Annotation of embedaddon/bird2/nest/rt-fib.c, revision 1.1
1.1 ! misho 1: /*
! 2: * BIRD -- Forwarding Information Base -- Data Structures
! 3: *
! 4: * (c) 1998--2000 Martin Mares <mj@ucw.cz>
! 5: *
! 6: * Can be freely distributed and used under the terms of the GNU GPL.
! 7: */
! 8:
! 9: /**
! 10: * DOC: Forwarding Information Base
! 11: *
! 12: * FIB is a data structure designed for storage of routes indexed by their
! 13: * network prefixes. It supports insertion, deletion, searching by prefix,
! 14: * `routing' (in CIDR sense, that is searching for a longest prefix matching
! 15: * a given IP address) and (which makes the structure very tricky to implement)
! 16: * asynchronous reading, that is enumerating the contents of a FIB while other
! 17: * modules add, modify or remove entries.
! 18: *
! 19: * Internally, each FIB is represented as a collection of nodes of type &fib_node
! 20: * indexed using a sophisticated hashing mechanism.
! 21: * We use two-stage hashing where we calculate a 16-bit primary hash key independent
! 22: * on hash table size and then we just divide the primary keys modulo table size
! 23: * to get a real hash key used for determining the bucket containing the node.
! 24: * The lists of nodes in each bucket are sorted according to the primary hash
! 25: * key, hence if we keep the total number of buckets to be a power of two,
! 26: * re-hashing of the structure keeps the relative order of the nodes.
! 27: *
! 28: * To get the asynchronous reading consistent over node deletions, we need to
! 29: * keep a list of readers for each node. When a node gets deleted, its readers
! 30: * are automatically moved to the next node in the table.
! 31: *
! 32: * Basic FIB operations are performed by functions defined by this module,
! 33: * enumerating of FIB contents is accomplished by using the FIB_WALK() macro
! 34: * or FIB_ITERATE_START() if you want to do it asynchronously.
! 35: *
! 36: * For simple iteration just place the body of the loop between FIB_WALK() and
! 37: * FIB_WALK_END(). You can't modify the FIB during the iteration (you can modify
! 38: * data in the node, but not add or remove nodes).
! 39: *
! 40: * If you need more freedom, you can use the FIB_ITERATE_*() group of macros.
! 41: * First, you initialize an iterator with FIB_ITERATE_INIT(). Then you can put
! 42: * the loop body in between FIB_ITERATE_START() and FIB_ITERATE_END(). In
! 43: * addition, the iteration can be suspended by calling FIB_ITERATE_PUT().
! 44: * This'll link the iterator inside the FIB. While suspended, you may modify the
! 45: * FIB, exit the current function, etc. To resume the iteration, enter the loop
! 46: * again. You can use FIB_ITERATE_UNLINK() to unlink the iterator (while
! 47: * iteration is suspended) in cases like premature end of FIB iteration.
! 48: *
! 49: * Note that the iterator must not be destroyed when the iteration is suspended,
! 50: * the FIB would then contain a pointer to invalid memory. Therefore, after each
! 51: * FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there must be either
! 52: * FIB_ITERATE_START() or FIB_ITERATE_UNLINK() before the iterator is destroyed.
! 53: */
! 54:
! 55: #undef LOCAL_DEBUG
! 56:
! 57: #include "nest/bird.h"
! 58: #include "nest/route.h"
! 59: #include "lib/string.h"
! 60:
! 61: /*
! 62: * The FIB rehash values are maintaining FIB count between N/5 and 2N. What
! 63: * does it mean?
