Annotation of embedaddon/bird2/proto/ospf/topology.h, revision 1.1.1.1

1.1       misho       1: /*
                      2:  *     BIRD -- OSPF
                      3:  *
                      4:  *     (c) 1999--2004 Ondrej Filip <feela@network.cz>
                      5:  *     (c) 2009--2014 Ondrej Zajicek <santiago@crfreenet.org>
                      6:  *     (c) 2009--2014 CZ.NIC z.s.p.o.
                      7:  *
                      8:  *     Can be freely distributed and used under the terms of the GNU GPL.
                      9:  */
                     10: 
                     11: #ifndef _BIRD_OSPF_TOPOLOGY_H_
                     12: #define _BIRD_OSPF_TOPOLOGY_H_
                     13: 
                     14: struct top_hash_entry
                     15: {                              /* Index for fast mapping (type,rtrid,LSid)->vertex */
                     16:   snode n;
                     17:   node cn;                     /* For adding into list of candidates
                     18:                                   in intra-area routing table calculation */
                     19:   struct top_hash_entry *next; /* Next in hash chain */
                     20:   struct ospf_lsa_header lsa;
                     21:   u16 lsa_type;                        /* lsa.type processed and converted to common values (LSA_T_*) */
                     22:   u16 init_age;                        /* Initial value for lsa.age during inst_time */
                     23:   u32 domain;                  /* Area ID for area-wide LSAs, Iface ID for link-wide LSAs */
                     24:   //  struct ospf_area *oa;
                     25:   void *lsa_body;              /* May be NULL if LSA was flushed but hash entry was kept */
                     26:   void *next_lsa_body;         /* For postponed LSA origination */
                     27:   u16 next_lsa_blen;           /* For postponed LSA origination */
                     28:   u16 next_lsa_opts;           /* For postponed LSA origination */
                     29:   btime inst_time;             /* Time of installation into DB */
                     30:   struct ort *nf;              /* Reference fibnode for sum and ext LSAs, NULL for otherwise */
                     31:   struct nexthop *nhs;         /* Computed nexthops - valid only in ospf_rt_spf() */
                     32:   ip_addr lb;                  /* In OSPFv2, link back address. In OSPFv3, any global address in the area useful for vlinks */
                     33:   u32 lb_id;                   /* Interface ID of link back iface (for bcast or NBMA networks) */
                     34:   u32 dist;                    /* Distance from the root */
                     35:   int ret_count;               /* Number of retransmission lists referencing the entry */
                     36:   u8 gr_dirty;                 /* Local LSA received during GR, will be removed unless reoriginated */
                     37:   u8 color;
                     38: #define OUTSPF 0
                     39: #define CANDIDATE 1
                     40: #define INSPF 2
                     41:   u8 mode;                     /* LSA generated during RT calculation (LSA_RTCALC or LSA_STALE)*/
                     42:   u8 nhs_reuse;                        /* Whether nhs nodes can be reused during merging.
                     43:                                   See a note in rt.c:add_cand() */
                     44: };
                     45: 
                     46: 
                     47: /* Prevents ospf_hash_find() to ignore the entry, for p->lsrqh and p->lsrth */
                     48: #define LSA_BODY_DUMMY ((void *) 1)
                     49: 
                     50: /*
                     51:  * LSA entry life cycle
                     52:  *
                     53:  * LSA entries are created by ospf_originate_lsa() (for locally originated LSAs)
                     54:  * or ospf_install_lsa() (for LSAs received from neighbors). A regular (like
                     55:  * newly originated) LSA entry has defined lsa_body nad lsa.age < %LSA_MAXAGE.
                     56:  * When the LSA is requested to be flushed by ospf_flush_lsa(), the lsa.age is
                     57:  * set to %LSA_MAXAGE and flooded. Flush process is finished asynchronously,
                     58:  * when (at least) flooding is acknowledged by neighbors. This is detected in
                     59:  * ospf_update_lsadb(), then ospf_clear_lsa() is called to free the LSA body but
                     60:  * the LSA entry is kept. Such LSA does not formally exist, we keep an empty
                     61:  * entry (until regular timeout) to know inst_time and lsa.sn in the case of
                     62:  * later reorigination. After the timeout, LSA is removed by ospf_remove_lsa().
                     63:  *
                     64:  * When LSA origination is requested (by ospf_originate_lsa()). but it is not
                     65:  * possible to do that immediately (because of MinLSInterval or because the
                     66:  * sequence number is wrapping), The new LSA is scheduled for later origination
                     67:  * in next_lsa_* fields of the LSA entry. The later origination is handled by
                     68:  * ospf_originate_next_lsa() called from ospf_update_lsadb(). We can see that
                     69:  * both real origination and final flush is asynchronous to ospf_originate_lsa()
                     70:  * and ospf_flush_lsa().
