File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / dhcp / common / socket.c
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 22:30:18 2012 UTC (12 years, 4 months ago) by misho
CVS tags: MAIN, HEAD
Initial revision

    1: /* socket.c
    2: 
    3:    BSD socket interface code... */
    4: 
    5: /*
    6:  * Copyright (c) 2004-2011 by Internet Systems Consortium, Inc. ("ISC")
    7:  * Copyright (c) 1995-2003 by Internet Software Consortium
    8:  *
    9:  * Permission to use, copy, modify, and distribute this software for any
   10:  * purpose with or without fee is hereby granted, provided that the above
   11:  * copyright notice and this permission notice appear in all copies.
   12:  *
   13:  * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
   14:  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   15:  * MERCHANTABILITY AND FITNESS.  IN NO EVENT SHALL ISC BE LIABLE FOR
   16:  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   17:  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   18:  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
   19:  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   20:  *
   21:  *   Internet Systems Consortium, Inc.
   22:  *   950 Charter Street
   23:  *   Redwood City, CA 94063
   24:  *   <info@isc.org>
   25:  *   https://www.isc.org/
   26:  *
   27:  * This software has been written for Internet Systems Consortium
   28:  * by Ted Lemon in cooperation with Vixie Enterprises and Nominum, Inc.
   29:  * To learn more about Internet Systems Consortium, see
   30:  * ``https://www.isc.org/''.  To learn more about Vixie Enterprises,
   31:  * see ``http://www.vix.com''.   To learn more about Nominum, Inc., see
   32:  * ``http://www.nominum.com''.
   33:  */
   34: 
   35: /* SO_BINDTODEVICE support added by Elliot Poger (poger@leland.stanford.edu).
   36:  * This sockopt allows a socket to be bound to a particular interface,
   37:  * thus enabling the use of DHCPD on a multihomed host.
   38:  * If SO_BINDTODEVICE is defined in your system header files, the use of
   39:  * this sockopt will be automatically enabled. 
   40:  * I have implemented it under Linux; other systems should be doable also.
   41:  */
   42: 
   43: #include "dhcpd.h"
   44: #include <errno.h>
   45: #include <sys/ioctl.h>
   46: #include <sys/uio.h>
   47: #include <sys/uio.h>
   48: #include <signal.h>
   49: 
   50: #if defined(sun) && defined(USE_V4_PKTINFO)
   51: #include <sys/sysmacros.h>
   52: #include <net/if.h>
   53: #include <sys/sockio.h>
   54: #include <net/if_dl.h>
   55: #endif
   56: 
   57: #ifdef USE_SOCKET_FALLBACK
   58: # if !defined (USE_SOCKET_SEND)
   59: #  define if_register_send if_register_fallback
   60: #  define send_packet send_fallback
   61: #  define if_reinitialize_send if_reinitialize_fallback
   62: # endif
   63: #endif
   64: 
   65: #if defined(DHCPv6)
   66: /*
   67:  * XXX: this is gross.  we need to go back and overhaul the API for socket
   68:  * handling.
   69:  */
   70: static unsigned int global_v6_socket_references = 0;
   71: static int global_v6_socket = -1;
   72: 
   73: static void if_register_multicast(struct interface_info *info);
   74: #endif
   75: 
   76: /*
   77:  * We can use a single socket for AF_INET (similar to AF_INET6) on all
   78:  * interfaces configured for DHCP if the system has support for IP_PKTINFO
   79:  * and IP_RECVPKTINFO (for example Solaris 11).
   80:  */
   81: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
   82: static unsigned int global_v4_socket_references = 0;
   83: static int global_v4_socket = -1;
   84: #endif
   85: 
   86: /*
   87:  * If we can't bind() to a specific interface, then we can only have
   88:  * a single socket. This variable insures that we don't try to listen
   89:  * on two sockets.
   90:  */
   91: #if !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK)
   92: static int once = 0;
   93: #endif /* !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK) */
   94: 
   95: /* Reinitializes the specified interface after an address change.   This
   96:    is not required for packet-filter APIs. */
   97: 
   98: #if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
   99: void if_reinitialize_send (info)
  100: 	struct interface_info *info;
  101: {
  102: #if 0
  103: #ifndef USE_SOCKET_RECEIVE
  104: 	once = 0;
  105: 	close (info -> wfdesc);
  106: #endif
  107: 	if_register_send (info);
  108: #endif
  109: }
  110: #endif
  111: 
  112: #ifdef USE_SOCKET_RECEIVE
  113: void if_reinitialize_receive (info)
  114: 	struct interface_info *info;
  115: {
  116: #if 0
  117: 	once = 0;
  118: 	close (info -> rfdesc);
  119: 	if_register_receive (info);
  120: #endif
  121: }
  122: #endif
  123: 
  124: #if defined (USE_SOCKET_SEND) || \
  125: 	defined (USE_SOCKET_RECEIVE) || \
  126: 		defined (USE_SOCKET_FALLBACK)
  127: /* Generic interface registration routine... */
  128: int
  129: if_register_socket(struct interface_info *info, int family,
  130: 		   int *do_multicast)
  131: {
  132: 	struct sockaddr_storage name;
  133: 	int name_len;
  134: 	int sock;
  135: 	int flag;
  136: 	int domain;
  137: 
  138: 	/* INSIST((family == AF_INET) || (family == AF_INET6)); */
  139: 
  140: #if !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK)
  141: 	/* Make sure only one interface is registered. */
  142: 	if (once) {
  143: 		log_fatal ("The standard socket API can only support %s",
  144: 		       "hosts with a single network interface.");
  145: 	}
  146: 	once = 1;
  147: #endif
  148: 
  149: 	/* 
  150: 	 * Set up the address we're going to bind to, depending on the
  151: 	 * address family. 