! 64: *
! 65: * +------------+--------+---------+-----------+----------+-----------+
! 66: * | Table size | Memory | Min cnt | net + rte | Max cnt | net + rte |
! 67: * +------------+--------+---------+-----------+----------+-----------+
! 68: * | 1k | 8k | 0 | 0 | 2k | 192 k |
! 69: * | 2k | 16k | 409 | 38.3k | 4k | 384 k |
! 70: * | 4k | 32k | 819 | 76.8k | 8k | 768 k |
! 71: * | 8k | 64k | 1.6k | 153.6k | 16k | 1.5M |
! 72: * | 16k | 128k | 3.2k | 307.1k | 32k | 3 M |
! 73: * | 32k | 256k | 6.4k | 614.3k | 64k | 6 M |
! 74: * | 64k | 512k | 12.8k | 1.2M | 128k | 12 M |
! 75: * | 128k | 1024k | 25.6k | 2.4M | 256k | 24 M |
! 76: * | 256k | 2M | 51.2k | 4.8M | 512k | 48 M |
! 77: * | 512k | 4M | 102.4k | 9.6M | 1M | 96 M |
! 78: * | 1M | 8M | 204.8k | 19.2M | 2M | 192 M |
! 79: * | 2M | 16M | 409.6k | 38.4M | 4M | 384 M |
! 80: * | 4M | 32M | 819.2k | 76.8M | 8M | 768 M |
! 81: * | 8M | 64M | 1.6M | 153.6M | infinity | infinity |
! 82: * +------------+--------+---------+-----------+----------+-----------+
! 83: *
! 84: * Table size shows how many slots are in FIB table.
! 85: * Memory shows how much memory is eaten by FIB table.
! 86: * Min cnt minimal number of nets in table of given size
! 87: * Max cnt maximal number of nets in table of given size
! 88: * net + rte memory eaten by 1 net and one route in it for min cnt and max cnt
! 89: *
! 90: * Example: If we have 750,000 network entries in a table:
! 91: * * the table size may be 512k if we have never had more
! 92: * * the table size may be 1M or 2M if we at least happened to have more
! 93: * * 256k is too small, 8M is too big
! 94: *
! 95: * When growing, rehash is done on demand so we do it on every power of 2.
! 96: * When shrinking, rehash is done on delete which is done (in global tables)
! 97: * in a scheduled event. Rehashing down 2 steps.
! 98: *
! 99: */
! 100:
! 101:
! 102: #define HASH_DEF_ORDER 10
! 103: #define HASH_HI_MARK * 2
! 104: #define HASH_HI_STEP 1
! 105: #define HASH_HI_MAX 24
! 106: #define HASH_LO_MARK / 5
! 107: #define HASH_LO_STEP 2
! 108: #define HASH_LO_MIN 10
! 109:
! 110:
! 111: static void
! 112: fib_ht_alloc(struct fib *f)
! 113: {
! 114: f->hash_size = 1 << f->hash_order;
! 115: f->hash_shift = 32 - f->hash_order;
! 116: if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP)
! 117: f->entries_max = ~0;
! 118: else
! 119: f->entries_max = f->hash_size HASH_HI_MARK;
! 120: if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP)
! 121: f->entries_min = 0;
! 122: else
! 123: f->entries_min = f->hash_size HASH_LO_MARK;
! 124: DBG("Allocating FIB hash of order %d: %d entries, %d low, %d high\n",
! 125: f->hash_order, f->hash_size, f->entries_min, f->entries_max);
! 126: f->hash_table = mb_alloc(f->fib_pool, f->hash_size * sizeof(struct fib_node *));
! 127: }
! 128:
! 129: static inline void
! 130: fib_ht_free(struct fib_node **h)
! 131: {
! 132: mb_free(h);
! 133: }
! 134:
! 135:
! 136: static inline u32 fib_hash(struct fib *f, const net_addr *a);
! 137:
! 138: /**
! 139: * fib_init - initialize a new FIB
! 140: * @f: the FIB to be initialized (the structure itself being allocated by the caller)
! 141: * @p: pool to allocate the nodes in
! 142: * @node_size: node size to be used (each node consists of a standard header &fib_node
! 143: * followed by user data)
! 144: * @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order
! 145: * (recommended)
! 146: * @init: pointer a function to be called to initialize a newly created node
! 147: *
! 148: * This function initializes a newly allocated FIB and prepares it for use.
