File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / curl / lib / multi.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Wed Jun 3 10:01:15 2020 UTC (5 years ago) by misho
Branches: curl, MAIN
CVS tags: v7_70_0p4, HEAD
curl

    1: /***************************************************************************
    2:  *                                  _   _ ____  _
    3:  *  Project                     ___| | | |  _ \| |
    4:  *                             / __| | | | |_) | |
    5:  *                            | (__| |_| |  _ <| |___
    6:  *                             \___|\___/|_| \_\_____|
    7:  *
    8:  * Copyright (C) 1998 - 2020, Daniel Stenberg, <daniel@haxx.se>, et al.
    9:  *
   10:  * This software is licensed as described in the file COPYING, which
   11:  * you should have received as part of this distribution. The terms
   12:  * are also available at https://curl.haxx.se/docs/copyright.html.
   13:  *
   14:  * You may opt to use, copy, modify, merge, publish, distribute and/or sell
   15:  * copies of the Software, and permit persons to whom the Software is
   16:  * furnished to do so, under the terms of the COPYING file.
   17:  *
   18:  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
   19:  * KIND, either express or implied.
   20:  *
   21:  ***************************************************************************/
   22: 
   23: #include "curl_setup.h"
   24: 
   25: #include <curl/curl.h>
   26: 
   27: #include "urldata.h"
   28: #include "transfer.h"
   29: #include "url.h"
   30: #include "connect.h"
   31: #include "progress.h"
   32: #include "easyif.h"
   33: #include "share.h"
   34: #include "psl.h"
   35: #include "multiif.h"
   36: #include "sendf.h"
   37: #include "timeval.h"
   38: #include "http.h"
   39: #include "select.h"
   40: #include "warnless.h"
   41: #include "speedcheck.h"
   42: #include "conncache.h"
   43: #include "multihandle.h"
   44: #include "sigpipe.h"
   45: #include "vtls/vtls.h"
   46: #include "connect.h"
   47: #include "http_proxy.h"
   48: #include "http2.h"
   49: #include "socketpair.h"
   50: #include "socks.h"
   51: /* The last 3 #include files should be in this order */
   52: #include "curl_printf.h"
   53: #include "curl_memory.h"
   54: #include "memdebug.h"
   55: 
   56: /*
   57:   CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97
   58:   to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes.  Still, every
   59:   CURL handle takes 45-50 K memory, therefore this 3K are not significant.
   60: */
   61: #ifndef CURL_SOCKET_HASH_TABLE_SIZE
   62: #define CURL_SOCKET_HASH_TABLE_SIZE 911
   63: #endif
   64: 
   65: #ifndef CURL_CONNECTION_HASH_SIZE
   66: #define CURL_CONNECTION_HASH_SIZE 97
   67: #endif
   68: 
   69: #define CURL_MULTI_HANDLE 0x000bab1e
   70: 
   71: #define GOOD_MULTI_HANDLE(x) \
   72:   ((x) && (x)->type == CURL_MULTI_HANDLE)
   73: 
   74: static CURLMcode singlesocket(struct Curl_multi *multi,
   75:                               struct Curl_easy *data);
   76: static CURLMcode add_next_timeout(struct curltime now,
   77:                                   struct Curl_multi *multi,
   78:                                   struct Curl_easy *d);
   79: static CURLMcode multi_timeout(struct Curl_multi *multi,
   80:                                long *timeout_ms);
   81: static void process_pending_handles(struct Curl_multi *multi);
   82: static void detach_connnection(struct Curl_easy *data);
   83: 
   84: #ifdef DEBUGBUILD
   85: static const char * const statename[]={
   86:   "INIT",
   87:   "CONNECT_PEND",
   88:   "CONNECT",
   89:   "WAITRESOLVE",
   90:   "WAITCONNECT",
   91:   "WAITPROXYCONNECT",
   92:   "SENDPROTOCONNECT",
   93:   "PROTOCONNECT",
   94:   "DO",
   95:   "DOING",
   96:   "DO_MORE",
   97:   "DO_DONE",
   98:   "PERFORM",
   99:   "TOOFAST",
  100:   "DONE",
  101:   "COMPLETED",
  102:   "MSGSENT",
  103: };
  104: #endif
  105: 
  106: /* function pointer called once when switching TO a state */
  107: typedef void (*init_multistate_func)(struct Curl_easy *data);
  108: 
  109: static void Curl_init_completed(struct Curl_easy *data)
  110: {
  111:   /* this is a completed transfer */
  112: 
  113:   /* Important: reset the conn pointer so that we don't point to memory
  114:      that could be freed anytime */
  115:   detach_connnection(data);
  116:   Curl_expire_clear(data); /* stop all timers */
  117: }
  118: 
  119: /* always use this function to change state, to make debugging easier */
  120: static void mstate(struct Curl_easy *data, CURLMstate state
  121: #ifdef DEBUGBUILD
  122:                    , int lineno
  123: #endif
  124: )
  125: {
  126:   CURLMstate oldstate = data->mstate;
  127:   static const init_multistate_func finit[CURLM_STATE_LAST] = {
  128:     NULL,              /* INIT */
  129:     NULL,              /* CONNECT_PEND */
  130:     Curl_init_CONNECT, /* CONNECT */
  131:     NULL,              /* WAITRESOLVE */
  132:     NULL,              /* WAITCONNECT */
  133:     NULL,              /* WAITPROXYCONNECT */
  134:     NULL,              /* SENDPROTOCONNECT */
  135:     NULL,              /* PROTOCONNECT */
  136:     Curl_connect_free, /* DO */
  137:     NULL,              /* DOING */
  138:     NULL,              /* DO_MORE */
  139:     NULL,              /* DO_DONE */
  140:     NULL,              /* PERFORM */
  141:     NULL,              /* TOOFAST */
  142:     NULL,              /* DONE */
  143:     Curl_init_completed, /* COMPLETED */
  144:     NULL               /* MSGSENT */
  145:   };
  146: 
  147: #if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS)
  148:   (void) lineno;
  149: #endif
  150: 
  151:   if(oldstate == state)
  152:     /* don't bother when the new state is the same as the old state */
  153:     return;
  154: 
  155:   data->mstate = state;
  156: 
  157: #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS)
  158:   if(data->mstate >= CURLM_STATE_CONNECT_PEND &&
  159:      data->mstate < CURLM_STATE_COMPLETED) {
  160:     long connection_id = -5000;
  161: 
  162:     if(data->conn)
  163:       connection_id = data->conn->connection_id;
  164: 
  165:     infof(data,
  166:           "STATE: %s => %s handle %p; line %d (connection #%ld)\n",
  167:           statename[oldstate], statename[data->mstate],
  168:           (void *)data, lineno, connection_id);
  169:   }
  170: #endif
  171: 
  172:   if(state == CURLM_STATE_COMPLETED)
  173:     /* changing to COMPLETED means there's one less easy handle 'alive' */
  174:     data->multi->num_alive--;
  175: 
  176:   /* if this state has an init-function, run it */
  177:   if(finit[state])
  178:     finit[state](data);
  179: }
  180: 
  181: #ifndef DEBUGBUILD
  182: #define multistate(x,y) mstate(x,y)
  183: #else
  184: #define multistate(x,y) mstate(x,y, __LINE__)
  185: #endif
  186: 
  187: /*
  188:  * We add one of these structs to the sockhash for each socket
  189:  */
  190: 
  191: struct Curl_sh_entry {
  192:   struct curl_hash transfers; /* hash of transfers using this socket */
  193:   unsigned int action;  /* what combined action READ/WRITE this socket waits
  194:                            for */
  195:   void *socketp; /* settable by users with curl_multi_assign() */
  196:   unsigned int users; /* number of transfers using this */
  197:   unsigned int readers; /* this many transfers want to read */
  198:   unsigned int writers; /* this many transfers want to write */
  199: };
  200: /* bits for 'action' having no bits means this socket is not expecting any
  201:    action */
  202: #define SH_READ  1
  203: #define SH_WRITE 2
  204: 
  205: /* look up a given socket in the socket hash, skip invalid sockets */
  206: static struct Curl_sh_entry *sh_getentry(struct curl_hash *sh,
  207:                                          curl_socket_t s)
  208: {
  209:   if(s != CURL_SOCKET_BAD) {
  210:     /* only look for proper sockets */
  211:     return Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t));
  212:   }
  213:   return NULL;
  214: }
  215: 
  216: #define TRHASH_SIZE 13
  217: static size_t trhash(void *key, size_t key_length, size_t slots_num)
  218: {
  219:   size_t keyval = (size_t)*(struct Curl_easy **)key;
  220:   (void) key_length;
  221: 
  222:   return (keyval % slots_num);
  223: }
  224: 
  225: static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
  226: {
  227:   (void)k1_len;
  228:   (void)k2_len;
  229: 
  230:   return *(struct Curl_easy **)k1 == *(struct Curl_easy **)k2;
  231: }
  232: 
  233: static void trhash_dtor(void *nada)
  234: {
  235:   (void)nada;
  236: }
  237: 
  238: 
  239: /* make sure this socket is present in the hash for this handle */
  240: static struct Curl_sh_entry *sh_addentry(struct curl_hash *sh,
  241:                                          curl_socket_t s)
  242: {
  243:   struct Curl_sh_entry *there = sh_getentry(sh, s);
  244:   struct Curl_sh_entry *check;
  245: 
  246:   if(there) {
  247:     /* it is present, return fine */
  248:     return there;
  249:   }
  250: 
  251:   /* not present, add it */
  252:   check = calloc(1, sizeof(struct Curl_sh_entry));
  253:   if(!check)
  254:     return NULL; /* major failure */
  255: 
  256:   if(Curl_hash_init(&check->transfers, TRHASH_SIZE, trhash,
  257:                     trhash_compare, trhash_dtor)) {
  258:     free(check);
  259:     return NULL;
  260:   }
  261: 
  262:   /* make/add new hash entry */
  263:   if(!Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) {
  264:     Curl_hash_destroy(&check->transfers);
  265:     free(check);
  266:     return NULL; /* major failure */
  267:   }
  268: 
  269:   return check; /* things are good in sockhash land */
  270: }
  271: 
  272: 
  273: /* delete the given socket + handle from the hash */
  274: static void sh_delentry(struct Curl_sh_entry *entry,
  275:                         struct curl_hash *sh, curl_socket_t s)
  276: {
  277:   Curl_hash_destroy(&entry->transfers);
  278: 
  279:   /* We remove the hash entry. This will end up in a call to
  280:      sh_freeentry(). */
  281:   Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t));
  282: }
  283: 
  284: /*
  285:  * free a sockhash entry
  286:  */
  287: static void sh_freeentry(void *freethis)
  288: {
  289:   struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis;
  290: 
  291:   free(p);
  292: }
  293: 
  294: static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
  295: {
  296:   (void) k1_len; (void) k2_len;
  297: 
  298:   return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2));
  299: }
  300: 
  301: static size_t hash_fd(void *key, size_t key_length, size_t slots_num)
  302: {
  303:   curl_socket_t fd = *((curl_socket_t *) key);
  304:   (void) key_length;
  305: 
  306:   return (fd % slots_num);
  307: }
  308: 
  309: /*
  310:  * sh_init() creates a new socket hash and returns the handle for it.
  311:  *
  312:  * Quote from README.multi_socket:
  313:  *
  314:  * "Some tests at 7000 and 9000 connections showed that the socket hash lookup
  315:  * is somewhat of a bottle neck. Its current implementation may be a bit too
  316:  * limiting. It simply has a fixed-size array, and on each entry in the array
  317:  * it has a linked list with entries. So the hash only checks which list to
  318:  * scan through. The code I had used so for used a list with merely 7 slots
  319:  * (as that is what the DNS hash uses) but with 7000 connections that would
  320:  * make an average of 1000 nodes in each list to run through. I upped that to
  321:  * 97 slots (I believe a prime is suitable) and noticed a significant speed
  322:  * increase.  I need to reconsider the hash implementation or use a rather
  323:  * large default value like this. At 9000 connections I was still below 10us
  324:  * per call."
  325:  *
  326:  */
  327: static int sh_init(struct curl_hash *hash, int hashsize)
  328: {
  329:   return Curl_hash_init(hash, hashsize, hash_fd, fd_key_compare,
  330:                         sh_freeentry);
  331: }
  332: 
  333: /*
  334:  * multi_addmsg()
  335:  *
  336:  * Called when a transfer is completed. Adds the given msg pointer to
  337:  * the list kept in the multi handle.
  338:  */
  339: static CURLMcode multi_addmsg(struct Curl_multi *multi,
  340:                               struct Curl_message *msg)
  341: {
  342:   Curl_llist_insert_next(&multi->msglist, multi->msglist.tail, msg,
  343:                          &msg->list);
  344:   return CURLM_OK;
  345: }
  346: 
  347: struct Curl_multi *Curl_multi_handle(int hashsize, /* socket hash */
  348:                                      int chashsize) /* connection hash */
  349: {
  350:   struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi));
  351: 
  352:   if(!multi)
  353:     return NULL;
  354: 
  355:   multi->type = CURL_MULTI_HANDLE;
  356: 
  357:   if(Curl_mk_dnscache(&multi->hostcache))
  358:     goto error;
  359: 
  360:   if(sh_init(&multi->sockhash, hashsize))
  361:     goto error;
  362: 
  363:   if(Curl_conncache_init(&multi->conn_cache, chashsize))
  364:     goto error;
  365: 
  366:   Curl_llist_init(&multi->msglist, NULL);
  367:   Curl_llist_init(&multi->pending, NULL);
  368: 
  369:   multi->multiplexing = TRUE;
  370: 
  371:   /* -1 means it not set by user, use the default value */
  372:   multi->maxconnects = -1;
  373:   multi->max_concurrent_streams = 100;
  374:   multi->ipv6_works = Curl_ipv6works(NULL);
  375: 
  376: #ifdef ENABLE_WAKEUP
  377:   if(Curl_socketpair(AF_UNIX, SOCK_STREAM, 0, multi->wakeup_pair) < 0) {
  378:     multi->wakeup_pair[0] = CURL_SOCKET_BAD;
  379:     multi->wakeup_pair[1] = CURL_SOCKET_BAD;
  380:   }
  381:   else if(curlx_nonblock(multi->wakeup_pair[0], TRUE) < 0 ||
  382:           curlx_nonblock(multi->wakeup_pair[1], TRUE) < 0) {
  383:     sclose(multi->wakeup_pair[0]);
  384:     sclose(multi->wakeup_pair[1]);
  385:     multi->wakeup_pair[0] = CURL_SOCKET_BAD;
  386:     multi->wakeup_pair[1] = CURL_SOCKET_BAD;
  387:   }
  388: #endif
  389: 
  390:   return multi;
  391: 
  392:   error:
  393: 
  394:   Curl_hash_destroy(&multi->sockhash);
  395:   Curl_hash_destroy(&multi->hostcache);
  396:   Curl_conncache_destroy(&multi->conn_cache);
  397:   Curl_llist_destroy(&multi->msglist, NULL);
  398:   Curl_llist_destroy(&multi->pending, NULL);
  399: 
  400:   free(multi);
  401:   return NULL;
  402: }
  403: 
  404: struct Curl_multi *curl_multi_init(void)
  405: {
  406:   return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE,
  407:                            CURL_CONNECTION_HASH_SIZE);
  408: }
  409: 
  410: CURLMcode curl_multi_add_handle(struct Curl_multi *multi,
  411:                                 struct Curl_easy *data)
  412: {
  413:   /* First, make some basic checks that the CURLM handle is a good handle */
  414:   if(!GOOD_MULTI_HANDLE(multi))
  415:     return CURLM_BAD_HANDLE;
  416: 
  417:   /* Verify that we got a somewhat good easy handle too */
  418:   if(!GOOD_EASY_HANDLE(data))
  419:     return CURLM_BAD_EASY_HANDLE;
  420: 
  421:   /* Prevent users from adding same easy handle more than once and prevent
  422:      adding to more than one multi stack */
  423:   if(data->multi)
  424:     return CURLM_ADDED_ALREADY;
  425: 
  426:   if(multi->in_callback)
  427:     return CURLM_RECURSIVE_API_CALL;
  428: 
  429:   /* Initialize timeout list for this handle */
  430:   Curl_llist_init(&data->state.timeoutlist, NULL);
  431: 
  432:   /*
  433:    * No failure allowed in this function beyond this point. And no
  434:    * modification of easy nor multi handle allowed before this except for
  435:    * potential multi's connection cache growing which won't be undone in this
  436:    * function no matter what.
