/* socket.c
BSD socket interface code... */
/*
* Copyright (c) 2004-2012 by Internet Systems Consortium, Inc. ("ISC")
* Copyright (c) 1995-2003 by Internet Software Consortium
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Internet Systems Consortium, Inc.
* 950 Charter Street
* Redwood City, CA 94063
* <info@isc.org>
* https://www.isc.org/
*
* This software has been written for Internet Systems Consortium
* by Ted Lemon in cooperation with Vixie Enterprises and Nominum, Inc.
* To learn more about Internet Systems Consortium, see
* ``https://www.isc.org/''. To learn more about Vixie Enterprises,
* see ``http://www.vix.com''. To learn more about Nominum, Inc., see
* ``http://www.nominum.com''.
*/
/* SO_BINDTODEVICE support added by Elliot Poger (poger@leland.stanford.edu).
* This sockopt allows a socket to be bound to a particular interface,
* thus enabling the use of DHCPD on a multihomed host.
* If SO_BINDTODEVICE is defined in your system header files, the use of
* this sockopt will be automatically enabled.
* I have implemented it under Linux; other systems should be doable also.
*/
#include "dhcpd.h"
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <sys/uio.h>
#include <signal.h>
#if defined(sun) && defined(USE_V4_PKTINFO)
#include <sys/sysmacros.h>
#include <net/if.h>
#include <sys/sockio.h>
#include <net/if_dl.h>
#include <sys/dlpi.h>
#endif
#ifdef USE_SOCKET_FALLBACK
# if !defined (USE_SOCKET_SEND)
# define if_register_send if_register_fallback
# define send_packet send_fallback
# define if_reinitialize_send if_reinitialize_fallback
# endif
#endif
#if defined(DHCPv6)
/*
* XXX: this is gross. we need to go back and overhaul the API for socket
* handling.
*/
static unsigned int global_v6_socket_references = 0;
static int global_v6_socket = -1;
static void if_register_multicast(struct interface_info *info);
#endif
/*
* We can use a single socket for AF_INET (similar to AF_INET6) on all
* interfaces configured for DHCP if the system has support for IP_PKTINFO
* and IP_RECVPKTINFO (for example Solaris 11).
*/
#if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
static unsigned int global_v4_socket_references = 0;
static int global_v4_socket = -1;
#endif
/*
* If we can't bind() to a specific interface, then we can only have
* a single socket. This variable insures that we don't try to listen
* on two sockets.
*/
#if !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK)
static int once = 0;
#endif /* !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK) */
/* Reinitializes the specified interface after an address change. This
is not required for packet-filter APIs. */
#if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
void if_reinitialize_send (info)
struct interface_info *info;
{
#if 0
#ifndef USE_SOCKET_RECEIVE
once = 0;
close (info -> wfdesc);
#endif
if_register_send (info);
#endif
}
#endif
#ifdef USE_SOCKET_RECEIVE
void if_reinitialize_receive (info)
struct interface_info *info;
{
#if 0
once = 0;
close (info -> rfdesc);
if_register_receive (info);
#endif
}
#endif
#if defined (USE_SOCKET_SEND) || \
defined (USE_SOCKET_RECEIVE) || \
defined (USE_SOCKET_FALLBACK)
/* Generic interface registration routine... */
int
if_register_socket(struct interface_info *info, int family,
int *do_multicast)
{
struct sockaddr_storage name;
int name_len;
int sock;
int flag;
int domain;
/* INSIST((family == AF_INET) || (family == AF_INET6)); */
#if !defined(SO_BINDTODEVICE) && !defined(USE_FALLBACK)
/* Make sure only one interface is registered. */
if (once) {
log_fatal ("The standard socket API can only support %s",
"hosts with a single network interface.");
}
once = 1;
#endif
/*
* Set up the address we're going to bind to, depending on the
* address family.
