File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / dhcp / common / socket.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Oct 9 09:06:54 2012 UTC (12 years ago) by misho
Branches: dhcp, MAIN
CVS tags: v4_1_R7p0, v4_1_R7, v4_1_R4, HEAD
dhcp 4.1 r7

    1: /* socket.c
    2: 
    3:    BSD socket interface code... */
    4: 
    5: /*
    6:  * Copyright (c) 2004-2012 by Internet Systems Consortium, Inc. ("ISC")
    7:  * Copyright (c) 1995-2003 by Internet Software Consortium
    8:  *
    9:  * Permission to use, copy, modify, and distribute this software for any
   10:  * purpose with or without fee is hereby granted, provided that the above
   11:  * copyright notice and this permission notice appear in all copies.
   12:  *
   13:  * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
   14:  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   15:  * MERCHANTABILITY AND FITNESS.  IN NO EVENT SHALL ISC BE LIABLE FOR
   16:  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   17:  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   18:  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
   19:  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   20:  *
   21:  *   Internet Systems Consortium, Inc.
   22:  *   950 Charter Street
   23:  *   Redwood City, CA 94063
   24:  *   <info@isc.org>
   25:  *   https://www.isc.org/
   26:  *
   27:  * This software has been written for Internet Systems Consortium
   28:  * by Ted Lemon in cooperation with Vixie Enterprises and Nominum, Inc.
   29:  * To learn more about Internet Systems Consortium, see
   30:  * ``https://www.isc.org/''.  To learn more about Vixie Enterprises,
   31:  * see ``http://www.vix.com''.   To learn more about Nominum, Inc., see
   32:  * ``http://www.nominum.com''.
   33:  */
   34: 
   35: /* SO_BINDTODEVICE support added by Elliot Poger (poger@leland.stanford.edu).
   36:  * This sockopt allows a socket to be bound to a particular interface,
   37:  * thus enabling the use of DHCPD on a multihomed host.
   38:  * If SO_BINDTODEVICE is defined in your system header files, the use of
   39:  * this sockopt will be automatically enabled. 
   40:  * I have implemented it under Linux; other systems should be doable also.
   41:  */
   42: 
   43: #include "dhcpd.h"
   44: #include <errno.h>
   45: #include <sys/ioctl.h>
   46: #include <sys/uio.h>
   47: #include <sys/uio.h>
   48: #include <signal.h>
   49: 
   50: #if defined(sun) && defined(USE_V4_PKTINFO)
   51: #include <sys/sysmacros.h>
   52: #include <net/if.h>
   53: #include <sys/sockio.h>
   54: #include <net/if_dl.h>
   55: #include <sys/dlpi.h>
   56: #endif
   57: 
   58: #ifdef USE_SOCKET_FALLBACK
   59: # if !defined (USE_SOCKET_SEND)
   60: #  define if_register_send if_register_fallback
   61: #  define send_packet send_fallback
   62: #  define if_reinitialize_send if_reinitialize_fallback
   63: # endif
   64: #endif
   65: 
   66: #if defined(DHCPv6)
   67: /*
   68:  * XXX: this is gross.  we need to go back and overhaul the API for socket
   69:  * handling.
   70:  */
   71: static unsigned int global_v6_socket_references = 0;
   72: static int global_v6_socket = -1;
   73: 
   74: static void if_register_multicast(struct interface_info *info);
   75: #endif
   76: 
   77: /*
   78:  * We can use a single socket for AF_INET (similar to AF_INET6) on all
   79:  * interfaces configured for DHCP if the system has support for IP_PKTINFO
   80:  * and IP_RECVPKTINFO (for example Solaris 11).
   81:  */
   82: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
   83: static unsigned int global_v4_socket_references = 0;
   84: static int global_v4_socket = -1;
   85: #endif
   86: 
   87: /*
   88:  * If we can't bind() to a specific interface, then we can only have
   89:  * a single socket. This variable insures that we don't try to listen
   90:  * on two sockets.
   91:  */
   92: #if !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK)
   93: static int once = 0;
   94: #endif /* !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK) */
   95: 
   96: /* Reinitializes the specified interface after an address change.   This
   97:    is not required for packet-filter APIs. */
   98: 
   99: #if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
  100: void if_reinitialize_send (info)
  101: 	struct interface_info *info;
  102: {
  103: #if 0
  104: #ifndef USE_SOCKET_RECEIVE
  105: 	once = 0;
  106: 	close (info -> wfdesc);
  107: #endif
  108: 	if_register_send (info);
  109: #endif
  110: }
  111: #endif
  112: 
  113: #ifdef USE_SOCKET_RECEIVE
  114: void if_reinitialize_receive (info)
  115: 	struct interface_info *info;
  116: {
  117: #if 0
  118: 	once = 0;
  119: 	close (info -> rfdesc);
  120: 	if_register_receive (info);
  121: #endif
  122: }
  123: #endif
  124: 
  125: #if defined (USE_SOCKET_SEND) || \
  126: 	defined (USE_SOCKET_RECEIVE) || \
  127: 		defined (USE_SOCKET_FALLBACK)
  128: /* Generic interface registration routine... */
  129: int
  130: if_register_socket(struct interface_info *info, int family,
  131: 		   int *do_multicast)
  132: {
  133: 	struct sockaddr_storage name;
  134: 	int name_len;
  135: 	int sock;
  136: 	int flag;
  137: 	int domain;
  138: 
  139: 	/* INSIST((family == AF_INET) || (family == AF_INET6)); */
  140: 
  141: #if !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK)
  142: 	/* Make sure only one interface is registered. */
  143: 	if (once) {
  144: 		log_fatal ("The standard socket API can only support %s",
  145: 		       "hosts with a single network interface.");
  146: 	}
  147: 	once = 1;
  148: #endif
  149: 
  150: 	/* 
  151: 	 * Set up the address we're going to bind to, depending on the
  152: 	 * address family. 
