File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / bird2 / nest / rt-attr.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Mon Oct 21 16:03:56 2019 UTC (4 years, 8 months ago) by misho
Branches: bird2, MAIN
CVS tags: v2_0_7p0, HEAD
bird2 ver 2.0.7

    1: /*
    2:  *	BIRD -- Route Attribute Cache
    3:  *
    4:  *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
    5:  *
    6:  *	Can be freely distributed and used under the terms of the GNU GPL.
    7:  */
    8: 
    9: /**
   10:  * DOC: Route attribute cache
   11:  *
   12:  * Each route entry carries a set of route attributes. Several of them
   13:  * vary from route to route, but most attributes are usually common
   14:  * for a large number of routes. To conserve memory, we've decided to
   15:  * store only the varying ones directly in the &rte and hold the rest
   16:  * in a special structure called &rta which is shared among all the
   17:  * &rte's with these attributes.
   18:  *
   19:  * Each &rta contains all the static attributes of the route (i.e.,
   20:  * those which are always present) as structure members and a list of
   21:  * dynamic attributes represented by a linked list of &ea_list
   22:  * structures, each of them consisting of an array of &eattr's containing
   23:  * the individual attributes. An attribute can be specified more than once
   24:  * in the &ea_list chain and in such case the first occurrence overrides
   25:  * the others. This semantics is used especially when someone (for example
   26:  * a filter) wishes to alter values of several dynamic attributes, but
   27:  * it wants to preserve the original attribute lists maintained by
   28:  * another module.
   29:  *
   30:  * Each &eattr contains an attribute identifier (split to protocol ID and
   31:  * per-protocol attribute ID), protocol dependent flags, a type code (consisting
   32:  * of several bit fields describing attribute characteristics) and either an
   33:  * embedded 32-bit value or a pointer to a &adata structure holding attribute
   34:  * contents.
   35:  *
   36:  * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
   37:  * &rta's can have arbitrarily complex structure of &ea_list's and they
   38:  * can be modified by any module in the route processing chain. Cached
   39:  * &rta's have their attribute lists normalized (that means at most one
   40:  * &ea_list is present and its values are sorted in order to speed up
   41:  * searching), they are stored in a hash table to make fast lookup possible
   42:  * and they are provided with a use count to allow sharing.
   43:  *
   44:  * Routing tables always contain only cached &rta's.
   45:  */
   46: 
   47: #include "nest/bird.h"
   48: #include "nest/route.h"
   49: #include "nest/protocol.h"
   50: #include "nest/iface.h"
   51: #include "nest/cli.h"
   52: #include "nest/attrs.h"
   53: #include "lib/alloca.h"
   54: #include "lib/hash.h"
   55: #include "lib/idm.h"
   56: #include "lib/resource.h"
   57: #include "lib/string.h"
   58: 
   59: #include <stddef.h>
   60: 
   61: const adata null_adata;		/* adata of length 0 */
   62: 
   63: const char * const rta_src_names[RTS_MAX] = {
   64:   [RTS_DUMMY]		= "",
   65:   [RTS_STATIC]		= "static",
   66:   [RTS_INHERIT]		= "inherit",
   67:   [RTS_DEVICE]		= "device",
   68:   [RTS_STATIC_DEVICE]	= "static-device",
   69:   [RTS_REDIRECT]	= "redirect",
   70:   [RTS_RIP]		= "RIP",
   71:   [RTS_OSPF]		= "OSPF",
   72:   [RTS_OSPF_IA]		= "OSPF-IA",
   73:   [RTS_OSPF_EXT1]	= "OSPF-E1",
   74:   [RTS_OSPF_EXT2]	= "OSPF-E2",
   75:   [RTS_BGP]		= "BGP",
   76:   [RTS_PIPE]		= "pipe",
   77:   [RTS_BABEL]		= "Babel",
   78:   [RTS_RPKI]		= "RPKI",
   79: };
   80: 
   81: const char * rta_dest_names[RTD_MAX] = {
   82:   [RTD_NONE]		= "",
   83:   [RTD_UNICAST]		= "unicast",
   84:   [RTD_BLACKHOLE]	= "blackhole",
   85:   [RTD_UNREACHABLE]	= "unreachable",
   86:   [RTD_PROHIBIT]	= "prohibited",
   87: };
   88: 
   89: pool *rta_pool;
   90: 
   91: static slab *rta_slab_[4];
   92: static slab *nexthop_slab_[4];
   93: static slab *rte_src_slab;
   94: 
   95: static struct idm src_ids;
   96: #define SRC_ID_INIT_SIZE 4
   97: 
   98: /* rte source hash */
   99: 
  100: #define RSH_KEY(n)		n->proto, n->private_id
  101: #define RSH_NEXT(n)		n->next
  102: #define RSH_EQ(p1,n1,p2,n2)	p1 == p2 && n1 == n2
  103: #define RSH_FN(p,n)		p->hash_key ^ u32_hash(n)
  104: 
  105: #define RSH_REHASH		rte_src_rehash
  106: #define RSH_PARAMS		/2, *2, 1, 1, 8, 20
  107: #define RSH_INIT_ORDER		6
  108: 
  109: static HASH(struct rte_src) src_hash;
  110: 