  152: 	 */ 
  153: 	memset(&name, 0, sizeof(name));
  154: #ifdef DHCPv6
  155: 	if (family == AF_INET6) {
  156: 		struct sockaddr_in6 *addr = (struct sockaddr_in6 *)&name; 
  157: 		addr->sin6_family = AF_INET6;
  158: 		addr->sin6_port = local_port;
  159: 		/* XXX: What will happen to multicasts if this is nonzero? */
  160: 		memcpy(&addr->sin6_addr,
  161: 		       &local_address6, 
  162: 		       sizeof(addr->sin6_addr));
  163: #ifdef HAVE_SA_LEN
  164: 		addr->sin6_len = sizeof(*addr);
  165: #endif
  166: 		name_len = sizeof(*addr);
  167: 		domain = PF_INET6;
  168: 		if ((info->flags & INTERFACE_STREAMS) == INTERFACE_UPSTREAM) {
  169: 			*do_multicast = 0;
  170: 		}
  171: 	} else { 
  172: #else 
  173: 	{
  174: #endif /* DHCPv6 */
  175: 		struct sockaddr_in *addr = (struct sockaddr_in *)&name; 
  176: 		addr->sin_family = AF_INET;
  177: 		addr->sin_port = local_port;
  178: 		memcpy(&addr->sin_addr,
  179: 		       &local_address,
  180: 		       sizeof(addr->sin_addr));
  181: #ifdef HAVE_SA_LEN
  182: 		addr->sin_len = sizeof(*addr);
  183: #endif
  184: 		name_len = sizeof(*addr);
  185: 		domain = PF_INET;
  186: 	}
  187: 
  188: 	/* Make a socket... */
  189: 	sock = socket(domain, SOCK_DGRAM, IPPROTO_UDP);
  190: 	if (sock < 0) {
  191: 		log_fatal("Can't create dhcp socket: %m");
  192: 	}
  193: 
  194: 	/* Set the REUSEADDR option so that we don't fail to start if
  195: 	   we're being restarted. */
  196: 	flag = 1;
  197: 	if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
  198: 			(char *)&flag, sizeof(flag)) < 0) {
  199: 		log_fatal("Can't set SO_REUSEADDR option on dhcp socket: %m");
  200: 	}
  201: 
  202: 	/* Set the BROADCAST option so that we can broadcast DHCP responses.
  203: 	   We shouldn't do this for fallback devices, and we can detect that
  204: 	   a device is a fallback because it has no ifp structure. */
  205: 	if (info->ifp &&
  206: 	    (setsockopt(sock, SOL_SOCKET, SO_BROADCAST,
  207: 			 (char *)&flag, sizeof(flag)) < 0)) {
  208: 		log_fatal("Can't set SO_BROADCAST option on dhcp socket: %m");
  209: 	}
  210: 
  211: #if defined(DHCPv6) && defined(SO_REUSEPORT)
  212: 	/*
  213: 	 * We only set SO_REUSEPORT on AF_INET6 sockets, so that multiple
  214: 	 * daemons can bind to their own sockets and get data for their
  215: 	 * respective interfaces.  This does not (and should not) affect
  216: 	 * DHCPv4 sockets; we can't yet support BSD sockets well, much
  217: 	 * less multiple sockets.
  218: 	 */
  219: 	if (local_family == AF_INET6) {
  220: 		flag = 1;
  221: 		if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT,
  222: 			       (char *)&flag, sizeof(flag)) < 0) {
  223: 			log_fatal("Can't set SO_REUSEPORT option on dhcp "
  224: 				  "socket: %m");
  225: 		}
  226: 	}
  227: #endif
  228: 
  229: 	/* Bind the socket to this interface's IP address. */
  230: 	if (bind(sock, (struct sockaddr *)&name, name_len) < 0) {
  231: 		log_error("Can't bind to dhcp address: %m");
  232: 		log_error("Please make sure there is no other dhcp server");
  233: 		log_error("running and that there's no entry for dhcp or");
  234: 		log_error("bootp in /etc/inetd.conf.   Also make sure you");
  235: 		log_error("are not running HP JetAdmin software, which");
  236: 		log_fatal("includes a bootp server.");
  237: 	}
  238: 
  239: #if defined(SO_BINDTODEVICE)
  240: 	/* Bind this socket to this interface. */
  241: 	if ((local_family != AF_INET6) && (info->ifp != NULL) &&
  242: 	    setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE,
  243: 			(char *)(info -> ifp), sizeof(*(info -> ifp))) < 0) {
  244: 		log_fatal("setsockopt: SO_BINDTODEVICE: %m");
  245: 	}
  246: #endif
  247: 
  248: 	/* IP_BROADCAST_IF instructs the kernel which interface to send
  249: 	 * IP packets whose destination address is 255.255.255.255.  These
  250: 	 * will be treated as subnet broadcasts on the interface identified
  251: 	 * by ip address (info -> primary_address).  This is only known to
  252: 	 * be defined in SCO system headers, and may not be defined in all
  253: 	 * releases.
  254: 	 */
  255: #if defined(SCO) && defined(IP_BROADCAST_IF)
  256:         if (info->address_count &&
  257: 	    setsockopt(sock, IPPROTO_IP, IP_BROADCAST_IF, &info->addresses[0],
  258: 		       sizeof(info->addresses[0])) < 0)
  259: 		log_fatal("Can't set IP_BROADCAST_IF on dhcp socket: %m");
  260: #endif
  261: 
  262: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO)  && defined(USE_V4_PKTINFO)
  263: 	/*
  264: 	 * If we turn on IP_RECVPKTINFO we will be able to receive
  265: 	 * the interface index information of the received packet.
  266: 	 */
  267: 	if (family == AF_INET) {
  268: 		int on = 1;
  269: 		if (setsockopt(sock, IPPROTO_IP, IP_RECVPKTINFO, 
  270: 		               &on, sizeof(on)) != 0) {
  271: 			log_fatal("setsockopt: IPV_RECVPKTINFO: %m");
  272: 		}
  273: 	}
  274: #endif
  275: 
  276: #ifdef DHCPv6
  277: 	/*
  278: 	 * If we turn on IPV6_PKTINFO, we will be able to receive 
  279: 	 * additional information, such as the destination IP address.
  280: 	 * We need this to spot unicast packets.
