsprintf(pos, "<type %02x>", e->type);
                    966:        }
                    967:     }
                    968:   cli_printf(c, -1012, "\t%s", buf);
                    969: }
                    970: 
                    971: /**
                    972:  * ea_dump - dump an extended attribute
                    973:  * @e: attribute to be dumped
                    974:  *
                    975:  * ea_dump() dumps contents of the extended attribute given to
                    976:  * the debug output.
                    977:  */
                    978: void
                    979: ea_dump(ea_list *e)
                    980: {
                    981:   int i;
                    982: 
                    983:   if (!e)
                    984:     {
                    985:       debug("NONE");
                    986:       return;
                    987:     }
                    988:   while (e)
                    989:     {
                    990:       debug("[%c%c%c]",
                    991:            (e->flags & EALF_SORTED) ? 'S' : 's',
                    992:            (e->flags & EALF_BISECT) ? 'B' : 'b',
                    993:            (e->flags & EALF_CACHED) ? 'C' : 'c');
                    994:       for(i=0; i<e->count; i++)
                    995:        {
                    996:          eattr *a = &e->attrs[i];
                    997:          debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
                    998:          debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
                    999:          if (a->type & EAF_ORIGINATED)
                   1000:            debug("o");
                   1001:          if (a->type & EAF_EMBEDDED)
                   1002:            debug(":%08x", a->u.data);
                   1003:          else
                   1004:            {
                   1005:              int j, len = a->u.ptr->length;
                   1006:              debug("[%d]:", len);
                   1007:              for(j=0; j<len; j++)
                   1008:                debug("%02x", a->u.ptr->data[j]);
                   1009:            }
                   1010:        }
                   1011:       if (e = e->next)
                   1012:        debug(" | ");
                   1013:     }
                   1014: }
                   1015: 
                   1016: /**
                   1017:  * ea_hash - calculate an &ea_list hash key
                   1018:  * @e: attribute list
                   1019:  *
                   1020:  * ea_hash() takes an extended attribute list and calculated a hopefully
                   1021:  * uniformly distributed hash value from its contents.
                   1022:  */
                   1023: inline uint
                   1024: ea_hash(ea_list *e)
                   1025: {
                   1026:   const u64 mul = 0x68576150f3d6847;
                   1027:   u64 h = 0xafcef24eda8b29;
                   1028:   int i;
                   1029: 
                   1030:   if (e)                       /* Assuming chain of length 1 */
                   1031:     {
                   1032:       for(i=0; i<e->count; i++)
                   1033:        {
                   1034:          struct eattr *a = &e->attrs[i];
                   1035:          h ^= a->id; h *= mul;
                   1036:          if (a->type & EAF_EMBEDDED)
                   1037:            h ^= a->u.data;
                   1038:          else
                   1039:            {
                   1040:              const struct adata *d = a->u.ptr;
                   1041:              h ^= mem_hash(d->data, d->length);
                   1042:            }
                   1043:          h *= mul;
                   1044:        }
                   1045:     }
                   1046:   return (h >> 32) ^ (h & 0xffffffff);
                   1047: }
                   1048: 
                   1049: /**
                   1050:  * ea_append - concatenate &ea_list's
                   1051:  * @to: destination list (can be %NULL)
                   1052:  * @what: list to be appended (can be %NULL)
                   1053:  *
                   1054:  * This function appends the &ea_list @what at the end of
                   1055:  * &ea_list @to and returns a pointer to the resulting list.