  111: static void
  112: rte_src_init(void)
  113: {
  114:   rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
  115: 
  116:   idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
  117: 
  118:   HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
  119: }
  120: 
  121: 
  122: HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
  123: 
  124: struct rte_src *
  125: rt_find_source(struct proto *p, u32 id)
  126: {
  127:   return HASH_FIND(src_hash, RSH, p, id);
  128: }
  129: 
  130: struct rte_src *
  131: rt_get_source(struct proto *p, u32 id)
  132: {
  133:   struct rte_src *src = rt_find_source(p, id);
  134: 
  135:   if (src)
  136:     return src;
  137: 
  138:   src = sl_alloc(rte_src_slab);
  139:   src->proto = p;
  140:   src->private_id = id;
  141:   src->global_id = idm_alloc(&src_ids);
  142:   src->uc = 0;
  143: 
  144:   HASH_INSERT2(src_hash, RSH, rta_pool, src);
  145: 
  146:   return src;
  147: }
  148: 
  149: void
  150: rt_prune_sources(void)
  151: {
  152:   HASH_WALK_FILTER(src_hash, next, src, sp)
  153:   {
  154:     if (src->uc == 0)
  155:     {
  156:       HASH_DO_REMOVE(src_hash, RSH, sp);
  157:       idm_free(&src_ids, src->global_id);
  158:       sl_free(rte_src_slab, src);
  159:     }
  160:   }
  161:   HASH_WALK_FILTER_END;
  162: 
  163:   HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
  164: }
  165: 
  166: 
  167: /*
  168:  *	Multipath Next Hop
  169:  */
  170: 
  171: static inline u32
  172: nexthop_hash(struct nexthop *x)
  173: {
  174:   u32 h = 0;
  175:   for (; x; x = x->next)
  176:   {
  177:     h ^= ipa_hash(x->gw) ^ (h << 5) ^ (h >> 9);
  178: 
  179:     for (int i = 0; i < x->labels; i++)
  180:       h ^= x->label[i] ^ (h << 6) ^ (h >> 7);
  181:   }
  182: 
  183:   return h;
  184: }
  185: 
  186: int
  187: nexthop__same(struct nexthop *x, struct nexthop *y)
  188: {
  189:   for (; x && y; x = x->next, y = y->next)
  190:   {
  191:     if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) ||
  192: 	(x->flags != y->flags) || (x->weight != y->weight) ||
  193: 	(x->labels_orig != y->labels_orig) || (x->labels != y->labels))
  194:       return 0;
  195: 
  196:     for (int i = 0; i < x->labels; i++)
  197:       if (x->label[i] != y->label[i])
  198: 	return 0;
  199:   }
  200: 
  201:   return x == y;
  202: }
  203: 
  204: static int
  205: nexthop_compare_node(const struct nexthop *x, const  struct nexthop *y)
  206: {
  207:   int r;
  208: 
  209:   if (!x)
  210:     return 1;
  211: 
  212:   if (!y)
  213:     return -1;
  214: 
  215:   /* Should we also compare flags ? */
  216: 
  217:   r = ((int) y->weight) - ((int) x->weight);
  218:   if (r)
  219:     return r;
  220: 
  221:   r = ipa_compare(x->gw, y->gw);
  222:   if (r)
  223:     return r;
  224: 
  225:   r = ((int) y->labels) - ((int) x->labels);
  226:   if (r)
  227:     return r;
  228: 
  229:   for (int i = 0; i < y->labels; i++)
  230:   {
  231:     r = ((int) y->label[i]) - ((int) x->label[i]);
  232:     if (r)
  233:       return r;
  234:   }
  235: 
  236:   return ((int) x->iface->index) - ((int) y->iface->index);
  237: }
  238: 
  239: static inline struct nexthop *
  240: nexthop_copy_node(const struct nexthop *src, linpool *lp)
  241: {
  242:   struct nexthop *n = lp_alloc(lp, nexthop_size(src));
  243: 
  244:   memcpy(n, src, nexthop_size(src));
  245:   n->next = NULL;
  246: 
  247:   return n;
  248: }
  249: 
  250: /**
  251:  * nexthop_merge - merge nexthop lists
  252:  * @x: list 1
  253:  * @y: list 2
  254:  * @rx: reusability of list @x
  255:  * @ry: reusability of list @y
  256:  * @max: max number of nexthops
  257:  * @lp: linpool for allocating nexthops
  258:  *
  259:  * The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
  260:  * eliminating possible duplicates. The input lists must be sorted and the
  261:  * result is sorted too. The number of nexthops in result is limited by @max.
  262:  * New nodes are allocated from linpool @lp.
  263:  *
  264:  * The arguments @rx and @ry specify whether corresponding input lists may be
  265:  * consumed by the function (i.e. their nodes reused in the resulting list), in
  266:  * that case the caller should not access these lists after that. To eliminate
  267:  * issues with deallocation of these lists, the caller should use some form of
  268:  * bulk deallocation (e.g. stack or linpool) to free these nodes when the
  269:  * resulting list is no longer needed. When reusability is not set, the
  270:  * corresponding lists are not modified nor linked from the resulting list.