! 149: */
! 150: void
! 151: fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init)
! 152: {
! 153: uint addr_length = net_addr_length[addr_type];
! 154:
! 155: if (!hash_order)
! 156: hash_order = HASH_DEF_ORDER;
! 157: f->fib_pool = p;
! 158: f->fib_slab = addr_length ? sl_new(p, node_size + addr_length) : NULL;
! 159: f->addr_type = addr_type;
! 160: f->node_size = node_size;
! 161: f->node_offset = node_offset;
! 162: f->hash_order = hash_order;
! 163: fib_ht_alloc(f);
! 164: bzero(f->hash_table, f->hash_size * sizeof(struct fib_node *));
! 165: f->entries = 0;
! 166: f->entries_min = 0;
! 167: f->init = init;
! 168: }
! 169:
! 170: static void
! 171: fib_rehash(struct fib *f, int step)
! 172: {
! 173: unsigned old, new, oldn, newn, ni, nh;
! 174: struct fib_node **n, *e, *x, **t, **m, **h;
! 175:
! 176: old = f->hash_order;
! 177: oldn = f->hash_size;
! 178: new = old + step;
! 179: m = h = f->hash_table;
! 180: DBG("Re-hashing FIB from order %d to %d\n", old, new);
! 181: f->hash_order = new;
! 182: fib_ht_alloc(f);
! 183: t = n = f->hash_table;
! 184: newn = f->hash_size;
! 185: ni = 0;
! 186:
! 187: while (oldn--)
! 188: {
! 189: x = *h++;
! 190: while (e = x)
! 191: {
! 192: x = e->next;
! 193: nh = fib_hash(f, e->addr);
! 194: while (nh > ni)
! 195: {
! 196: *t = NULL;
! 197: ni++;
! 198: t = ++n;
! 199: }
! 200: *t = e;
! 201: t = &e->next;
! 202: }
! 203: }
! 204: while (ni < newn)
! 205: {
! 206: *t = NULL;
! 207: ni++;
! 208: t = ++n;
! 209: }
! 210: fib_ht_free(m);
! 211: }
! 212:
! 213: #define CAST(t) (const net_addr_##t *)
! 214: #define CAST2(t) (net_addr_##t *)
! 215:
! 216: #define FIB_HASH(f,a,t) (net_hash_##t(CAST(t) a) >> f->hash_shift)
! 217:
! 218: #define FIB_FIND(f,a,t) \
! 219: ({ \
! 220: struct fib_node *e = f->hash_table[FIB_HASH(f, a, t)]; \
! 221: while (e && !net_equal_##t(CAST(t) e->addr, CAST(t) a)) \
! 222: e = e->next; \
! 223: fib_node_to_user(f, e); \
! 224: })
! 225:
! 226: #define FIB_INSERT(f,a,e,t) \
! 227: ({ \
! 228: u32 h = net_hash_##t(CAST(t) a); \
! 229: struct fib_node **ee = f->hash_table + (h >> f->hash_shift); \
! 230: struct fib_node *g; \
! 231: \
! 232: while ((g = *ee) && (net_hash_##t(CAST(t) g->addr) < h)) \
! 233: ee = &g->next; \
! 234: \
! 235: net_copy_##t(CAST2(t) e->addr, CAST(t) a); \
! 236: e->next = *ee; \
! 237: *ee = e; \
! 238: })
! 239:
! 240:
! 241: static inline u32
! 242: fib_hash(struct fib *f, const net_addr *a)
! 243: {
! 244: /* Same as FIB_HASH() */
! 245: return net_hash(a) >> f->hash_shift;
! 246: }
! 247:
! 248: void *
! 249: fib_get_chain(struct fib *f, const net_addr *a)
! 250: {
! 251: ASSERT(f->addr_type == a->type);
! 252:
! 253: struct fib_node *e = f->hash_table[fib_hash(f, a)];
! 254: return e;
! 255: }
! 256:
! 257: /**
! 258: * fib_find - search for FIB node by prefix
! 259: * @f: FIB to search in
! 260: * @n: network address
! 261: *
! 262: * Search for a FIB node corresponding to the given prefix, return
! 263: * a pointer to it or %NULL if no such node exists.