  153: 	 */ 
  154: 	memset(&name, 0, sizeof(name));
  155: #ifdef DHCPv6
  156: 	if (family == AF_INET6) {
  157: 		struct sockaddr_in6 *addr = (struct sockaddr_in6 *)&name; 
  158: 		addr->sin6_family = AF_INET6;
  159: 		addr->sin6_port = local_port;
  160: 		/* XXX: What will happen to multicasts if this is nonzero? */
  161: 		memcpy(&addr->sin6_addr,
  162: 		       &local_address6, 
  163: 		       sizeof(addr->sin6_addr));
  164: #ifdef HAVE_SA_LEN
  165: 		addr->sin6_len = sizeof(*addr);
  166: #endif
  167: 		name_len = sizeof(*addr);
  168: 		domain = PF_INET6;
  169: 		if ((info->flags & INTERFACE_STREAMS) == INTERFACE_UPSTREAM) {
  170: 			*do_multicast = 0;
  171: 		}
  172: 	} else { 
  173: #else 
  174: 	{
  175: #endif /* DHCPv6 */
  176: 		struct sockaddr_in *addr = (struct sockaddr_in *)&name; 
  177: 		addr->sin_family = AF_INET;
  178: 		addr->sin_port = local_port;
  179: 		memcpy(&addr->sin_addr,
  180: 		       &local_address,
  181: 		       sizeof(addr->sin_addr));
  182: #ifdef HAVE_SA_LEN
  183: 		addr->sin_len = sizeof(*addr);
  184: #endif
  185: 		name_len = sizeof(*addr);
  186: 		domain = PF_INET;
  187: 	}
  188: 
  189: 	/* Make a socket... */
  190: 	sock = socket(domain, SOCK_DGRAM, IPPROTO_UDP);
  191: 	if (sock < 0) {
  192: 		log_fatal("Can't create dhcp socket: %m");
  193: 	}
  194: 
  195: 	/* Set the REUSEADDR option so that we don't fail to start if
  196: 	   we're being restarted. */
  197: 	flag = 1;
  198: 	if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
  199: 			(char *)&flag, sizeof(flag)) < 0) {
  200: 		log_fatal("Can't set SO_REUSEADDR option on dhcp socket: %m");
  201: 	}
  202: 
  203: 	/* Set the BROADCAST option so that we can broadcast DHCP responses.
  204: 	   We shouldn't do this for fallback devices, and we can detect that
  205: 	   a device is a fallback because it has no ifp structure. */
  206: 	if (info->ifp &&
  207: 	    (setsockopt(sock, SOL_SOCKET, SO_BROADCAST,
  208: 			 (char *)&flag, sizeof(flag)) < 0)) {
  209: 		log_fatal("Can't set SO_BROADCAST option on dhcp socket: %m");
  210: 	}
  211: 
  212: #if defined(DHCPv6) && defined(SO_REUSEPORT)
  213: 	/*
  214: 	 * We only set SO_REUSEPORT on AF_INET6 sockets, so that multiple
  215: 	 * daemons can bind to their own sockets and get data for their
  216: 	 * respective interfaces.  This does not (and should not) affect
  217: 	 * DHCPv4 sockets; we can't yet support BSD sockets well, much
  218: 	 * less multiple sockets.
  219: 	 */
  220: 	if (local_family == AF_INET6) {
  221: 		flag = 1;
  222: 		if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT,
  223: 			       (char *)&flag, sizeof(flag)) < 0) {
  224: 			log_fatal("Can't set SO_REUSEPORT option on dhcp "
  225: 				  "socket: %m");
  226: 		}
  227: 	}
  228: #endif
  229: 
  230: 	/* Bind the socket to this interface's IP address. */
  231: 	if (bind(sock, (struct sockaddr *)&name, name_len) < 0) {
  232: 		log_error("Can't bind to dhcp address: %m");
  233: 		log_error("Please make sure there is no other dhcp server");
  234: 		log_error("running and that there's no entry for dhcp or");
  235: 		log_error("bootp in /etc/inetd.conf.   Also make sure you");
  236: 		log_error("are not running HP JetAdmin software, which");
  237: 		log_fatal("includes a bootp server.");
  238: 	}
  239: 
  240: #if defined(SO_BINDTODEVICE)
  241: 	/* Bind this socket to this interface. */
  242: 	if ((local_family != AF_INET6) && (info->ifp != NULL) &&
  243: 	    setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE,
  244: 			(char *)(info -> ifp), sizeof(*(info -> ifp))) < 0) {
  245: 		log_fatal("setsockopt: SO_BINDTODEVICE: %m");
  246: 	}
  247: #endif
  248: 
  249: 	/* IP_BROADCAST_IF instructs the kernel which interface to send
  250: 	 * IP packets whose destination address is 255.255.255.255.  These
  251: 	 * will be treated as subnet broadcasts on the interface identified
  252: 	 * by ip address (info -> primary_address).  This is only known to
  253: 	 * be defined in SCO system headers, and may not be defined in all
  254: 	 * releases.
  255: 	 */
  256: #if defined(SCO) && defined(IP_BROADCAST_IF)
  257:         if (info->address_count &&
  258: 	    setsockopt(sock, IPPROTO_IP, IP_BROADCAST_IF, &info->addresses[0],
  259: 		       sizeof(info->addresses[0])) < 0)
  260: 		log_fatal("Can't set IP_BROADCAST_IF on dhcp socket: %m");
  261: #endif
  262: 
  263: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO)  && defined(USE_V4_PKTINFO)
  264: 	/*
  265: 	 * If we turn on IP_RECVPKTINFO we will be able to receive
  266: 	 * the interface index information of the received packet.
  267: 	 */
  268: 	if (family == AF_INET) {
  269: 		int on = 1;
  270: 		if (setsockopt(sock, IPPROTO_IP, IP_RECVPKTINFO, 
  271: 		               &on, sizeof(on)) != 0) {
  272: 			log_fatal("setsockopt: IPV_RECVPKTINFO: %m");
  273: 		}
  274: 	}
  275: #endif
  276: 
  277: #ifdef DHCPv6
  278: 	/*
  279: 	 * If we turn on IPV6_PKTINFO, we will be able to receive 
  280: 	 * additional information, such as the destination IP address.
  281: 	 * We need this to spot unicast packets.