  271:  */
  272: struct nexthop *
  273: nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp)
  274: {
  275:   struct nexthop *root = NULL;
  276:   struct nexthop **n = &root;
  277: 
  278:   while ((x || y) && max--)
  279:   {
  280:     int cmp = nexthop_compare_node(x, y);
  281:     if (cmp < 0)
  282:     {
  283:       *n = rx ? x : nexthop_copy_node(x, lp);
  284:       x = x->next;
  285:     }
  286:     else if (cmp > 0)
  287:     {
  288:       *n = ry ? y : nexthop_copy_node(y, lp);
  289:       y = y->next;
  290:     }
  291:     else
  292:     {
  293:       *n = rx ? x : (ry ? y : nexthop_copy_node(x, lp));
  294:       x = x->next;
  295:       y = y->next;
  296:     }
  297:     n = &((*n)->next);
  298:   }
  299:   *n = NULL;
  300: 
  301:   return root;
  302: }
  303: 
  304: void
  305: nexthop_insert(struct nexthop **n, struct nexthop *x)
  306: {
  307:   for (; *n; n = &((*n)->next))
  308:   {
  309:     int cmp = nexthop_compare_node(*n, x);
  310: 
  311:     if (cmp < 0)
  312:       continue;
  313:     else if (cmp > 0)
  314:       break;
  315:     else
  316:       return;
  317:   }
  318: 
  319:   x->next = *n;
  320:   *n = x;
  321: }
  322: 
  323: struct nexthop *
  324: nexthop_sort(struct nexthop *x)
  325: {
  326:   struct nexthop *s = NULL;
  327: 
  328:   /* Simple insert-sort */
  329:   while (x)
  330:   {
  331:     struct nexthop *n = x;
  332:     x = n->next;
  333:     n->next = NULL;
  334: 
  335:     nexthop_insert(&s, n);
  336:   }
  337: 
  338:   return s;
  339: }
  340: 
  341: int
  342: nexthop_is_sorted(struct nexthop *x)
  343: {
  344:   for (; x && x->next; x = x->next)
  345:     if (nexthop_compare_node(x, x->next) >= 0)
  346:       return 0;
  347: 
  348:   return 1;
  349: }
  350: 
  351: static inline slab *
  352: nexthop_slab(struct nexthop *nh)
  353: {
  354:   return nexthop_slab_[MIN(nh->labels, 3)];
  355: }
  356: 
  357: static struct nexthop *
  358: nexthop_copy(struct nexthop *o)
  359: {
  360:   struct nexthop *first = NULL;
  361:   struct nexthop **last = &first;
  362: 
  363:   for (; o; o = o->next)
  364:     {
  365:       struct nexthop *n = sl_alloc(nexthop_slab(o));
  366:       n->gw = o->gw;
  367:       n->iface = o->iface;
  368:       n->next = NULL;
  369:       n->flags = o->flags;
  370:       n->weight = o->weight;
  371:       n->labels_orig = o->labels_orig;
  372:       n->labels = o->labels;
  373:       for (int i=0; i<o->labels; i++)
  374: 	n->label[i] = o->label[i];
  375: 
  376:       *last = n;
  377:       last = &(n->next);
  378:     }
  379: 
  380:   return first;
  381: }
  382: 
  383: static void
  384: nexthop_free(struct nexthop *o)
  385: {
  386:   struct nexthop *n;
  387: 
  388:   while (o)
  389:     {
  390:       n = o->next;
  391:       sl_free(nexthop_slab(o), o);
  392:       o = n;
  393:     }
  394: }
  395: 
  396: 
  397: /*
  398:  *	Extended Attributes
  399:  */
  400: 
  401: static inline eattr *
  402: ea__find(ea_list *e, unsigned id)
  403: {
  404:   eattr *a;
  405:   int l, r, m;
  406: 
  407:   while (e)
  408:     {
  409:       if (e->flags & EALF_BISECT)
  410: 	{
  411: 	  l = 0;
  412: 	  r = e->count - 1;
  413: 	  while (l <= r)
  414: 	    {
  415: 	      m = (l+r) / 2;
  416: 	      a = &e->attrs[m];
  417: 	      if (a->id == id)
  418: 		return a;
  419: 	      else if (a->id < id)
  420: 		l = m+1;
  421: 	      else
  422: 		r = m-1;
  423: 	    }
  424: 	}
  425:       else
  426: 	for(m=0; m<e->count; m++)
  427: 	  if (e->attrs[m].id == id)
  428: 	    return &e->attrs[m];
  429:       e = e->next;
  430:     }
  431:   return NULL;
  432: }
  433: 
  434: /**
  435:  * ea_find - find an extended attribute
  436:  * @e: attribute list to search in
  437:  * @id: attribute ID to search for
  438:  *
  439:  * Given an extended attribute list, ea_find() searches for a first
  440:  * occurrence of an attribute with specified ID, returning either a pointer
  441:  * to its &eattr structure or %NULL if no such attribute exists.
  442:  */
  443: eattr *
  444: ea_find(ea_list *e, unsigned id)
  445: {
  446:   eattr *a = ea__find(e, id & EA_CODE_MASK);
  447: 
  448:   if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
  449:       !(id & EA_ALLOW_UNDEF))
  450:     return NULL;
  451:   return a;
  452: }
  453: 
  454: /**
  455:  * ea_walk - walk through extended attributes
  456:  * @s: walk state structure
  457:  * @id: start of attribute ID interval
  458:  * @max: length of attribute ID interval
  459:  *
  460:  * Given an extended attribute list, ea_walk() walks through the list looking
  461:  * for first occurrences of attributes with ID in specified interval from @id to
  462:  * (@id + @max - 1), returning pointers to found &eattr structures, storing its
  463:  * walk state in @s for subsequent calls.
  464:  *
  465:  * The function ea_walk() is supposed to be called in a loop, with initially
  466:  * zeroed walk state structure @s with filled the initial extended attribute
  467:  * list, returning one found attribute in each call or %NULL when no other
  468:  * attribute exists. The extended attribute list or the arguments should not be
  469:  * modified between calls. The maximum value of @max is 128.
  470:  */
  471: eattr *
  472: ea_walk(struct ea_walk_state *s, uint id, uint max)
  473: {
  474:   ea_list *e = s->eattrs;
  475:   eattr *a = s->ea;
  476:   eattr *a_max;
  477: 
  478:   max = id + max;
  479: 
  480:   if (a)
  481:     goto step;
  482: 
  483:   for (; e; e = e->next)
  484:   {
  485:     if (e->flags & EALF_BISECT)
  486:     {
  487:       int l, r, m;
  488: 
  489:       l = 0;
  490:       r = e->count - 1;
  491:       while (l < r)
  492:       {
  493: 	m = (l+r) / 2;
  494: 	if (e->attrs[m].id < id)
  495: 	  l = m + 1;
  496: 	else
  497: 	  r = m;
  498:       }
  499:       a = e->attrs + l;
  500:     }
  501:     else
  502:       a = e->attrs;
  503: 
  504:   step:
  505:     a_max = e->attrs + e->count;
  506:     for (; a < a_max; a++)
  507:       if ((a->id >= id) && (a->id < max))
  508:       {
  509: 	int n = a->id - id;
  510: 
  511: 	if (BIT32_TEST(s->visited, n))
  512: 	  continue;
  513: 
  514: 	BIT32_SET(s->visited, n);
  515: 
  516: 	if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
  517: 	  continue;
  518: 
  519: 	s->eattrs = e;
  520: 	s->ea = a;
  521: 	return a;
  522:       }
  523:       else if (e->flags & EALF_BISECT)
  524: 	break;
  525:   }
  526: 
  527:   return NULL;
  528: }
  529: 
  530: /**
  531:  * ea_get_int - fetch an integer attribute
  532:  * @e: attribute list
  533:  * @id: attribute ID
  534:  * @def: default value
  535:  *
  536:  * This function is a shortcut for retrieving a value of an integer attribute
  537:  * by calling ea_find() to find the attribute, extracting its value or returning
  538:  * a provided default if no such attribute is present.