  437:    */
  438:   if(data->set.errorbuffer)
  439:     data->set.errorbuffer[0] = 0;
  440: 
  441:   /* set the easy handle */
  442:   multistate(data, CURLM_STATE_INIT);
  443: 
  444:   /* for multi interface connections, we share DNS cache automatically if the
  445:      easy handle's one is currently not set. */
  446:   if(!data->dns.hostcache ||
  447:      (data->dns.hostcachetype == HCACHE_NONE)) {
  448:     data->dns.hostcache = &multi->hostcache;
  449:     data->dns.hostcachetype = HCACHE_MULTI;
  450:   }
  451: 
  452:   /* Point to the shared or multi handle connection cache */
  453:   if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT)))
  454:     data->state.conn_cache = &data->share->conn_cache;
  455:   else
  456:     data->state.conn_cache = &multi->conn_cache;
  457: 
  458: #ifdef USE_LIBPSL
  459:   /* Do the same for PSL. */
  460:   if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL)))
  461:     data->psl = &data->share->psl;
  462:   else
  463:     data->psl = &multi->psl;
  464: #endif
  465: 
  466:   /* We add the new entry last in the list. */
  467:   data->next = NULL; /* end of the line */
  468:   if(multi->easyp) {
  469:     struct Curl_easy *last = multi->easylp;
  470:     last->next = data;
  471:     data->prev = last;
  472:     multi->easylp = data; /* the new last node */
  473:   }
  474:   else {
  475:     /* first node, make prev NULL! */
  476:     data->prev = NULL;
  477:     multi->easylp = multi->easyp = data; /* both first and last */
  478:   }
  479: 
  480:   /* make the Curl_easy refer back to this multi handle */
  481:   data->multi = multi;
  482: 
  483:   /* Set the timeout for this handle to expire really soon so that it will
  484:      be taken care of even when this handle is added in the midst of operation
  485:      when only the curl_multi_socket() API is used. During that flow, only
  486:      sockets that time-out or have actions will be dealt with. Since this
  487:      handle has no action yet, we make sure it times out to get things to
  488:      happen. */
  489:   Curl_expire(data, 0, EXPIRE_RUN_NOW);
  490: 
  491:   /* increase the node-counter */
  492:   multi->num_easy++;
  493: 
  494:   /* increase the alive-counter */
  495:   multi->num_alive++;
  496: 
  497:   /* A somewhat crude work-around for a little glitch in Curl_update_timer()
  498:      that happens if the lastcall time is set to the same time when the handle
  499:      is removed as when the next handle is added, as then the check in
  500:      Curl_update_timer() that prevents calling the application multiple times
  501:      with the same timer info will not trigger and then the new handle's
  502:      timeout will not be notified to the app.
  503: 
  504:      The work-around is thus simply to clear the 'lastcall' variable to force
  505:      Curl_update_timer() to always trigger a callback to the app when a new
  506:      easy handle is added */
  507:   memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
  508: 
  509:   /* The closure handle only ever has default timeouts set. To improve the
  510:      state somewhat we clone the timeouts from each added handle so that the
  511:      closure handle always has the same timeouts as the most recently added
  512:      easy handle. */
  513:   data->state.conn_cache->closure_handle->set.timeout = data->set.timeout;
  514:   data->state.conn_cache->closure_handle->set.server_response_timeout =
  515:     data->set.server_response_timeout;
  516:   data->state.conn_cache->closure_handle->set.no_signal =
  517:     data->set.no_signal;
  518: 
  519:   Curl_update_timer(multi);
  520:   return CURLM_OK;
  521: }
  522: 
  523: #if 0
  524: /* Debug-function, used like this:
  525:  *
  526:  * Curl_hash_print(multi->sockhash, debug_print_sock_hash);
  527:  *
  528:  * Enable the hash print function first by editing hash.c
  529:  */
  530: static void debug_print_sock_hash(void *p)
  531: {
  532:   struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p;
  533: 
  534:   fprintf(stderr, " [easy %p/magic %x/socket %d]",
  535:           (void *)sh->data, sh->data->magic, (int)sh->socket);
  536: }
  537: #endif
  538: 
  539: static CURLcode multi_done(struct Curl_easy *data,
  540:                            CURLcode status,  /* an error if this is called
  541:                                                 after an error was detected */
  542:                            bool premature)
  543: {
  544:   CURLcode result;
  545:   struct connectdata *conn = data->conn;
  546:   unsigned int i;
  547: 
  548:   DEBUGF(infof(data, "multi_done\n"));
  549: 
  550:   if(data->state.done)
  551:     /* Stop if multi_done() has already been called */
  552:     return CURLE_OK;
  553: 
  554:   conn->data = data; /* ensure the connection uses this transfer now */
  555: 
  556:   /* Stop the resolver and free its own resources (but not dns_entry yet). */
  557:   Curl_resolver_kill(conn);
  558: 
  559:   /* Cleanup possible redirect junk */
  560:   Curl_safefree(data->req.newurl);
  561:   Curl_safefree(data->req.location);
  562: 
  563:   switch(status) {
  564:   case CURLE_ABORTED_BY_CALLBACK:
  565:   case CURLE_READ_ERROR:
  566:   case CURLE_WRITE_ERROR:
  567:     /* When we're aborted due to a callback return code it basically have to
  568:        be counted as premature as there is trouble ahead if we don't. We have
  569:        many callbacks and protocols work differently, we could potentially do
  570:        this more fine-grained in the future. */
  571:     premature = TRUE;
  572:   default:
  573:     break;
  574:   }
  575: 
  576:   /* this calls the protocol-specific function pointer previously set */
  577:   if(conn->handler->done)
  578:     result = conn->handler->done(conn, status, premature);
  579:   else
  580:     result = status;
  581: 
  582:   if(CURLE_ABORTED_BY_CALLBACK != result) {
  583:     /* avoid this if we already aborted by callback to avoid this calling
  584:        another callback */
  585:     CURLcode rc = Curl_pgrsDone(conn);
  586:     if(!result && rc)
  587:       result = CURLE_ABORTED_BY_CALLBACK;
  588:   }
  589: 
  590:   process_pending_handles(data->multi); /* connection / multiplex */
  591: 
  592:   CONN_LOCK(data);
  593:   detach_connnection(data);
  594:   if(CONN_INUSE(conn)) {
  595:     /* Stop if still used. */
  596:     /* conn->data must not remain pointing to this transfer since it is going
  597:        away! Find another to own it! */
  598:     conn->data = conn->easyq.head->ptr;
  599:     CONN_UNLOCK(data);
  600:     DEBUGF(infof(data, "Connection still in use %zu, "
  601:                  "no more multi_done now!\n",
  602:                  conn->easyq.size));
  603:     return CURLE_OK;
  604:   }
  605:   conn->data = NULL; /* the connection now has no owner */
  606:   data->state.done = TRUE; /* called just now! */
  607: 
  608:   if(conn->dns_entry) {
  609:     Curl_resolv_unlock(data, conn->dns_entry); /* done with this */
  610:     conn->dns_entry = NULL;
  611:   }
  612:   Curl_hostcache_prune(data);
  613:   Curl_safefree(data->state.ulbuf);
  614: 
  615:   /* if the transfer was completed in a paused state there can be buffered
  616:      data left to free */
  617:   for(i = 0; i < data->state.tempcount; i++) {
  618:     free(data->state.tempwrite[i].buf);
  619:   }
  620:   data->state.tempcount = 0;
  621: 
  622:   /* if data->set.reuse_forbid is TRUE, it means the libcurl client has
  623:      forced us to close this connection. This is ignored for requests taking
  624:      place in a NTLM/NEGOTIATE authentication handshake
  625: 
  626:      if conn->bits.close is TRUE, it means that the connection should be
  627:      closed in spite of all our efforts to be nice, due to protocol
  628:      restrictions in our or the server's end
  629: 
  630:      if premature is TRUE, it means this connection was said to be DONE before
  631:      the entire request operation is complete and thus we can't know in what
  632:      state it is for re-using, so we're forced to close it. In a perfect world
  633:      we can add code that keep track of if we really must close it here or not,
  634:      but currently we have no such detail knowledge.
  635:   */
  636: 
  637:   if((data->set.reuse_forbid
  638: #if defined(USE_NTLM)
  639:       && !(conn->http_ntlm_state == NTLMSTATE_TYPE2 ||
  640:            conn->proxy_ntlm_state == NTLMSTATE_TYPE2)
  641: #endif
  642: #if defined(USE_SPNEGO)
  643:       && !(conn->http_negotiate_state == GSS_AUTHRECV ||
  644:            conn->proxy_negotiate_state == GSS_AUTHRECV)
  645: #endif
  646:      ) || conn->bits.close
  647:        || (premature && !(conn->handler->flags & PROTOPT_STREAM))) {
  648:     CURLcode res2;
  649:     connclose(conn, "disconnecting");
  650:     CONN_UNLOCK(data);
  651:     res2 = Curl_disconnect(data, conn, premature);
  652: 
  653:     /* If we had an error already, make sure we return that one. But
  654:        if we got a new error, return that. */
  655:     if(!result && res2)
  656:       result = res2;
  657:   }
  658:   else {
  659:     char buffer[256];
  660:     /* create string before returning the connection */
  661:     msnprintf(buffer, sizeof(buffer),
  662:               "Connection #%ld to host %s left intact",
  663:               conn->connection_id,
  664:               conn->bits.socksproxy ? conn->socks_proxy.host.dispname :
  665:               conn->bits.httpproxy ? conn->http_proxy.host.dispname :
  666:               conn->bits.conn_to_host ? conn->conn_to_host.dispname :
  667:               conn->host.dispname);
  668:     /* the connection is no longer in use by this transfer */
  669:     CONN_UNLOCK(data);
  670:     if(Curl_conncache_return_conn(data, conn)) {
  671:       /* remember the most recently used connection */
  672:       data->state.lastconnect = conn;
  673:       infof(data, "%s\n", buffer);
  674:     }
  675:     else
  676:       data->state.lastconnect = NULL;
  677:   }
  678: 
  679:   Curl_free_request_state(data);
  680:   return result;
  681: }
  682: 
  683: CURLMcode curl_multi_remove_handle(struct Curl_multi *multi,
  684:                                    struct Curl_easy *data)
  685: {
  686:   struct Curl_easy *easy = data;
  687:   bool premature;
  688:   bool easy_owns_conn;
  689:   struct curl_llist_element *e;
  690: 
  691:   /* First, make some basic checks that the CURLM handle is a good handle */
  692:   if(!GOOD_MULTI_HANDLE(multi))
  693:     return CURLM_BAD_HANDLE;
  694: 
  695:   /* Verify that we got a somewhat good easy handle too */
  696:   if(!GOOD_EASY_HANDLE(data))
  697:     return CURLM_BAD_EASY_HANDLE;
  698: 
  699:   /* Prevent users from trying to remove same easy handle more than once */
  700:   if(!data->multi)
  701:     return CURLM_OK; /* it is already removed so let's say it is fine! */
  702: 
  703:   /* Prevent users from trying to remove an easy handle from the wrong multi */
  704:   if(data->multi != multi)
  705:     return CURLM_BAD_EASY_HANDLE;
  706: 
  707:   if(multi->in_callback)
  708:     return CURLM_RECURSIVE_API_CALL;
  709: 
  710:   premature = (data->mstate < CURLM_STATE_COMPLETED) ? TRUE : FALSE;
  711:   easy_owns_conn = (data->conn && (data->conn->data == easy)) ?
  712:     TRUE : FALSE;
  713: 
  714:   /* If the 'state' is not INIT or COMPLETED, we might need to do something
  715:      nice to put the easy_handle in a good known state when this returns. */
  716:   if(premature) {
  717:     /* this handle is "alive" so we need to count down the total number of
  718:        alive connections when this is removed */
  719:     multi->num_alive--;
  720:   }
  721: 
  722:   if(data->conn &&
  723:      data->mstate > CURLM_STATE_DO &&
  724:      data->mstate < CURLM_STATE_COMPLETED) {
  725:     /* Set connection owner so that the DONE function closes it.  We can
  726:        safely do this here since connection is killed. */
  727:     data->conn->data = easy;
  728:     streamclose(data->conn, "Removed with partial response");
  729:     easy_owns_conn = TRUE;
  730:   }
  731: 
  732:   if(data->conn) {
  733: 
  734:     /* we must call multi_done() here (if we still own the connection) so that
  735:        we don't leave a half-baked one around */
  736:     if(easy_owns_conn) {
  737: 
  738:       /* multi_done() clears the association between the easy handle and the
  739:          connection.
  740: 
  741:          Note that this ignores the return code simply because there's
  742:          nothing really useful to do with it anyway! */
  743:       (void)multi_done(data, data->result, premature);
  744:     }
  745:   }
  746: 
  747:   /* The timer must be shut down before data->multi is set to NULL, else the
  748:      timenode will remain in the splay tree after curl_easy_cleanup is
  749:      called. Do it after multi_done() in case that sets another time! */
  750:   Curl_expire_clear(data);
  751: 
  752:   if(data->connect_queue.ptr)
  753:     /* the handle was in the pending list waiting for an available connection,
  754:        so go ahead and remove it */
  755:     Curl_llist_remove(&multi->pending, &data->connect_queue, NULL);
  756: 
  757:   if(data->dns.hostcachetype == HCACHE_MULTI) {
  758:     /* stop using the multi handle's DNS cache, *after* the possible
  759:        multi_done() call above */
  760:     data->dns.hostcache = NULL;
  761:     data->dns.hostcachetype = HCACHE_NONE;
  762:   }
  763: 
  764:   Curl_wildcard_dtor(&data->wildcard);
  765: 
  766:   /* destroy the timeout list that is held in the easy handle, do this *after*
  767:      multi_done() as that may actually call Curl_expire that uses this */
  768:   Curl_llist_destroy(&data->state.timeoutlist, NULL);
  769: 
  770:   /* as this was using a shared connection cache we clear the pointer to that
  771:      since we're not part of that multi handle anymore */
  772:   data->state.conn_cache = NULL;
  773: 
  774:   /* change state without using multistate(), only to make singlesocket() do
  775:      what we want */
  776:   data->mstate = CURLM_STATE_COMPLETED;
  777:   singlesocket(multi, easy); /* to let the application know what sockets that
  778:                                 vanish with this handle */
  779: 
  780:   /* Remove the association between the connection and the handle */
  781:   if(data->conn)
  782:     detach_connnection(data);
  783: 
  784: #ifdef USE_LIBPSL
  785:   /* Remove the PSL association. */
  786:   if(data->psl == &multi->psl)
  787:     data->psl = NULL;
  788: #endif
  789: 
  790:   data->multi = NULL; /* clear the association to this multi handle */
  791: 
  792:   /* make sure there's no pending message in the queue sent from this easy
  793:      handle */
  794: 
  795:   for(e = multi->msglist.head; e; e = e->next) {
  796:     struct Curl_message *msg = e->ptr;
  797: 
  798:     if(msg->extmsg.easy_handle == easy) {
  799:       Curl_llist_remove(&multi->msglist, e, NULL);
  800:       /* there can only be one from this specific handle */
  801:       break;
  802:     }
  803:   }
  804: 
  805:   /* make the previous node point to our next */
  806:   if(data->prev)
  807:     data->prev->next = data->next;
  808:   else
  809:     multi->easyp = data->next; /* point to first node */
  810: 
  811:   /* make our next point to our previous node */
  812:   if(data->next)
  813:     data->next->prev = data->prev;
  814:   else
  815:     multi->easylp = data->prev; /* point to last node */
  816: 
  817:   /* NOTE NOTE NOTE
  818:      We do not touch the easy handle here! */
  819:   multi->num_easy--; /* one less to care about now */
  820: 
  821:   Curl_update_timer(multi);
  822:   return CURLM_OK;
  823: }
  824: 
  825: /* Return TRUE if the application asked for multiplexing */
  826: bool Curl_multiplex_wanted(const struct Curl_multi *multi)
  827: {
  828:   return (multi && (multi->multiplexing));
  829: }
  830: 
  831: /* This is the only function that should clear data->conn. This will
  832:    occasionally be called with the pointer already cleared. */
  833: static void detach_connnection(struct Curl_easy *data)
  834: {
  835:   struct connectdata *conn = data->conn;
  836:   if(conn)
  837:     Curl_llist_remove(&conn->easyq, &data->conn_queue, NULL);
  838:   data->conn = NULL;
  839: }
  840: 
  841: /* This is the only function that should assign data->conn */
  842: void Curl_attach_connnection(struct Curl_easy *data,
  843:                              struct connectdata *conn)
  844: {
  845:   DEBUGASSERT(!data->conn);
  846:   DEBUGASSERT(conn);
  847:   data->conn = conn;
  848:   Curl_llist_insert_next(&conn->easyq, conn->easyq.tail, data,
  849:                          &data->conn_queue);
  850: }
  851: 
  852: static int waitconnect_getsock(struct connectdata *conn,
  853:                                curl_socket_t *sock)
  854: {
  855:   int i;
  856:   int s = 0;
  857:   int rc = 0;
  858: 
  859: #ifdef USE_SSL
  860:   if(CONNECT_FIRSTSOCKET_PROXY_SSL())
  861:     return Curl_ssl_getsock(conn, sock);
  862: #endif
  863: 
  864:   if(SOCKS_STATE(conn->cnnct.state))
  865:     return Curl_SOCKS_getsock(conn, sock, FIRSTSOCKET);
  866: 
  867:   for(i = 0; i<2; i++) {
  868:     if(conn->tempsock[i] != CURL_SOCKET_BAD) {
  869:       sock[s] = conn->tempsock[i];
  870:       rc |= GETSOCK_WRITESOCK(s);
  871: #ifdef ENABLE_QUIC
  872:       if(conn->transport == TRNSPRT_QUIC)
  873:         /* when connecting QUIC, we want to read the socket too */
  874:         rc |= GETSOCK_READSOCK(s);
  875: #endif
  876:       s++;
  877:     }
  878:   }
  879: 
  880:   return rc;
  881: }
  882: 
  883: static int waitproxyconnect_getsock(struct connectdata *conn,
  884:                                     curl_socket_t *sock)
  885: {
  886:   sock[0] = conn->sock[FIRSTSOCKET];
  887: 
  888:   /* when we've sent a CONNECT to a proxy, we should rather wait for the
  889:      socket to become readable to be able to get the response headers */
  890:   if(conn->connect_state)
  891:     return GETSOCK_READSOCK(0);
  892: 
  893:   return GETSOCK_WRITESOCK(0);
  894: }
  895: 
  896: static int domore_getsock(struct connectdata *conn,
  897:                           curl_socket_t *socks)
  898: {
  899:   if(conn && conn->handler->domore_getsock)
  900:     return conn->handler->domore_getsock(conn, socks);
  901:   return GETSOCK_BLANK;
  902: }
  903: 
  904: static int doing_getsock(struct connectdata *conn,
  905:                          curl_socket_t *socks)
  906: {
  907:   if(conn && conn->handler->doing_getsock)
  908:     return conn->handler->doing_getsock(conn, socks);
  909:   return GETSOCK_BLANK;
  910: }
  911: 
  912: static int protocol_getsock(struct connectdata *conn,
  913:                             curl_socket_t *socks)
  914: {
  915:   if(conn->handler->proto_getsock)
  916:     return conn->handler->proto_getsock(conn, socks);
  917:   /* Backup getsock logic. Since there is a live socket in use, we must wait
  918:      for it or it will be removed from watching when the multi_socket API is
  919:      used. */
  920:   socks[0] = conn->sock[FIRSTSOCKET];
  921:   return GETSOCK_READSOCK(0) | GETSOCK_WRITESOCK(0);
  922: }
  923: 
  924: /* returns bitmapped flags for this handle and its sockets. The 'socks[]'
  925:    array contains MAX_SOCKSPEREASYHANDLE entries. */
  926: static int multi_getsock(struct Curl_easy *data,
  927:                          curl_socket_t *socks)
  928: {
  929:   /* The no connection case can happen when this is called from
  930:      curl_multi_remove_handle() => singlesocket() => multi_getsock().