  281: 	 */
  282: 	if (family == AF_INET6) {
  283: 		int on = 1;
  284: #ifdef IPV6_RECVPKTINFO
  285: 		/* RFC3542 */
  286: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_RECVPKTINFO, 
  287: 		               &on, sizeof(on)) != 0) {
  288: 			log_fatal("setsockopt: IPV6_RECVPKTINFO: %m");
  289: 		}
  290: #else
  291: 		/* RFC2292 */
  292: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_PKTINFO, 
  293: 		               &on, sizeof(on)) != 0) {
  294: 			log_fatal("setsockopt: IPV6_PKTINFO: %m");
  295: 		}
  296: #endif
  297: 	}
  298: 
  299: 	if ((family == AF_INET6) &&
  300: 	    ((info->flags & INTERFACE_UPSTREAM) != 0)) {
  301: 		int hop_limit = 32;
  302: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
  303: 			       &hop_limit, sizeof(int)) < 0) {
  304: 			log_fatal("setsockopt: IPV6_MULTICAST_HOPS: %m");
  305: 		}
  306: 	}
  307: #endif /* DHCPv6 */
  308: 
  309: 	return sock;
  310: }
  311: #endif /* USE_SOCKET_SEND || USE_SOCKET_RECEIVE || USE_SOCKET_FALLBACK */
  312: 
  313: #if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
  314: void if_register_send (info)
  315: 	struct interface_info *info;
  316: {
  317: #ifndef USE_SOCKET_RECEIVE
  318: 	info->wfdesc = if_register_socket(info, AF_INET, 0);
  319: 	/* If this is a normal IPv4 address, get the hardware address. */
  320: 	if (strcmp(info->name, "fallback") != 0)
  321: 		get_hw_addr(info->name, &info->hw_address);
  322: #if defined (USE_SOCKET_FALLBACK)
  323: 	/* Fallback only registers for send, but may need to receive as
  324: 	   well. */
  325: 	info->rfdesc = info->wfdesc;
  326: #endif
  327: #else
  328: 	info->wfdesc = info->rfdesc;
  329: #endif
  330: 	if (!quiet_interface_discovery)
  331: 		log_info ("Sending on   Socket/%s%s%s",
  332: 		      info->name,
  333: 		      (info->shared_network ? "/" : ""),
  334: 		      (info->shared_network ?
  335: 		       info->shared_network->name : ""));
  336: }
  337: 
  338: #if defined (USE_SOCKET_SEND)
  339: void if_deregister_send (info)
  340: 	struct interface_info *info;
  341: {
  342: #ifndef USE_SOCKET_RECEIVE
  343: 	close (info -> wfdesc);
  344: #endif
  345: 	info -> wfdesc = -1;
  346: 
  347: 	if (!quiet_interface_discovery)
  348: 		log_info ("Disabling output on Socket/%s%s%s",
  349: 		      info -> name,
  350: 		      (info -> shared_network ? "/" : ""),
  351: 		      (info -> shared_network ?
  352: 		       info -> shared_network -> name : ""));
  353: }
  354: #endif /* USE_SOCKET_SEND */
  355: #endif /* USE_SOCKET_SEND || USE_SOCKET_FALLBACK */
  356: 
  357: #ifdef USE_SOCKET_RECEIVE
  358: void if_register_receive (info)
  359: 	struct interface_info *info;
  360: {
  361: 
  362: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  363: 	if (global_v4_socket_references == 0) {
  364: 		global_v4_socket = if_register_socket(info, AF_INET, 0);
  365: 		if (global_v4_socket < 0) {
  366: 			/*
  367: 			 * if_register_socket() fatally logs if it fails to
  368: 			 * create a socket, this is just a sanity check.
  369: 			 */
  370: 			log_fatal("Failed to create AF_INET socket %s:%d",
  371: 				  MDL);
  372: 		}
  373: 	}
  374: 		
  375: 	info->rfdesc = global_v4_socket;
  376: 	global_v4_socket_references++;
  377: #else
  378: 	/* If we're using the socket API for sending and receiving,
  379: 	   we don't need to register this interface twice. */
  380: 	info->rfdesc = if_register_socket(info, AF_INET, 0);
  381: #endif /* IP_PKTINFO... */
  382: 	/* If this is a normal IPv4 address, get the hardware address. */
  383: 	if (strcmp(info->name, "fallback") != 0)
  384: 		get_hw_addr(info->name, &info->hw_address);
  385: 
  386: 	if (!quiet_interface_discovery)
  387: 		log_info ("Listening on Socket/%s%s%s",
  388: 		      info->name,
  389: 		      (info->shared_network ? "/" : ""),
  390: 		      (info->shared_network ?
  391: 		       info->shared_network->name : ""));
  392: }
  393: 
  394: void if_deregister_receive (info)
  395: 	struct interface_info *info;
  396: {
  397: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  398: 	/* Dereference the global v4 socket. */
  399: 	if ((info->rfdesc == global_v4_socket) &&
  400: 	    (info->wfdesc == global_v4_socket) &&
  401: 	    (global_v4_socket_references > 0)) {
  402: 		global_v4_socket_references--;
  403: 		info->rfdesc = -1;
  404: 	} else {
  405: 		log_fatal("Impossible condition at %s:%d", MDL);
  406: 	}
  407: 
  408: 	if (global_v4_socket_references == 0) {
  409: 		close(global_v4_socket);
  410: 		global_v4_socket = -1;
  411: 	}
  412: #else
  413: 	close(info->rfdesc);
  414: 	info->rfdesc = -1;
  415: #endif /* IP_PKTINFO... */
  416: 	if (!quiet_interface_discovery)
  417: 		log_info ("Disabling input on Socket/%s%s%s",
  418: 		      info -> name,
  419: 		      (info -> shared_network ? "/" : ""),
  420: 		      (info -> shared_network ?
  421: 		       info -> shared_network -> name : ""));
  422: }
  423: #endif /* USE_SOCKET_RECEIVE */
  424: 
  425: 
  426: #ifdef DHCPv6 
  427: /*
  428:  * This function joins the interface to DHCPv6 multicast groups so we will
  429:  * receive multicast messages.