  539:  */
  540: int
  541: ea_get_int(ea_list *e, unsigned id, int def)
  542: {
  543:   eattr *a = ea_find(e, id);
  544:   if (!a)
  545:     return def;
  546:   return a->u.data;
  547: }
  548: 
  549: static inline void
  550: ea_do_sort(ea_list *e)
  551: {
  552:   unsigned n = e->count;
  553:   eattr *a = e->attrs;
  554:   eattr *b = alloca(n * sizeof(eattr));
  555:   unsigned s, ss;
  556: 
  557:   /* We need to use a stable sorting algorithm, hence mergesort */
  558:   do
  559:     {
  560:       s = ss = 0;
  561:       while (s < n)
  562: 	{
  563: 	  eattr *p, *q, *lo, *hi;
  564: 	  p = b;
  565: 	  ss = s;
  566: 	  *p++ = a[s++];
  567: 	  while (s < n && p[-1].id <= a[s].id)
  568: 	    *p++ = a[s++];
  569: 	  if (s < n)
  570: 	    {
  571: 	      q = p;
  572: 	      *p++ = a[s++];
  573: 	      while (s < n && p[-1].id <= a[s].id)
  574: 		*p++ = a[s++];
  575: 	      lo = b;
  576: 	      hi = q;
  577: 	      s = ss;
  578: 	      while (lo < q && hi < p)
  579: 		if (lo->id <= hi->id)
  580: 		  a[s++] = *lo++;
  581: 		else
  582: 		  a[s++] = *hi++;
  583: 	      while (lo < q)
  584: 		a[s++] = *lo++;
  585: 	      while (hi < p)
  586: 		a[s++] = *hi++;
  587: 	    }
  588: 	}
  589:     }
  590:   while (ss);
  591: }
  592: 
  593: /**
  594:  * In place discard duplicates and undefs in sorted ea_list. We use stable sort
  595:  * for this reason.
  596:  **/
  597: static inline void
  598: ea_do_prune(ea_list *e)
  599: {
  600:   eattr *s, *d, *l, *s0;
  601:   int i = 0;
  602: 
  603:   s = d = e->attrs;	    /* Beginning of the list. @s is source, @d is destination. */
  604:   l = e->attrs + e->count;  /* End of the list */
  605: 
  606:   /* Walk from begin to end. */
  607:   while (s < l)
  608:     {
  609:       s0 = s++;
  610:       /* Find a consecutive block of the same attribute */
  611:       while (s < l && s->id == s[-1].id)
  612: 	s++;
  613: 
  614:       /* Now s0 is the most recent version, s[-1] the oldest one */
  615:       /* Drop undefs */
  616:       if ((s0->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
  617: 	continue;
  618: 
  619:       /* Copy the newest version to destination */
  620:       *d = *s0;
  621: 
  622:       /* Preserve info whether it originated locally */
  623:       d->type = (d->type & ~(EAF_ORIGINATED|EAF_FRESH)) | (s[-1].type & EAF_ORIGINATED);
  624: 
  625:       /* Next destination */
  626:       d++;
  627:       i++;
  628:     }
  629: 
  630:   e->count = i;
  631: }
  632: 
  633: /**
  634:  * ea_sort - sort an attribute list
  635:  * @e: list to be sorted
  636:  *
  637:  * This function takes a &ea_list chain and sorts the attributes
  638:  * within each of its entries.
  639:  *
  640:  * If an attribute occurs multiple times in a single &ea_list,
  641:  * ea_sort() leaves only the first (the only significant) occurrence.
  642:  */
  643: void
  644: ea_sort(ea_list *e)
  645: {
  646:   while (e)
  647:     {
  648:       if (!(e->flags & EALF_SORTED))
  649: 	{
  650: 	  ea_do_sort(e);
  651: 	  ea_do_prune(e);
  652: 	  e->flags |= EALF_SORTED;
  653: 	}
  654:       if (e->count > 5)
  655: 	e->flags |= EALF_BISECT;
  656:       e = e->next;
  657:     }
  658: }
  659: 
  660: /**
  661:  * ea_scan - estimate attribute list size
  662:  * @e: attribute list
  663:  *
  664:  * This function calculates an upper bound of the size of
  665:  * a given &ea_list after merging with ea_merge().
  666:  */
  667: unsigned
  668: ea_scan(ea_list *e)
  669: {
  670:   unsigned cnt = 0;
  671: 
  672:   while (e)
  673:     {
  674:       cnt += e->count;
  675:       e = e->next;
  676:     }
  677:   return sizeof(ea_list) + sizeof(eattr)*cnt;
  678: }
  679: 
  680: /**
  681:  * ea_merge - merge segments of an attribute list
  682:  * @e: attribute list
  683:  * @t: buffer to store the result to
  684:  *
  685:  * This function takes a possibly multi-segment attribute list
  686:  * and merges all of its segments to one.
  687:  *
  688:  * The primary use of this function is for &ea_list normalization:
  689:  * first call ea_scan() to determine how much memory will the result
  690:  * take, then allocate a buffer (usually using alloca()), merge the
  691:  * segments with ea_merge() and finally sort and prune the result
  692:  * by calling ea_sort().