  931:   */
  932:   if(!data->conn)
  933:     return 0;
  934: 
  935:   if(data->mstate > CURLM_STATE_CONNECT &&
  936:      data->mstate < CURLM_STATE_COMPLETED) {
  937:     /* Set up ownership correctly */
  938:     data->conn->data = data;
  939:   }
  940: 
  941:   switch(data->mstate) {
  942:   default:
  943: #if 0 /* switch back on these cases to get the compiler to check for all enums
  944:          to be present */
  945:   case CURLM_STATE_TOOFAST:  /* returns 0, so will not select. */
  946:   case CURLM_STATE_COMPLETED:
  947:   case CURLM_STATE_MSGSENT:
  948:   case CURLM_STATE_INIT:
  949:   case CURLM_STATE_CONNECT:
  950:   case CURLM_STATE_WAITDO:
  951:   case CURLM_STATE_DONE:
  952:   case CURLM_STATE_LAST:
  953:     /* this will get called with CURLM_STATE_COMPLETED when a handle is
  954:        removed */
  955: #endif
  956:     return 0;
  957: 
  958:   case CURLM_STATE_WAITRESOLVE:
  959:     return Curl_resolv_getsock(data->conn, socks);
  960: 
  961:   case CURLM_STATE_PROTOCONNECT:
  962:   case CURLM_STATE_SENDPROTOCONNECT:
  963:     return protocol_getsock(data->conn, socks);
  964: 
  965:   case CURLM_STATE_DO:
  966:   case CURLM_STATE_DOING:
  967:     return doing_getsock(data->conn, socks);
  968: 
  969:   case CURLM_STATE_WAITPROXYCONNECT:
  970:     return waitproxyconnect_getsock(data->conn, socks);
  971: 
  972:   case CURLM_STATE_WAITCONNECT:
  973:     return waitconnect_getsock(data->conn, socks);
  974: 
  975:   case CURLM_STATE_DO_MORE:
  976:     return domore_getsock(data->conn, socks);
  977: 
  978:   case CURLM_STATE_DO_DONE: /* since is set after DO is completed, we switch
  979:                                to waiting for the same as the *PERFORM
  980:                                states */
  981:   case CURLM_STATE_PERFORM:
  982:     return Curl_single_getsock(data->conn, socks);
  983:   }
  984: 
  985: }
  986: 
  987: CURLMcode curl_multi_fdset(struct Curl_multi *multi,
  988:                            fd_set *read_fd_set, fd_set *write_fd_set,
  989:                            fd_set *exc_fd_set, int *max_fd)
  990: {
  991:   /* Scan through all the easy handles to get the file descriptors set.
  992:      Some easy handles may not have connected to the remote host yet,
  993:      and then we must make sure that is done. */
  994:   struct Curl_easy *data;
  995:   int this_max_fd = -1;
  996:   curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
  997:   int i;
  998:   (void)exc_fd_set; /* not used */
  999: 
 1000:   if(!GOOD_MULTI_HANDLE(multi))
 1001:     return CURLM_BAD_HANDLE;
 1002: 
 1003:   if(multi->in_callback)
 1004:     return CURLM_RECURSIVE_API_CALL;
 1005: 
 1006:   data = multi->easyp;
 1007:   while(data) {
 1008:     int bitmap = multi_getsock(data, sockbunch);
 1009: 
 1010:     for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
 1011:       curl_socket_t s = CURL_SOCKET_BAD;
 1012: 
 1013:       if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) {
 1014:         FD_SET(sockbunch[i], read_fd_set);
 1015:         s = sockbunch[i];
 1016:       }
 1017:       if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) {
 1018:         FD_SET(sockbunch[i], write_fd_set);
 1019:         s = sockbunch[i];
 1020:       }
 1021:       if(s == CURL_SOCKET_BAD)
 1022:         /* this socket is unused, break out of loop */
 1023:         break;
 1024:       if((int)s > this_max_fd)
 1025:         this_max_fd = (int)s;
 1026:     }
 1027: 
 1028:     data = data->next; /* check next handle */
 1029:   }
 1030: 
 1031:   *max_fd = this_max_fd;
 1032: 
 1033:   return CURLM_OK;
 1034: }
 1035: 
 1036: #define NUM_POLLS_ON_STACK 10
 1037: 
 1038: static CURLMcode Curl_multi_wait(struct Curl_multi *multi,
 1039:                                  struct curl_waitfd extra_fds[],
 1040:                                  unsigned int extra_nfds,
 1041:                                  int timeout_ms,
 1042:                                  int *ret,
 1043:                                  bool extrawait, /* when no socket, wait */
 1044:                                  bool use_wakeup)
 1045: {
 1046:   struct Curl_easy *data;
 1047:   curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
 1048:   int bitmap;
 1049:   unsigned int i;
 1050:   unsigned int nfds = 0;
 1051:   unsigned int curlfds;
 1052:   bool ufds_malloc = FALSE;
 1053:   long timeout_internal;
 1054:   int retcode = 0;
 1055:   struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK];
 1056:   struct pollfd *ufds = &a_few_on_stack[0];
 1057: 
 1058:   if(!GOOD_MULTI_HANDLE(multi))
 1059:     return CURLM_BAD_HANDLE;
 1060: 
 1061:   if(multi->in_callback)
 1062:     return CURLM_RECURSIVE_API_CALL;
 1063: 
 1064:   if(timeout_ms < 0)
 1065:     return CURLM_BAD_FUNCTION_ARGUMENT;
 1066: 
 1067:   /* Count up how many fds we have from the multi handle */
 1068:   data = multi->easyp;
 1069:   while(data) {
 1070:     bitmap = multi_getsock(data, sockbunch);
 1071: 
 1072:     for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
 1073:       curl_socket_t s = CURL_SOCKET_BAD;
 1074: 
 1075:       if(bitmap & GETSOCK_READSOCK(i)) {
 1076:         ++nfds;
 1077:         s = sockbunch[i];
 1078:       }
 1079:       if(bitmap & GETSOCK_WRITESOCK(i)) {
 1080:         ++nfds;
 1081:         s = sockbunch[i];
 1082:       }
 1083:       if(s == CURL_SOCKET_BAD) {
 1084:         break;
 1085:       }
 1086:     }
 1087: 
 1088:     data = data->next; /* check next handle */
 1089:   }
 1090: 
 1091:   /* If the internally desired timeout is actually shorter than requested from
 1092:      the outside, then use the shorter time! But only if the internal timer
 1093:      is actually larger than -1! */
 1094:   (void)multi_timeout(multi, &timeout_internal);
 1095:   if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms))
 1096:     timeout_ms = (int)timeout_internal;
 1097: 
 1098:   curlfds = nfds; /* number of internal file descriptors */
 1099:   nfds += extra_nfds; /* add the externally provided ones */
 1100: 
 1101: #ifdef ENABLE_WAKEUP
 1102:   if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
 1103:     ++nfds;
 1104:   }
 1105: #endif
 1106: 
 1107:   if(nfds > NUM_POLLS_ON_STACK) {
 1108:     /* 'nfds' is a 32 bit value and 'struct pollfd' is typically 8 bytes
 1109:        big, so at 2^29 sockets this value might wrap. When a process gets
 1110:        the capability to actually handle over 500 million sockets this
 1111:        calculation needs a integer overflow check. */
 1112:     ufds = malloc(nfds * sizeof(struct pollfd));
 1113:     if(!ufds)
 1114:       return CURLM_OUT_OF_MEMORY;
 1115:     ufds_malloc = TRUE;
 1116:   }
 1117:   nfds = 0;
 1118: 
 1119:   /* only do the second loop if we found descriptors in the first stage run
 1120:      above */
 1121: 
 1122:   if(curlfds) {
 1123:     /* Add the curl handles to our pollfds first */
 1124:     data = multi->easyp;
 1125:     while(data) {
 1126:       bitmap = multi_getsock(data, sockbunch);
 1127: 
 1128:       for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
 1129:         curl_socket_t s = CURL_SOCKET_BAD;
 1130: 
 1131:         if(bitmap & GETSOCK_READSOCK(i)) {
 1132:           ufds[nfds].fd = sockbunch[i];
 1133:           ufds[nfds].events = POLLIN;
 1134:           ++nfds;
 1135:           s = sockbunch[i];
 1136:         }
 1137:         if(bitmap & GETSOCK_WRITESOCK(i)) {
 1138:           ufds[nfds].fd = sockbunch[i];
 1139:           ufds[nfds].events = POLLOUT;
 1140:           ++nfds;
 1141:           s = sockbunch[i];
 1142:         }
 1143:         if(s == CURL_SOCKET_BAD) {
 1144:           break;
 1145:         }
 1146:       }
 1147: 
 1148:       data = data->next; /* check next handle */
 1149:     }
 1150:   }
 1151: 
 1152:   /* Add external file descriptions from poll-like struct curl_waitfd */
 1153:   for(i = 0; i < extra_nfds; i++) {
 1154:     ufds[nfds].fd = extra_fds[i].fd;
 1155:     ufds[nfds].events = 0;
 1156:     if(extra_fds[i].events & CURL_WAIT_POLLIN)
 1157:       ufds[nfds].events |= POLLIN;
 1158:     if(extra_fds[i].events & CURL_WAIT_POLLPRI)
 1159:       ufds[nfds].events |= POLLPRI;
 1160:     if(extra_fds[i].events & CURL_WAIT_POLLOUT)
 1161:       ufds[nfds].events |= POLLOUT;
 1162:     ++nfds;
 1163:   }
 1164: 
 1165: #ifdef ENABLE_WAKEUP
 1166:   if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
 1167:     ufds[nfds].fd = multi->wakeup_pair[0];
 1168:     ufds[nfds].events = POLLIN;
 1169:     ++nfds;
 1170:   }
 1171: #endif
 1172: 
 1173:   if(nfds) {
 1174:     int pollrc;
 1175:     /* wait... */
 1176:     pollrc = Curl_poll(ufds, nfds, timeout_ms);
 1177: 
 1178:     if(pollrc > 0) {
 1179:       retcode = pollrc;
 1180:       /* copy revents results from the poll to the curl_multi_wait poll
 1181:          struct, the bit values of the actual underlying poll() implementation
 1182:          may not be the same as the ones in the public libcurl API! */
 1183:       for(i = 0; i < extra_nfds; i++) {
 1184:         unsigned short mask = 0;
 1185:         unsigned r = ufds[curlfds + i].revents;
 1186: 
 1187:         if(r & POLLIN)
 1188:           mask |= CURL_WAIT_POLLIN;
 1189:         if(r & POLLOUT)
 1190:           mask |= CURL_WAIT_POLLOUT;
 1191:         if(r & POLLPRI)
 1192:           mask |= CURL_WAIT_POLLPRI;
 1193: 
 1194:         extra_fds[i].revents = mask;
 1195:       }
 1196: 
 1197: #ifdef ENABLE_WAKEUP
 1198:       if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
 1199:         if(ufds[curlfds + extra_nfds].revents & POLLIN) {
 1200:           char buf[64];
 1201:           ssize_t nread;
 1202:           while(1) {
 1203:             /* the reading socket is non-blocking, try to read
 1204:                data from it until it receives an error (except EINTR).
 1205:                In normal cases it will get EAGAIN or EWOULDBLOCK
 1206:                when there is no more data, breaking the loop. */
 1207:             nread = sread(multi->wakeup_pair[0], buf, sizeof(buf));
 1208:             if(nread <= 0) {
 1209: #ifndef USE_WINSOCK
 1210:               if(nread < 0 && EINTR == SOCKERRNO)
 1211:                 continue;
 1212: #endif
 1213:               break;
 1214:             }
 1215:           }
 1216:           /* do not count the wakeup socket into the returned value */
 1217:           retcode--;
 1218:         }
 1219:       }
 1220: #endif
 1221:     }
 1222:   }
 1223: 
 1224:   if(ufds_malloc)
 1225:     free(ufds);
 1226:   if(ret)
 1227:     *ret = retcode;
 1228:   if(!extrawait || nfds)
 1229:     /* if any socket was checked */
 1230:     ;
 1231:   else {
 1232:     long sleep_ms = 0;
 1233: 
 1234:     /* Avoid busy-looping when there's nothing particular to wait for */
 1235:     if(!curl_multi_timeout(multi, &sleep_ms) && sleep_ms) {
 1236:       if(sleep_ms > timeout_ms)
 1237:         sleep_ms = timeout_ms;
 1238:       /* when there are no easy handles in the multi, this holds a -1
 1239:          timeout */
 1240:       else if((sleep_ms < 0) && extrawait)
 1241:         sleep_ms = timeout_ms;
 1242:       Curl_wait_ms((int)sleep_ms);
 1243:     }
 1244:   }
 1245: 
 1246:   return CURLM_OK;
 1247: }
 1248: 
 1249: CURLMcode curl_multi_wait(struct Curl_multi *multi,
 1250:                           struct curl_waitfd extra_fds[],
 1251:                           unsigned int extra_nfds,
 1252:                           int timeout_ms,
 1253:                           int *ret)
 1254: {
 1255:   return Curl_multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE,
 1256:                          FALSE);
 1257: }
 1258: 
 1259: CURLMcode curl_multi_poll(struct Curl_multi *multi,
 1260:                           struct curl_waitfd extra_fds[],
 1261:                           unsigned int extra_nfds,
 1262:                           int timeout_ms,
 1263:                           int *ret)
 1264: {
 1265:   return Curl_multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE,
 1266:                          TRUE);
 1267: }
 1268: 
 1269: CURLMcode curl_multi_wakeup(struct Curl_multi *multi)
 1270: {
 1271:   /* this function is usually called from another thread,
 1272:      it has to be careful only to access parts of the
 1273:      Curl_multi struct that are constant */
 1274: 
 1275:   /* GOOD_MULTI_HANDLE can be safely called */
 1276:   if(!GOOD_MULTI_HANDLE(multi))
 1277:     return CURLM_BAD_HANDLE;
 1278: 
 1279: #ifdef ENABLE_WAKEUP
 1280:   /* the wakeup_pair variable is only written during init and cleanup,
 1281:      making it safe to access from another thread after the init part
 1282:      and before cleanup */
 1283:   if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) {
 1284:     char buf[1];
 1285:     buf[0] = 1;
 1286:     while(1) {
 1287:       /* swrite() is not thread-safe in general, because concurrent calls
 1288:          can have their messages interleaved, but in this case the content
 1289:          of the messages does not matter, which makes it ok to call.