  430:  */
  431: static void
  432: if_register_multicast(struct interface_info *info) {
  433: 	int sock = info->rfdesc;
  434: 	struct ipv6_mreq mreq;
  435: 
  436: 	if (inet_pton(AF_INET6, All_DHCP_Relay_Agents_and_Servers,
  437: 		      &mreq.ipv6mr_multiaddr) <= 0) {
  438: 		log_fatal("inet_pton: unable to convert '%s'", 
  439: 			  All_DHCP_Relay_Agents_and_Servers);
  440: 	}
  441: 	mreq.ipv6mr_interface = if_nametoindex(info->name);
  442: 	if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, 
  443: 		       &mreq, sizeof(mreq)) < 0) {
  444: 		log_fatal("setsockopt: IPV6_JOIN_GROUP: %m");
  445: 	}
  446: 
  447: 	/*
  448: 	 * The relay agent code sets the streams so you know which way
  449: 	 * is up and down.  But a relay agent shouldn't join to the
  450: 	 * Server address, or else you get fun loops.  So up or down
  451: 	 * doesn't matter, we're just using that config to sense this is
  452: 	 * a relay agent.
  453: 	 */
  454: 	if ((info->flags & INTERFACE_STREAMS) == 0) {
  455: 		if (inet_pton(AF_INET6, All_DHCP_Servers,
  456: 			      &mreq.ipv6mr_multiaddr) <= 0) {
  457: 			log_fatal("inet_pton: unable to convert '%s'", 
  458: 				  All_DHCP_Servers);
  459: 		}
  460: 		mreq.ipv6mr_interface = if_nametoindex(info->name);
  461: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, 
  462: 			       &mreq, sizeof(mreq)) < 0) {
  463: 			log_fatal("setsockopt: IPV6_JOIN_GROUP: %m");
  464: 		}
  465: 	}
  466: }
  467: 
  468: void
  469: if_register6(struct interface_info *info, int do_multicast) {
  470: 	/* Bounce do_multicast to a stack variable because we may change it. */
  471: 	int req_multi = do_multicast;
  472: 
  473: 	if (global_v6_socket_references == 0) {
  474: 		global_v6_socket = if_register_socket(info, AF_INET6,
  475: 						      &req_multi);
  476: 		if (global_v6_socket < 0) {
  477: 			/*
  478: 			 * if_register_socket() fatally logs if it fails to
  479: 			 * create a socket, this is just a sanity check.
  480: 			 */
  481: 			log_fatal("Impossible condition at %s:%d", MDL);
  482: 		} else {
  483: 			log_info("Bound to *:%d", ntohs(local_port));
  484: 		}
  485: 	}
  486: 		
  487: 	info->rfdesc = global_v6_socket;
  488: 	info->wfdesc = global_v6_socket;
  489: 	global_v6_socket_references++;
  490: 
  491: 	if (req_multi)
  492: 		if_register_multicast(info);
  493: 
  494: 	get_hw_addr(info->name, &info->hw_address);
  495: 
  496: 	if (!quiet_interface_discovery) {
  497: 		if (info->shared_network != NULL) {
  498: 			log_info("Listening on Socket/%d/%s/%s",
  499: 				 global_v6_socket, info->name, 
  500: 				 info->shared_network->name);
  501: 			log_info("Sending on   Socket/%d/%s/%s",
  502: 				 global_v6_socket, info->name,
  503: 				 info->shared_network->name);
  504: 		} else {
  505: 			log_info("Listening on Socket/%s", info->name);
  506: 			log_info("Sending on   Socket/%s", info->name);
  507: 		}
  508: 	}
  509: }
  510: 
  511: void 
  512: if_deregister6(struct interface_info *info) {
  513: 	/* Dereference the global v6 socket. */
  514: 	if ((info->rfdesc == global_v6_socket) &&
  515: 	    (info->wfdesc == global_v6_socket) &&
  516: 	    (global_v6_socket_references > 0)) {
  517: 		global_v6_socket_references--;
  518: 		info->rfdesc = -1;
  519: 		info->wfdesc = -1;
  520: 	} else {
  521: 		log_fatal("Impossible condition at %s:%d", MDL);
  522: 	}
  523: 
  524: 	if (!quiet_interface_discovery) {
  525: 		if (info->shared_network != NULL) {
  526: 			log_info("Disabling input on  Socket/%s/%s", info->name,
  527: 		       		 info->shared_network->name);
  528: 			log_info("Disabling output on Socket/%s/%s", info->name,
  529: 		       		 info->shared_network->name);
  530: 		} else {
  531: 			log_info("Disabling input on  Socket/%s", info->name);
  532: 			log_info("Disabling output on Socket/%s", info->name);
  533: 		}
  534: 	}
  535: 
  536: 	if (global_v6_socket_references == 0) {
  537: 		close(global_v6_socket);
  538: 		global_v6_socket = -1;
  539: 
  540: 		log_info("Unbound from *:%d", ntohs(local_port));
  541: 	}
  542: }
  543: #endif /* DHCPv6 */
  544: 
  545: #if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
  546: ssize_t send_packet (interface, packet, raw, len, from, to, hto)
  547: 	struct interface_info *interface;
  548: 	struct packet *packet;
  549: 	struct dhcp_packet *raw;
  550: 	size_t len;
  551: 	struct in_addr from;
  552: 	struct sockaddr_in *to;
  553: 	struct hardware *hto;
  554: {
  555: 	int result;
  556: #ifdef IGNORE_HOSTUNREACH
  557: 	int retry = 0;
  558: 	do {
  559: #endif
  560: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  561: 		struct in_pktinfo pktinfo;
  562: 
  563: 		if (interface->ifp != NULL) {
  564: 			memset(&pktinfo, 0, sizeof (pktinfo));
  565: 			pktinfo.ipi_ifindex = interface->ifp->ifr_index;
  566: 			if (setsockopt(interface->wfdesc, IPPROTO_IP,
  567: 				       IP_PKTINFO, (char *)&pktinfo,
  568: 				       sizeof(pktinfo)) < 0) 
  569: 				log_fatal("setsockopt: IP_PKTINFO: %m");
  570: 		}
  571: #endif
  572: 		result = sendto (interface -> wfdesc, (char *)raw, len, 0,
  573: 				 (struct sockaddr *)to, sizeof *to);
  574: #ifdef IGNORE_HOSTUNREACH
  575: 	} while (to -> sin_addr.s_addr == htonl (INADDR_BROADCAST) &&
  576: 		 result < 0 &&
  577: 		 (errno == EHOSTUNREACH ||
  578: 		  errno == ECONNREFUSED) &&
  579: 		 retry++ < 10);
  580: #endif
  581: 	if (result < 0) {
  582: 		log_error ("send_packet: %m");
  583: 		if (errno == ENETUNREACH)
  584: 			log_error ("send_packet: please consult README file%s",
  585: 				   " regarding broadcast address.");
  586: 	}
  587: 	return result;
  588: }
  589: 
  590: #endif /* USE_SOCKET_SEND || USE_SOCKET_FALLBACK */
  591: 
  592: #ifdef DHCPv6
  593: /*
  594:  * Solaris 9 is missing the CMSG_LEN and CMSG_SPACE macros, so we will 
  595:  * synthesize them (based on the BIND 9 technique).