  693:  */
  694: void
  695: ea_merge(ea_list *e, ea_list *t)
  696: {
  697:   eattr *d = t->attrs;
  698: 
  699:   t->flags = 0;
  700:   t->count = 0;
  701:   t->next = NULL;
  702:   while (e)
  703:     {
  704:       memcpy(d, e->attrs, sizeof(eattr)*e->count);
  705:       t->count += e->count;
  706:       d += e->count;
  707:       e = e->next;
  708:     }
  709: }
  710: 
  711: /**
  712:  * ea_same - compare two &ea_list's
  713:  * @x: attribute list
  714:  * @y: attribute list
  715:  *
  716:  * ea_same() compares two normalized attribute lists @x and @y and returns
  717:  * 1 if they contain the same attributes, 0 otherwise.
  718:  */
  719: int
  720: ea_same(ea_list *x, ea_list *y)
  721: {
  722:   int c;
  723: 
  724:   if (!x || !y)
  725:     return x == y;
  726:   ASSERT(!x->next && !y->next);
  727:   if (x->count != y->count)
  728:     return 0;
  729:   for(c=0; c<x->count; c++)
  730:     {
  731:       eattr *a = &x->attrs[c];
  732:       eattr *b = &y->attrs[c];
  733: 
  734:       if (a->id != b->id ||
  735: 	  a->flags != b->flags ||
  736: 	  a->type != b->type ||
  737: 	  ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
  738: 	return 0;
  739:     }
  740:   return 1;
  741: }
  742: 
  743: static inline ea_list *
  744: ea_list_copy(ea_list *o)
  745: {
  746:   ea_list *n;
  747:   unsigned i, len;
  748: 
  749:   if (!o)
  750:     return NULL;
  751:   ASSERT(!o->next);
  752:   len = sizeof(ea_list) + sizeof(eattr) * o->count;
  753:   n = mb_alloc(rta_pool, len);
  754:   memcpy(n, o, len);
  755:   n->flags |= EALF_CACHED;
  756:   for(i=0; i<o->count; i++)
  757:     {
  758:       eattr *a = &n->attrs[i];
  759:       if (!(a->type & EAF_EMBEDDED))
  760: 	{
  761: 	  unsigned size = sizeof(struct adata) + a->u.ptr->length;
  762: 	  struct adata *d = mb_alloc(rta_pool, size);
  763: 	  memcpy(d, a->u.ptr, size);
  764: 	  a->u.ptr = d;
  765: 	}
  766:     }
  767:   return n;
  768: }
  769: 
  770: static inline void
  771: ea_free(ea_list *o)
  772: {
  773:   int i;
  774: 
  775:   if (o)
  776:     {
  777:       ASSERT(!o->next);
  778:       for(i=0; i<o->count; i++)
  779: 	{
  780: 	  eattr *a = &o->attrs[i];
  781: 	  if (!(a->type & EAF_EMBEDDED))
  782: 	    mb_free((void *) a->u.ptr);
  783: 	}
  784:       mb_free(o);
  785:     }
  786: }
  787: 
  788: static int
  789: get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
  790: {
  791:   if (a->id == EA_GEN_IGP_METRIC)
  792:     {
  793:       *buf += bsprintf(*buf, "igp_metric");
  794:       return GA_NAME;
  795:     }
  796: 
  797:   return GA_UNKNOWN;
  798: }
  799: 
  800: void
  801: ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
  802: {
  803:   byte *bound = buf + bufsize - 32;
  804:   u32 data = a->u.data;
  805:   int i;
  806: 
  807:   for (i = min; i < max; i++)
  808:     if ((data & (1u << i)) && names[i])
  809:     {
  810:       if (buf > bound)
  811:       {
  812: 	strcpy(buf, " ...");
  813: 	return;
  814:       }
  815: 
  816:       buf += bsprintf(buf, " %s", names[i]);
  817:       data &= ~(1u << i);
  818:     }
  819: 
  820:   if (data)
  821:     bsprintf(buf, " %08x", data);
  822: 
  823:   return;
  824: }
  825: 
  826: static inline void
  827: opaque_format(const struct adata *ad, byte *buf, uint size)
  828: {
  829:   byte *bound = buf + size - 10;
  830:   uint i;
  831: 
  832:   for(i = 0; i < ad->length; i++)
  833:     {
  834:       if (buf > bound)
  835: 	{
  836: 	  strcpy(buf, " ...");
  837: 	  return;
  838: 	}
  839:       if (i)
  840: 	*buf++ = ' ';
  841: 
  842:       buf += bsprintf(buf, "%02x", ad->data[i]);
  843:     }
  844: 
  845:   *buf = 0;
  846:   return;
  847: }
  848: 
  849: static inline void
  850: ea_show_int_set(struct cli *c, const struct adata *ad, int way, byte *pos, byte *buf, byte *end)
  851: {
  852:   int i = int_set_format(ad, way, 0, pos, end - pos);
  853:   cli_printf(c, -1012, "\t%s", buf);
  854:   while (i)
  855:     {
  856:       i = int_set_format(ad, way, i, buf, end - buf - 1);
  857:       cli_printf(c, -1012, "\t\t%s", buf);
  858:     }
  859: }
  860: 
  861: static inline void
  862: ea_show_ec_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
  863: {
  864:   int i = ec_set_format(ad, 0, pos, end - pos);
  865:   cli_printf(c, -1012, "\t%s", buf);
  866:   while (i)
  867:     {
  868:       i = ec_set_format(ad, i, buf, end - buf - 1);
  869:       cli_printf(c, -1012, "\t\t%s", buf);
  870:     }
  871: }
  872: 
  873: static inline void
  874: ea_show_lc_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
  875: {
  876:   int i = lc_set_format(ad, 0, pos, end - pos);
  877:   cli_printf(c, -1012, "\t%s", buf);
  878:   while (i)
  879:     {
  880:       i = lc_set_format(ad, i, buf, end - buf - 1);
  881:       cli_printf(c, -1012, "\t\t%s", buf);
  882:     }
  883: }
  884: 
  885: /**
  886:  * ea_show - print an &eattr to CLI
  887:  * @c: destination CLI
  888:  * @e: attribute to be printed
  889:  *
  890:  * This function takes an extended attribute represented by its &eattr
  891:  * structure and prints it to the CLI according to the type information.