                     71:  *
                     72:  * LSA entry therefore could be in three basic states:
                     73:  * R - regular (lsa.age < %LSA_MAXAGE, lsa_body != NULL)
                     74:  * F - flushing (lsa.age == %LSA_MAXAGE, lsa_body != NULL)
                     75:  * E - empty (lsa.age == %LSA_MAXAGE, lsa_body == NULL)
                     76:  *
                     77:  * And these states are doubled based on whether the next LSA is scheduled
                     78:  * (next_lsa_body != NULL, -n suffix) or not (next_lsa_body == NULL). We also
                     79:  * use X for a state of non-existentce. We have this basic state graph
                     80:  * (transitions from any state to R are omitted for clarity):
                     81:  *
                     82:  *  X --> R ---> F ---> E --> X
                     83:  *        | \  / |      |
                     84:  *        |  \/  |      |
                     85:  *        |  /\  |      |
                     86:  *        | /  \ |      |
                     87:  *        Rn --> Fn --> En
                     88:  *
                     89:  * The transitions are:
                     90:  *
                     91:  * any state -> R              - new LSA origination requested and executed
                     92:  * R -> Rn, F -> Fn, E -> En   - new LSA origination requested and postponed
                     93:  * R -> Fn                     - new LSA origination requested, seqnum wrapping
                     94:  * Rn,Fn,En -> R               - postponed LSA finally originated
                     95:  * R -> R                      - LSA refresh done
                     96:  * R -> Fn                     - LSA refresh with seqnum wrapping
                     97:  * R -> F, Rn -> Fn            - LSA age timeout
                     98:  * R,Rn,Fn -> F, En -> E       - LSA flush requested
                     99:  * F -> E, Fn -> En            - LSA flush done (acknowledged)
                    100:  * E -> X                      - LSA real age timeout (or immediate for received LSA)
                    101:  *
                    102:  * The 'origination requested' and 'flush requested' transitions are triggered
                    103:  * and done by ospf_originate_lsa() and ospf_flush_lsa(), the rest is handled
                    104:  * asynchronously by ospf_update_lsadb().
                    105:  *
                    106:  * The situation is significantly simpler for non-local (received) LSAs - there
                    107:  * is no postponed origination and after flushing is done, LSAs are immediately
                    108:  * removed, so it is just X -> R -> F -> X, or X -> F -> X (when MaxAge LSA is
                    109:  * received).
                    110:  *
                    111:  * There are also some special cases related to handling of received unknown
                    112:  * self-originated LSAs in ospf_advance_lsa():
                    113:  * X -> F              - LSA is received and immediately flushed
                    114:  * R,Rn -> Fn          - LSA with MaxSeqNo received and flushed, current LSA scheduled
                    115:  */
                    116: 
                    117: 
                    118: #define LSA_M_BASIC            0
                    119: #define LSA_M_EXPORT           1
                    120: #define LSA_M_RTCALC           2
                    121: #define LSA_M_EXPORT_STALE     3
                    122: #define LSA_M_RTCALC_STALE     4
                    123: 
                    124: /*
                    125:  * LSA entry modes:
                    126:  *
                    127:  * LSA_M_BASIC - The LSA is explicitly originated using ospf_originate_lsa() and
                    128:  * explicitly flushed using ospf_flush_lsa(). When the LSA is changed, the
                    129:  * routing table calculation is scheduled. This is also the mode used for LSAs
                    130:  * received from neighbors. Example: Router-LSAs, Network-LSAs.
                    131:  *
                    132:  * LSA_M_EXPORT - The LSA is originated using ospf_originate_lsa() as a
                    133:  * consequence of route export to the OSPF instance. It has to be reoriginated
                    134:  * during each channel feed, otherwise it is flushed automatically at the end of
                    135:  * the feed. May be originated and flushed asynchronously. Also, routing table
                    136:  * calculation does not depend on the LSA. Therefore, the routing table
                    137:  * calculation is not scheduled when the LSA is changed. Example:
                    138:  * AS-external-LSAs for exported routes.
                    139:  *
                    140:  * LSA_M_RTCALC - The LSA has to be requested using ospf_originate_lsa() during
                    141:  * each routing table calculation, otherwise it is flushed automatically at the
                    142:  * end of the calculation. The LSA is a result of the calculation and not a
                    143:  * source for it. Therefore, the calculation is not scheduled when the LSA is
                    144:  * changed. Example: Summary-LSAs.
                    145:  *
                    146:  * LSA_M_EXPORT_STALE - Temporary state for LSA_M_EXPORT that is not requested
                    147:  * during current external route feed.
                    148:  *
                    149:  * LSA_M_RTCALC_STALE - Temporary state for LSA_M_RTCALC that is not requested
                    150:  * during current routing table calculation.