*/
memset(&name, 0, sizeof(name));
#ifdef DHCPv6
if (family == AF_INET6) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)&name;
addr->sin6_family = AF_INET6;
addr->sin6_port = local_port;
/* XXX: What will happen to multicasts if this is nonzero? */
memcpy(&addr->sin6_addr,
&local_address6,
sizeof(addr->sin6_addr));
#ifdef HAVE_SA_LEN
addr->sin6_len = sizeof(*addr);
#endif
name_len = sizeof(*addr);
domain = PF_INET6;
if ((info->flags & INTERFACE_STREAMS) == INTERFACE_UPSTREAM) {
*do_multicast = 0;
}
} else {
#else
{
#endif /* DHCPv6 */
struct sockaddr_in *addr = (struct sockaddr_in *)&name;
addr->sin_family = AF_INET;
addr->sin_port = local_port;
memcpy(&addr->sin_addr,
&local_address,
sizeof(addr->sin_addr));
#ifdef HAVE_SA_LEN
addr->sin_len = sizeof(*addr);
#endif
name_len = sizeof(*addr);
domain = PF_INET;
}
/* Make a socket... */
sock = socket(domain, SOCK_DGRAM, IPPROTO_UDP);
if (sock < 0) {
log_fatal("Can't create dhcp socket: %m");
}
/* Set the REUSEADDR option so that we don't fail to start if
we're being restarted. */
flag = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
(char *)&flag, sizeof(flag)) < 0) {
log_fatal("Can't set SO_REUSEADDR option on dhcp socket: %m");
}
/* Set the BROADCAST option so that we can broadcast DHCP responses.
We shouldn't do this for fallback devices, and we can detect that
a device is a fallback because it has no ifp structure. */
if (info->ifp &&
(setsockopt(sock, SOL_SOCKET, SO_BROADCAST,
(char *)&flag, sizeof(flag)) < 0)) {
log_fatal("Can't set SO_BROADCAST option on dhcp socket: %m");
}
#if defined(DHCPv6) && defined(SO_REUSEPORT)
/*
* We only set SO_REUSEPORT on AF_INET6 sockets, so that multiple
* daemons can bind to their own sockets and get data for their
* respective interfaces. This does not (and should not) affect
* DHCPv4 sockets; we can't yet support BSD sockets well, much
* less multiple sockets.
*/
if (local_family == AF_INET6) {
flag = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT,
(char *)&flag, sizeof(flag)) < 0) {
log_fatal("Can't set SO_REUSEPORT option on dhcp "
"socket: %m");
}
}
#endif
/* Bind the socket to this interface's IP address. */
if (bind(sock, (struct sockaddr *)&name, name_len) < 0) {
log_error("Can't bind to dhcp address: %m");
log_error("Please make sure there is no other dhcp server");
log_error("running and that there's no entry for dhcp or");
log_error("bootp in /etc/inetd.conf. Also make sure you");
log_error("are not running HP JetAdmin software, which");
log_fatal("includes a bootp server.");
}
#if defined(SO_BINDTODEVICE)
/* Bind this socket to this interface. */
if ((local_family != AF_INET6) && (info->ifp != NULL) &&
setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE,
(char *)(info -> ifp), sizeof(*(info -> ifp))) < 0) {
log_fatal("setsockopt: SO_BINDTODEVICE: %m");
}
#endif
/* IP_BROADCAST_IF instructs the kernel which interface to send
* IP packets whose destination address is 255.255.255.255. These
* will be treated as subnet broadcasts on the interface identified
* by ip address (info -> primary_address). This is only known to
* be defined in SCO system headers, and may not be defined in all
* releases.
*/
#if defined(SCO) && defined(IP_BROADCAST_IF)
if (info->address_count &&
setsockopt(sock, IPPROTO_IP, IP_BROADCAST_IF, &info->addresses[0],
sizeof(info->addresses[0])) < 0)
log_fatal("Can't set IP_BROADCAST_IF on dhcp socket: %m");
#endif
#if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
/*
* If we turn on IP_RECVPKTINFO we will be able to receive
* the interface index information of the received packet.