  892:  *
  893:  * If the protocol defining the attribute provides its own
  894:  * get_attr() hook, it's consulted first.
  895:  */
  896: void
  897: ea_show(struct cli *c, eattr *e)
  898: {
  899:   struct protocol *p;
  900:   int status = GA_UNKNOWN;
  901:   const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
  902:   byte buf[CLI_MSG_SIZE];
  903:   byte *pos = buf, *end = buf + sizeof(buf);
  904: 
  905:   if (EA_IS_CUSTOM(e->id))
  906:     {
  907:       const char *name = ea_custom_name(e->id);
  908:       if (name)
  909:         {
  910: 	  pos += bsprintf(pos, "%s", name);
  911: 	  status = GA_NAME;
  912: 	}
  913:       else
  914: 	pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
  915:     }
  916:   else if (p = class_to_protocol[EA_PROTO(e->id)])
  917:     {
  918:       pos += bsprintf(pos, "%s.", p->name);
  919:       if (p->get_attr)
  920: 	status = p->get_attr(e, pos, end - pos);
  921:       pos += strlen(pos);
  922:     }
  923:   else if (EA_PROTO(e->id))
  924:     pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
  925:   else
  926:     status = get_generic_attr(e, &pos, end - pos);
  927: 
  928:   if (status < GA_NAME)
  929:     pos += bsprintf(pos, "%02x", EA_ID(e->id));
  930:   if (status < GA_FULL)
  931:     {
  932:       *pos++ = ':';
  933:       *pos++ = ' ';
  934:       switch (e->type & EAF_TYPE_MASK)
  935: 	{
  936: 	case EAF_TYPE_INT:
  937: 	  bsprintf(pos, "%u", e->u.data);
  938: 	  break;
  939: 	case EAF_TYPE_OPAQUE:
  940: 	  opaque_format(ad, pos, end - pos);
  941: 	  break;
  942: 	case EAF_TYPE_IP_ADDRESS:
  943: 	  bsprintf(pos, "%I", *(ip_addr *) ad->data);
  944: 	  break;
  945: 	case EAF_TYPE_ROUTER_ID:
  946: 	  bsprintf(pos, "%R", e->u.data);
  947: 	  break;
  948: 	case EAF_TYPE_AS_PATH:
  949: 	  as_path_format(ad, pos, end - pos);
  950: 	  break;
  951: 	case EAF_TYPE_BITFIELD:
  952: 	  bsprintf(pos, "%08x", e->u.data);
  953: 	  break;
  954: 	case EAF_TYPE_INT_SET:
  955: 	  ea_show_int_set(c, ad, 1, pos, buf, end);
  956: 	  return;
  957: 	case EAF_TYPE_EC_SET:
  958: 	  ea_show_ec_set(c, ad, pos, buf, end);
  959: 	  return;
  960: 	case EAF_TYPE_LC_SET:
  961: 	  ea_show_lc_set(c, ad, pos, buf, end);
  962: 	  return;
  963: 	case EAF_TYPE_UNDEF:
  964: 	default:
  965: 	  bsprintf(pos, "<type %02x>", e->type);
  966: 	}
  967:     }
  968:   cli_printf(c, -1012, "\t%s", buf);
  969: }
  970: 
  971: /**
  972:  * ea_dump - dump an extended attribute
  973:  * @e: attribute to be dumped
  974:  *
  975:  * ea_dump() dumps contents of the extended attribute given to
  976:  * the debug output.
  977:  */
  978: void
  979: ea_dump(ea_list *e)
  980: {
  981:   int i;
  982: 
  983:   if (!e)
  984:     {
  985:       debug("NONE");
  986:       return;
  987:     }
  988:   while (e)
  989:     {
  990:       debug("[%c%c%c]",
  991: 	    (e->flags & EALF_SORTED) ? 'S' : 's',
  992: 	    (e->flags & EALF_BISECT) ? 'B' : 'b',
  993: 	    (e->flags & EALF_CACHED) ? 'C' : 'c');
  994:       for(i=0; i<e->count; i++)
  995: 	{
  996: 	  eattr *a = &e->attrs[i];
  997: 	  debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
  998: 	  debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
  999: 	  if (a->type & EAF_ORIGINATED)
 1000: 	    debug("o");
 1001: 	  if (a->type & EAF_EMBEDDED)
 1002: 	    debug(":%08x", a->u.data);
 1003: 	  else
 1004: 	    {
 1005: 	      int j, len = a->u.ptr->length;
 1006: 	      debug("[%d]:", len);
 1007: 	      for(j=0; j<len; j++)
 1008: 		debug("%02x", a->u.ptr->data[j]);
 1009: 	    }
 1010: 	}
 1011:       if (e = e->next)
 1012: 	debug(" | ");
 1013:     }
 1014: }
 1015: 
 1016: /**
 1017:  * ea_hash - calculate an &ea_list hash key
 1018:  * @e: attribute list
 1019:  *
 1020:  * ea_hash() takes an extended attribute list and calculated a hopefully
 1021:  * uniformly distributed hash value from its contents.
 1022:  */
 1023: inline uint
 1024: ea_hash(ea_list *e)
 1025: {
 1026:   const u64 mul = 0x68576150f3d6847;
 1027:   u64 h = 0xafcef24eda8b29;
 1028:   int i;
 1029: 
 1030:   if (e)			/* Assuming chain of length 1 */
 1031:     {
 1032:       for(i=0; i<e->count; i++)
 1033: 	{
 1034: 	  struct eattr *a = &e->attrs[i];
 1035: 	  h ^= a->id; h *= mul;
 1036: 	  if (a->type & EAF_EMBEDDED)
 1037: 	    h ^= a->u.data;
 1038: 	  else
 1039: 	    {
 1040: 	      const struct adata *d = a->u.ptr;
 1041: 	      h ^= mem_hash(d->data, d->length);
 1042: 	    }
 1043: 	  h *= mul;
 1044: 	}
 1045:     }
 1046:   return (h >> 32) ^ (h & 0xffffffff);
 1047: }
 1048: 
 1049: /**
 1050:  * ea_append - concatenate &ea_list's
 1051:  * @to: destination list (can be %NULL)
 1052:  * @what: list to be appended (can be %NULL)
 1053:  *
 1054:  * This function appends the &ea_list @what at the end of
 1055:  * &ea_list @to and returns a pointer to the resulting list.