 1290: 
 1291:          The write socket is set to non-blocking, this way this function
 1292:          cannot block, making it safe to call even from the same thread
 1293:          that will call Curl_multi_wait(). If swrite() returns that it
 1294:          would block, it's considered successful because it means that
 1295:          previous calls to this function will wake up the poll(). */
 1296:       if(swrite(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) {
 1297:         int err = SOCKERRNO;
 1298:         int return_success;
 1299: #ifdef USE_WINSOCK
 1300:         return_success = WSAEWOULDBLOCK == err;
 1301: #else
 1302:         if(EINTR == err)
 1303:           continue;
 1304:         return_success = EWOULDBLOCK == err || EAGAIN == err;
 1305: #endif
 1306:         if(!return_success)
 1307:           return CURLM_WAKEUP_FAILURE;
 1308:       }
 1309:       return CURLM_OK;
 1310:     }
 1311:   }
 1312: #endif
 1313:   return CURLM_WAKEUP_FAILURE;
 1314: }
 1315: 
 1316: /*
 1317:  * multi_ischanged() is called
 1318:  *
 1319:  * Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND
 1320:  * => CONNECT action.
 1321:  *
 1322:  * Set 'clear' to TRUE to have it also clear the state variable.
 1323:  */
 1324: static bool multi_ischanged(struct Curl_multi *multi, bool clear)
 1325: {
 1326:   bool retval = multi->recheckstate;
 1327:   if(clear)
 1328:     multi->recheckstate = FALSE;
 1329:   return retval;
 1330: }
 1331: 
 1332: CURLMcode Curl_multi_add_perform(struct Curl_multi *multi,
 1333:                                  struct Curl_easy *data,
 1334:                                  struct connectdata *conn)
 1335: {
 1336:   CURLMcode rc;
 1337: 
 1338:   if(multi->in_callback)
 1339:     return CURLM_RECURSIVE_API_CALL;
 1340: 
 1341:   rc = curl_multi_add_handle(multi, data);
 1342:   if(!rc) {
 1343:     struct SingleRequest *k = &data->req;
 1344: 
 1345:     /* pass in NULL for 'conn' here since we don't want to init the
 1346:        connection, only this transfer */
 1347:     Curl_init_do(data, NULL);
 1348: 
 1349:     /* take this handle to the perform state right away */
 1350:     multistate(data, CURLM_STATE_PERFORM);
 1351:     Curl_attach_connnection(data, conn);
 1352:     k->keepon |= KEEP_RECV; /* setup to receive! */
 1353:   }
 1354:   return rc;
 1355: }
 1356: 
 1357: /*
 1358:  * do_complete is called when the DO actions are complete.
 1359:  *
 1360:  * We init chunking and trailer bits to their default values here immediately
 1361:  * before receiving any header data for the current request.
 1362:  */
 1363: static void do_complete(struct connectdata *conn)
 1364: {
 1365:   conn->data->req.chunk = FALSE;
 1366:   Curl_pgrsTime(conn->data, TIMER_PRETRANSFER);
 1367: }
 1368: 
 1369: static CURLcode multi_do(struct Curl_easy *data, bool *done)
 1370: {
 1371:   CURLcode result = CURLE_OK;
 1372:   struct connectdata *conn = data->conn;
 1373: 
 1374:   DEBUGASSERT(conn);
 1375:   DEBUGASSERT(conn->handler);
 1376:   DEBUGASSERT(conn->data == data);
 1377: 
 1378:   if(conn->handler->do_it) {
 1379:     /* generic protocol-specific function pointer set in curl_connect() */
 1380:     result = conn->handler->do_it(conn, done);
 1381: 
 1382:     if(!result && *done)
 1383:       /* do_complete must be called after the protocol-specific DO function */
 1384:       do_complete(conn);
 1385:   }
 1386:   return result;
 1387: }
 1388: 
 1389: /*
 1390:  * multi_do_more() is called during the DO_MORE multi state. It is basically a
 1391:  * second stage DO state which (wrongly) was introduced to support FTP's
 1392:  * second connection.
 1393:  *
 1394:  * 'complete' can return 0 for incomplete, 1 for done and -1 for go back to
 1395:  * DOING state there's more work to do!
 1396:  */
 1397: 
 1398: static CURLcode multi_do_more(struct connectdata *conn, int *complete)
 1399: {
 1400:   CURLcode result = CURLE_OK;
 1401: 
 1402:   *complete = 0;
 1403: 
 1404:   if(conn->handler->do_more)
 1405:     result = conn->handler->do_more(conn, complete);
 1406: 
 1407:   if(!result && (*complete == 1))
 1408:     /* do_complete must be called after the protocol-specific DO function */
 1409:     do_complete(conn);
 1410: 
 1411:   return result;
 1412: }
 1413: 
 1414: /*
 1415:  * We are doing protocol-specific connecting and this is being called over and
 1416:  * over from the multi interface until the connection phase is done on
 1417:  * protocol layer.
 1418:  */
 1419: 
 1420: static CURLcode protocol_connecting(struct connectdata *conn,
 1421:                                     bool *done)
 1422: {
 1423:   CURLcode result = CURLE_OK;
 1424: 
 1425:   if(conn && conn->handler->connecting) {
 1426:     *done = FALSE;
 1427:     result = conn->handler->connecting(conn, done);
 1428:   }
 1429:   else
 1430:     *done = TRUE;
 1431: 
 1432:   return result;
 1433: }
 1434: 
 1435: /*
 1436:  * We are DOING this is being called over and over from the multi interface
 1437:  * until the DOING phase is done on protocol layer.
 1438:  */
 1439: 
 1440: static CURLcode protocol_doing(struct connectdata *conn, bool *done)
 1441: {
 1442:   CURLcode result = CURLE_OK;
 1443: 
 1444:   if(conn && conn->handler->doing) {
 1445:     *done = FALSE;
 1446:     result = conn->handler->doing(conn, done);
 1447:   }
 1448:   else
 1449:     *done = TRUE;
 1450: 
 1451:   return result;
 1452: }
 1453: 
 1454: /*
 1455:  * We have discovered that the TCP connection has been successful, we can now
 1456:  * proceed with some action.
 1457:  *
 1458:  */
 1459: static CURLcode protocol_connect(struct connectdata *conn,
 1460:                                  bool *protocol_done)
 1461: {
 1462:   CURLcode result = CURLE_OK;
 1463: 
 1464:   DEBUGASSERT(conn);
 1465:   DEBUGASSERT(protocol_done);
 1466: 
 1467:   *protocol_done = FALSE;
 1468: 
 1469:   if(conn->bits.tcpconnect[FIRSTSOCKET] && conn->bits.protoconnstart) {
 1470:     /* We already are connected, get back. This may happen when the connect
 1471:        worked fine in the first call, like when we connect to a local server
 1472:        or proxy. Note that we don't know if the protocol is actually done.
 1473: 
 1474:        Unless this protocol doesn't have any protocol-connect callback, as
 1475:        then we know we're done. */
 1476:     if(!conn->handler->connecting)
 1477:       *protocol_done = TRUE;
 1478: 
 1479:     return CURLE_OK;
 1480:   }
 1481: 
 1482:   if(!conn->bits.protoconnstart) {
 1483: 
 1484:     result = Curl_proxy_connect(conn, FIRSTSOCKET);
 1485:     if(result)
 1486:       return result;
 1487: 
 1488:     if(CONNECT_FIRSTSOCKET_PROXY_SSL())
 1489:       /* wait for HTTPS proxy SSL initialization to complete */
 1490:       return CURLE_OK;
 1491: 
 1492:     if(conn->bits.tunnel_proxy && conn->bits.httpproxy &&
 1493:        Curl_connect_ongoing(conn))
 1494:       /* when using an HTTP tunnel proxy, await complete tunnel establishment
 1495:          before proceeding further. Return CURLE_OK so we'll be called again */
 1496:       return CURLE_OK;
 1497: 
 1498:     if(conn->handler->connect_it) {
 1499:       /* is there a protocol-specific connect() procedure? */
 1500: 
 1501:       /* Call the protocol-specific connect function */
 1502:       result = conn->handler->connect_it(conn, protocol_done);
 1503:     }
 1504:     else
 1505:       *protocol_done = TRUE;
 1506: 
 1507:     /* it has started, possibly even completed but that knowledge isn't stored
 1508:        in this bit! */
 1509:     if(!result)
 1510:       conn->bits.protoconnstart = TRUE;
 1511:   }
 1512: 
 1513:   return result; /* pass back status */
 1514: }
 1515: 
 1516: 
 1517: static CURLMcode multi_runsingle(struct Curl_multi *multi,
 1518:                                  struct curltime now,
 1519:                                  struct Curl_easy *data)
 1520: {
 1521:   struct Curl_message *msg = NULL;
 1522:   bool connected;
 1523:   bool async;
 1524:   bool protocol_connected = FALSE;
 1525:   bool dophase_done = FALSE;
 1526:   bool done = FALSE;
 1527:   CURLMcode rc;
 1528:   CURLcode result = CURLE_OK;
 1529:   timediff_t timeout_ms;
 1530:   timediff_t recv_timeout_ms;
 1531:   timediff_t send_timeout_ms;
 1532:   int control;
 1533: 
 1534:   if(!GOOD_EASY_HANDLE(data))
 1535:     return CURLM_BAD_EASY_HANDLE;
 1536: 
 1537:   do {
 1538:     /* A "stream" here is a logical stream if the protocol can handle that
 1539:        (HTTP/2), or the full connection for older protocols */
 1540:     bool stream_error = FALSE;
 1541:     rc = CURLM_OK;
 1542: 
 1543:     DEBUGASSERT((data->mstate <= CURLM_STATE_CONNECT) ||
 1544:                 (data->mstate >= CURLM_STATE_DONE) ||
 1545:                 data->conn);
 1546:     if(!data->conn &&
 1547:        data->mstate > CURLM_STATE_CONNECT &&
 1548:        data->mstate < CURLM_STATE_DONE) {
 1549:       /* In all these states, the code will blindly access 'data->conn'
 1550:          so this is precaution that it isn't NULL. And it silences static
 1551:          analyzers. */
 1552:       failf(data, "In state %d with no conn, bail out!\n", data->mstate);
 1553:       return CURLM_INTERNAL_ERROR;
 1554:     }
 1555: 
 1556:     if(multi_ischanged(multi, TRUE)) {
 1557:       DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue!\n"));
 1558:       process_pending_handles(multi); /* multiplexed */
 1559:     }
 1560: 
 1561:     if(data->conn && data->mstate > CURLM_STATE_CONNECT &&
 1562:        data->mstate < CURLM_STATE_COMPLETED) {
 1563:       /* Make sure we set the connection's current owner */
 1564:       data->conn->data = data;
 1565:     }
 1566: 
 1567:     if(data->conn &&
 1568:        (data->mstate >= CURLM_STATE_CONNECT) &&
 1569:        (data->mstate < CURLM_STATE_COMPLETED)) {
 1570:       /* we need to wait for the connect state as only then is the start time
 1571:          stored, but we must not check already completed handles */
 1572:       timeout_ms = Curl_timeleft(data, &now,
 1573:                                  (data->mstate <= CURLM_STATE_DO)?
 1574:                                  TRUE:FALSE);
 1575: 
 1576:       if(timeout_ms < 0) {
 1577:         /* Handle timed out */
 1578:         if(data->mstate == CURLM_STATE_WAITRESOLVE)
 1579:           failf(data, "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T
 1580:                 " milliseconds",
 1581:                 Curl_timediff(now, data->progress.t_startsingle));
 1582:         else if(data->mstate == CURLM_STATE_WAITCONNECT)
 1583:           failf(data, "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T
 1584:                 " milliseconds",
 1585:                 Curl_timediff(now, data->progress.t_startsingle));
 1586:         else {
 1587:           struct SingleRequest *k = &data->req;
 1588:           if(k->size != -1) {
 1589:             failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
 1590:                   " milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %"
 1591:                   CURL_FORMAT_CURL_OFF_T " bytes received",
 1592:                   Curl_timediff(now, data->progress.t_startsingle),
 1593:                   k->bytecount, k->size);
 1594:           }
 1595:           else {
 1596:             failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
 1597:                   " milliseconds with %" CURL_FORMAT_CURL_OFF_T
 1598:                   " bytes received",
 1599:                   Curl_timediff(now, data->progress.t_startsingle),
 1600:                   k->bytecount);
 1601:           }
 1602:         }
 1603: 
 1604:         /* Force connection closed if the connection has indeed been used */
 1605:         if(data->mstate > CURLM_STATE_DO) {
 1606:           streamclose(data->conn, "Disconnected with pending data");
 1607:           stream_error = TRUE;
 1608:         }
 1609:         result = CURLE_OPERATION_TIMEDOUT;
 1610:         (void)multi_done(data, result, TRUE);
 1611:         /* Skip the statemachine and go directly to error handling section. */
 1612:         goto statemachine_end;
 1613:       }
 1614:     }
 1615: 
 1616:     switch(data->mstate) {
 1617:     case CURLM_STATE_INIT:
 1618:       /* init this transfer. */
 1619:       result = Curl_pretransfer(data);
 1620: 
 1621:       if(!result) {
 1622:         /* after init, go CONNECT */
 1623:         multistate(data, CURLM_STATE_CONNECT);
 1624:         Curl_pgrsTime(data, TIMER_STARTOP);
 1625:         rc = CURLM_CALL_MULTI_PERFORM;
 1626:       }
 1627:       break;
 1628: 
 1629:     case CURLM_STATE_CONNECT_PEND:
 1630:       /* We will stay here until there is a connection available. Then
 1631:          we try again in the CURLM_STATE_CONNECT state. */
 1632:       break;
 1633: 
 1634:     case CURLM_STATE_CONNECT:
 1635:       /* Connect. We want to get a connection identifier filled in. */
 1636:       Curl_pgrsTime(data, TIMER_STARTSINGLE);
 1637:       if(data->set.timeout)
 1638:         Curl_expire(data, data->set.timeout, EXPIRE_TIMEOUT);
 1639: 
 1640:       if(data->set.connecttimeout)
 1641:         Curl_expire(data, data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT);
 1642: 
 1643:       result = Curl_connect(data, &async, &protocol_connected);
 1644:       if(CURLE_NO_CONNECTION_AVAILABLE == result) {
 1645:         /* There was no connection available. We will go to the pending
 1646:            state and wait for an available connection. */
 1647:         multistate(data, CURLM_STATE_CONNECT_PEND);
 1648: 
 1649:         /* add this handle to the list of connect-pending handles */
 1650:         Curl_llist_insert_next(&multi->pending, multi->pending.tail, data,
 1651:                                &data->connect_queue);
 1652:         result = CURLE_OK;
 1653:         break;
 1654:       }
 1655:       else if(data->state.previouslypending) {
 1656:         /* this transfer comes from the pending queue so try move another */
 1657:         infof(data, "Transfer was pending, now try another\n");
 1658:         process_pending_handles(data->multi);
 1659:       }
 1660: 
 1661:       if(!result) {
 1662:         if(async)
 1663:           /* We're now waiting for an asynchronous name lookup */
 1664:           multistate(data, CURLM_STATE_WAITRESOLVE);
 1665:         else {
 1666:           /* after the connect has been sent off, go WAITCONNECT unless the
 1667:              protocol connect is already done and we can go directly to
 1668:              WAITDO or DO! */
 1669:           rc = CURLM_CALL_MULTI_PERFORM;
 1670: 
 1671:           if(protocol_connected)
 1672:             multistate(data, CURLM_STATE_DO);
 1673:           else {
 1674: #ifndef CURL_DISABLE_HTTP
 1675:             if(Curl_connect_ongoing(data->conn))
 1676:               multistate(data, CURLM_STATE_WAITPROXYCONNECT);
 1677:             else
 1678: #endif
 1679:               multistate(data, CURLM_STATE_WAITCONNECT);
 1680:           }
 1681:         }
 1682:       }
 1683:       break;
 1684: 
 1685:     case CURLM_STATE_WAITRESOLVE:
 1686:       /* awaiting an asynch name resolve to complete */
 1687:     {
 1688:       struct Curl_dns_entry *dns = NULL;
 1689:       struct connectdata *conn = data->conn;
 1690:       const char *hostname;
 1691: 
 1692:       DEBUGASSERT(conn);
 1693:       if(conn->bits.httpproxy)
 1694:         hostname = conn->http_proxy.host.name;
 1695:       else if(conn->bits.conn_to_host)
 1696:         hostname = conn->conn_to_host.name;
 1697:       else
 1698:         hostname = conn->host.name;
 1699: 
 1700:       /* check if we have the name resolved by now */
 1701:       dns = Curl_fetch_addr(conn, hostname, (int)conn->port);
 1702: 
 1703:       if(dns) {
 1704: #ifdef CURLRES_ASYNCH
 1705:         conn->async.dns = dns;
 1706:         conn->async.done = TRUE;
 1707: #endif
 1708:         result = CURLE_OK;
 1709:         infof(data, "Hostname '%s' was found in DNS cache\n", hostname);
 1710:       }
 1711: 
 1712:       if(!dns)
 1713:         result = Curl_resolv_check(data->conn, &dns);
 1714: 
 1715:       /* Update sockets here, because the socket(s) may have been
 1716:          closed and the application thus needs to be told, even if it
 1717:          is likely that the same socket(s) will again be used further
 1718:          down.  If the name has not yet been resolved, it is likely
 1719:          that new sockets have been opened in an attempt to contact
 1720:          another resolver. */
 1721:       singlesocket(multi, data);
 1722: 
 1723:       if(dns) {
 1724:         /* Perform the next step in the connection phase, and then move on
 1725:            to the WAITCONNECT state */
 1726:         result = Curl_once_resolved(data->conn, &protocol_connected);
 1727: 
 1728:         if(result)
 1729:           /* if Curl_once_resolved() returns failure, the connection struct
 1730:              is already freed and gone */
 1731:           data->conn = NULL; /* no more connection */
 1732:         else {
 1733:           /* call again please so that we get the next socket setup */
 1734:           rc = CURLM_CALL_MULTI_PERFORM;
 1735:           if(protocol_connected)
 1736:             multistate(data, CURLM_STATE_DO);
 1737:           else {
 1738: #ifndef CURL_DISABLE_HTTP
 1739:             if(Curl_connect_ongoing(data->conn))
 1740:               multistate(data, CURLM_STATE_WAITPROXYCONNECT);
 1741:             else
 1742: #endif
 1743:               multistate(data, CURLM_STATE_WAITCONNECT);
 1744:           }
 1745:         }
 1746:       }
 1747: 
 1748:       if(result) {
 1749:         /* failure detected */
 1750:         stream_error = TRUE;
 1751:         break;
 1752:       }
 1753:     }
 1754:     break;
 1755: 
 1756: #ifndef CURL_DISABLE_HTTP
 1757:     case CURLM_STATE_WAITPROXYCONNECT:
 1758:       /* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */
 1759:       DEBUGASSERT(data->conn);
 1760:       result = Curl_http_connect(data->conn, &protocol_connected);
 1761: 
 1762:       if(data->conn->bits.proxy_connect_closed) {
 1763:         rc = CURLM_CALL_MULTI_PERFORM;
 1764:         /* connect back to proxy again */
 1765:         result = CURLE_OK;
 1766:         multi_done(data, CURLE_OK, FALSE);
 1767:         multistate(data, CURLM_STATE_CONNECT);
 1768:       }
 1769:       else if(!result) {
 1770:         if((data->conn->http_proxy.proxytype != CURLPROXY_HTTPS ||
 1771:            data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) &&
 1772:            Curl_connect_complete(data->conn)) {
 1773:           rc = CURLM_CALL_MULTI_PERFORM;
 1774:           /* initiate protocol connect phase */
 1775:           multistate(data, CURLM_STATE_SENDPROTOCONNECT);
 1776:         }
 1777:       }
 1778:       else if(result)
 1779:         stream_error = TRUE;
 1780:       break;
 1781: #endif
 1782: 
 1783:     case CURLM_STATE_WAITCONNECT:
 1784:       /* awaiting a completion of an asynch TCP connect */
 1785:       DEBUGASSERT(data->conn);
 1786:       result = Curl_is_connected(data->conn, FIRSTSOCKET, &connected);
 1787:       if(connected && !result) {
 1788: #ifndef CURL_DISABLE_HTTP
 1789:         if((data->conn->http_proxy.proxytype == CURLPROXY_HTTPS &&
 1790:             !data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) ||
 1791:            Curl_connect_ongoing(data->conn)) {
 1792:           multistate(data, CURLM_STATE_WAITPROXYCONNECT);
 1793:           break;
 1794:         }
 1795: #endif
 1796:         rc = CURLM_CALL_MULTI_PERFORM;
 1797:         multistate(data, data->conn->bits.tunnel_proxy?