! 264: */
! 265: void *
! 266: fib_find(struct fib *f, const net_addr *a)
! 267: {
! 268: ASSERT(f->addr_type == a->type);
! 269:
! 270: switch (f->addr_type)
! 271: {
! 272: case NET_IP4: return FIB_FIND(f, a, ip4);
! 273: case NET_IP6: return FIB_FIND(f, a, ip6);
! 274: case NET_VPN4: return FIB_FIND(f, a, vpn4);
! 275: case NET_VPN6: return FIB_FIND(f, a, vpn6);
! 276: case NET_ROA4: return FIB_FIND(f, a, roa4);
! 277: case NET_ROA6: return FIB_FIND(f, a, roa6);
! 278: case NET_FLOW4: return FIB_FIND(f, a, flow4);
! 279: case NET_FLOW6: return FIB_FIND(f, a, flow6);
! 280: case NET_IP6_SADR: return FIB_FIND(f, a, ip6_sadr);
! 281: case NET_MPLS: return FIB_FIND(f, a, mpls);
! 282: default: bug("invalid type");
! 283: }
! 284: }
! 285:
! 286: static void
! 287: fib_insert(struct fib *f, const net_addr *a, struct fib_node *e)
! 288: {
! 289: ASSERT(f->addr_type == a->type);
! 290:
! 291: switch (f->addr_type)
! 292: {
! 293: case NET_IP4: FIB_INSERT(f, a, e, ip4); return;
! 294: case NET_IP6: FIB_INSERT(f, a, e, ip6); return;
! 295: case NET_VPN4: FIB_INSERT(f, a, e, vpn4); return;
! 296: case NET_VPN6: FIB_INSERT(f, a, e, vpn6); return;
! 297: case NET_ROA4: FIB_INSERT(f, a, e, roa4); return;
! 298: case NET_ROA6: FIB_INSERT(f, a, e, roa6); return;
! 299: case NET_FLOW4: FIB_INSERT(f, a, e, flow4); return;
! 300: case NET_FLOW6: FIB_INSERT(f, a, e, flow6); return;
! 301: case NET_IP6_SADR: FIB_INSERT(f, a, e, ip6_sadr); return;
! 302: case NET_MPLS: FIB_INSERT(f, a, e, mpls); return;
! 303: default: bug("invalid type");
! 304: }
! 305: }
! 306:
! 307:
! 308: /**
! 309: * fib_get - find or create a FIB node
! 310: * @f: FIB to work with
! 311: * @n: network address
! 312: *
! 313: * Search for a FIB node corresponding to the given prefix and
! 314: * return a pointer to it. If no such node exists, create it.
! 315: */
! 316: void *
! 317: fib_get(struct fib *f, const net_addr *a)
! 318: {
! 319: void *b = fib_find(f, a);
! 320: if (b)
! 321: return b;
! 322:
! 323: if (f->fib_slab)
! 324: b = sl_alloc(f->fib_slab);
! 325: else
! 326: b = mb_alloc(f->fib_pool, f->node_size + a->length);
! 327:
! 328: struct fib_node *e = fib_user_to_node(f, b);
! 329: e->readers = NULL;
! 330: e->flags = 0;
! 331: fib_insert(f, a, e);
! 332:
! 333: memset(b, 0, f->node_offset);
! 334: if (f->init)
! 335: f->init(b);
! 336:
! 337: if (f->entries++ > f->entries_max)
! 338: fib_rehash(f, HASH_HI_STEP);
! 339:
! 340: return b;
! 341: }
! 342:
! 343: static inline void *
! 344: fib_route_ip4(struct fib *f, net_addr_ip4 *n)
! 345: {
! 346: void *r;
! 347:
! 348: while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
! 349: {
! 350: n->pxlen--;
! 351: ip4_clrbit(&n->prefix, n->pxlen);
! 352: }
! 353:
! 354: return r;
! 355: }
! 356:
! 357: static inline void *
! 358: fib_route_ip6(struct fib *f, net_addr_ip6 *n)
! 359: {
! 360: void *r;
! 361:
! 362: while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
! 363: {
! 364: n->pxlen--;
! 365: ip6_clrbit(&n->prefix, n->pxlen);
! 366: }
! 367:
! 368: return r;
! 369: }
! 370:
! 371: /**
! 372: * fib_route - CIDR routing lookup
! 373: * @f: FIB to search in
! 374: * @n: network address
! 375: *
! 376: * Search for a FIB node with longest prefix matching the given
! 377: * network, that is a node which a CIDR router would use for routing
! 378: * that network.