  282: 	 */
  283: 	if (family == AF_INET6) {
  284: 		int on = 1;
  285: #ifdef IPV6_RECVPKTINFO
  286: 		/* RFC3542 */
  287: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_RECVPKTINFO, 
  288: 		               &on, sizeof(on)) != 0) {
  289: 			log_fatal("setsockopt: IPV6_RECVPKTINFO: %m");
  290: 		}
  291: #else
  292: 		/* RFC2292 */
  293: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_PKTINFO, 
  294: 		               &on, sizeof(on)) != 0) {
  295: 			log_fatal("setsockopt: IPV6_PKTINFO: %m");
  296: 		}
  297: #endif
  298: 	}
  299: 
  300: 	if ((family == AF_INET6) &&
  301: 	    ((info->flags & INTERFACE_UPSTREAM) != 0)) {
  302: 		int hop_limit = 32;
  303: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
  304: 			       &hop_limit, sizeof(int)) < 0) {
  305: 			log_fatal("setsockopt: IPV6_MULTICAST_HOPS: %m");
  306: 		}
  307: 	}
  308: #endif /* DHCPv6 */
  309: 
  310: 	return sock;
  311: }
  312: #endif /* USE_SOCKET_SEND || USE_SOCKET_RECEIVE || USE_SOCKET_FALLBACK */
  313: 
  314: #if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
  315: void if_register_send (info)
  316: 	struct interface_info *info;
  317: {
  318: #ifndef USE_SOCKET_RECEIVE
  319: 	info->wfdesc = if_register_socket(info, AF_INET, 0);
  320: 	/* If this is a normal IPv4 address, get the hardware address. */
  321: 	if (strcmp(info->name, "fallback") != 0)
  322: 		get_hw_addr(info->name, &info->hw_address);
  323: #if defined (USE_SOCKET_FALLBACK)
  324: 	/* Fallback only registers for send, but may need to receive as
  325: 	   well. */
  326: 	info->rfdesc = info->wfdesc;
  327: #endif
  328: #else
  329: 	info->wfdesc = info->rfdesc;
  330: #endif
  331: 	if (!quiet_interface_discovery)
  332: 		log_info ("Sending on   Socket/%s%s%s",
  333: 		      info->name,
  334: 		      (info->shared_network ? "/" : ""),
  335: 		      (info->shared_network ?
  336: 		       info->shared_network->name : ""));
  337: }
  338: 
  339: #if defined (USE_SOCKET_SEND)
  340: void if_deregister_send (info)
  341: 	struct interface_info *info;
  342: {
  343: #ifndef USE_SOCKET_RECEIVE
  344: 	close (info -> wfdesc);
  345: #endif
  346: 	info -> wfdesc = -1;
  347: 
  348: 	if (!quiet_interface_discovery)
  349: 		log_info ("Disabling output on Socket/%s%s%s",
  350: 		      info -> name,
  351: 		      (info -> shared_network ? "/" : ""),
  352: 		      (info -> shared_network ?
  353: 		       info -> shared_network -> name : ""));
  354: }
  355: #endif /* USE_SOCKET_SEND */
  356: #endif /* USE_SOCKET_SEND || USE_SOCKET_FALLBACK */
  357: 
  358: #ifdef USE_SOCKET_RECEIVE
  359: void if_register_receive (info)
  360: 	struct interface_info *info;
  361: {
  362: 
  363: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  364: 	if (global_v4_socket_references == 0) {
  365: 		global_v4_socket = if_register_socket(info, AF_INET, 0);
  366: 		if (global_v4_socket < 0) {
  367: 			/*
  368: 			 * if_register_socket() fatally logs if it fails to
  369: 			 * create a socket, this is just a sanity check.
  370: 			 */
  371: 			log_fatal("Failed to create AF_INET socket %s:%d",
  372: 				  MDL);
  373: 		}
  374: 	}
  375: 		
  376: 	info->rfdesc = global_v4_socket;
  377: 	global_v4_socket_references++;
  378: #else
  379: 	/* If we're using the socket API for sending and receiving,
  380: 	   we don't need to register this interface twice. */
  381: 	info->rfdesc = if_register_socket(info, AF_INET, 0);
  382: #endif /* IP_PKTINFO... */
  383: 	/* If this is a normal IPv4 address, get the hardware address. */
  384: 	if (strcmp(info->name, "fallback") != 0)
  385: 		get_hw_addr(info->name, &info->hw_address);
  386: 
  387: 	if (!quiet_interface_discovery)
  388: 		log_info ("Listening on Socket/%s%s%s",
  389: 		      info->name,
  390: 		      (info->shared_network ? "/" : ""),
  391: 		      (info->shared_network ?
  392: 		       info->shared_network->name : ""));
  393: }
  394: 
  395: void if_deregister_receive (info)
  396: 	struct interface_info *info;
  397: {
  398: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  399: 	/* Dereference the global v4 socket. */
  400: 	if ((info->rfdesc == global_v4_socket) &&
  401: 	    (info->wfdesc == global_v4_socket) &&
  402: 	    (global_v4_socket_references > 0)) {
  403: 		global_v4_socket_references--;
  404: 		info->rfdesc = -1;
  405: 	} else {
  406: 		log_fatal("Impossible condition at %s:%d", MDL);
  407: 	}
  408: 
  409: 	if (global_v4_socket_references == 0) {
  410: 		close(global_v4_socket);
  411: 		global_v4_socket = -1;
  412: 	}
  413: #else
  414: 	close(info->rfdesc);
  415: 	info->rfdesc = -1;
  416: #endif /* IP_PKTINFO... */
  417: 	if (!quiet_interface_discovery)
  418: 		log_info ("Disabling input on Socket/%s%s%s",
  419: 		      info -> name,
  420: 		      (info -> shared_network ? "/" : ""),
  421: 		      (info -> shared_network ?
  422: 		       info -> shared_network -> name : ""));
  423: }
  424: #endif /* USE_SOCKET_RECEIVE */
  425: 
  426: 
  427: #ifdef DHCPv6 
  428: /*
  429:  * This function joins the interface to DHCPv6 multicast groups so we will
  430:  * receive multicast messages.