  596:  */
  597: 
  598: #ifndef CMSG_LEN
  599: static size_t CMSG_LEN(size_t len) {
  600: 	size_t hdrlen;
  601: 	/*
  602: 	 * Cast NULL so that any pointer arithmetic performed by CMSG_DATA
  603: 	 * is correct.
  604: 	 */
  605: 	hdrlen = (size_t)CMSG_DATA(((struct cmsghdr *)NULL));
  606: 	return hdrlen + len;
  607: }
  608: #endif /* !CMSG_LEN */
  609: 
  610: #ifndef CMSG_SPACE
  611: static size_t CMSG_SPACE(size_t len) {
  612: 	struct msghdr msg;
  613: 	struct cmsghdr *cmsgp;
  614: 
  615: 	/*
  616: 	 * XXX: The buffer length is an ad-hoc value, but should be enough
  617: 	 * in a practical sense.
  618: 	 */
  619: 	union {
  620: 		struct cmsghdr cmsg_sizer;
  621: 		u_int8_t pktinfo_sizer[sizeof(struct cmsghdr) + 1024];
  622: 	} dummybuf;
  623: 
  624: 	memset(&msg, 0, sizeof(msg));
  625: 	msg.msg_control = &dummybuf;
  626: 	msg.msg_controllen = sizeof(dummybuf);
  627: 
  628: 	cmsgp = (struct cmsghdr *)&dummybuf;
  629: 	cmsgp->cmsg_len = CMSG_LEN(len);
  630: 
  631: 	cmsgp = CMSG_NXTHDR(&msg, cmsgp);
  632: 	if (cmsgp != NULL) {
  633: 		return (char *)cmsgp - (char *)msg.msg_control;
  634: 	} else {
  635: 		return 0;
  636: 	}
  637: }
  638: #endif /* !CMSG_SPACE */
  639: 
  640: #endif /* DHCPv6 */
  641: 
  642: #if defined(DHCPv6) || \
  643: 	(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && \
  644: 	 defined(USE_V4_PKTINFO))
  645: /*
  646:  * For both send_packet6() and receive_packet6() we need to allocate
  647:  * space for the cmsg header information.  We do this once and reuse
  648:  * the buffer.  We also need the control buf for send_packet() and
  649:  * receive_packet() when we use a single socket and IP_PKTINFO to
  650:  * send the packet out the correct interface.
  651:  */
  652: static void   *control_buf = NULL;
  653: static size_t  control_buf_len = 0;
  654: 
  655: static void
  656: allocate_cmsg_cbuf(void) {
  657: 	control_buf_len = CMSG_SPACE(sizeof(struct in6_pktinfo));
  658: 	control_buf = dmalloc(control_buf_len, MDL);
  659: 	return;
  660: }
  661: #endif /* DHCPv6, IP_PKTINFO ... */
  662: 
  663: #ifdef DHCPv6
  664: /* 
  665:  * For both send_packet6() and receive_packet6() we need to use the 
  666:  * sendmsg()/recvmsg() functions rather than the simpler send()/recv()
  667:  * functions.
  668:  *
  669:  * In the case of send_packet6(), we need to do this in order to insure
  670:  * that the reply packet leaves on the same interface that it arrived 
  671:  * on. 
  672:  *
  673:  * In the case of receive_packet6(), we need to do this in order to 
  674:  * get the IP address the packet was sent to. This is used to identify
  675:  * whether a packet is multicast or unicast.
  676:  *
  677:  * Helpful man pages: recvmsg, readv (talks about the iovec stuff), cmsg.
  678:  *
  679:  * Also see the sections in RFC 3542 about IPV6_PKTINFO.
  680:  */
  681: 
  682: /* Send an IPv6 packet */
  683: ssize_t send_packet6(struct interface_info *interface,
  684: 		     const unsigned char *raw, size_t len,
  685: 		     struct sockaddr_in6 *to) {
  686: 	struct msghdr m;
  687: 	struct iovec v;
  688: 	int result;
  689: 	struct in6_pktinfo *pktinfo;
  690: 	struct cmsghdr *cmsg;
  691: 
  692: 	/*
  693: 	 * If necessary allocate space for the control message header.
  694: 	 * The space is common between send and receive.
  695: 	 */
  696: 
  697: 	if (control_buf == NULL) {
  698: 		allocate_cmsg_cbuf();
  699: 		if (control_buf == NULL) {
  700: 			log_error("send_packet6: unable to allocate cmsg header");
  701: 			return(ENOMEM);
  702: 		}
  703: 	}
  704: 	memset(control_buf, 0, control_buf_len);
  705: 
  706: 	/*
  707: 	 * Initialize our message header structure.