                   1056:  */
                   1057: ea_list *
                   1058: ea_append(ea_list *to, ea_list *what)
                   1059: {
                   1060:   ea_list *res;
                   1061: 
                   1062:   if (!to)
                   1063:     return what;
                   1064:   res = to;
                   1065:   while (to->next)
                   1066:     to = to->next;
                   1067:   to->next = what;
                   1068:   return res;
                   1069: }
                   1070: 
                   1071: /*
                   1072:  *     rta's
                   1073:  */
                   1074: 
                   1075: static uint rta_cache_count;
                   1076: static uint rta_cache_size = 32;
                   1077: static uint rta_cache_limit;
                   1078: static uint rta_cache_mask;
                   1079: static rta **rta_hash_table;
                   1080: 
                   1081: static void
                   1082: rta_alloc_hash(void)
                   1083: {
                   1084:   rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
                   1085:   if (rta_cache_size < 32768)
                   1086:     rta_cache_limit = rta_cache_size * 2;
                   1087:   else
                   1088:     rta_cache_limit = ~0;
                   1089:   rta_cache_mask = rta_cache_size - 1;
                   1090: }
                   1091: 
                   1092: static inline uint
                   1093: rta_hash(rta *a)
                   1094: {
                   1095:   u64 h;
                   1096:   mem_hash_init(&h);
                   1097: #define MIX(f) mem_hash_mix(&h, &(a->f), sizeof(a->f));
                   1098:   MIX(src);
                   1099:   MIX(hostentry);
                   1100:   MIX(from);
                   1101:   MIX(igp_metric);
                   1102:   MIX(source);
                   1103:   MIX(scope);
                   1104:   MIX(dest);
                   1105: #undef MIX
                   1106: 
                   1107:   return mem_hash_value(&h) ^ nexthop_hash(&(a->nh)) ^ ea_hash(a->eattrs);
                   1108: }
                   1109: 
                   1110: static inline int
                   1111: rta_same(rta *x, rta *y)
                   1112: {
                   1113:   return (x->src == y->src &&
                   1114:          x->source == y->source &&
                   1115:          x->scope == y->scope &&
                   1116:          x->dest == y->dest &&
                   1117:          x->igp_metric == y->igp_metric &&
                   1118:          ipa_equal(x->from, y->from) &&
                   1119:          x->hostentry == y->hostentry &&
                   1120:          nexthop_same(&(x->nh), &(y->nh)) &&
                   1121:          ea_same(x->eattrs, y->eattrs));
                   1122: }
                   1123: 
                   1124: static inline slab *
                   1125: rta_slab(rta *a)
                   1126: {
                   1127:   return rta_slab_[a->nh.labels > 2 ? 3 : a->nh.labels];
                   1128: }
                   1129: 
                   1130: static rta *
                   1131: rta_copy(rta *o)
                   1132: {
                   1133:   rta *r = sl_alloc(rta_slab(o));
                   1134: 
                   1135:   memcpy(r, o, rta_size(o));
                   1136:   r->uc = 1;
                   1137:   r->nh.next = nexthop_copy(o->nh.next);
                   1138:   r->eattrs = ea_list_copy(o->eattrs);
                   1139:   return r;
                   1140: }
                   1141: 
                   1142: static inline void
                   1143: rta_insert(rta *r)
                   1144: {
                   1145:   uint h = r->hash_key & rta_cache_mask;
                   1146:   r->next = rta_hash_table[h];
                   1147:   if (r->next)
                   1148:     r->next->pprev = &r->next;
                   1149:   r->pprev = &rta_hash_table[h];
                   1150:   rta_hash_table[h] = r;
                   1151: }
                   1152: 
                   1153: static void
                   1154: rta_rehash(void)
                   1155: {
                   1156:   uint ohs = rta_cache_size;
                   1157:   uint h;
                   1158:   rta *r, *n;
                   1159:   rta **oht = rta_hash_table;
                   1160: 
                   1161:   rta_cache_size = 2*rta_cache_size;
                   1162:   DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
                   1163:   rta_alloc_hash();
                   1164:   for(h=0; h<ohs; h++)
                   1165:     for(r=oht[h]; r; r=n)
                   1166:       {
                   1167:        n = r->next;
                   1168:        rta_insert(r);
                   1169:       }
                   1170:   mb_free(oht);
                   1171: }
                   1172: 
                   1173: /**
                   1174:  * rta_lookup - look up a &rta in attribute cache
                   1175:  * @o: a un-cached &rta
                   1176:  *
                   1177:  * rta_lookup() gets an un-cached &rta structure and returns its cached
                   1178:  * counterpart. It starts with examining the attribute cache to see whether
                   1179:  * there exists a matching entry. If such an entry exists, it's returned and
                   1180:  * its use count is incremented, else a new entry is created with use count
                   1181:  * set to 1.