*/
if (family == AF_INET) {
int on = 1;
if (setsockopt(sock, IPPROTO_IP, IP_RECVPKTINFO,
&on, sizeof(on)) != 0) {
log_fatal("setsockopt: IPV_RECVPKTINFO: %m");
}
}
#endif
#ifdef DHCPv6
/*
* If we turn on IPV6_PKTINFO, we will be able to receive
* additional information, such as the destination IP address.
* We need this to spot unicast packets.
*/
if (family == AF_INET6) {
int on = 1;
#ifdef IPV6_RECVPKTINFO
/* RFC3542 */
if (setsockopt(sock, IPPROTO_IPV6, IPV6_RECVPKTINFO,
&on, sizeof(on)) != 0) {
log_fatal("setsockopt: IPV6_RECVPKTINFO: %m");
}
#else
/* RFC2292 */
if (setsockopt(sock, IPPROTO_IPV6, IPV6_PKTINFO,
&on, sizeof(on)) != 0) {
log_fatal("setsockopt: IPV6_PKTINFO: %m");
}
#endif
}
if ((family == AF_INET6) &&
((info->flags & INTERFACE_UPSTREAM) != 0)) {
int hop_limit = 32;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
&hop_limit, sizeof(int)) < 0) {
log_fatal("setsockopt: IPV6_MULTICAST_HOPS: %m");
}
}
#endif /* DHCPv6 */
return sock;
}
#endif /* USE_SOCKET_SEND || USE_SOCKET_RECEIVE || USE_SOCKET_FALLBACK */
#if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
void if_register_send (info)
struct interface_info *info;
{
#ifndef USE_SOCKET_RECEIVE
info->wfdesc = if_register_socket(info, AF_INET, 0);
/* If this is a normal IPv4 address, get the hardware address. */
if (strcmp(info->name, "fallback") != 0)
get_hw_addr(info->name, &info->hw_address);
#if defined (USE_SOCKET_FALLBACK)
/* Fallback only registers for send, but may need to receive as
well. */
info->rfdesc = info->wfdesc;
#endif
#else
info->wfdesc = info->rfdesc;
#endif
if (!quiet_interface_discovery)
log_info ("Sending on Socket/%s%s%s",
info->name,
(info->shared_network ? "/" : ""),
(info->shared_network ?
info->shared_network->name : ""));
}
#if defined (USE_SOCKET_SEND)
void if_deregister_send (info)
struct interface_info *info;
{
#ifndef USE_SOCKET_RECEIVE
close (info -> wfdesc);
#endif
info -> wfdesc = -1;
if (!quiet_interface_discovery)
log_info ("Disabling output on Socket/%s%s%s",
info -> name,
(info -> shared_network ? "/" : ""),
(info -> shared_network ?
info -> shared_network -> name : ""));
}
#endif /* USE_SOCKET_SEND */
#endif /* USE_SOCKET_SEND || USE_SOCKET_FALLBACK */
#ifdef USE_SOCKET_RECEIVE
void if_register_receive (info)
struct interface_info *info;
{
#if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
if (global_v4_socket_references == 0) {
global_v4_socket = if_register_socket(info, AF_INET, 0);
if (global_v4_socket < 0) {
/*
* if_register_socket() fatally logs if it fails to
* create a socket, this is just a sanity check.
*/
log_fatal("Failed to create AF_INET socket %s:%d",
MDL);
}
}
info->rfdesc = global_v4_socket;
global_v4_socket_references++;
#else
/* If we're using the socket API for sending and receiving,
we don't need to register this interface twice. */
info->rfdesc = if_register_socket(info, AF_INET, 0);
#endif /* IP_PKTINFO... */
/* If this is a normal IPv4 address, get the hardware address. */
if (strcmp(info->name, "fallback") != 0)
get_hw_addr(info->name, &info->hw_address);
if (!quiet_interface_discovery)
log_info ("Listening on Socket/%s%s%s",
info->name,
(info->shared_network ? "/" : ""),
(info->shared_network ?