 1056:  */
 1057: ea_list *
 1058: ea_append(ea_list *to, ea_list *what)
 1059: {
 1060:   ea_list *res;
 1061: 
 1062:   if (!to)
 1063:     return what;
 1064:   res = to;
 1065:   while (to->next)
 1066:     to = to->next;
 1067:   to->next = what;
 1068:   return res;
 1069: }
 1070: 
 1071: /*
 1072:  *	rta's
 1073:  */
 1074: 
 1075: static uint rta_cache_count;
 1076: static uint rta_cache_size = 32;
 1077: static uint rta_cache_limit;
 1078: static uint rta_cache_mask;
 1079: static rta **rta_hash_table;
 1080: 
 1081: static void
 1082: rta_alloc_hash(void)
 1083: {
 1084:   rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
 1085:   if (rta_cache_size < 32768)
 1086:     rta_cache_limit = rta_cache_size * 2;
 1087:   else
 1088:     rta_cache_limit = ~0;
 1089:   rta_cache_mask = rta_cache_size - 1;
 1090: }
 1091: 
 1092: static inline uint
 1093: rta_hash(rta *a)
 1094: {
 1095:   u64 h;
 1096:   mem_hash_init(&h);
 1097: #define MIX(f) mem_hash_mix(&h, &(a->f), sizeof(a->f));
 1098:   MIX(src);
 1099:   MIX(hostentry);
 1100:   MIX(from);
 1101:   MIX(igp_metric);
 1102:   MIX(source);
 1103:   MIX(scope);
 1104:   MIX(dest);
 1105: #undef MIX
 1106: 
 1107:   return mem_hash_value(&h) ^ nexthop_hash(&(a->nh)) ^ ea_hash(a->eattrs);
 1108: }
 1109: 
 1110: static inline int
 1111: rta_same(rta *x, rta *y)
 1112: {
 1113:   return (x->src == y->src &&
 1114: 	  x->source == y->source &&
 1115: 	  x->scope == y->scope &&
 1116: 	  x->dest == y->dest &&
 1117: 	  x->igp_metric == y->igp_metric &&
 1118: 	  ipa_equal(x->from, y->from) &&
 1119: 	  x->hostentry == y->hostentry &&
 1120: 	  nexthop_same(&(x->nh), &(y->nh)) &&
 1121: 	  ea_same(x->eattrs, y->eattrs));
 1122: }
 1123: 
 1124: static inline slab *
 1125: rta_slab(rta *a)
 1126: {
 1127:   return rta_slab_[a->nh.labels > 2 ? 3 : a->nh.labels];
 1128: }
 1129: 
 1130: static rta *
 1131: rta_copy(rta *o)
 1132: {
 1133:   rta *r = sl_alloc(rta_slab(o));
 1134: 
 1135:   memcpy(r, o, rta_size(o));
 1136:   r->uc = 1;
 1137:   r->nh.next = nexthop_copy(o->nh.next);
 1138:   r->eattrs = ea_list_copy(o->eattrs);
 1139:   return r;
 1140: }
 1141: 
 1142: static inline void
 1143: rta_insert(rta *r)
 1144: {
 1145:   uint h = r->hash_key & rta_cache_mask;
 1146:   r->next = rta_hash_table[h];
 1147:   if (r->next)
 1148:     r->next->pprev = &r->next;
 1149:   r->pprev = &rta_hash_table[h];
 1150:   rta_hash_table[h] = r;
 1151: }
 1152: 
 1153: static void
 1154: rta_rehash(void)
 1155: {
 1156:   uint ohs = rta_cache_size;
 1157:   uint h;
 1158:   rta *r, *n;
 1159:   rta **oht = rta_hash_table;
 1160: 
 1161:   rta_cache_size = 2*rta_cache_size;
 1162:   DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
 1163:   rta_alloc_hash();
 1164:   for(h=0; h<ohs; h++)
 1165:     for(r=oht[h]; r; r=n)
 1166:       {
 1167: 	n = r->next;
 1168: 	rta_insert(r);
 1169:       }
 1170:   mb_free(oht);
 1171: }
 1172: 
 1173: /**
 1174:  * rta_lookup - look up a &rta in attribute cache
 1175:  * @o: a un-cached &rta
 1176:  *
 1177:  * rta_lookup() gets an un-cached &rta structure and returns its cached
 1178:  * counterpart. It starts with examining the attribute cache to see whether
 1179:  * there exists a matching entry. If such an entry exists, it's returned and
 1180:  * its use count is incremented, else a new entry is created with use count
 1181:  * set to 1.
 1182:  *
 1183:  * The extended attribute lists attached to the &rta are automatically
 1184:  * converted to the normalized form.