  708: 	 */
  709: 	memset(&m, 0, sizeof(m));
  710: 
  711: 	/*
  712: 	 * Set the target address we're sending to.
  713: 	 */
  714: 	m.msg_name = to;
  715: 	m.msg_namelen = sizeof(*to);
  716: 
  717: 	/*
  718: 	 * Set the data buffer we're sending. (Using this wacky 
  719: 	 * "scatter-gather" stuff... we only have a single chunk 
  720: 	 * of data to send, so we declare a single vector entry.)
  721: 	 */
  722: 	v.iov_base = (char *)raw;
  723: 	v.iov_len = len;
  724: 	m.msg_iov = &v;
  725: 	m.msg_iovlen = 1;
  726: 
  727: 	/*
  728: 	 * Setting the interface is a bit more involved.
  729: 	 * 
  730: 	 * We have to create a "control message", and set that to 
  731: 	 * define the IPv6 packet information. We could set the
  732: 	 * source address if we wanted, but we can safely let the
  733: 	 * kernel decide what that should be. 
  734: 	 */
  735: 	m.msg_control = control_buf;
  736: 	m.msg_controllen = control_buf_len;
  737: 	cmsg = CMSG_FIRSTHDR(&m);
  738: 	cmsg->cmsg_level = IPPROTO_IPV6;
  739: 	cmsg->cmsg_type = IPV6_PKTINFO;
  740: 	cmsg->cmsg_len = CMSG_LEN(sizeof(*pktinfo));
  741: 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cmsg);
  742: 	memset(pktinfo, 0, sizeof(*pktinfo));
  743: 	pktinfo->ipi6_ifindex = if_nametoindex(interface->name);
  744: 	m.msg_controllen = cmsg->cmsg_len;
  745: 
  746: 	result = sendmsg(interface->wfdesc, &m, 0);
  747: 	if (result < 0) {
  748: 		log_error("send_packet6: %m");
  749: 	}
  750: 	return result;
  751: }
  752: #endif /* DHCPv6 */
  753: 
  754: #ifdef USE_SOCKET_RECEIVE
  755: ssize_t receive_packet (interface, buf, len, from, hfrom)
  756: 	struct interface_info *interface;
  757: 	unsigned char *buf;
  758: 	size_t len;
  759: 	struct sockaddr_in *from;
  760: 	struct hardware *hfrom;
  761: {
  762: #if !defined(USE_V4_PKTINFO)
  763: 	SOCKLEN_T flen = sizeof *from;
  764: #endif
  765: 	int result;
  766: 
  767: 	/*
  768: 	 * The normal Berkeley socket interface doesn't give us any way
  769: 	 * to know what hardware interface we received the message on,
  770: 	 * but we should at least make sure the structure is emptied.
  771: 	 */
  772: 	memset(hfrom, 0, sizeof(*hfrom));
  773: 
  774: #ifdef IGNORE_HOSTUNREACH
  775: 	int retry = 0;
  776: 	do {
  777: #endif
  778: 
  779: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  780: 	struct msghdr m;
  781: 	struct iovec v;
  782: 	struct cmsghdr *cmsg;
  783: 	struct in_pktinfo *pktinfo;
  784: 	unsigned int ifindex;
  785: 	int found_pktinfo;
  786: 
  787: 	/*
  788: 	 * If necessary allocate space for the control message header.
  789: 	 * The space is common between send and receive.
  790: 	 */
  791: 	if (control_buf == NULL) {
  792: 		allocate_cmsg_cbuf();
  793: 		if (control_buf == NULL) {
  794: 			log_error("receive_packet: unable to allocate cmsg "
  795: 				  "header");
  796: 			return(ENOMEM);
  797: 		}
  798: 	}
  799: 	memset(control_buf, 0, control_buf_len);
  800: 
  801: 	/*
  802: 	 * Initialize our message header structure.
  803: 	 */
  804: 	memset(&m, 0, sizeof(m));
  805: 
  806: 	/*
  807: 	 * Point so we can get the from address.
  808: 	 */
  809: 	m.msg_name = from;
  810: 	m.msg_namelen = sizeof(*from);
  811: 
  812: 	/*
  813: 	 * Set the data buffer we're receiving. (Using this wacky 
  814: 	 * "scatter-gather" stuff... but we that doesn't really make
  815: 	 * sense for us, so we use a single vector entry.)
  816: 	 */
  817: 	v.iov_base = buf;
  818: 	v.iov_len = len;
  819: 	m.msg_iov = &v;
  820: 	m.msg_iovlen = 1;
  821: 
  822: 	/*
  823: 	 * Getting the interface is a bit more involved.
  824: 	 *
  825: 	 * We set up some space for a "control message". We have 
  826: 	 * previously asked the kernel to give us packet 
  827: 	 * information (when we initialized the interface), so we
  828: 	 * should get the destination address from that.
  829: 	 */
  830: 	m.msg_control = control_buf;
  831: 	m.msg_controllen = control_buf_len;
  832: 
  833: 	result = recvmsg(interface->rfdesc, &m, 0);
  834: 
  835: 	if (result >= 0) {
  836: 		/*
  837: 		 * If we did read successfully, then we need to loop
  838: 		 * through the control messages we received and 
  839: 		 * find the one with our destination address.
  840: 		 *
  841: 		 * We also keep a flag to see if we found it. If we 
  842: 		 * didn't, then we consider this to be an error.
  843: 		 */
  844: 		found_pktinfo = 0;
  845: 		cmsg = CMSG_FIRSTHDR(&m);
  846: 		while (cmsg != NULL) {
  847: 			if ((cmsg->cmsg_level == IPPROTO_IP) && 
  848: 			    (cmsg->cmsg_type == IP_PKTINFO)) {
  849: 				pktinfo = (struct in_pktinfo *)CMSG_DATA(cmsg);
  850: 				ifindex = pktinfo->ipi_ifindex;
  851: 				/*
  852: 				 * We pass the ifindex back to the caller 
  853: 				 * using the unused hfrom parameter avoiding
  854: 				 * interface changes between sockets and 
  855: 				 * the discover code.