info->shared_network->name : ""));
}
void if_deregister_receive (info)
struct interface_info *info;
{
#if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
/* Dereference the global v4 socket. */
if ((info->rfdesc == global_v4_socket) &&
(info->wfdesc == global_v4_socket) &&
(global_v4_socket_references > 0)) {
global_v4_socket_references--;
info->rfdesc = -1;
} else {
log_fatal("Impossible condition at %s:%d", MDL);
}
if (global_v4_socket_references == 0) {
close(global_v4_socket);
global_v4_socket = -1;
}
#else
close(info->rfdesc);
info->rfdesc = -1;
#endif /* IP_PKTINFO... */
if (!quiet_interface_discovery)
log_info ("Disabling input on Socket/%s%s%s",
info -> name,
(info -> shared_network ? "/" : ""),
(info -> shared_network ?
info -> shared_network -> name : ""));
}
#endif /* USE_SOCKET_RECEIVE */
#ifdef DHCPv6
/*
* This function joins the interface to DHCPv6 multicast groups so we will
* receive multicast messages.
*/
static void
if_register_multicast(struct interface_info *info) {
int sock = info->rfdesc;
struct ipv6_mreq mreq;
if (inet_pton(AF_INET6, All_DHCP_Relay_Agents_and_Servers,
&mreq.ipv6mr_multiaddr) <= 0) {
log_fatal("inet_pton: unable to convert '%s'",
All_DHCP_Relay_Agents_and_Servers);
}
mreq.ipv6mr_interface = if_nametoindex(info->name);
if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,
&mreq, sizeof(mreq)) < 0) {
log_fatal("setsockopt: IPV6_JOIN_GROUP: %m");
}
/*
* The relay agent code sets the streams so you know which way
* is up and down. But a relay agent shouldn't join to the
* Server address, or else you get fun loops. So up or down
* doesn't matter, we're just using that config to sense this is
* a relay agent.
*/
if ((info->flags & INTERFACE_STREAMS) == 0) {
if (inet_pton(AF_INET6, All_DHCP_Servers,
&mreq.ipv6mr_multiaddr) <= 0) {
log_fatal("inet_pton: unable to convert '%s'",
All_DHCP_Servers);
}
mreq.ipv6mr_interface = if_nametoindex(info->name);
if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,
&mreq, sizeof(mreq)) < 0) {
log_fatal("setsockopt: IPV6_JOIN_GROUP: %m");
}
}
}
void
if_register6(struct interface_info *info, int do_multicast) {
/* Bounce do_multicast to a stack variable because we may change it. */
int req_multi = do_multicast;
if (global_v6_socket_references == 0) {
global_v6_socket = if_register_socket(info, AF_INET6,
&req_multi);
if (global_v6_socket < 0) {
/*
* if_register_socket() fatally logs if it fails to
* create a socket, this is just a sanity check.
*/
log_fatal("Impossible condition at %s:%d", MDL);
} else {
log_info("Bound to *:%d", ntohs(local_port));
}
}
info->rfdesc = global_v6_socket;
info->wfdesc = global_v6_socket;
global_v6_socket_references++;
if (req_multi)
if_register_multicast(info);
get_hw_addr(info->name, &info->hw_address);
if (!quiet_interface_discovery) {
if (info->shared_network != NULL) {
log_info("Listening on Socket/%d/%s/%s",
global_v6_socket, info->name,
info->shared_network->name);
log_info("Sending on Socket/%d/%s/%s",
global_v6_socket, info->name,
info->shared_network->name);
} else {
log_info("Listening on Socket/%s", info->name);
log_info("Sending on Socket/%s", info->name);
}
}
}
void
if_deregister6(struct interface_info *info) {
/* Dereference the global v6 socket. */
if ((info->rfdesc == global_v6_socket) &&
(info->wfdesc == global_v6_socket) &&