! 379: */
! 380: void *
! 381: fib_route(struct fib *f, const net_addr *n)
! 382: {
! 383: ASSERT(f->addr_type == n->type);
! 384:
! 385: net_addr *n0 = alloca(n->length);
! 386: net_copy(n0, n);
! 387:
! 388: switch (n->type)
! 389: {
! 390: case NET_IP4:
! 391: case NET_VPN4:
! 392: case NET_ROA4:
! 393: case NET_FLOW4:
! 394: return fib_route_ip4(f, (net_addr_ip4 *) n0);
! 395:
! 396: case NET_IP6:
! 397: case NET_VPN6:
! 398: case NET_ROA6:
! 399: case NET_FLOW6:
! 400: return fib_route_ip6(f, (net_addr_ip6 *) n0);
! 401:
! 402: default:
! 403: return NULL;
! 404: }
! 405: }
! 406:
! 407:
! 408: static inline void
! 409: fib_merge_readers(struct fib_iterator *i, struct fib_node *to)
! 410: {
! 411: if (to)
! 412: {
! 413: struct fib_iterator *j = to->readers;
! 414: if (!j)
! 415: {
! 416: /* Fast path */
! 417: to->readers = i;
! 418: i->prev = (struct fib_iterator *) to;
! 419: }
! 420: else
! 421: {
! 422: /* Really merging */
! 423: while (j->next)
! 424: j = j->next;
! 425: j->next = i;
! 426: i->prev = j;
! 427: }
! 428: while (i && i->node)
! 429: {
! 430: i->node = NULL;
! 431: i = i->next;
! 432: }
! 433: }
! 434: else /* No more nodes */
! 435: while (i)
! 436: {
! 437: i->prev = NULL;
! 438: i = i->next;
! 439: }
! 440: }
! 441:
! 442: /**
! 443: * fib_delete - delete a FIB node
! 444: * @f: FIB to delete from
! 445: * @E: entry to delete
! 446: *
! 447: * This function removes the given entry from the FIB,
! 448: * taking care of all the asynchronous readers by shifting
! 449: * them to the next node in the canonical reading order.
! 450: */
! 451: void
! 452: fib_delete(struct fib *f, void *E)
! 453: {
! 454: struct fib_node *e = fib_user_to_node(f, E);
! 455: uint h = fib_hash(f, e->addr);
! 456: struct fib_node **ee = f->hash_table + h;
! 457: struct fib_iterator *it;
! 458:
! 459: while (*ee)
! 460: {
! 461: if (*ee == e)
! 462: {
! 463: *ee = e->next;
! 464: if (it = e->readers)
! 465: {
! 466: struct fib_node *l = e->next;
! 467: while (!l)
! 468: {
! 469: h++;
! 470: if (h >= f->hash_size)
! 471: break;
! 472: else
! 473: l = f->hash_table[h];
! 474: }
! 475: fib_merge_readers(it, l);
! 476: }
! 477:
! 478: if (f->fib_slab)
! 479: sl_free(f->fib_slab, E);
! 480: else
! 481: mb_free(E);
! 482:
! 483: if (f->entries-- < f->entries_min)
! 484: fib_rehash(f, -HASH_LO_STEP);
! 485: return;
! 486: }
! 487: ee = &((*ee)->next);
! 488: }
! 489: bug("fib_delete() called for invalid node");
! 490: }
! 491:
! 492: /**
! 493: * fib_free - delete a FIB
! 494: * @f: FIB to be deleted
! 495: *
! 496: * This function deletes a FIB -- it frees all memory associated
! 497: * with it and all its entries.