                   1182:  *
                   1183:  * The extended attribute lists attached to the &rta are automatically
                   1184:  * converted to the normalized form.
                   1185:  */
                   1186: rta *
                   1187: rta_lookup(rta *o)
                   1188: {
                   1189:   rta *r;
                   1190:   uint h;
                   1191: 
                   1192:   ASSERT(!(o->aflags & RTAF_CACHED));
                   1193:   if (o->eattrs)
                   1194:     ea_normalize(o->eattrs);
                   1195: 
                   1196:   h = rta_hash(o);
                   1197:   for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
                   1198:     if (r->hash_key == h && rta_same(r, o))
                   1199:       return rta_clone(r);
                   1200: 
                   1201:   r = rta_copy(o);
                   1202:   r->hash_key = h;
                   1203:   r->aflags = RTAF_CACHED;
                   1204:   rt_lock_source(r->src);
                   1205:   rt_lock_hostentry(r->hostentry);
                   1206:   rta_insert(r);
                   1207: 
                   1208:   if (++rta_cache_count > rta_cache_limit)
                   1209:     rta_rehash();
                   1210: 
                   1211:   return r;
                   1212: }
                   1213: 
                   1214: void
                   1215: rta__free(rta *a)
                   1216: {
                   1217:   ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
                   1218:   rta_cache_count--;
                   1219:   *a->pprev = a->next;
                   1220:   if (a->next)
                   1221:     a->next->pprev = a->pprev;
                   1222:   rt_unlock_hostentry(a->hostentry);
                   1223:   rt_unlock_source(a->src);
                   1224:   if (a->nh.next)
                   1225:     nexthop_free(a->nh.next);
                   1226:   ea_free(a->eattrs);
                   1227:   a->aflags = 0;               /* Poison the entry */
                   1228:   sl_free(rta_slab(a), a);
                   1229: }
                   1230: 
                   1231: rta *
                   1232: rta_do_cow(rta *o, linpool *lp)
                   1233: {
                   1234:   rta *r = lp_alloc(lp, rta_size(o));
                   1235:   memcpy(r, o, rta_size(o));
                   1236:   for (struct nexthop **nhn = &(r->nh.next), *nho = o->nh.next; nho; nho = nho->next)
                   1237:     {
                   1238:       *nhn = lp_alloc(lp, nexthop_size(nho));
                   1239:       memcpy(*nhn, nho, nexthop_size(nho));
                   1240:       nhn = &((*nhn)->next);
                   1241:     }
                   1242:   r->aflags = 0;
                   1243:   r->uc = 0;
                   1244:   return r;
                   1245: }
                   1246: 
                   1247: /**
                   1248:  * rta_dump - dump route attributes
                   1249:  * @a: attribute structure to dump
                   1250:  *
                   1251:  * This function takes a &rta and dumps its contents to the debug output.
                   1252:  */
                   1253: void
                   1254: rta_dump(rta *a)
                   1255: {
                   1256:   static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
                   1257:                         "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
                   1258:                         "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
                   1259:                         "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
                   1260:   static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
                   1261: 
                   1262:   debug("p=%s uc=%d %s %s%s h=%04x",
                   1263:        a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope),
                   1264:        rtd[a->dest], a->hash_key);
                   1265:   if (!(a->aflags & RTAF_CACHED))
                   1266:     debug(" !CACHED");
                   1267:   debug(" <-%I", a->from);
                   1268:   if (a->dest == RTD_UNICAST)
                   1269:     for (struct nexthop *nh = &(a->nh); nh; nh = nh->next)
                   1270:       {
                   1271:        if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
                   1272:        if (nh->labels) debug(" L %d", nh->label[0]);
                   1273:        for (int i=1; i<nh->labels; i++)
                   1274:          debug("/%d", nh->label[i]);
                   1275:        debug(" [%s]", nh->iface ? nh->iface->name : "???");
                   1276:       }
                   1277:   if (a->eattrs)
                   1278:     {
                   1279:       debug(" EA: ");
                   1280:       ea_dump(a->eattrs);
                   1281:     }
                   1282: }
                   1283: 
                   1284: /**
                   1285:  * rta_dump_all - dump attribute cache
                   1286:  *
                   1287:  * This function dumps the whole contents of route attribute cache
                   1288:  * to the debug output.