  856: 				 */
  857: 				memcpy(hfrom->hbuf, &ifindex, sizeof(ifindex));
  858: 				found_pktinfo = 1;
  859: 			}
  860: 			cmsg = CMSG_NXTHDR(&m, cmsg);
  861: 		}
  862: 		if (!found_pktinfo) {
  863: 			result = -1;
  864: 			errno = EIO;
  865: 		}
  866: 	}
  867: #else
  868: 		result = recvfrom (interface -> rfdesc, (char *)buf, len, 0,
  869: 				   (struct sockaddr *)from, &flen);
  870: #endif /* IP_PKTINFO ... */
  871: #ifdef IGNORE_HOSTUNREACH
  872: 	} while (result < 0 &&
  873: 		 (errno == EHOSTUNREACH ||
  874: 		  errno == ECONNREFUSED) &&
  875: 		 retry++ < 10);
  876: #endif
  877: 	return result;
  878: }
  879: 
  880: #endif /* USE_SOCKET_RECEIVE */
  881: 
  882: #ifdef DHCPv6
  883: ssize_t 
  884: receive_packet6(struct interface_info *interface, 
  885: 		unsigned char *buf, size_t len, 
  886: 		struct sockaddr_in6 *from, struct in6_addr *to_addr,
  887: 		unsigned int *if_idx)
  888: {
  889: 	struct msghdr m;
  890: 	struct iovec v;
  891: 	int result;
  892: 	struct cmsghdr *cmsg;
  893: 	struct in6_pktinfo *pktinfo;
  894: 	int found_pktinfo;
  895: 
  896: 	/*
  897: 	 * If necessary allocate space for the control message header.
  898: 	 * The space is common between send and receive.
  899: 	 */
  900: 	if (control_buf == NULL) {
  901: 		allocate_cmsg_cbuf();
  902: 		if (control_buf == NULL) {
  903: 			log_error("receive_packet6: unable to allocate cmsg "
  904: 				  "header");
  905: 			return(ENOMEM);
  906: 		}
  907: 	}
  908: 	memset(control_buf, 0, control_buf_len);
  909: 
  910: 	/*
  911: 	 * Initialize our message header structure.
  912: 	 */
  913: 	memset(&m, 0, sizeof(m));
  914: 
  915: 	/*
  916: 	 * Point so we can get the from address.
  917: 	 */
  918: 	m.msg_name = from;
  919: 	m.msg_namelen = sizeof(*from);
  920: 
  921: 	/*
  922: 	 * Set the data buffer we're receiving. (Using this wacky 
  923: 	 * "scatter-gather" stuff... but we that doesn't really make
  924: 	 * sense for us, so we use a single vector entry.)
  925: 	 */
  926: 	v.iov_base = buf;
  927: 	v.iov_len = len;
  928: 	m.msg_iov = &v;
  929: 	m.msg_iovlen = 1;
  930: 
  931: 	/*
  932: 	 * Getting the interface is a bit more involved.
  933: 	 *
  934: 	 * We set up some space for a "control message". We have 
  935: 	 * previously asked the kernel to give us packet 
  936: 	 * information (when we initialized the interface), so we
  937: 	 * should get the destination address from that.
  938: 	 */
  939: 	m.msg_control = control_buf;
  940: 	m.msg_controllen = control_buf_len;
  941: 
  942: 	result = recvmsg(interface->rfdesc, &m, 0);
  943: 
  944: 	if (result >= 0) {
  945: 		/*
  946: 		 * If we did read successfully, then we need to loop
  947: 		 * through the control messages we received and 
  948: 		 * find the one with our destination address.
  949: 		 *
  950: 		 * We also keep a flag to see if we found it. If we 
  951: 		 * didn't, then we consider this to be an error.
  952: 		 */
  953: 		found_pktinfo = 0;
  954: 		cmsg = CMSG_FIRSTHDR(&m);
  955: 		while (cmsg != NULL) {
  956: 			if ((cmsg->cmsg_level == IPPROTO_IPV6) && 
  957: 			    (cmsg->cmsg_type == IPV6_PKTINFO)) {
  958: 				pktinfo = (struct in6_pktinfo *)CMSG_DATA(cmsg);
  959: 				*to_addr = pktinfo->ipi6_addr;
  960: 				*if_idx = pktinfo->ipi6_ifindex;
  961: 				found_pktinfo = 1;
  962: 			}
  963: 			cmsg = CMSG_NXTHDR(&m, cmsg);
  964: 		}
  965: 		if (!found_pktinfo) {
  966: 			result = -1;
  967: 			errno = EIO;
  968: 		}
  969: 	}
  970: 
  971: 	return result;
  972: }
  973: #endif /* DHCPv6 */
  974: 
  975: #if defined (USE_SOCKET_FALLBACK)
  976: /* This just reads in a packet and silently discards it. */
  977: 
  978: isc_result_t fallback_discard (object)
  979: 	omapi_object_t *object;
  980: {
  981: 	char buf [1540];
  982: 	struct sockaddr_in from;
  983: 	SOCKLEN_T flen = sizeof from;
  984: 	int status;
  985: 	struct interface_info *interface;
  986: 
  987: 	if (object -> type != dhcp_type_interface)
  988: 		return ISC_R_INVALIDARG;
  989: 	interface = (struct interface_info *)object;
  990: 
  991: 	status = recvfrom (interface -> wfdesc, buf, sizeof buf, 0,
  992: 			   (struct sockaddr *)&from, &flen);
  993: #if defined (DEBUG)
  994: 	/* Only report fallback discard errors if we're debugging. */
  995: 	if (status < 0) {
  996: 		log_error ("fallback_discard: %m");
  997: 		return ISC_R_UNEXPECTED;
  998: 	}
  999: #endif
 1000: 	return ISC_R_SUCCESS;
 1001: }
 1002: #endif /* USE_SOCKET_FALLBACK */
 1003: 
 1004: #if defined (USE_SOCKET_SEND)
 1005: int can_unicast_without_arp (ip)
 1006: 	struct interface_info *ip;
 1007: {
 1008: 	return 0;
 1009: }
 1010: 
 1011: int can_receive_unicast_unconfigured (ip)
 1012: 	struct interface_info *ip;
 1013: {
 1014: #if defined (SOCKET_CAN_RECEIVE_UNICAST_UNCONFIGURED)
 1015: 	return 1;
 1016: #else
 1017: 	return 0;
 1018: #endif
 1019: }
 1020: 
 1021: int supports_multiple_interfaces (ip)
 1022: 	struct interface_info *ip;
 1023: {
 1024: #if defined(SO_BINDTODEVICE) || \
 1025: 	(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && \
 1026: 	 defined(USE_V4_PKTINFO))
 1027: 	return(1);
 1028: #else
 1029: 	return(0);
 1030: #endif
 1031: }
 1032: 
 1033: /* If we have SO_BINDTODEVICE, set up a fallback interface; otherwise,
 1034:    do not. */
 1035: 
 1036: void maybe_setup_fallback ()
 1037: {
 1038: #if defined (USE_SOCKET_FALLBACK)
 1039: 	isc_result_t status;
 1040: 	struct interface_info *fbi = (struct interface_info *)0;
 1041: 	if (setup_fallback (&fbi, MDL)) {
 1042: 		fbi -> wfdesc = if_register_socket (fbi, AF_INET, 0);
 1043: 		fbi -> rfdesc = fbi -> wfdesc;
 1044: 		log_info ("Sending on   Socket/%s%s%s",
 1045: 		      fbi -> name,
 1046: 		      (fbi -> shared_network ? "/" : ""),
 1047: 		      (fbi -> shared_network ?