! 498: */
! 499: void
! 500: fib_free(struct fib *f)
! 501: {
! 502: fib_ht_free(f->hash_table);
! 503: rfree(f->fib_slab);
! 504: }
! 505:
! 506: void
! 507: fit_init(struct fib_iterator *i, struct fib *f)
! 508: {
! 509: unsigned h;
! 510: struct fib_node *n;
! 511:
! 512: i->efef = 0xff;
! 513: for(h=0; h<f->hash_size; h++)
! 514: if (n = f->hash_table[h])
! 515: {
! 516: i->prev = (struct fib_iterator *) n;
! 517: if (i->next = n->readers)
! 518: i->next->prev = i;
! 519: n->readers = i;
! 520: i->node = n;
! 521: return;
! 522: }
! 523: /* The fib is empty, nothing to do */
! 524: i->prev = i->next = NULL;
! 525: i->node = NULL;
! 526: }
! 527:
! 528: struct fib_node *
! 529: fit_get(struct fib *f, struct fib_iterator *i)
! 530: {
! 531: struct fib_node *n;
! 532: struct fib_iterator *j, *k;
! 533:
! 534: if (!i->prev)
! 535: {
! 536: /* We are at the end */
! 537: i->hash = ~0 - 1;
! 538: return NULL;
! 539: }
! 540: if (!(n = i->node))
! 541: {
! 542: /* No node info available, we are a victim of merging. Try harder. */
! 543: j = i;
! 544: while (j->efef == 0xff)
! 545: j = j->prev;
! 546: n = (struct fib_node *) j;
! 547: }
! 548: j = i->prev;
! 549: if (k = i->next)
! 550: k->prev = j;
! 551: j->next = k;
! 552: i->hash = fib_hash(f, n->addr);
! 553: return n;
! 554: }
! 555:
! 556: void
! 557: fit_put(struct fib_iterator *i, struct fib_node *n)
! 558: {
! 559: struct fib_iterator *j;
! 560:
! 561: i->node = n;
! 562: if (j = n->readers)
! 563: j->prev = i;
! 564: i->next = j;
! 565: n->readers = i;
! 566: i->prev = (struct fib_iterator *) n;
! 567: }
! 568:
! 569: void
! 570: fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos)
! 571: {
! 572: if (n = n->next)
! 573: goto found;
! 574:
! 575: while (++hpos < f->hash_size)
! 576: if (n = f->hash_table[hpos])
! 577: goto found;
! 578:
! 579: /* We are at the end */
! 580: i->prev = i->next = NULL;
! 581: i->node = NULL;
! 582: return;
! 583:
! 584: found:
! 585: fit_put(i, n);
! 586: }
! 587:
! 588: #ifdef DEBUGGING
! 589:
! 590: /**
! 591: * fib_check - audit a FIB
! 592: * @f: FIB to be checked
! 593: *
! 594: * This debugging function audits a FIB by checking its internal consistency.
! 595: * Use when you suspect somebody of corrupting innocent data structures.