 1185:  */
 1186: rta *
 1187: rta_lookup(rta *o)
 1188: {
 1189:   rta *r;
 1190:   uint h;
 1191: 
 1192:   ASSERT(!(o->aflags & RTAF_CACHED));
 1193:   if (o->eattrs)
 1194:     ea_normalize(o->eattrs);
 1195: 
 1196:   h = rta_hash(o);
 1197:   for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
 1198:     if (r->hash_key == h && rta_same(r, o))
 1199:       return rta_clone(r);
 1200: 
 1201:   r = rta_copy(o);
 1202:   r->hash_key = h;
 1203:   r->aflags = RTAF_CACHED;
 1204:   rt_lock_source(r->src);
 1205:   rt_lock_hostentry(r->hostentry);
 1206:   rta_insert(r);
 1207: 
 1208:   if (++rta_cache_count > rta_cache_limit)
 1209:     rta_rehash();
 1210: 
 1211:   return r;
 1212: }
 1213: 
 1214: void
 1215: rta__free(rta *a)
 1216: {
 1217:   ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
 1218:   rta_cache_count--;
 1219:   *a->pprev = a->next;
 1220:   if (a->next)
 1221:     a->next->pprev = a->pprev;
 1222:   rt_unlock_hostentry(a->hostentry);
 1223:   rt_unlock_source(a->src);
 1224:   if (a->nh.next)
 1225:     nexthop_free(a->nh.next);
 1226:   ea_free(a->eattrs);
 1227:   a->aflags = 0;		/* Poison the entry */
 1228:   sl_free(rta_slab(a), a);
 1229: }
 1230: 
 1231: rta *
 1232: rta_do_cow(rta *o, linpool *lp)
 1233: {
 1234:   rta *r = lp_alloc(lp, rta_size(o));
 1235:   memcpy(r, o, rta_size(o));
 1236:   for (struct nexthop **nhn = &(r->nh.next), *nho = o->nh.next; nho; nho = nho->next)
 1237:     {
 1238:       *nhn = lp_alloc(lp, nexthop_size(nho));
 1239:       memcpy(*nhn, nho, nexthop_size(nho));
 1240:       nhn = &((*nhn)->next);
 1241:     }
 1242:   r->aflags = 0;
 1243:   r->uc = 0;
 1244:   return r;
 1245: }
 1246: 
 1247: /**
 1248:  * rta_dump - dump route attributes
 1249:  * @a: attribute structure to dump
 1250:  *
 1251:  * This function takes a &rta and dumps its contents to the debug output.
 1252:  */
 1253: void
 1254: rta_dump(rta *a)
 1255: {
 1256:   static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
 1257: 			 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
 1258: 			 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
 1259: 			 "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
 1260:   static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
 1261: 
 1262:   debug("p=%s uc=%d %s %s%s h=%04x",
 1263: 	a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope),
 1264: 	rtd[a->dest], a->hash_key);
 1265:   if (!(a->aflags & RTAF_CACHED))
 1266:     debug(" !CACHED");
 1267:   debug(" <-%I", a->from);
 1268:   if (a->dest == RTD_UNICAST)
 1269:     for (struct nexthop *nh = &(a->nh); nh; nh = nh->next)
 1270:       {
 1271: 	if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
 1272: 	if (nh->labels) debug(" L %d", nh->label[0]);
 1273: 	for (int i=1; i<nh->labels; i++)
 1274: 	  debug("/%d", nh->label[i]);
 1275: 	debug(" [%s]", nh->iface ? nh->iface->name : "???");
 1276:       }
 1277:   if (a->eattrs)
 1278:     {
 1279:       debug(" EA: ");
 1280:       ea_dump(a->eattrs);
 1281:     }
 1282: }
 1283: 
 1284: /**
 1285:  * rta_dump_all - dump attribute cache
 1286:  *
 1287:  * This function dumps the whole contents of route attribute cache
 1288:  * to the debug output.
 1289:  */
 1290: void
 1291: rta_dump_all(void)
 1292: {
 1293:   rta *a;
 1294:   uint h;
 1295: 
 1296:   debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
 1297:   for(h=0; h<rta_cache_size; h++)
 1298:     for(a=rta_hash_table[h]; a; a=a->next)
 1299:       {
 1300: 	debug("%p ", a);
 1301: 	rta_dump(a);
 1302: 	debug("\n");
 1303:       }
 1304:   debug("\n");
 1305: }
 1306: 
 1307: void
 1308: rta_show(struct cli *c, rta *a)
 1309: {
 1310:   cli_printf(c, -1008, "\tType: %s %s", rta_src_names[a->source], ip_scope_text(a->scope));
 1311: 
 1312:   for(ea_list *eal = a->eattrs; eal; eal=eal->next)
 1313:     for(int i=0; i<eal->count; i++)
 1314:       ea_show(c, &eal->attrs[i]);
 1315: }
 1316: 
 1317: /**
 1318:  * rta_init - initialize route attribute cache
 1319:  *
 1320:  * This function is called during initialization of the routing
 1321:  * table module to set up the internals of the attribute cache.
 1322:  */
 1323: void
 1324: rta_init(void)
 1325: {
 1326:   rta_pool = rp_new(&root_pool, "Attributes");
 1327: 
 1328:   rta_slab_[0] = sl_new(rta_pool, sizeof(rta));
 1329:   rta_slab_[1] = sl_new(rta_pool, sizeof(rta) + sizeof(u32));
 1330:   rta_slab_[2] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*2);
 1331:   rta_slab_[3] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
 1332: 
 1333:   nexthop_slab_[0] = sl_new(rta_pool, sizeof(struct nexthop));
 1334:   nexthop_slab_[1] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32));
 1335:   nexthop_slab_[2] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*2);
 1336:   nexthop_slab_[3] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
 1337: 
 1338:   rta_alloc_hash();
 1339:   rte_src_init();
 1340: }
 1341: 
 1342: /*
 1343:  *  Documentation for functions declared inline in route.h
 1344:  */
 1345: #if 0
 1346: 
 1347: /**
 1348:  * rta_clone - clone route attributes
 1349:  * @r: a &rta to be cloned
 1350:  *
 1351:  * rta_clone() takes a cached &rta and returns its identical cached
 1352:  * copy. Currently it works by just returning the original &rta with
 1353:  * its use count incremented.
 1354:  */
 1355: static inline rta *rta_clone(rta *r)
 1356: { DUMMY; }
 1357: 
 1358: /**
 1359:  * rta_free - free route attributes
 1360:  * @r: a &rta to be freed
 1361:  *
 1362:  * If you stop using a &rta (for example when deleting a route which uses
 1363:  * it), you need to call rta_free() to notify the attribute cache the
 1364:  * attribute is no longer in use and can be freed if you were the last
 1365:  * user (which rta_free() tests by inspecting the use count).
 1366:  */
 1367: static inline void rta_free(rta *r)
 1368: { DUMMY; }
 1369: 
 1370: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>