  431:  */
  432: static void
  433: if_register_multicast(struct interface_info *info) {
  434: 	int sock = info->rfdesc;
  435: 	struct ipv6_mreq mreq;
  436: 
  437: 	if (inet_pton(AF_INET6, All_DHCP_Relay_Agents_and_Servers,
  438: 		      &mreq.ipv6mr_multiaddr) <= 0) {
  439: 		log_fatal("inet_pton: unable to convert '%s'", 
  440: 			  All_DHCP_Relay_Agents_and_Servers);
  441: 	}
  442: 	mreq.ipv6mr_interface = if_nametoindex(info->name);
  443: 	if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, 
  444: 		       &mreq, sizeof(mreq)) < 0) {
  445: 		log_fatal("setsockopt: IPV6_JOIN_GROUP: %m");
  446: 	}
  447: 
  448: 	/*
  449: 	 * The relay agent code sets the streams so you know which way
  450: 	 * is up and down.  But a relay agent shouldn't join to the
  451: 	 * Server address, or else you get fun loops.  So up or down
  452: 	 * doesn't matter, we're just using that config to sense this is
  453: 	 * a relay agent.
  454: 	 */
  455: 	if ((info->flags & INTERFACE_STREAMS) == 0) {
  456: 		if (inet_pton(AF_INET6, All_DHCP_Servers,
  457: 			      &mreq.ipv6mr_multiaddr) <= 0) {
  458: 			log_fatal("inet_pton: unable to convert '%s'", 
  459: 				  All_DHCP_Servers);
  460: 		}
  461: 		mreq.ipv6mr_interface = if_nametoindex(info->name);
  462: 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, 
  463: 			       &mreq, sizeof(mreq)) < 0) {
  464: 			log_fatal("setsockopt: IPV6_JOIN_GROUP: %m");
  465: 		}
  466: 	}
  467: }
  468: 
  469: void
  470: if_register6(struct interface_info *info, int do_multicast) {
  471: 	/* Bounce do_multicast to a stack variable because we may change it. */
  472: 	int req_multi = do_multicast;
  473: 
  474: 	if (global_v6_socket_references == 0) {
  475: 		global_v6_socket = if_register_socket(info, AF_INET6,
  476: 						      &req_multi);
  477: 		if (global_v6_socket < 0) {
  478: 			/*
  479: 			 * if_register_socket() fatally logs if it fails to
  480: 			 * create a socket, this is just a sanity check.
  481: 			 */
  482: 			log_fatal("Impossible condition at %s:%d", MDL);
  483: 		} else {
  484: 			log_info("Bound to *:%d", ntohs(local_port));
  485: 		}
  486: 	}
  487: 		
  488: 	info->rfdesc = global_v6_socket;
  489: 	info->wfdesc = global_v6_socket;
  490: 	global_v6_socket_references++;
  491: 
  492: 	if (req_multi)
  493: 		if_register_multicast(info);
  494: 
  495: 	get_hw_addr(info->name, &info->hw_address);
  496: 
  497: 	if (!quiet_interface_discovery) {
  498: 		if (info->shared_network != NULL) {
  499: 			log_info("Listening on Socket/%d/%s/%s",
  500: 				 global_v6_socket, info->name, 
  501: 				 info->shared_network->name);
  502: 			log_info("Sending on   Socket/%d/%s/%s",
  503: 				 global_v6_socket, info->name,
  504: 				 info->shared_network->name);
  505: 		} else {
  506: 			log_info("Listening on Socket/%s", info->name);
  507: 			log_info("Sending on   Socket/%s", info->name);
  508: 		}
  509: 	}
  510: }
  511: 
  512: void 
  513: if_deregister6(struct interface_info *info) {
  514: 	/* Dereference the global v6 socket. */
  515: 	if ((info->rfdesc == global_v6_socket) &&
  516: 	    (info->wfdesc == global_v6_socket) &&
  517: 	    (global_v6_socket_references > 0)) {
  518: 		global_v6_socket_references--;
  519: 		info->rfdesc = -1;
  520: 		info->wfdesc = -1;
  521: 	} else {
  522: 		log_fatal("Impossible condition at %s:%d", MDL);
  523: 	}
  524: 
  525: 	if (!quiet_interface_discovery) {
  526: 		if (info->shared_network != NULL) {
  527: 			log_info("Disabling input on  Socket/%s/%s", info->name,
  528: 		       		 info->shared_network->name);
  529: 			log_info("Disabling output on Socket/%s/%s", info->name,
  530: 		       		 info->shared_network->name);
  531: 		} else {
  532: 			log_info("Disabling input on  Socket/%s", info->name);
  533: 			log_info("Disabling output on Socket/%s", info->name);
  534: 		}
  535: 	}
  536: 
  537: 	if (global_v6_socket_references == 0) {
  538: 		close(global_v6_socket);
  539: 		global_v6_socket = -1;
  540: 
  541: 		log_info("Unbound from *:%d", ntohs(local_port));
  542: 	}
  543: }
  544: #endif /* DHCPv6 */
  545: 
  546: #if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
  547: ssize_t send_packet (interface, packet, raw, len, from, to, hto)
  548: 	struct interface_info *interface;
  549: 	struct packet *packet;
  550: 	struct dhcp_packet *raw;
  551: 	size_t len;
  552: 	struct in_addr from;
  553: 	struct sockaddr_in *to;
  554: 	struct hardware *hto;
  555: {
  556: 	int result;
  557: #ifdef IGNORE_HOSTUNREACH
  558: 	int retry = 0;
  559: 	do {
  560: #endif
  561: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  562: 		struct in_pktinfo pktinfo;
  563: 
  564: 		if (interface->ifp != NULL) {
  565: 			memset(&pktinfo, 0, sizeof (pktinfo));
  566: 			pktinfo.ipi_ifindex = interface->ifp->ifr_index;
  567: 			if (setsockopt(interface->wfdesc, IPPROTO_IP,
  568: 				       IP_PKTINFO, (char *)&pktinfo,
  569: 				       sizeof(pktinfo)) < 0) 
  570: 				log_fatal("setsockopt: IP_PKTINFO: %m");
  571: 		}
  572: #endif
  573: 		result = sendto (interface -> wfdesc, (char *)raw, len, 0,
  574: 				 (struct sockaddr *)to, sizeof *to);
  575: #ifdef IGNORE_HOSTUNREACH
  576: 	} while (to -> sin_addr.s_addr == htonl (INADDR_BROADCAST) &&
  577: 		 result < 0 &&
  578: 		 (errno == EHOSTUNREACH ||
  579: 		  errno == ECONNREFUSED) &&
  580: 		 retry++ < 10);
  581: #endif
  582: 	if (result < 0) {
  583: 		log_error ("send_packet: %m");
  584: 		if (errno == ENETUNREACH)
  585: 			log_error ("send_packet: please consult README file%s",
  586: 				   " regarding broadcast address.");
  587: 	}
  588: 	return result;
  589: }
  590: 
  591: #endif /* USE_SOCKET_SEND || USE_SOCKET_FALLBACK */
  592: 
  593: #ifdef DHCPv6
  594: /*
  595:  * Solaris 9 is missing the CMSG_LEN and CMSG_SPACE macros, so we will 
  596:  * synthesize them (based on the BIND 9 technique).