! 596: */
! 597: void
! 598: fib_check(struct fib *f)
! 599: {
! 600: uint i, ec, nulls;
! 601:
! 602: ec = 0;
! 603: for(i=0; i<f->hash_size; i++)
! 604: {
! 605: struct fib_node *n;
! 606: for(n=f->hash_table[i]; n; n=n->next)
! 607: {
! 608: struct fib_iterator *j, *j0;
! 609: uint h0 = fib_hash(f, n->addr);
! 610: if (h0 != i)
! 611: bug("fib_check: mishashed %x->%x (order %d)", h0, i, f->hash_order);
! 612: j0 = (struct fib_iterator *) n;
! 613: nulls = 0;
! 614: for(j=n->readers; j; j=j->next)
! 615: {
! 616: if (j->prev != j0)
! 617: bug("fib_check: iterator->prev mismatch");
! 618: j0 = j;
! 619: if (!j->node)
! 620: nulls++;
! 621: else if (nulls)
! 622: bug("fib_check: iterator nullified");
! 623: else if (j->node != n)
! 624: bug("fib_check: iterator->node mismatch");
! 625: }
! 626: ec++;
! 627: }
! 628: }
! 629: if (ec != f->entries)
! 630: bug("fib_check: invalid entry count (%d != %d)", ec, f->entries);
! 631: return;
! 632: }
! 633:
! 634: /*
! 635: int
! 636: fib_histogram(struct fib *f)
! 637: {
! 638: log(L_WARN "Histogram dump start %d %d", f->hash_size, f->entries);
! 639:
! 640: int i, j;
! 641: struct fib_node *e;
! 642:
! 643: for (i = 0; i < f->hash_size; i++)
! 644: {
! 645: j = 0;
! 646: for (e = f->hash_table[i]; e != NULL; e = e->next)
! 647: j++;
! 648: if (j > 0)
! 649: log(L_WARN "Histogram line %d: %d", i, j);
! 650: }
! 651:
! 652: log(L_WARN "Histogram dump end");
! 653: }
! 654: */
! 655:
! 656: #endif
! 657:
! 658: #ifdef TEST
! 659:
! 660: #include "lib/resource.h"
! 661:
! 662: struct fib f;
! 663:
! 664: void dump(char *m)
! 665: {
! 666: uint i;
! 667:
! 668: debug("%s ... order=%d, size=%d, entries=%d\n", m, f.hash_order, f.hash_size, f.hash_size);
! 669: for(i=0; i<f.hash_size; i++)
! 670: {
! 671: struct fib_node *n;
! 672: struct fib_iterator *j;
! 673: for(n=f.hash_table[i]; n; n=n->next)
! 674: {
! 675: debug("%04x %08x %p %N", i, ipa_hash(n->prefix), n, n->addr);
! 676: for(j=n->readers; j; j=j->next)
! 677: debug(" %p[%p]", j, j->node);
! 678: debug("\n");
! 679: }
! 680: }
! 681: fib_check(&f);
! 682: debug("-----\n");
! 683: }
! 684:
! 685: void init(struct fib_node *n)
! 686: {
! 687: }
! 688:
! 689: int main(void)
! 690: {
! 691: struct fib_node *n;
! 692: struct fib_iterator i, j;
! 693: ip_addr a;
! 694: int c;
! 695:
! 696: log_init_debug(NULL);
! 697: resource_init();
! 698: fib_init(&f, &root_pool, sizeof(struct fib_node), 4, init);
! 699: dump("init");
! 700:
! 701: a = ipa_from_u32(0x01020304); n = fib_get(&f, &a, 32);
! 702: a = ipa_from_u32(0x02030405); n = fib_get(&f, &a, 32);
! 703: a = ipa_from_u32(0x03040506); n = fib_get(&f, &a, 32);
! 704: a = ipa_from_u32(0x00000000); n = fib_get(&f, &a, 32);
! 705: a = ipa_from_u32(0x00000c01); n = fib_get(&f, &a, 32);
! 706: a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
! 707: dump("fill");
! 708:
! 709: fit_init(&i, &f);
! 710: dump("iter init");
! 711:
! 712: fib_rehash(&f, 1);
! 713: dump("rehash up");
! 714:
! 715: fib_rehash(&f, -1);
! 716: dump("rehash down");
! 717:
! 718: next:
! 719: c = 0;
! 720: FIB_ITERATE_START(&f, &i, z)
! 721: {
! 722: if (c)
! 723: {
! 724: FIB_ITERATE_PUT(&i, z);
! 725: dump("iter");
! 726: goto next;
! 727: }
! 728: c = 1;
! 729: debug("got %p\n", z);
! 730: }
! 731: FIB_ITERATE_END(z);
! 732: dump("iter end");
! 733:
! 734: fit_init(&i, &f);
! 735: fit_init(&j, &f);
! 736: dump("iter init 2");
! 737:
! 738: n = fit_get(&f, &i);
! 739: dump("iter step 2");
! 740:
! 741: fit_put(&i, n->next);
! 742: dump("iter step 3");
! 743:
! 744: a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
! 745: fib_delete(&f, n);
! 746: dump("iter step 3");
! 747:
! 748: return 0;
! 749: }
! 750:
! 751: #endif
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>