                    151:  *
                    152:  *
                    153:  * Note that we do not schedule the routing table calculation when the age of
                    154:  * LSA_M_BASIC LSA is changed to MaxAge because of the sequence number wrapping,
                    155:  * As it will be switched back to a regular one ASAP.
                    156:  */
                    157: 
                    158: 
                    159: struct top_graph
                    160: {
                    161:   pool *pool;                  /* Pool we allocate from */
                    162:   slab *hash_slab;             /* Slab for hash entries */
                    163:   struct top_hash_entry **hash_table;  /* Hashing (modelled a`la fib) */
                    164:   uint ospf2;                  /* Whether it is for OSPFv2 or OSPFv3 */
                    165:   uint hash_size;
                    166:   uint hash_order;
                    167:   uint hash_mask;
                    168:   uint hash_entries;
                    169:   uint hash_entries_min, hash_entries_max;
                    170: };
                    171: 
                    172: struct ospf_new_lsa
                    173: {
                    174:   u16 type;
                    175:   u8  mode;
                    176:   u32 dom;
                    177:   u32 id;
                    178:   u16 opts;
                    179:   u16 length;
                    180:   struct ospf_iface *ifa;
                    181:   struct ort *nf;
                    182: };
                    183: 
                    184: struct top_graph *ospf_top_new(struct ospf_proto *p, pool *pool);
                    185: void ospf_top_free(struct top_graph *f);
                    186: 
                    187: struct top_hash_entry * ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body);
                    188: struct top_hash_entry * ospf_originate_lsa(struct ospf_proto *p, struct ospf_new_lsa *lsa);
                    189: void ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body);
                    190: void ospf_flush_lsa(struct ospf_proto *p, struct top_hash_entry *en);
                    191: void ospf_update_lsadb(struct ospf_proto *p);
                    192: void ospf_feed_begin(struct channel *C, int initial);
                    193: void ospf_feed_end(struct channel *C);
                    194: 
                    195: static inline void ospf_flush2_lsa(struct ospf_proto *p, struct top_hash_entry **en)
                    196: { if (*en) { ospf_flush_lsa(p, *en); *en = NULL; } }
                    197: 
                    198: void ospf_originate_sum_net_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric);
                    199: void ospf_originate_sum_rt_lsa(struct ospf_proto *p, struct ospf_area *oa, u32 drid, int metric, u32 options);
                    200: void ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 mode, u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit, int dn);
                    201: void ospf_originate_gr_lsa(struct ospf_proto *p, struct ospf_iface *ifa);
                    202: 
                    203: void ospf_rt_notify(struct proto *P, struct channel *ch, net *n, rte *new, rte *old);
                    204: void ospf_update_topology(struct ospf_proto *p);
                    205: 
                    206: struct top_hash_entry *ospf_hash_find(struct top_graph *, u32 domain, u32 lsa, u32 rtr, u32 type);
                    207: struct top_hash_entry *ospf_hash_get(struct top_graph *, u32 domain, u32 lsa, u32 rtr, u32 type);
                    208: void ospf_hash_delete(struct top_graph *, struct top_hash_entry *);
                    209: 
                    210: static inline struct top_hash_entry * ospf_hash_find_entry(struct top_graph *f, struct top_hash_entry *en)
                    211: { return ospf_hash_find(f, en->domain, en->lsa.id, en->lsa.rt, en->lsa_type); }
                    212: 
                    213: static inline struct top_hash_entry * ospf_hash_get_entry(struct top_graph *f, struct top_hash_entry *en)
                    214: { return ospf_hash_get(f, en->domain, en->lsa.id, en->lsa.rt, en->lsa_type); }
                    215: 
                    216: struct top_hash_entry * ospf_hash_find_rt(struct top_graph *f, u32 domain, u32 rtr);
                    217: struct top_hash_entry * ospf_hash_find_rt3_first(struct top_graph *f, u32 domain, u32 rtr);
                    218: struct top_hash_entry * ospf_hash_find_rt3_next(struct top_hash_entry *e);
                    219: 
                    220: struct top_hash_entry * ospf_hash_find_net2(struct top_graph *f, u32 domain, u32 id);
                    221: 
                    222: /* In OSPFv2, id is network IP prefix (lsa.id) while lsa.rt field is unknown
                    223:    In OSPFv3, id is lsa.rt of DR while nif is neighbor iface id (lsa.id) */
                    224: static inline struct top_hash_entry *
                    225: ospf_hash_find_net(struct top_graph *f, u32 domain, u32 id, u32 nif)
                    226: {
                    227:   return f->ospf2 ?
                    228:     ospf_hash_find_net2(f, domain, id) :
                    229:     ospf_hash_find(f, domain, nif, id, LSA_T_NET);
                    230: }
                    231: 
                    232: 
                    233: #endif /* _BIRD_OSPF_TOPOLOGY_H_ */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>