 1798:                    CURLM_STATE_WAITPROXYCONNECT:
 1799:                    CURLM_STATE_SENDPROTOCONNECT);
 1800:       }
 1801:       else if(result) {
 1802:         /* failure detected */
 1803:         Curl_posttransfer(data);
 1804:         multi_done(data, result, TRUE);
 1805:         stream_error = TRUE;
 1806:         break;
 1807:       }
 1808:       break;
 1809: 
 1810:     case CURLM_STATE_SENDPROTOCONNECT:
 1811:       result = protocol_connect(data->conn, &protocol_connected);
 1812:       if(!result && !protocol_connected)
 1813:         /* switch to waiting state */
 1814:         multistate(data, CURLM_STATE_PROTOCONNECT);
 1815:       else if(!result) {
 1816:         /* protocol connect has completed, go WAITDO or DO */
 1817:         multistate(data, CURLM_STATE_DO);
 1818:         rc = CURLM_CALL_MULTI_PERFORM;
 1819:       }
 1820:       else if(result) {
 1821:         /* failure detected */
 1822:         Curl_posttransfer(data);
 1823:         multi_done(data, result, TRUE);
 1824:         stream_error = TRUE;
 1825:       }
 1826:       break;
 1827: 
 1828:     case CURLM_STATE_PROTOCONNECT:
 1829:       /* protocol-specific connect phase */
 1830:       result = protocol_connecting(data->conn, &protocol_connected);
 1831:       if(!result && protocol_connected) {
 1832:         /* after the connect has completed, go WAITDO or DO */
 1833:         multistate(data, CURLM_STATE_DO);
 1834:         rc = CURLM_CALL_MULTI_PERFORM;
 1835:       }
 1836:       else if(result) {
 1837:         /* failure detected */
 1838:         Curl_posttransfer(data);
 1839:         multi_done(data, result, TRUE);
 1840:         stream_error = TRUE;
 1841:       }
 1842:       break;
 1843: 
 1844:     case CURLM_STATE_DO:
 1845:       if(data->set.connect_only) {
 1846:         /* keep connection open for application to use the socket */
 1847:         connkeep(data->conn, "CONNECT_ONLY");
 1848:         multistate(data, CURLM_STATE_DONE);
 1849:         result = CURLE_OK;
 1850:         rc = CURLM_CALL_MULTI_PERFORM;
 1851:       }
 1852:       else {
 1853:         /* Perform the protocol's DO action */
 1854:         result = multi_do(data, &dophase_done);
 1855: 
 1856:         /* When multi_do() returns failure, data->conn might be NULL! */
 1857: 
 1858:         if(!result) {
 1859:           if(!dophase_done) {
 1860: #ifndef CURL_DISABLE_FTP
 1861:             /* some steps needed for wildcard matching */
 1862:             if(data->state.wildcardmatch) {
 1863:               struct WildcardData *wc = &data->wildcard;
 1864:               if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) {
 1865:                 /* skip some states if it is important */
 1866:                 multi_done(data, CURLE_OK, FALSE);
 1867:                 multistate(data, CURLM_STATE_DONE);
 1868:                 rc = CURLM_CALL_MULTI_PERFORM;
 1869:                 break;
 1870:               }
 1871:             }
 1872: #endif
 1873:             /* DO was not completed in one function call, we must continue
 1874:                DOING... */
 1875:             multistate(data, CURLM_STATE_DOING);
 1876:             rc = CURLM_OK;
 1877:           }
 1878: 
 1879:           /* after DO, go DO_DONE... or DO_MORE */
 1880:           else if(data->conn->bits.do_more) {
 1881:             /* we're supposed to do more, but we need to sit down, relax
 1882:                and wait a little while first */
 1883:             multistate(data, CURLM_STATE_DO_MORE);
 1884:             rc = CURLM_OK;
 1885:           }
 1886:           else {
 1887:             /* we're done with the DO, now DO_DONE */
 1888:             multistate(data, CURLM_STATE_DO_DONE);
 1889:             rc = CURLM_CALL_MULTI_PERFORM;
 1890:           }
 1891:         }
 1892:         else if((CURLE_SEND_ERROR == result) &&
 1893:                 data->conn->bits.reuse) {
 1894:           /*
 1895:            * In this situation, a connection that we were trying to use
 1896:            * may have unexpectedly died.  If possible, send the connection
 1897:            * back to the CONNECT phase so we can try again.
 1898:            */
 1899:           char *newurl = NULL;
 1900:           followtype follow = FOLLOW_NONE;
 1901:           CURLcode drc;
 1902: 
 1903:           drc = Curl_retry_request(data->conn, &newurl);
 1904:           if(drc) {
 1905:             /* a failure here pretty much implies an out of memory */
 1906:             result = drc;
 1907:             stream_error = TRUE;
 1908:           }
 1909: 
 1910:           Curl_posttransfer(data);
 1911:           drc = multi_done(data, result, FALSE);
 1912: 
 1913:           /* When set to retry the connection, we must to go back to
 1914:            * the CONNECT state */
 1915:           if(newurl) {
 1916:             if(!drc || (drc == CURLE_SEND_ERROR)) {
 1917:               follow = FOLLOW_RETRY;
 1918:               drc = Curl_follow(data, newurl, follow);
 1919:               if(!drc) {
 1920:                 multistate(data, CURLM_STATE_CONNECT);
 1921:                 rc = CURLM_CALL_MULTI_PERFORM;
 1922:                 result = CURLE_OK;
 1923:               }
 1924:               else {
 1925:                 /* Follow failed */
 1926:                 result = drc;
 1927:               }
 1928:             }
 1929:             else {
 1930:               /* done didn't return OK or SEND_ERROR */
 1931:               result = drc;
 1932:             }
 1933:           }
 1934:           else {
 1935:             /* Have error handler disconnect conn if we can't retry */
 1936:             stream_error = TRUE;
 1937:           }
 1938:           free(newurl);
 1939:         }
 1940:         else {
 1941:           /* failure detected */
 1942:           Curl_posttransfer(data);
 1943:           if(data->conn)
 1944:             multi_done(data, result, FALSE);
 1945:           stream_error = TRUE;
 1946:         }
 1947:       }
 1948:       break;
 1949: 
 1950:     case CURLM_STATE_DOING:
 1951:       /* we continue DOING until the DO phase is complete */
 1952:       DEBUGASSERT(data->conn);
 1953:       result = protocol_doing(data->conn, &dophase_done);
 1954:       if(!result) {
 1955:         if(dophase_done) {
 1956:           /* after DO, go DO_DONE or DO_MORE */
 1957:           multistate(data, data->conn->bits.do_more?
 1958:                      CURLM_STATE_DO_MORE:
 1959:                      CURLM_STATE_DO_DONE);
 1960:           rc = CURLM_CALL_MULTI_PERFORM;
 1961:         } /* dophase_done */
 1962:       }
 1963:       else {
 1964:         /* failure detected */
 1965:         Curl_posttransfer(data);
 1966:         multi_done(data, result, FALSE);
 1967:         stream_error = TRUE;
 1968:       }
 1969:       break;
 1970: 
 1971:     case CURLM_STATE_DO_MORE:
 1972:       /*
 1973:        * When we are connected, DO MORE and then go DO_DONE
 1974:        */
 1975:       DEBUGASSERT(data->conn);
 1976:       result = multi_do_more(data->conn, &control);
 1977: 
 1978:       if(!result) {
 1979:         if(control) {
 1980:           /* if positive, advance to DO_DONE
 1981:              if negative, go back to DOING */
 1982:           multistate(data, control == 1?
 1983:                      CURLM_STATE_DO_DONE:
 1984:                      CURLM_STATE_DOING);
 1985:           rc = CURLM_CALL_MULTI_PERFORM;
 1986:         }
 1987:         else
 1988:           /* stay in DO_MORE */
 1989:           rc = CURLM_OK;
 1990:       }
 1991:       else {
 1992:         /* failure detected */
 1993:         Curl_posttransfer(data);
 1994:         multi_done(data, result, FALSE);
 1995:         stream_error = TRUE;
 1996:       }
 1997:       break;
 1998: 
 1999:     case CURLM_STATE_DO_DONE:
 2000:       DEBUGASSERT(data->conn);
 2001:       if(data->conn->bits.multiplex)
 2002:         /* Check if we can move pending requests to send pipe */
 2003:         process_pending_handles(multi); /*  multiplexed */
 2004: 
 2005:       /* Only perform the transfer if there's a good socket to work with.
 2006:          Having both BAD is a signal to skip immediately to DONE */
 2007:       if((data->conn->sockfd != CURL_SOCKET_BAD) ||
 2008:          (data->conn->writesockfd != CURL_SOCKET_BAD))
 2009:         multistate(data, CURLM_STATE_PERFORM);
 2010:       else {
 2011: #ifndef CURL_DISABLE_FTP
 2012:         if(data->state.wildcardmatch &&
 2013:            ((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) {
 2014:           data->wildcard.state = CURLWC_DONE;
 2015:         }
 2016: #endif
 2017:         multistate(data, CURLM_STATE_DONE);
 2018:       }
 2019:       rc = CURLM_CALL_MULTI_PERFORM;
 2020:       break;
 2021: 
 2022:     case CURLM_STATE_TOOFAST: /* limit-rate exceeded in either direction */
 2023:       DEBUGASSERT(data->conn);
 2024:       /* if both rates are within spec, resume transfer */
 2025:       if(Curl_pgrsUpdate(data->conn))
 2026:         result = CURLE_ABORTED_BY_CALLBACK;
 2027:       else
 2028:         result = Curl_speedcheck(data, now);
 2029: 
 2030:       if(!result) {
 2031:         send_timeout_ms = 0;
 2032:         if(data->set.max_send_speed > 0)
 2033:           send_timeout_ms =
 2034:             Curl_pgrsLimitWaitTime(data->progress.uploaded,
 2035:                                    data->progress.ul_limit_size,
 2036:                                    data->set.max_send_speed,
 2037:                                    data->progress.ul_limit_start,
 2038:                                    now);
 2039: 
 2040:         recv_timeout_ms = 0;
 2041:         if(data->set.max_recv_speed > 0)
 2042:           recv_timeout_ms =
 2043:             Curl_pgrsLimitWaitTime(data->progress.downloaded,
 2044:                                    data->progress.dl_limit_size,
 2045:                                    data->set.max_recv_speed,
 2046:                                    data->progress.dl_limit_start,
 2047:                                    now);
 2048: 
 2049:         if(!send_timeout_ms && !recv_timeout_ms) {
 2050:           multistate(data, CURLM_STATE_PERFORM);
 2051:           Curl_ratelimit(data, now);
 2052:         }
 2053:         else if(send_timeout_ms >= recv_timeout_ms)
 2054:           Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
 2055:         else
 2056:           Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
 2057:       }
 2058:       break;
 2059: 
 2060:     case CURLM_STATE_PERFORM:
 2061:     {
 2062:       char *newurl = NULL;
 2063:       bool retry = FALSE;
 2064:       bool comeback = FALSE;
 2065: 
 2066:       /* check if over send speed */
 2067:       send_timeout_ms = 0;
 2068:       if(data->set.max_send_speed > 0)
 2069:         send_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.uploaded,
 2070:                                                  data->progress.ul_limit_size,
 2071:                                                  data->set.max_send_speed,
 2072:                                                  data->progress.ul_limit_start,
 2073:                                                  now);
 2074: 
 2075:       /* check if over recv speed */
 2076:       recv_timeout_ms = 0;
 2077:       if(data->set.max_recv_speed > 0)
 2078:         recv_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.downloaded,
 2079:                                                  data->progress.dl_limit_size,
 2080:                                                  data->set.max_recv_speed,
 2081:                                                  data->progress.dl_limit_start,
 2082:                                                  now);
 2083: 
 2084:       if(send_timeout_ms || recv_timeout_ms) {
 2085:         Curl_ratelimit(data, now);
 2086:         multistate(data, CURLM_STATE_TOOFAST);
 2087:         if(send_timeout_ms >= recv_timeout_ms)
 2088:           Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
 2089:         else
 2090:           Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
 2091:         break;
 2092:       }
 2093: 
 2094:       /* read/write data if it is ready to do so */
 2095:       result = Curl_readwrite(data->conn, data, &done, &comeback);
 2096: 
 2097:       if(done || (result == CURLE_RECV_ERROR)) {
 2098:         /* If CURLE_RECV_ERROR happens early enough, we assume it was a race
 2099:          * condition and the server closed the re-used connection exactly when
 2100:          * we wanted to use it, so figure out if that is indeed the case.