  597:  */
  598: 
  599: #ifndef CMSG_LEN
  600: static size_t CMSG_LEN(size_t len) {
  601: 	size_t hdrlen;
  602: 	/*
  603: 	 * Cast NULL so that any pointer arithmetic performed by CMSG_DATA
  604: 	 * is correct.
  605: 	 */
  606: 	hdrlen = (size_t)CMSG_DATA(((struct cmsghdr *)NULL));
  607: 	return hdrlen + len;
  608: }
  609: #endif /* !CMSG_LEN */
  610: 
  611: #ifndef CMSG_SPACE
  612: static size_t CMSG_SPACE(size_t len) {
  613: 	struct msghdr msg;
  614: 	struct cmsghdr *cmsgp;
  615: 
  616: 	/*
  617: 	 * XXX: The buffer length is an ad-hoc value, but should be enough
  618: 	 * in a practical sense.
  619: 	 */
  620: 	union {
  621: 		struct cmsghdr cmsg_sizer;
  622: 		u_int8_t pktinfo_sizer[sizeof(struct cmsghdr) + 1024];
  623: 	} dummybuf;
  624: 
  625: 	memset(&msg, 0, sizeof(msg));
  626: 	msg.msg_control = &dummybuf;
  627: 	msg.msg_controllen = sizeof(dummybuf);
  628: 
  629: 	cmsgp = (struct cmsghdr *)&dummybuf;
  630: 	cmsgp->cmsg_len = CMSG_LEN(len);
  631: 
  632: 	cmsgp = CMSG_NXTHDR(&msg, cmsgp);
  633: 	if (cmsgp != NULL) {
  634: 		return (char *)cmsgp - (char *)msg.msg_control;
  635: 	} else {
  636: 		return 0;
  637: 	}
  638: }
  639: #endif /* !CMSG_SPACE */
  640: 
  641: #endif /* DHCPv6 */
  642: 
  643: #if defined(DHCPv6) || \
  644: 	(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && \
  645: 	 defined(USE_V4_PKTINFO))
  646: /*
  647:  * For both send_packet6() and receive_packet6() we need to allocate
  648:  * space for the cmsg header information.  We do this once and reuse
  649:  * the buffer.  We also need the control buf for send_packet() and
  650:  * receive_packet() when we use a single socket and IP_PKTINFO to
  651:  * send the packet out the correct interface.
  652:  */
  653: static void   *control_buf = NULL;
  654: static size_t  control_buf_len = 0;
  655: 
  656: static void
  657: allocate_cmsg_cbuf(void) {
  658: 	control_buf_len = CMSG_SPACE(sizeof(struct in6_pktinfo));
  659: 	control_buf = dmalloc(control_buf_len, MDL);
  660: 	return;
  661: }
  662: #endif /* DHCPv6, IP_PKTINFO ... */
  663: 
  664: #ifdef DHCPv6
  665: /* 
  666:  * For both send_packet6() and receive_packet6() we need to use the 
  667:  * sendmsg()/recvmsg() functions rather than the simpler send()/recv()
  668:  * functions.
  669:  *
  670:  * In the case of send_packet6(), we need to do this in order to insure
  671:  * that the reply packet leaves on the same interface that it arrived 
  672:  * on. 
  673:  *
  674:  * In the case of receive_packet6(), we need to do this in order to 
  675:  * get the IP address the packet was sent to. This is used to identify
  676:  * whether a packet is multicast or unicast.
  677:  *
  678:  * Helpful man pages: recvmsg, readv (talks about the iovec stuff), cmsg.
  679:  *
  680:  * Also see the sections in RFC 3542 about IPV6_PKTINFO.
  681:  */
  682: 
  683: /* Send an IPv6 packet */
  684: ssize_t send_packet6(struct interface_info *interface,
  685: 		     const unsigned char *raw, size_t len,
  686: 		     struct sockaddr_in6 *to) {
  687: 	struct msghdr m;
  688: 	struct iovec v;
  689: 	int result;
  690: 	struct in6_pktinfo *pktinfo;
  691: 	struct cmsghdr *cmsg;
  692: 
  693: 	/*
  694: 	 * If necessary allocate space for the control message header.
  695: 	 * The space is common between send and receive.
  696: 	 */
  697: 
  698: 	if (control_buf == NULL) {
  699: 		allocate_cmsg_cbuf();
  700: 		if (control_buf == NULL) {
  701: 			log_error("send_packet6: unable to allocate cmsg header");
  702: 			return(ENOMEM);
  703: 		}
  704: 	}
  705: 	memset(control_buf, 0, control_buf_len);
  706: 
  707: 	/*
  708: 	 * Initialize our message header structure.
  709: 	 */
  710: 	memset(&m, 0, sizeof(m));
  711: 
  712: 	/*
  713: 	 * Set the target address we're sending to.
  714: 	 */
  715: 	m.msg_name = to;
  716: 	m.msg_namelen = sizeof(*to);
  717: 
  718: 	/*
  719: 	 * Set the data buffer we're sending. (Using this wacky 
  720: 	 * "scatter-gather" stuff... we only have a single chunk 
  721: 	 * of data to send, so we declare a single vector entry.)