                   1289:  */
                   1290: void
                   1291: rta_dump_all(void)
                   1292: {
                   1293:   rta *a;
                   1294:   uint h;
                   1295: 
                   1296:   debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
                   1297:   for(h=0; h<rta_cache_size; h++)
                   1298:     for(a=rta_hash_table[h]; a; a=a->next)
                   1299:       {
                   1300:        debug("%p ", a);
                   1301:        rta_dump(a);
                   1302:        debug("\n");
                   1303:       }
                   1304:   debug("\n");
                   1305: }
                   1306: 
                   1307: void
                   1308: rta_show(struct cli *c, rta *a)
                   1309: {
                   1310:   cli_printf(c, -1008, "\tType: %s %s", rta_src_names[a->source], ip_scope_text(a->scope));
                   1311: 
                   1312:   for(ea_list *eal = a->eattrs; eal; eal=eal->next)
                   1313:     for(int i=0; i<eal->count; i++)
                   1314:       ea_show(c, &eal->attrs[i]);
                   1315: }
                   1316: 
                   1317: /**
                   1318:  * rta_init - initialize route attribute cache
                   1319:  *
                   1320:  * This function is called during initialization of the routing
                   1321:  * table module to set up the internals of the attribute cache.
                   1322:  */
                   1323: void
                   1324: rta_init(void)
                   1325: {
                   1326:   rta_pool = rp_new(&root_pool, "Attributes");
                   1327: 
                   1328:   rta_slab_[0] = sl_new(rta_pool, sizeof(rta));
                   1329:   rta_slab_[1] = sl_new(rta_pool, sizeof(rta) + sizeof(u32));
                   1330:   rta_slab_[2] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*2);
                   1331:   rta_slab_[3] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
                   1332: 
                   1333:   nexthop_slab_[0] = sl_new(rta_pool, sizeof(struct nexthop));
                   1334:   nexthop_slab_[1] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32));
                   1335:   nexthop_slab_[2] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*2);
                   1336:   nexthop_slab_[3] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
                   1337: 
                   1338:   rta_alloc_hash();
                   1339:   rte_src_init();
                   1340: }
                   1341: 
                   1342: /*
                   1343:  *  Documentation for functions declared inline in route.h
                   1344:  */
                   1345: #if 0
                   1346: 
                   1347: /**
                   1348:  * rta_clone - clone route attributes
                   1349:  * @r: a &rta to be cloned
                   1350:  *
                   1351:  * rta_clone() takes a cached &rta and returns its identical cached
                   1352:  * copy. Currently it works by just returning the original &rta with
                   1353:  * its use count incremented.
                   1354:  */
                   1355: static inline rta *rta_clone(rta *r)
                   1356: { DUMMY; }
                   1357: 
                   1358: /**
                   1359:  * rta_free - free route attributes
                   1360:  * @r: a &rta to be freed
                   1361:  *
                   1362:  * If you stop using a &rta (for example when deleting a route which uses
                   1363:  * it), you need to call rta_free() to notify the attribute cache the
                   1364:  * attribute is no longer in use and can be freed if you were the last
                   1365:  * user (which rta_free() tests by inspecting the use count).
                   1366:  */
                   1367: static inline void rta_free(rta *r)
                   1368: { DUMMY; }
                   1369: 
                   1370: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>