 2101:          */
 2102:         CURLcode ret = Curl_retry_request(data->conn, &newurl);
 2103:         if(!ret)
 2104:           retry = (newurl)?TRUE:FALSE;
 2105:         else if(!result)
 2106:           result = ret;
 2107: 
 2108:         if(retry) {
 2109:           /* if we are to retry, set the result to OK and consider the
 2110:              request as done */
 2111:           result = CURLE_OK;
 2112:           done = TRUE;
 2113:         }
 2114:       }
 2115:       else if((CURLE_HTTP2_STREAM == result) &&
 2116:               Curl_h2_http_1_1_error(data->conn)) {
 2117:         CURLcode ret = Curl_retry_request(data->conn, &newurl);
 2118: 
 2119:         if(!ret) {
 2120:           infof(data, "Downgrades to HTTP/1.1!\n");
 2121:           data->set.httpversion = CURL_HTTP_VERSION_1_1;
 2122:           /* clear the error message bit too as we ignore the one we got */
 2123:           data->state.errorbuf = FALSE;
 2124:           if(!newurl)
 2125:             /* typically for HTTP_1_1_REQUIRED error on first flight */
 2126:             newurl = strdup(data->change.url);
 2127:           /* if we are to retry, set the result to OK and consider the request
 2128:              as done */
 2129:           retry = TRUE;
 2130:           result = CURLE_OK;
 2131:           done = TRUE;
 2132:         }
 2133:         else
 2134:           result = ret;
 2135:       }
 2136: 
 2137:       if(result) {
 2138:         /*
 2139:          * The transfer phase returned error, we mark the connection to get
 2140:          * closed to prevent being re-used. This is because we can't possibly
 2141:          * know if the connection is in a good shape or not now.  Unless it is
 2142:          * a protocol which uses two "channels" like FTP, as then the error
 2143:          * happened in the data connection.
 2144:          */
 2145: 
 2146:         if(!(data->conn->handler->flags & PROTOPT_DUAL) &&
 2147:            result != CURLE_HTTP2_STREAM)
 2148:           streamclose(data->conn, "Transfer returned error");
 2149: 
 2150:         Curl_posttransfer(data);
 2151:         multi_done(data, result, TRUE);
 2152:       }
 2153:       else if(done) {
 2154:         followtype follow = FOLLOW_NONE;
 2155: 
 2156:         /* call this even if the readwrite function returned error */
 2157:         Curl_posttransfer(data);
 2158: 
 2159:         /* When we follow redirects or is set to retry the connection, we must
 2160:            to go back to the CONNECT state */
 2161:         if(data->req.newurl || retry) {
 2162:           if(!retry) {
 2163:             /* if the URL is a follow-location and not just a retried request
 2164:                then figure out the URL here */
 2165:             free(newurl);
 2166:             newurl = data->req.newurl;
 2167:             data->req.newurl = NULL;
 2168:             follow = FOLLOW_REDIR;
 2169:           }
 2170:           else
 2171:             follow = FOLLOW_RETRY;
 2172:           (void)multi_done(data, CURLE_OK, FALSE);
 2173:           /* multi_done() might return CURLE_GOT_NOTHING */
 2174:           result = Curl_follow(data, newurl, follow);
 2175:           if(!result) {
 2176:             multistate(data, CURLM_STATE_CONNECT);
 2177:             rc = CURLM_CALL_MULTI_PERFORM;
 2178:           }
 2179:           free(newurl);
 2180:         }
 2181:         else {
 2182:           /* after the transfer is done, go DONE */
 2183: 
 2184:           /* but first check to see if we got a location info even though we're
 2185:              not following redirects */
 2186:           if(data->req.location) {
 2187:             free(newurl);
 2188:             newurl = data->req.location;
 2189:             data->req.location = NULL;
 2190:             result = Curl_follow(data, newurl, FOLLOW_FAKE);
 2191:             free(newurl);
 2192:             if(result) {
 2193:               stream_error = TRUE;
 2194:               result = multi_done(data, result, TRUE);
 2195:             }
 2196:           }
 2197: 
 2198:           if(!result) {
 2199:             multistate(data, CURLM_STATE_DONE);
 2200:             rc = CURLM_CALL_MULTI_PERFORM;
 2201:           }
 2202:         }
 2203:       }
 2204:       else if(comeback) {
 2205:         /* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer
 2206:            won't get stuck on this transfer at the expense of other concurrent
 2207:            transfers */
 2208:         Curl_expire(data, 0, EXPIRE_RUN_NOW);
 2209:         rc = CURLM_OK;
 2210:       }
 2211:       break;
 2212:     }
 2213: 
 2214:     case CURLM_STATE_DONE:
 2215:       /* this state is highly transient, so run another loop after this */
 2216:       rc = CURLM_CALL_MULTI_PERFORM;
 2217: 
 2218:       if(data->conn) {
 2219:         CURLcode res;
 2220: 
 2221:         if(data->conn->bits.multiplex)
 2222:           /* Check if we can move pending requests to connection */
 2223:           process_pending_handles(multi); /* multiplexing */
 2224: 
 2225:         /* post-transfer command */
 2226:         res = multi_done(data, result, FALSE);
 2227: 
 2228:         /* allow a previously set error code take precedence */
 2229:         if(!result)
 2230:           result = res;
 2231: 
 2232:         /*
 2233:          * If there are other handles on the connection, multi_done won't set
 2234:          * conn to NULL.  In such a case, curl_multi_remove_handle() can
 2235:          * access free'd data, if the connection is free'd and the handle
 2236:          * removed before we perform the processing in CURLM_STATE_COMPLETED
 2237:          */
 2238:         if(data->conn)
 2239:           detach_connnection(data);
 2240:       }
 2241: 
 2242: #ifndef CURL_DISABLE_FTP
 2243:       if(data->state.wildcardmatch) {
 2244:         if(data->wildcard.state != CURLWC_DONE) {
 2245:           /* if a wildcard is set and we are not ending -> lets start again
 2246:              with CURLM_STATE_INIT */
 2247:           multistate(data, CURLM_STATE_INIT);
 2248:           break;
 2249:         }
 2250:       }
 2251: #endif
 2252:       /* after we have DONE what we're supposed to do, go COMPLETED, and
 2253:          it doesn't matter what the multi_done() returned! */
 2254:       multistate(data, CURLM_STATE_COMPLETED);
 2255:       break;
 2256: 
 2257:     case CURLM_STATE_COMPLETED:
 2258:       break;
 2259: 
 2260:     case CURLM_STATE_MSGSENT:
 2261:       data->result = result;
 2262:       return CURLM_OK; /* do nothing */
 2263: 
 2264:     default:
 2265:       return CURLM_INTERNAL_ERROR;
 2266:     }
 2267:     statemachine_end:
 2268: 
 2269:     if(data->mstate < CURLM_STATE_COMPLETED) {
 2270:       if(result) {
 2271:         /*
 2272:          * If an error was returned, and we aren't in completed state now,
 2273:          * then we go to completed and consider this transfer aborted.
 2274:          */
 2275: 
 2276:         /* NOTE: no attempt to disconnect connections must be made
 2277:            in the case blocks above - cleanup happens only here */
 2278: 
 2279:         /* Check if we can move pending requests to send pipe */
 2280:         process_pending_handles(multi); /* connection */
 2281: 
 2282:         if(data->conn) {
 2283:           if(stream_error) {
 2284:             /* Don't attempt to send data over a connection that timed out */
 2285:             bool dead_connection = result == CURLE_OPERATION_TIMEDOUT;
 2286:             struct connectdata *conn = data->conn;
 2287: 
 2288:             /* This is where we make sure that the conn pointer is reset.
 2289:                We don't have to do this in every case block above where a
 2290:                failure is detected */
 2291:             detach_connnection(data);
 2292: 
 2293:             /* disconnect properly */
 2294:             Curl_disconnect(data, conn, dead_connection);
 2295:           }
 2296:         }
 2297:         else if(data->mstate == CURLM_STATE_CONNECT) {
 2298:           /* Curl_connect() failed */
 2299:           (void)Curl_posttransfer(data);
 2300:         }
 2301: 
 2302:         multistate(data, CURLM_STATE_COMPLETED);
 2303:         rc = CURLM_CALL_MULTI_PERFORM;
 2304:       }
 2305:       /* if there's still a connection to use, call the progress function */
 2306:       else if(data->conn && Curl_pgrsUpdate(data->conn)) {
 2307:         /* aborted due to progress callback return code must close the
 2308:            connection */
 2309:         result = CURLE_ABORTED_BY_CALLBACK;
 2310:         streamclose(data->conn, "Aborted by callback");
 2311: 
 2312:         /* if not yet in DONE state, go there, otherwise COMPLETED */
 2313:         multistate(data, (data->mstate < CURLM_STATE_DONE)?
 2314:                    CURLM_STATE_DONE: CURLM_STATE_COMPLETED);
 2315:         rc = CURLM_CALL_MULTI_PERFORM;
 2316:       }
 2317:     }
 2318: 
 2319:     if(CURLM_STATE_COMPLETED == data->mstate) {
 2320:       if(data->set.fmultidone) {
 2321:         /* signal via callback instead */
 2322:         data->set.fmultidone(data, result);
 2323:       }
 2324:       else {
 2325:         /* now fill in the Curl_message with this info */
 2326:         msg = &data->msg;
 2327: 
 2328:         msg->extmsg.msg = CURLMSG_DONE;
 2329:         msg->extmsg.easy_handle = data;
 2330:         msg->extmsg.data.result = result;
 2331: 
 2332:         rc = multi_addmsg(multi, msg);
 2333:         DEBUGASSERT(!data->conn);
 2334:       }
 2335:       multistate(data, CURLM_STATE_MSGSENT);
 2336:     }
 2337:   } while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE));
 2338: 
 2339:   data->result = result;
 2340:   return rc;
 2341: }
 2342: 
 2343: 
 2344: CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles)
 2345: {
 2346:   struct Curl_easy *data;
 2347:   CURLMcode returncode = CURLM_OK;
 2348:   struct Curl_tree *t;
 2349:   struct curltime now = Curl_now();
 2350: 
 2351:   if(!GOOD_MULTI_HANDLE(multi))
 2352:     return CURLM_BAD_HANDLE;
 2353: 
 2354:   if(multi->in_callback)
 2355:     return CURLM_RECURSIVE_API_CALL;
 2356: 
 2357:   data = multi->easyp;
 2358:   while(data) {
 2359:     CURLMcode result;
 2360:     SIGPIPE_VARIABLE(pipe_st);
 2361: 
 2362:     sigpipe_ignore(data, &pipe_st);
 2363:     result = multi_runsingle(multi, now, data);
 2364:     sigpipe_restore(&pipe_st);
 2365: 
 2366:     if(result)
 2367:       returncode = result;
 2368: 
 2369:     data = data->next; /* operate on next handle */
 2370:   }
 2371: 
 2372:   /*
 2373:    * Simply remove all expired timers from the splay since handles are dealt
 2374:    * with unconditionally by this function and curl_multi_timeout() requires
 2375:    * that already passed/handled expire times are removed from the splay.
 2376:    *
 2377:    * It is important that the 'now' value is set at the entry of this function
 2378:    * and not for the current time as it may have ticked a little while since
 2379:    * then and then we risk this loop to remove timers that actually have not
 2380:    * been handled!
 2381:    */
 2382:   do {
 2383:     multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
 2384:     if(t)
 2385:       /* the removed may have another timeout in queue */
 2386:       (void)add_next_timeout(now, multi, t->payload);
 2387: 
 2388:   } while(t);
 2389: 
 2390:   *running_handles = multi->num_alive;
 2391: 
 2392:   if(CURLM_OK >= returncode)
 2393:     Curl_update_timer(multi);
 2394: 
 2395:   return returncode;
 2396: }
 2397: 
 2398: CURLMcode curl_multi_cleanup(struct Curl_multi *multi)
 2399: {
 2400:   struct Curl_easy *data;
 2401:   struct Curl_easy *nextdata;
 2402: 
 2403:   if(GOOD_MULTI_HANDLE(multi)) {
 2404:     if(multi->in_callback)
 2405:       return CURLM_RECURSIVE_API_CALL;
 2406: 
 2407:     multi->type = 0; /* not good anymore */
 2408: 
 2409:     /* Firsrt remove all remaining easy handles */
 2410:     data = multi->easyp;
 2411:     while(data) {
 2412:       nextdata = data->next;
 2413:       if(!data->state.done && data->conn)
 2414:         /* if DONE was never called for this handle */
 2415:         (void)multi_done(data, CURLE_OK, TRUE);
 2416:       if(data->dns.hostcachetype == HCACHE_MULTI) {
 2417:         /* clear out the usage of the shared DNS cache */
 2418:         Curl_hostcache_clean(data, data->dns.hostcache);
 2419:         data->dns.hostcache = NULL;
 2420:         data->dns.hostcachetype = HCACHE_NONE;
 2421:       }
 2422: 
 2423:       /* Clear the pointer to the connection cache */
 2424:       data->state.conn_cache = NULL;
 2425:       data->multi = NULL; /* clear the association */
 2426: 
 2427: #ifdef USE_LIBPSL
 2428:       if(data->psl == &multi->psl)
 2429:         data->psl = NULL;
 2430: #endif
 2431: 
 2432:       data = nextdata;
 2433:     }
 2434: 
 2435:     /* Close all the connections in the connection cache */
 2436:     Curl_conncache_close_all_connections(&multi->conn_cache);
 2437: 
 2438:     Curl_hash_destroy(&multi->sockhash);
 2439:     Curl_conncache_destroy(&multi->conn_cache);
 2440:     Curl_llist_destroy(&multi->msglist, NULL);
 2441:     Curl_llist_destroy(&multi->pending, NULL);
 2442: 
 2443:     Curl_hash_destroy(&multi->hostcache);
 2444:     Curl_psl_destroy(&multi->psl);
 2445: 
 2446: #ifdef ENABLE_WAKEUP
 2447:     sclose(multi->wakeup_pair[0]);
 2448:     sclose(multi->wakeup_pair[1]);
 2449: #endif
 2450:     free(multi);
 2451: 
 2452:     return CURLM_OK;
 2453:   }
 2454:   return CURLM_BAD_HANDLE;
 2455: }
 2456: 
 2457: /*
 2458:  * curl_multi_info_read()
 2459:  *
 2460:  * This function is the primary way for a multi/multi_socket application to
 2461:  * figure out if a transfer has ended. We MUST make this function as fast as
 2462:  * possible as it will be polled frequently and we MUST NOT scan any lists in
 2463:  * here to figure out things. We must scale fine to thousands of handles and
 2464:  * beyond. The current design is fully O(1).
 2465:  */
 2466: 
 2467: CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue)
 2468: {
 2469:   struct Curl_message *msg;
 2470: 
 2471:   *msgs_in_queue = 0; /* default to none */
 2472: 
 2473:   if(GOOD_MULTI_HANDLE(multi) &&
 2474:      !multi->in_callback &&
 2475:      Curl_llist_count(&multi->msglist)) {
 2476:     /* there is one or more messages in the list */
 2477:     struct curl_llist_element *e;
 2478: 
 2479:     /* extract the head of the list to return */
 2480:     e = multi->msglist.head;
 2481: 
 2482:     msg = e->ptr;
 2483: 
 2484:     /* remove the extracted entry */
 2485:     Curl_llist_remove(&multi->msglist, e, NULL);
 2486: 
 2487:     *msgs_in_queue = curlx_uztosi(Curl_llist_count(&multi->msglist));
 2488: 
 2489:     return &msg->extmsg;
 2490:   }
 2491:   return NULL;
 2492: }
 2493: 
 2494: /*
 2495:  * singlesocket() checks what sockets we deal with and their "action state"
 2496:  * and if we have a different state in any of those sockets from last time we
 2497:  * call the callback accordingly.