  722: 	 */
  723: 	v.iov_base = (char *)raw;
  724: 	v.iov_len = len;
  725: 	m.msg_iov = &v;
  726: 	m.msg_iovlen = 1;
  727: 
  728: 	/*
  729: 	 * Setting the interface is a bit more involved.
  730: 	 * 
  731: 	 * We have to create a "control message", and set that to 
  732: 	 * define the IPv6 packet information. We could set the
  733: 	 * source address if we wanted, but we can safely let the
  734: 	 * kernel decide what that should be. 
  735: 	 */
  736: 	m.msg_control = control_buf;
  737: 	m.msg_controllen = control_buf_len;
  738: 	cmsg = CMSG_FIRSTHDR(&m);
  739: 	cmsg->cmsg_level = IPPROTO_IPV6;
  740: 	cmsg->cmsg_type = IPV6_PKTINFO;
  741: 	cmsg->cmsg_len = CMSG_LEN(sizeof(*pktinfo));
  742: 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cmsg);
  743: 	memset(pktinfo, 0, sizeof(*pktinfo));
  744: 	pktinfo->ipi6_ifindex = if_nametoindex(interface->name);
  745: 	m.msg_controllen = cmsg->cmsg_len;
  746: 
  747: 	result = sendmsg(interface->wfdesc, &m, 0);
  748: 	if (result < 0) {
  749: 		log_error("send_packet6: %m");
  750: 	}
  751: 	return result;
  752: }
  753: #endif /* DHCPv6 */
  754: 
  755: #ifdef USE_SOCKET_RECEIVE
  756: ssize_t receive_packet (interface, buf, len, from, hfrom)
  757: 	struct interface_info *interface;
  758: 	unsigned char *buf;
  759: 	size_t len;
  760: 	struct sockaddr_in *from;
  761: 	struct hardware *hfrom;
  762: {
  763: #if !(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO))
  764: 	SOCKLEN_T flen = sizeof *from;
  765: #endif
  766: 	int result;
  767: 
  768: 	/*
  769: 	 * The normal Berkeley socket interface doesn't give us any way
  770: 	 * to know what hardware interface we received the message on,
  771: 	 * but we should at least make sure the structure is emptied.
  772: 	 */
  773: 	memset(hfrom, 0, sizeof(*hfrom));
  774: 
  775: #ifdef IGNORE_HOSTUNREACH
  776: 	int retry = 0;
  777: 	do {
  778: #endif
  779: 
  780: #if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
  781: 	struct msghdr m;
  782: 	struct iovec v;
  783: 	struct cmsghdr *cmsg;
  784: 	struct in_pktinfo *pktinfo;
  785: 	unsigned int ifindex;
  786: 
  787: 	/*
  788: 	 * If necessary allocate space for the control message header.
  789: 	 * The space is common between send and receive.
  790: 	 */
  791: 	if (control_buf == NULL) {
  792: 		allocate_cmsg_cbuf();
  793: 		if (control_buf == NULL) {
  794: 			log_error("receive_packet: unable to allocate cmsg "
  795: 				  "header");
  796: 			return(ENOMEM);
  797: 		}
  798: 	}
  799: 	memset(control_buf, 0, control_buf_len);
  800: 
  801: 	/*
  802: 	 * Initialize our message header structure.
  803: 	 */
  804: 	memset(&m, 0, sizeof(m));
  805: 
  806: 	/*
  807: 	 * Point so we can get the from address.
  808: 	 */
  809: 	m.msg_name = from;
  810: 	m.msg_namelen = sizeof(*from);
  811: 
  812: 	/*
  813: 	 * Set the data buffer we're receiving. (Using this wacky 
  814: 	 * "scatter-gather" stuff... but we that doesn't really make
  815: 	 * sense for us, so we use a single vector entry.)
  816: 	 */
  817: 	v.iov_base = buf;
  818: 	v.iov_len = len;
  819: 	m.msg_iov = &v;
  820: 	m.msg_iovlen = 1;
  821: 
  822: 	/*
  823: 	 * Getting the interface is a bit more involved.
  824: 	 *
  825: 	 * We set up some space for a "control message". We have 
  826: 	 * previously asked the kernel to give us packet 
  827: 	 * information (when we initialized the interface), so we
  828: 	 * should get the interface index from that.
  829: 	 */
  830: 	m.msg_control = control_buf;
  831: 	m.msg_controllen = control_buf_len;
  832: 
  833: 	result = recvmsg(interface->rfdesc, &m, 0);
  834: 
  835: 	if (result >= 0) {
  836: 		/*
  837: 		 * If we did read successfully, then we need to loop
  838: 		 * through the control messages we received and 
  839: 		 * find the one with our inteface index.
  840: 		 */
  841: 		cmsg = CMSG_FIRSTHDR(&m);
  842: 		while (cmsg != NULL) {
  843: 			if ((cmsg->cmsg_level == IPPROTO_IP) && 
  844: 			    (cmsg->cmsg_type == IP_PKTINFO)) {
  845: 				pktinfo = (struct in_pktinfo *)CMSG_DATA(cmsg);
  846: 				ifindex = pktinfo->ipi_ifindex;
  847: 				/*
  848: 				 * We pass the ifindex back to the caller 
  849: 				 * using the unused hfrom parameter avoiding
  850: 				 * interface changes between sockets and 
  851: 				 * the discover code.