 1048: 		       fbi -> shared_network -> name : ""));
 1049: 	
 1050: 		status = omapi_register_io_object ((omapi_object_t *)fbi,
 1051: 						   if_readsocket, 0,
 1052: 						   fallback_discard, 0, 0);
 1053: 		if (status != ISC_R_SUCCESS)
 1054: 			log_fatal ("Can't register I/O handle for %s: %s",
 1055: 				   fbi -> name, isc_result_totext (status));
 1056: 		interface_dereference (&fbi, MDL);
 1057: 	}
 1058: #endif
 1059: }
 1060: 
 1061: 
 1062: #if defined(sun) && defined(USE_V4_PKTINFO)
 1063: /* This code assumes the existence of SIOCGLIFHWADDR */
 1064: void
 1065: get_hw_addr(const char *name, struct hardware *hw) {
 1066: 	struct sockaddr_dl *dladdrp;
 1067: 	int rv, sock, i;
 1068: 	struct lifreq lifr;
 1069: 
 1070: 	memset(&lifr, 0, sizeof (lifr));
 1071: 	(void) strlcpy(lifr.lifr_name, name, sizeof (lifr.lifr_name));
 1072: 	/*
 1073: 	 * Check if the interface is a virtual or IPMP interface - in those
 1074: 	 * cases it has no hw address, so generate a random one.
 1075: 	 */
 1076: 	if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
 1077: 	    ioctl(sock, SIOCGLIFFLAGS, &lifr) < 0) {
 1078: 		if (sock != -1)
 1079: 			(void) close(sock);
 1080: 
 1081: #ifdef DHCPv6
 1082: 		/*
 1083: 		 * If approrpriate try this with an IPv6 socket
 1084: 		 */
 1085: 		if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) >= 0 &&
 1086: 		    ioctl(sock, SIOCGLIFFLAGS, &lifr) >= 0) {
 1087: 			goto flag_check;
 1088: 		}
 1089: 		if (sock != -1)
 1090: 			(void) close(sock);
 1091: #endif
 1092: 		log_fatal("Couldn't get interface flags for %s: %m", name);
 1093: 
 1094: 	}
 1095: 
 1096:  flag_check:
 1097: 	if (lifr.lifr_flags & (IFF_VIRTUAL|IFF_IPMP)) {
 1098: 		hw->hlen = sizeof (hw->hbuf);
 1099: 		srandom((long)gethrtime());
 1100: 
 1101: 		for (i = 0; i < hw->hlen; ++i) {
 1102: 			hw->hbuf[i] = random() % 256;
 1103: 		}
 1104: 
 1105: 		if (sock != -1)
 1106: 			(void) close(sock);
 1107: 		return;
 1108: 	}
 1109: 
 1110: 	if (ioctl(sock, SIOCGLIFHWADDR, &lifr) < 0)
 1111: 		log_fatal("Couldn't get interface hardware address for %s: %m",
 1112: 			  name);
 1113: 	dladdrp = (struct sockaddr_dl *)&lifr.lifr_addr;
 1114: 	hw->hlen = dladdrp->sdl_alen;
 1115: 	memcpy(hw->hbuf, LLADDR(dladdrp), hw->hlen);
 1116: 
 1117: 	if (sock != -1)
 1118: 		(void) close(sock);
 1119: }
 1120: #endif /* defined(sun) */
 1121: 
 1122: #endif /* USE_SOCKET_SEND */
 1123: 
 1124: /*
 1125:  * Code to set a handler for signals.  This
 1126:  * exists to allow us to ignore SIGPIPE signals
 1127:  * but could be used for other purposes in the
 1128:  * future.
 1129:  */
 1130: 
 1131: isc_result_t
 1132: dhcp_handle_signal(int sig, void (*handler)(int)) {
 1133: 	struct sigaction sa;
 1134: 
 1135: 	memset(&sa, 0, sizeof(sa));
 1136: 	sa.sa_handler = handler;
 1137: 
 1138: 	if (sigfillset(&sa.sa_mask) != 0 ||
 1139: 	    sigaction(sig, &sa, NULL) < 0) {
 1140: 		log_error("Unable to set up signal handler for %d, %m", sig);
 1141: 		return (ISC_R_UNEXPECTED);
 1142: 	}
 1143: 
 1144: 	return (ISC_R_SUCCESS);
 1145: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>