 2498:  */
 2499: static CURLMcode singlesocket(struct Curl_multi *multi,
 2500:                               struct Curl_easy *data)
 2501: {
 2502:   curl_socket_t socks[MAX_SOCKSPEREASYHANDLE];
 2503:   int i;
 2504:   struct Curl_sh_entry *entry;
 2505:   curl_socket_t s;
 2506:   int num;
 2507:   unsigned int curraction;
 2508:   int actions[MAX_SOCKSPEREASYHANDLE];
 2509: 
 2510:   for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++)
 2511:     socks[i] = CURL_SOCKET_BAD;
 2512: 
 2513:   /* Fill in the 'current' struct with the state as it is now: what sockets to
 2514:      supervise and for what actions */
 2515:   curraction = multi_getsock(data, socks);
 2516: 
 2517:   /* We have 0 .. N sockets already and we get to know about the 0 .. M
 2518:      sockets we should have from now on. Detect the differences, remove no
 2519:      longer supervised ones and add new ones */
 2520: 
 2521:   /* walk over the sockets we got right now */
 2522:   for(i = 0; (i< MAX_SOCKSPEREASYHANDLE) &&
 2523:         (curraction & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i)));
 2524:       i++) {
 2525:     unsigned int action = CURL_POLL_NONE;
 2526:     unsigned int prevaction = 0;
 2527:     unsigned int comboaction;
 2528:     bool sincebefore = FALSE;
 2529: 
 2530:     s = socks[i];
 2531: 
 2532:     /* get it from the hash */
 2533:     entry = sh_getentry(&multi->sockhash, s);
 2534: 
 2535:     if(curraction & GETSOCK_READSOCK(i))
 2536:       action |= CURL_POLL_IN;
 2537:     if(curraction & GETSOCK_WRITESOCK(i))
 2538:       action |= CURL_POLL_OUT;
 2539: 
 2540:     actions[i] = action;
 2541:     if(entry) {
 2542:       /* check if new for this transfer */
 2543:       int j;
 2544:       for(j = 0; j< data->numsocks; j++) {
 2545:         if(s == data->sockets[j]) {
 2546:           prevaction = data->actions[j];
 2547:           sincebefore = TRUE;
 2548:           break;
 2549:         }
 2550:       }
 2551:     }
 2552:     else {
 2553:       /* this is a socket we didn't have before, add it to the hash! */
 2554:       entry = sh_addentry(&multi->sockhash, s);
 2555:       if(!entry)
 2556:         /* fatal */
 2557:         return CURLM_OUT_OF_MEMORY;
 2558:     }
 2559:     if(sincebefore && (prevaction != action)) {
 2560:       /* Socket was used already, but different action now */
 2561:       if(prevaction & CURL_POLL_IN)
 2562:         entry->readers--;
 2563:       if(prevaction & CURL_POLL_OUT)
 2564:         entry->writers--;
 2565:       if(action & CURL_POLL_IN)
 2566:         entry->readers++;
 2567:       if(action & CURL_POLL_OUT)
 2568:         entry->writers++;
 2569:     }
 2570:     else if(!sincebefore) {
 2571:       /* a new user */
 2572:       entry->users++;
 2573:       if(action & CURL_POLL_IN)
 2574:         entry->readers++;
 2575:       if(action & CURL_POLL_OUT)
 2576:         entry->writers++;
 2577: 
 2578:       /* add 'data' to the transfer hash on this socket! */
 2579:       if(!Curl_hash_add(&entry->transfers, (char *)&data, /* hash key */
 2580:                         sizeof(struct Curl_easy *), data))
 2581:         return CURLM_OUT_OF_MEMORY;
 2582:     }
 2583: 
 2584:     comboaction = (entry->writers? CURL_POLL_OUT : 0) |
 2585:       (entry->readers ? CURL_POLL_IN : 0);
 2586: 
 2587:     /* socket existed before and has the same action set as before */
 2588:     if(sincebefore && (entry->action == comboaction))
 2589:       /* same, continue */
 2590:       continue;
 2591: 
 2592:     if(multi->socket_cb)
 2593:       multi->socket_cb(data, s, comboaction, multi->socket_userp,
 2594:                        entry->socketp);
 2595: 
 2596:     entry->action = comboaction; /* store the current action state */
 2597:   }
 2598: 
 2599:   num = i; /* number of sockets */
 2600: 
 2601:   /* when we've walked over all the sockets we should have right now, we must
 2602:      make sure to detect sockets that are removed */
 2603:   for(i = 0; i< data->numsocks; i++) {
 2604:     int j;
 2605:     bool stillused = FALSE;
 2606:     s = data->sockets[i];
 2607:     for(j = 0; j < num; j++) {
 2608:       if(s == socks[j]) {
 2609:         /* this is still supervised */
 2610:         stillused = TRUE;
 2611:         break;
 2612:       }
 2613:     }
 2614:     if(stillused)
 2615:       continue;
 2616: 
 2617:     entry = sh_getentry(&multi->sockhash, s);
 2618:     /* if this is NULL here, the socket has been closed and notified so
 2619:        already by Curl_multi_closed() */
 2620:     if(entry) {
 2621:       int oldactions = data->actions[i];
 2622:       /* this socket has been removed. Decrease user count */
 2623:       entry->users--;
 2624:       if(oldactions & CURL_POLL_OUT)
 2625:         entry->writers--;
 2626:       if(oldactions & CURL_POLL_IN)
 2627:         entry->readers--;
 2628:       if(!entry->users) {
 2629:         if(multi->socket_cb)
 2630:           multi->socket_cb(data, s, CURL_POLL_REMOVE,
 2631:                            multi->socket_userp,
 2632:                            entry->socketp);
 2633:         sh_delentry(entry, &multi->sockhash, s);
 2634:       }
 2635:       else {
 2636:         /* still users, but remove this handle as a user of this socket */
 2637:         if(Curl_hash_delete(&entry->transfers, (char *)&data,
 2638:                             sizeof(struct Curl_easy *))) {
 2639:           DEBUGASSERT(NULL);
 2640:         }
 2641:       }
 2642:     }
 2643:   } /* for loop over numsocks */
 2644: 
 2645:   memcpy(data->sockets, socks, num*sizeof(curl_socket_t));
 2646:   memcpy(data->actions, actions, num*sizeof(int));
 2647:   data->numsocks = num;
 2648:   return CURLM_OK;
 2649: }
 2650: 
 2651: void Curl_updatesocket(struct Curl_easy *data)
 2652: {
 2653:   singlesocket(data->multi, data);
 2654: }
 2655: 
 2656: 
 2657: /*
 2658:  * Curl_multi_closed()
 2659:  *
 2660:  * Used by the connect code to tell the multi_socket code that one of the
 2661:  * sockets we were using is about to be closed.  This function will then
 2662:  * remove it from the sockethash for this handle to make the multi_socket API
 2663:  * behave properly, especially for the case when libcurl will create another
 2664:  * socket again and it gets the same file descriptor number.
 2665:  */
 2666: 
 2667: void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s)
 2668: {
 2669:   if(data) {
 2670:     /* if there's still an easy handle associated with this connection */
 2671:     struct Curl_multi *multi = data->multi;
 2672:     if(multi) {
 2673:       /* this is set if this connection is part of a handle that is added to
 2674:          a multi handle, and only then this is necessary */
 2675:       struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
 2676: 
 2677:       if(entry) {
 2678:         if(multi->socket_cb)
 2679:           multi->socket_cb(data, s, CURL_POLL_REMOVE,
 2680:                            multi->socket_userp,
 2681:                            entry->socketp);
 2682: 
 2683:         /* now remove it from the socket hash */
 2684:         sh_delentry(entry, &multi->sockhash, s);
 2685:       }
 2686:     }
 2687:   }
 2688: }
 2689: 
 2690: /*
 2691:  * add_next_timeout()
 2692:  *
 2693:  * Each Curl_easy has a list of timeouts. The add_next_timeout() is called
 2694:  * when it has just been removed from the splay tree because the timeout has
 2695:  * expired. This function is then to advance in the list to pick the next
 2696:  * timeout to use (skip the already expired ones) and add this node back to
 2697:  * the splay tree again.
 2698:  *
 2699:  * The splay tree only has each sessionhandle as a single node and the nearest
 2700:  * timeout is used to sort it on.
 2701:  */
 2702: static CURLMcode add_next_timeout(struct curltime now,
 2703:                                   struct Curl_multi *multi,
 2704:                                   struct Curl_easy *d)
 2705: {
 2706:   struct curltime *tv = &d->state.expiretime;
 2707:   struct curl_llist *list = &d->state.timeoutlist;
 2708:   struct curl_llist_element *e;
 2709:   struct time_node *node = NULL;
 2710: 
 2711:   /* move over the timeout list for this specific handle and remove all
 2712:      timeouts that are now passed tense and store the next pending
 2713:      timeout in *tv */
 2714:   for(e = list->head; e;) {
 2715:     struct curl_llist_element *n = e->next;
 2716:     timediff_t diff;
 2717:     node = (struct time_node *)e->ptr;
 2718:     diff = Curl_timediff(node->time, now);
 2719:     if(diff <= 0)
 2720:       /* remove outdated entry */
 2721:       Curl_llist_remove(list, e, NULL);
 2722:     else
 2723:       /* the list is sorted so get out on the first mismatch */
 2724:       break;
 2725:     e = n;
 2726:   }
 2727:   e = list->head;
 2728:   if(!e) {
 2729:     /* clear the expire times within the handles that we remove from the
 2730:        splay tree */
 2731:     tv->tv_sec = 0;
 2732:     tv->tv_usec = 0;
 2733:   }
 2734:   else {
 2735:     /* copy the first entry to 'tv' */
 2736:     memcpy(tv, &node->time, sizeof(*tv));
 2737: 
 2738:     /* Insert this node again into the splay.  Keep the timer in the list in
 2739:        case we need to recompute future timers. */
 2740:     multi->timetree = Curl_splayinsert(*tv, multi->timetree,
 2741:                                        &d->state.timenode);
 2742:   }
 2743:   return CURLM_OK;
 2744: }
 2745: 
 2746: static CURLMcode multi_socket(struct Curl_multi *multi,
 2747:                               bool checkall,
 2748:                               curl_socket_t s,
 2749:                               int ev_bitmask,
 2750:                               int *running_handles)
 2751: {
 2752:   CURLMcode result = CURLM_OK;
 2753:   struct Curl_easy *data = NULL;
 2754:   struct Curl_tree *t;
 2755:   struct curltime now = Curl_now();
 2756: 
 2757:   if(checkall) {
 2758:     /* *perform() deals with running_handles on its own */
 2759:     result = curl_multi_perform(multi, running_handles);
 2760: 
 2761:     /* walk through each easy handle and do the socket state change magic
 2762:        and callbacks */
 2763:     if(result != CURLM_BAD_HANDLE) {
 2764:       data = multi->easyp;
 2765:       while(data && !result) {
 2766:         result = singlesocket(multi, data);
 2767:         data = data->next;
 2768:       }
 2769:     }
 2770: 
 2771:     /* or should we fall-through and do the timer-based stuff? */
 2772:     return result;
 2773:   }
 2774:   if(s != CURL_SOCKET_TIMEOUT) {
 2775:     struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
 2776: 
 2777:     if(!entry)
 2778:       /* Unmatched socket, we can't act on it but we ignore this fact.  In
 2779:          real-world tests it has been proved that libevent can in fact give
 2780:          the application actions even though the socket was just previously
 2781:          asked to get removed, so thus we better survive stray socket actions
 2782:          and just move on. */
 2783:       ;
 2784:     else {
 2785:       struct curl_hash_iterator iter;
 2786:       struct curl_hash_element *he;
 2787: 
 2788:       /* the socket can be shared by many transfers, iterate */
 2789:       Curl_hash_start_iterate(&entry->transfers, &iter);
 2790:       for(he = Curl_hash_next_element(&iter); he;
 2791:           he = Curl_hash_next_element(&iter)) {
 2792:         data = (struct Curl_easy *)he->ptr;
 2793:         DEBUGASSERT(data);
 2794:         DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER);
 2795: 
 2796:         if(data->conn && !(data->conn->handler->flags & PROTOPT_DIRLOCK))
 2797:           /* set socket event bitmask if they're not locked */
 2798:           data->conn->cselect_bits = ev_bitmask;
 2799: 
 2800:         Curl_expire(data, 0, EXPIRE_RUN_NOW);
 2801:       }
 2802: 
 2803:       /* Now we fall-through and do the timer-based stuff, since we don't want
 2804:          to force the user to have to deal with timeouts as long as at least
 2805:          one connection in fact has traffic. */
 2806: 
 2807:       data = NULL; /* set data to NULL again to avoid calling
 2808:                       multi_runsingle() in case there's no need to */
 2809:       now = Curl_now(); /* get a newer time since the multi_runsingle() loop
 2810:                            may have taken some time */
 2811:     }
 2812:   }
 2813:   else {
 2814:     /* Asked to run due to time-out. Clear the 'lastcall' variable to force
 2815:        Curl_update_timer() to trigger a callback to the app again even if the
 2816:        same timeout is still the one to run after this call. That handles the
 2817:        case when the application asks libcurl to run the timeout
 2818:        prematurely. */
 2819:     memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
 2820:   }
 2821: 
 2822:   /*
 2823:    * The loop following here will go on as long as there are expire-times left
 2824:    * to process in the splay and 'data' will be re-assigned for every expired
 2825:    * handle we deal with.
 2826:    */
 2827:   do {
 2828:     /* the first loop lap 'data' can be NULL */
 2829:     if(data) {
 2830:       SIGPIPE_VARIABLE(pipe_st);
 2831: 
 2832:       sigpipe_ignore(data, &pipe_st);
 2833:       result = multi_runsingle(multi, now, data);
 2834:       sigpipe_restore(&pipe_st);
 2835: 
 2836:       if(CURLM_OK >= result) {
 2837:         /* get the socket(s) and check if the state has been changed since
 2838:            last */
 2839:         result = singlesocket(multi, data);
 2840:         if(result)
 2841:           return result;
 2842:       }
 2843:     }
 2844: 
 2845:     /* Check if there's one (more) expired timer to deal with! This function
 2846:        extracts a matching node if there is one */
 2847: 
 2848:     multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
 2849:     if(t) {
 2850:       data = t->payload; /* assign this for next loop */
 2851:       (void)add_next_timeout(now, multi, t->payload);
 2852:     }
 2853: 
 2854:   } while(t);
 2855: 
 2856:   *running_handles = multi->num_alive;
 2857:   return result;
 2858: }
 2859: 
 2860: #undef curl_multi_setopt
 2861: CURLMcode curl_multi_setopt(struct Curl_multi *multi,
 2862:                             CURLMoption option, ...)
 2863: {
 2864:   CURLMcode res = CURLM_OK;
 2865:   va_list param;
 2866: 
 2867:   if(!GOOD_MULTI_HANDLE(multi))
 2868:     return CURLM_BAD_HANDLE;
 2869: 
 2870:   if(multi->in_callback)
 2871:     return CURLM_RECURSIVE_API_CALL;
 2872: 
 2873:   va_start(param, option);
 2874: 
 2875:   switch(option) {
 2876:   case CURLMOPT_SOCKETFUNCTION:
 2877:     multi->socket_cb = va_arg(param, curl_socket_callback);
 2878:     break;
 2879:   case CURLMOPT_SOCKETDATA:
 2880:     multi->socket_userp = va_arg(param, void *);
 2881:     break;
 2882:   case CURLMOPT_PUSHFUNCTION:
 2883:     multi->push_cb = va_arg(param, curl_push_callback);
 2884:     break;
 2885:   case CURLMOPT_PUSHDATA:
 2886:     multi->push_userp = va_arg(param, void *);
 2887:     break;
 2888:   case CURLMOPT_PIPELINING:
 2889:     multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX;
 2890:     break;
 2891:   case CURLMOPT_TIMERFUNCTION:
 2892:     multi->timer_cb = va_arg(param, curl_multi_timer_callback);
 2893:     break;
 2894:   case CURLMOPT_TIMERDATA:
 2895:     multi->timer_userp = va_arg(param, void *);
 2896:     break;
 2897:   case CURLMOPT_MAXCONNECTS:
 2898:     multi->maxconnects = va_arg(param, long);
 2899:     break;
 2900:   case CURLMOPT_MAX_HOST_CONNECTIONS:
 2901:     multi->max_host_connections = va_arg(param, long);
 2902:     break;
 2903:   case CURLMOPT_MAX_TOTAL_CONNECTIONS:
 2904:     multi->max_total_connections = va_arg(param, long);
 2905:     break;
 2906:     /* options formerly used for pipelining */
 2907:   case CURLMOPT_MAX_PIPELINE_LENGTH:
 2908:     break;
 2909:   case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE:
 2910:     break;
 2911:   case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE:
 2912:     break;
 2913:   case CURLMOPT_PIPELINING_SITE_BL:
 2914:     break;
 2915:   case CURLMOPT_PIPELINING_SERVER_BL:
 2916:     break;
 2917:   case CURLMOPT_MAX_CONCURRENT_STREAMS:
 2918:     {
 2919:       long streams = va_arg(param, long);
 2920:       if(streams < 1)
 2921:         streams = 100;
 2922:       multi->max_concurrent_streams =
 2923:         (streams > (long)INITIAL_MAX_CONCURRENT_STREAMS)?