  852: 				 */
  853: 				memcpy(hfrom->hbuf, &ifindex, sizeof(ifindex));
  854: 				return (result);
  855: 			}
  856: 			cmsg = CMSG_NXTHDR(&m, cmsg);
  857: 		}
  858: 
  859: 		/*
  860: 		 * We didn't find the necessary control message
  861: 		 * flag it as an error
  862: 		 */
  863: 		result = -1;
  864: 		errno = EIO;
  865: 	}
  866: #else
  867: 		result = recvfrom(interface -> rfdesc, (char *)buf, len, 0,
  868: 				  (struct sockaddr *)from, &flen);
  869: #endif /* IP_PKTINFO ... */
  870: #ifdef IGNORE_HOSTUNREACH
  871: 	} while (result < 0 &&
  872: 		 (errno == EHOSTUNREACH ||
  873: 		  errno == ECONNREFUSED) &&
  874: 		 retry++ < 10);
  875: #endif
  876: 	return (result);
  877: }
  878: 
  879: #endif /* USE_SOCKET_RECEIVE */
  880: 
  881: #ifdef DHCPv6
  882: ssize_t 
  883: receive_packet6(struct interface_info *interface, 
  884: 		unsigned char *buf, size_t len, 
  885: 		struct sockaddr_in6 *from, struct in6_addr *to_addr,
  886: 		unsigned int *if_idx)
  887: {
  888: 	struct msghdr m;
  889: 	struct iovec v;
  890: 	int result;
  891: 	struct cmsghdr *cmsg;
  892: 	struct in6_pktinfo *pktinfo;
  893: 
  894: 	/*
  895: 	 * If necessary allocate space for the control message header.
  896: 	 * The space is common between send and receive.
  897: 	 */
  898: 	if (control_buf == NULL) {
  899: 		allocate_cmsg_cbuf();
  900: 		if (control_buf == NULL) {
  901: 			log_error("receive_packet6: unable to allocate cmsg "
  902: 				  "header");
  903: 			return(ENOMEM);
  904: 		}
  905: 	}
  906: 	memset(control_buf, 0, control_buf_len);
  907: 
  908: 	/*
  909: 	 * Initialize our message header structure.
  910: 	 */
  911: 	memset(&m, 0, sizeof(m));
  912: 
  913: 	/*
  914: 	 * Point so we can get the from address.
  915: 	 */
  916: 	m.msg_name = from;
  917: 	m.msg_namelen = sizeof(*from);
  918: 
  919: 	/*
  920: 	 * Set the data buffer we're receiving. (Using this wacky 
  921: 	 * "scatter-gather" stuff... but we that doesn't really make
  922: 	 * sense for us, so we use a single vector entry.)
  923: 	 */
  924: 	v.iov_base = buf;
  925: 	v.iov_len = len;
  926: 	m.msg_iov = &v;
  927: 	m.msg_iovlen = 1;
  928: 
  929: 	/*
  930: 	 * Getting the interface is a bit more involved.
  931: 	 *
  932: 	 * We set up some space for a "control message". We have 
  933: 	 * previously asked the kernel to give us packet 
  934: 	 * information (when we initialized the interface), so we
  935: 	 * should get the destination address from that.
  936: 	 */
  937: 	m.msg_control = control_buf;
  938: 	m.msg_controllen = control_buf_len;
  939: 
  940: 	result = recvmsg(interface->rfdesc, &m, 0);
  941: 
  942: 	if (result >= 0) {
  943: 		/*
  944: 		 * If we did read successfully, then we need to loop
  945: 		 * through the control messages we received and 
  946: 		 * find the one with our destination address.
  947: 		 */
  948: 		cmsg = CMSG_FIRSTHDR(&m);
  949: 		while (cmsg != NULL) {
  950: 			if ((cmsg->cmsg_level == IPPROTO_IPV6) && 
  951: 			    (cmsg->cmsg_type == IPV6_PKTINFO)) {
  952: 				pktinfo = (struct in6_pktinfo *)CMSG_DATA(cmsg);
  953: 				*to_addr = pktinfo->ipi6_addr;
  954: 				*if_idx = pktinfo->ipi6_ifindex;
  955: 
  956: 				return (result);
  957: 			}
  958: 			cmsg = CMSG_NXTHDR(&m, cmsg);
  959: 		}
  960: 
  961: 		/*
  962: 		 * We didn't find the necessary control message
  963: 		 * flag is as an error
  964: 		 */
  965: 		result = -1;
  966: 		errno = EIO;
  967: 	}
  968: 
  969: 	return (result);
  970: }
  971: #endif /* DHCPv6 */
  972: 
  973: #if defined (USE_SOCKET_FALLBACK)
  974: /* This just reads in a packet and silently discards it. */
  975: 
  976: isc_result_t fallback_discard (object)
  977: 	omapi_object_t *object;
  978: {
  979: 	char buf [1540];
  980: 	struct sockaddr_in from;
  981: 	SOCKLEN_T flen = sizeof from;
  982: 	int status;
  983: 	struct interface_info *interface;
  984: 
  985: 	if (object -> type != dhcp_type_interface)
  986: 		return ISC_R_INVALIDARG;
  987: 	interface = (struct interface_info *)object;
  988: 
  989: 	status = recvfrom (interface -> wfdesc, buf, sizeof buf, 0,
  990: 			   (struct sockaddr *)&from, &flen);
  991: #if defined (DEBUG)
  992: 	/* Only report fallback discard errors if we're debugging. */
  993: 	if (status < 0) {
  994: 		log_error ("fallback_discard: %m");
  995: 		return ISC_R_UNEXPECTED;
  996: 	}
  997: #else
  998:         /* ignore the fact that status value is never used */
  999:         IGNORE_UNUSED(status);
 1000: #endif
 1001: 	return ISC_R_SUCCESS;
 1002: }
 1003: #endif /* USE_SOCKET_FALLBACK */
 1004: 
 1005: #if defined (USE_SOCKET_SEND)
 1006: int can_unicast_without_arp (ip)
 1007: 	struct interface_info *ip;
 1008: {
 1009: 	return 0;
 1010: }
 1011: 
 1012: int can_receive_unicast_unconfigured (ip)
 1013: 	struct interface_info *ip;
 1014: {
 1015: #if defined (SOCKET_CAN_RECEIVE_UNICAST_UNCONFIGURED)
 1016: 	return 1;
 1017: #else
 1018: 	return 0;
 1019: #endif
 1020: }
 1021: 
 1022: int supports_multiple_interfaces (ip)
 1023: 	struct interface_info *ip;
 1024: {
 1025: #if defined(SO_BINDTODEVICE) || \
 1026: 	(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && \
 1027: 	 defined(USE_V4_PKTINFO))
 1028: 	return(1);
 1029: #else
 1030: 	return(0);
 1031: #endif
 1032: }
 1033: 
 1034: /* If we have SO_BINDTODEVICE, set up a fallback interface; otherwise,
 1035:    do not. */
 1036: 
 1037: void maybe_setup_fallback ()
 1038: {
 1039: #if defined (USE_SOCKET_FALLBACK)
 1040: 	isc_result_t status;
 1041: 	struct interface_info *fbi = (struct interface_info *)0;
 1042: 	if (setup_fallback (&fbi, MDL)) {
 1043: 		fbi -> wfdesc = if_register_socket (fbi, AF_INET, 0);
 1044: 		fbi -> rfdesc = fbi -> wfdesc;
 1045: 		log_info ("Sending on   Socket/%s%s%s",
 1046: 		      fbi -> name,
 1047: 		      (fbi -> shared_network ? "/" : ""),
 1048: 		      (fbi -> shared_network ?