 2924:         INITIAL_MAX_CONCURRENT_STREAMS : (unsigned int)streams;
 2925:     }
 2926:     break;
 2927:   default:
 2928:     res = CURLM_UNKNOWN_OPTION;
 2929:     break;
 2930:   }
 2931:   va_end(param);
 2932:   return res;
 2933: }
 2934: 
 2935: /* we define curl_multi_socket() in the public multi.h header */
 2936: #undef curl_multi_socket
 2937: 
 2938: CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s,
 2939:                             int *running_handles)
 2940: {
 2941:   CURLMcode result;
 2942:   if(multi->in_callback)
 2943:     return CURLM_RECURSIVE_API_CALL;
 2944:   result = multi_socket(multi, FALSE, s, 0, running_handles);
 2945:   if(CURLM_OK >= result)
 2946:     Curl_update_timer(multi);
 2947:   return result;
 2948: }
 2949: 
 2950: CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s,
 2951:                                    int ev_bitmask, int *running_handles)
 2952: {
 2953:   CURLMcode result;
 2954:   if(multi->in_callback)
 2955:     return CURLM_RECURSIVE_API_CALL;
 2956:   result = multi_socket(multi, FALSE, s, ev_bitmask, running_handles);
 2957:   if(CURLM_OK >= result)
 2958:     Curl_update_timer(multi);
 2959:   return result;
 2960: }
 2961: 
 2962: CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles)
 2963: 
 2964: {
 2965:   CURLMcode result;
 2966:   if(multi->in_callback)
 2967:     return CURLM_RECURSIVE_API_CALL;
 2968:   result = multi_socket(multi, TRUE, CURL_SOCKET_BAD, 0, running_handles);
 2969:   if(CURLM_OK >= result)
 2970:     Curl_update_timer(multi);
 2971:   return result;
 2972: }
 2973: 
 2974: static CURLMcode multi_timeout(struct Curl_multi *multi,
 2975:                                long *timeout_ms)
 2976: {
 2977:   static struct curltime tv_zero = {0, 0};
 2978: 
 2979:   if(multi->timetree) {
 2980:     /* we have a tree of expire times */
 2981:     struct curltime now = Curl_now();
 2982: 
 2983:     /* splay the lowest to the bottom */
 2984:     multi->timetree = Curl_splay(tv_zero, multi->timetree);
 2985: 
 2986:     if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) {
 2987:       /* some time left before expiration */
 2988:       timediff_t diff = Curl_timediff(multi->timetree->key, now);
 2989:       if(diff <= 0)
 2990:         /*
 2991:          * Since we only provide millisecond resolution on the returned value
 2992:          * and the diff might be less than one millisecond here, we don't
 2993:          * return zero as that may cause short bursts of busyloops on fast
 2994:          * processors while the diff is still present but less than one
 2995:          * millisecond! instead we return 1 until the time is ripe.
 2996:          */
 2997:         *timeout_ms = 1;
 2998:       else
 2999:         /* this should be safe even on 64 bit archs, as we don't use that
 3000:            overly long timeouts */
 3001:         *timeout_ms = (long)diff;
 3002:     }
 3003:     else
 3004:       /* 0 means immediately */
 3005:       *timeout_ms = 0;
 3006:   }
 3007:   else
 3008:     *timeout_ms = -1;
 3009: 
 3010:   return CURLM_OK;
 3011: }
 3012: 
 3013: CURLMcode curl_multi_timeout(struct Curl_multi *multi,
 3014:                              long *timeout_ms)
 3015: {
 3016:   /* First, make some basic checks that the CURLM handle is a good handle */
 3017:   if(!GOOD_MULTI_HANDLE(multi))
 3018:     return CURLM_BAD_HANDLE;
 3019: 
 3020:   if(multi->in_callback)
 3021:     return CURLM_RECURSIVE_API_CALL;
 3022: 
 3023:   return multi_timeout(multi, timeout_ms);
 3024: }
 3025: 
 3026: /*
 3027:  * Tell the application it should update its timers, if it subscribes to the
 3028:  * update timer callback.
 3029:  */
 3030: void Curl_update_timer(struct Curl_multi *multi)
 3031: {
 3032:   long timeout_ms;
 3033: 
 3034:   if(!multi->timer_cb)
 3035:     return;
 3036:   if(multi_timeout(multi, &timeout_ms)) {
 3037:     return;
 3038:   }
 3039:   if(timeout_ms < 0) {
 3040:     static const struct curltime none = {0, 0};
 3041:     if(Curl_splaycomparekeys(none, multi->timer_lastcall)) {
 3042:       multi->timer_lastcall = none;
 3043:       /* there's no timeout now but there was one previously, tell the app to
 3044:          disable it */
 3045:       multi->timer_cb(multi, -1, multi->timer_userp);
 3046:       return;
 3047:     }
 3048:     return;
 3049:   }
 3050: 
 3051:   /* When multi_timeout() is done, multi->timetree points to the node with the
 3052:    * timeout we got the (relative) time-out time for. We can thus easily check
 3053:    * if this is the same (fixed) time as we got in a previous call and then
 3054:    * avoid calling the callback again. */
 3055:   if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0)
 3056:     return;
 3057: 
 3058:   multi->timer_lastcall = multi->timetree->key;
 3059: 
 3060:   multi->timer_cb(multi, timeout_ms, multi->timer_userp);
 3061: }
 3062: 
 3063: /*
 3064:  * multi_deltimeout()
 3065:  *
 3066:  * Remove a given timestamp from the list of timeouts.
 3067:  */
 3068: static void
 3069: multi_deltimeout(struct Curl_easy *data, expire_id eid)
 3070: {
 3071:   struct curl_llist_element *e;
 3072:   struct curl_llist *timeoutlist = &data->state.timeoutlist;
 3073:   /* find and remove the specific node from the list */
 3074:   for(e = timeoutlist->head; e; e = e->next) {
 3075:     struct time_node *n = (struct time_node *)e->ptr;
 3076:     if(n->eid == eid) {
 3077:       Curl_llist_remove(timeoutlist, e, NULL);
 3078:       return;
 3079:     }
 3080:   }
 3081: }
 3082: 
 3083: /*
 3084:  * multi_addtimeout()
 3085:  *
 3086:  * Add a timestamp to the list of timeouts. Keep the list sorted so that head
 3087:  * of list is always the timeout nearest in time.
 3088:  *
 3089:  */
 3090: static CURLMcode
 3091: multi_addtimeout(struct Curl_easy *data,
 3092:                  struct curltime *stamp,
 3093:                  expire_id eid)
 3094: {
 3095:   struct curl_llist_element *e;
 3096:   struct time_node *node;
 3097:   struct curl_llist_element *prev = NULL;
 3098:   size_t n;
 3099:   struct curl_llist *timeoutlist = &data->state.timeoutlist;
 3100: 
 3101:   node = &data->state.expires[eid];
 3102: 
 3103:   /* copy the timestamp and id */
 3104:   memcpy(&node->time, stamp, sizeof(*stamp));
 3105:   node->eid = eid; /* also marks it as in use */
 3106: 
 3107:   n = Curl_llist_count(timeoutlist);
 3108:   if(n) {
 3109:     /* find the correct spot in the list */
 3110:     for(e = timeoutlist->head; e; e = e->next) {
 3111:       struct time_node *check = (struct time_node *)e->ptr;
 3112:       timediff_t diff = Curl_timediff(check->time, node->time);
 3113:       if(diff > 0)
 3114:         break;
 3115:       prev = e;
 3116:     }
 3117: 
 3118:   }
 3119:   /* else
 3120:      this is the first timeout on the list */
 3121: 
 3122:   Curl_llist_insert_next(timeoutlist, prev, node, &node->list);
 3123:   return CURLM_OK;
 3124: }
 3125: 
 3126: /*
 3127:  * Curl_expire()
 3128:  *
 3129:  * given a number of milliseconds from now to use to set the 'act before
 3130:  * this'-time for the transfer, to be extracted by curl_multi_timeout()
 3131:  *
 3132:  * The timeout will be added to a queue of timeouts if it defines a moment in
 3133:  * time that is later than the current head of queue.
 3134:  *
 3135:  * Expire replaces a former timeout using the same id if already set.
 3136:  */
 3137: void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id)
 3138: {
 3139:   struct Curl_multi *multi = data->multi;
 3140:   struct curltime *nowp = &data->state.expiretime;
 3141:   struct curltime set;
 3142: 
 3143:   /* this is only interesting while there is still an associated multi struct
 3144:      remaining! */
 3145:   if(!multi)
 3146:     return;
 3147: 
 3148:   DEBUGASSERT(id < EXPIRE_LAST);
 3149: 
 3150:   set = Curl_now();
 3151:   set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bit conversion */
 3152:   set.tv_usec += (unsigned int)(milli%1000)*1000;
 3153: 
 3154:   if(set.tv_usec >= 1000000) {
 3155:     set.tv_sec++;
 3156:     set.tv_usec -= 1000000;
 3157:   }
 3158: 
 3159:   /* Remove any timer with the same id just in case. */
 3160:   multi_deltimeout(data, id);
 3161: 
 3162:   /* Add it to the timer list.  It must stay in the list until it has expired
 3163:      in case we need to recompute the minimum timer later. */
 3164:   multi_addtimeout(data, &set, id);
 3165: 
 3166:   if(nowp->tv_sec || nowp->tv_usec) {
 3167:     /* This means that the struct is added as a node in the splay tree.
 3168:        Compare if the new time is earlier, and only remove-old/add-new if it
 3169:        is. */
 3170:     timediff_t diff = Curl_timediff(set, *nowp);
 3171:     int rc;
 3172: 
 3173:     if(diff > 0) {
 3174:       /* The current splay tree entry is sooner than this new expiry time.
 3175:          We don't need to update our splay tree entry. */
 3176:       return;
 3177:     }
 3178: 
 3179:     /* Since this is an updated time, we must remove the previous entry from
 3180:        the splay tree first and then re-add the new value */
 3181:     rc = Curl_splayremovebyaddr(multi->timetree,
 3182:                                 &data->state.timenode,
 3183:                                 &multi->timetree);
 3184:     if(rc)
 3185:       infof(data, "Internal error removing splay node = %d\n", rc);
 3186:   }
 3187: 
 3188:   /* Indicate that we are in the splay tree and insert the new timer expiry
 3189:      value since it is our local minimum. */
 3190:   *nowp = set;
 3191:   data->state.timenode.payload = data;
 3192:   multi->timetree = Curl_splayinsert(*nowp, multi->timetree,
 3193:                                      &data->state.timenode);
 3194: }
 3195: 
 3196: /*
 3197:  * Curl_expire_done()
 3198:  *
 3199:  * Removes the expire timer. Marks it as done.
 3200:  *
 3201:  */
 3202: void Curl_expire_done(struct Curl_easy *data, expire_id id)
 3203: {
 3204:   /* remove the timer, if there */
 3205:   multi_deltimeout(data, id);
 3206: }
 3207: 
 3208: /*
 3209:  * Curl_expire_clear()
 3210:  *
 3211:  * Clear ALL timeout values for this handle.
 3212:  */
 3213: void Curl_expire_clear(struct Curl_easy *data)
 3214: {
 3215:   struct Curl_multi *multi = data->multi;
 3216:   struct curltime *nowp = &data->state.expiretime;
 3217: 
 3218:   /* this is only interesting while there is still an associated multi struct
 3219:      remaining! */
 3220:   if(!multi)
 3221:     return;
 3222: 
 3223:   if(nowp->tv_sec || nowp->tv_usec) {
 3224:     /* Since this is an cleared time, we must remove the previous entry from
 3225:        the splay tree */
 3226:     struct curl_llist *list = &data->state.timeoutlist;
 3227:     int rc;
 3228: 
 3229:     rc = Curl_splayremovebyaddr(multi->timetree,
 3230:                                 &data->state.timenode,
 3231:                                 &multi->timetree);
 3232:     if(rc)
 3233:       infof(data, "Internal error clearing splay node = %d\n", rc);
 3234: 
 3235:     /* flush the timeout list too */
 3236:     while(list->size > 0) {
 3237:       Curl_llist_remove(list, list->tail, NULL);
 3238:     }
 3239: 
 3240: #ifdef DEBUGBUILD
 3241:     infof(data, "Expire cleared (transfer %p)\n", data);
 3242: #endif
 3243:     nowp->tv_sec = 0;
 3244:     nowp->tv_usec = 0;
 3245:   }
 3246: }
 3247: 
 3248: 
 3249: 
 3250: 
 3251: CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s,
 3252:                             void *hashp)
 3253: {
 3254:   struct Curl_sh_entry *there = NULL;
 3255: 
 3256:   if(multi->in_callback)
 3257:     return CURLM_RECURSIVE_API_CALL;
 3258: 
 3259:   there = sh_getentry(&multi->sockhash, s);
 3260: 
 3261:   if(!there)
 3262:     return CURLM_BAD_SOCKET;
 3263: 
 3264:   there->socketp = hashp;
 3265: 
 3266:   return CURLM_OK;
 3267: }
 3268: 
 3269: size_t Curl_multi_max_host_connections(struct Curl_multi *multi)
 3270: {
 3271:   return multi ? multi->max_host_connections : 0;
 3272: }
 3273: 
 3274: size_t Curl_multi_max_total_connections(struct Curl_multi *multi)
 3275: {
 3276:   return multi ? multi->max_total_connections : 0;
 3277: }
 3278: 
 3279: /*
 3280:  * When information about a connection has appeared, call this!
 3281:  */
 3282: 
 3283: void Curl_multiuse_state(struct connectdata *conn,
 3284:                          int bundlestate) /* use BUNDLE_* defines */
 3285: {
 3286:   DEBUGASSERT(conn);
 3287:   DEBUGASSERT(conn->bundle);
 3288:   DEBUGASSERT(conn->data);
 3289:   DEBUGASSERT(conn->data->multi);
 3290: 
 3291:   conn->bundle->multiuse = bundlestate;
 3292:   process_pending_handles(conn->data->multi);
 3293: }
 3294: 
 3295: static void process_pending_handles(struct Curl_multi *multi)
 3296: {
 3297:   struct curl_llist_element *e = multi->pending.head;
 3298:   if(e) {
 3299:     struct Curl_easy *data = e->ptr;
 3300: 
 3301:     DEBUGASSERT(data->mstate == CURLM_STATE_CONNECT_PEND);
 3302: 
 3303:     multistate(data, CURLM_STATE_CONNECT);
 3304: 
 3305:     /* Remove this node from the list */
 3306:     Curl_llist_remove(&multi->pending, e, NULL);
 3307: 
 3308:     /* Make sure that the handle will be processed soonish. */
 3309:     Curl_expire(data, 0, EXPIRE_RUN_NOW);
 3310: 
 3311:     /* mark this as having been in the pending queue */
 3312:     data->state.previouslypending = TRUE;
 3313:   }
 3314: }
 3315: 
 3316: void Curl_set_in_callback(struct Curl_easy *data, bool value)
 3317: {
 3318:   /* might get called when there is no data pointer! */
 3319:   if(data) {
 3320:     if(data->multi_easy)
 3321:       data->multi_easy->in_callback = value;
 3322:     else if(data->multi)
 3323:       data->multi->in_callback = value;
 3324:   }
 3325: }
 3326: 
 3327: bool Curl_is_in_callback(struct Curl_easy *easy)
 3328: {
 3329:   return ((easy->multi && easy->multi->in_callback) ||
 3330:           (easy->multi_easy && easy->multi_easy->in_callback));
 3331: }
 3332: 
 3333: #ifdef DEBUGBUILD
 3334: void Curl_multi_dump(struct Curl_multi *multi)
 3335: {
 3336:   struct Curl_easy *data;
 3337:   int i;
 3338:   fprintf(stderr, "* Multi status: %d handles, %d alive\n",
 3339:           multi->num_easy, multi->num_alive);
 3340:   for(data = multi->easyp; data; data = data->next) {
 3341:     if(data->mstate < CURLM_STATE_COMPLETED) {
 3342:       /* only display handles that are not completed */
 3343:       fprintf(stderr, "handle %p, state %s, %d sockets\n",
 3344:               (void *)data,
 3345:               statename[data->mstate], data->numsocks);
 3346:       for(i = 0; i < data->numsocks; i++) {
 3347:         curl_socket_t s = data->sockets[i];
 3348:         struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
 3349: 
 3350:         fprintf(stderr, "%d ", (int)s);
 3351:         if(!entry) {
 3352:           fprintf(stderr, "INTERNAL CONFUSION\n");
 3353:           continue;
 3354:         }
 3355:         fprintf(stderr, "[%s %s] ",
 3356:                 (entry->action&CURL_POLL_IN)?"RECVING":"",
 3357:                 (entry->action&CURL_POLL_OUT)?"SENDING":"");
 3358:       }
 3359:       if(data->numsocks)
 3360:         fprintf(stderr, "\n");
 3361:     }
 3362:   }
 3363: }
 3364: #endif
 3365: 
 3366: unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi)
 3367: {
 3368:   DEBUGASSERT(multi);
 3369:   return multi->max_concurrent_streams;
 3370: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>