 1049: 		       fbi -> shared_network -> name : ""));
 1050: 	
 1051: 		status = omapi_register_io_object ((omapi_object_t *)fbi,
 1052: 						   if_readsocket, 0,
 1053: 						   fallback_discard, 0, 0);
 1054: 		if (status != ISC_R_SUCCESS)
 1055: 			log_fatal ("Can't register I/O handle for %s: %s",
 1056: 				   fbi -> name, isc_result_totext (status));
 1057: 		interface_dereference (&fbi, MDL);
 1058: 	}
 1059: #endif
 1060: }
 1061: 
 1062: 
 1063: #if defined(sun) && defined(USE_V4_PKTINFO)
 1064: /* This code assumes the existence of SIOCGLIFHWADDR */
 1065: void
 1066: get_hw_addr(const char *name, struct hardware *hw) {
 1067: 	struct sockaddr_dl *dladdrp;
 1068: 	int sock, i;
 1069: 	struct lifreq lifr;
 1070: 
 1071: 	memset(&lifr, 0, sizeof (lifr));
 1072: 	(void) strlcpy(lifr.lifr_name, name, sizeof (lifr.lifr_name));
 1073: 	/*
 1074: 	 * Check if the interface is a virtual or IPMP interface - in those
 1075: 	 * cases it has no hw address, so generate a random one.
 1076: 	 */
 1077: 	if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
 1078: 	    ioctl(sock, SIOCGLIFFLAGS, &lifr) < 0) {
 1079: 		if (sock != -1)
 1080: 			(void) close(sock);
 1081: 
 1082: #ifdef DHCPv6
 1083: 		/*
 1084: 		 * If approrpriate try this with an IPv6 socket
 1085: 		 */
 1086: 		if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) >= 0 &&
 1087: 		    ioctl(sock, SIOCGLIFFLAGS, &lifr) >= 0) {
 1088: 			goto flag_check;
 1089: 		}
 1090: 		if (sock != -1)
 1091: 			(void) close(sock);
 1092: #endif
 1093: 		log_fatal("Couldn't get interface flags for %s: %m", name);
 1094: 
 1095: 	}
 1096: 
 1097:  flag_check:
 1098: 	if (lifr.lifr_flags & (IFF_VIRTUAL|IFF_IPMP)) {
 1099: 		hw->hlen = sizeof (hw->hbuf);
 1100: 		srandom((long)gethrtime());
 1101: 
 1102: 		hw->hbuf[0] = HTYPE_IPMP;
 1103: 		for (i = 1; i < hw->hlen; ++i) {
 1104: 			hw->hbuf[i] = random() % 256;
 1105: 		}
 1106: 
 1107: 		if (sock != -1)
 1108: 			(void) close(sock);
 1109: 		return;
 1110: 	}
 1111: 
 1112: 	if (ioctl(sock, SIOCGLIFHWADDR, &lifr) < 0)
 1113: 		log_fatal("Couldn't get interface hardware address for %s: %m",
 1114: 			  name);
 1115: 	dladdrp = (struct sockaddr_dl *)&lifr.lifr_addr;
 1116: 	hw->hlen = dladdrp->sdl_alen+1;
 1117: 	switch (dladdrp->sdl_type) {
 1118: 		case DL_CSMACD: /* IEEE 802.3 */
 1119: 		case DL_ETHER:
 1120: 			hw->hbuf[0] = HTYPE_ETHER;
 1121: 			break;
 1122: 		case DL_TPR:
 1123: 			hw->hbuf[0] = HTYPE_IEEE802;
 1124: 			break;
 1125: 		case DL_FDDI:
 1126: 			hw->hbuf[0] = HTYPE_FDDI;
 1127: 			break;
 1128: 		case DL_IB:
 1129: 			hw->hbuf[0] = HTYPE_INFINIBAND;
 1130: 			break;
 1131: 		default:
 1132: 			log_fatal("%s: unsupported DLPI MAC type %lu", name,
 1133: 				  (unsigned long)dladdrp->sdl_type);
 1134: 	}
 1135: 
 1136: 	memcpy(hw->hbuf+1, LLADDR(dladdrp), hw->hlen-1);
 1137: 
 1138: 	if (sock != -1)
 1139: 		(void) close(sock);
 1140: }
 1141: #endif /* defined(sun) */
 1142: 
 1143: #endif /* USE_SOCKET_SEND */
 1144: 
 1145: /*
 1146:  * Code to set a handler for signals.  This
 1147:  * exists to allow us to ignore SIGPIPE signals
 1148:  * but could be used for other purposes in the
 1149:  * future.
 1150:  */
 1151: 
 1152: isc_result_t
 1153: dhcp_handle_signal(int sig, void (*handler)(int)) {
 1154: 	struct sigaction sa;
 1155: 
 1156: 	memset(&sa, 0, sizeof(sa));
 1157: 	sa.sa_handler = handler;
 1158: 
 1159: 	if (sigfillset(&sa.sa_mask) != 0 ||
 1160: 	    sigaction(sig, &sa, NULL) < 0) {
 1161: 		log_error("Unable to set up signal handler for %d, %m", sig);
 1162: 		return (ISC_R_UNEXPECTED);
 1163: 	}
 1164: 
 1165: 	return (ISC_R_SUCCESS);
 1166: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>