(global_v6_socket_references > 0)) {
global_v6_socket_references--;
info->rfdesc = -1;
info->wfdesc = -1;
} else {
log_fatal("Impossible condition at %s:%d", MDL);
}
if (!quiet_interface_discovery) {
if (info->shared_network != NULL) {
log_info("Disabling input on Socket/%s/%s", info->name,
info->shared_network->name);
log_info("Disabling output on Socket/%s/%s", info->name,
info->shared_network->name);
} else {
log_info("Disabling input on Socket/%s", info->name);
log_info("Disabling output on Socket/%s", info->name);
}
}
if (global_v6_socket_references == 0) {
close(global_v6_socket);
global_v6_socket = -1;
log_info("Unbound from *:%d", ntohs(local_port));
}
}
#endif /* DHCPv6 */
#if defined (USE_SOCKET_SEND) || defined (USE_SOCKET_FALLBACK)
ssize_t send_packet (interface, packet, raw, len, from, to, hto)
struct interface_info *interface;
struct packet *packet;
struct dhcp_packet *raw;
size_t len;
struct in_addr from;
struct sockaddr_in *to;
struct hardware *hto;
{
int result;
#ifdef IGNORE_HOSTUNREACH
int retry = 0;
do {
#endif
#if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
struct in_pktinfo pktinfo;
if (interface->ifp != NULL) {
memset(&pktinfo, 0, sizeof (pktinfo));
pktinfo.ipi_ifindex = interface->ifp->ifr_index;
if (setsockopt(interface->wfdesc, IPPROTO_IP,
IP_PKTINFO, (char *)&pktinfo,
sizeof(pktinfo)) < 0)
log_fatal("setsockopt: IP_PKTINFO: %m");
}
#endif
result = sendto (interface -> wfdesc, (char *)raw, len, 0,
(struct sockaddr *)to, sizeof *to);
#ifdef IGNORE_HOSTUNREACH
} while (to -> sin_addr.s_addr == htonl (INADDR_BROADCAST) &&
result < 0 &&
(errno == EHOSTUNREACH ||
errno == ECONNREFUSED) &&
retry++ < 10);
#endif
if (result < 0) {
log_error ("send_packet: %m");
if (errno == ENETUNREACH)
log_error ("send_packet: please consult README file%s",
" regarding broadcast address.");
}
return result;
}
#endif /* USE_SOCKET_SEND || USE_SOCKET_FALLBACK */
#ifdef DHCPv6
/*
* Solaris 9 is missing the CMSG_LEN and CMSG_SPACE macros, so we will
* synthesize them (based on the BIND 9 technique).
*/
#ifndef CMSG_LEN
static size_t CMSG_LEN(size_t len) {
size_t hdrlen;
/*
* Cast NULL so that any pointer arithmetic performed by CMSG_DATA
* is correct.
*/
hdrlen = (size_t)CMSG_DATA(((struct cmsghdr *)NULL));
return hdrlen + len;
}
#endif /* !CMSG_LEN */
#ifndef CMSG_SPACE
static size_t CMSG_SPACE(size_t len) {
struct msghdr msg;
struct cmsghdr *cmsgp;
/*
* XXX: The buffer length is an ad-hoc value, but should be enough
* in a practical sense.
*/
union {
struct cmsghdr cmsg_sizer;
u_int8_t pktinfo_sizer[sizeof(struct cmsghdr) + 1024];
} dummybuf;
memset(&msg, 0, sizeof(msg));
msg.msg_control = &dummybuf;
msg.msg_controllen = sizeof(dummybuf);
cmsgp = (struct cmsghdr *)&dummybuf;
cmsgp->cmsg_len = CMSG_LEN(len);
cmsgp = CMSG_NXTHDR(&msg, cmsgp);
if (cmsgp != NULL) {
return (char *)cmsgp - (char *)msg.msg_control;
} else {
return 0;
}
}
#endif /* !CMSG_SPACE */
#endif /* DHCPv6 */
#if defined(DHCPv6) || \
(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && \
defined(USE_V4_PKTINFO))
/*
* For both send_packet6() and receive_packet6() we need to allocate
* space for the cmsg header information. We do this once and reuse
* the buffer. We also need the control buf for send_packet() and
* receive_packet() when we use a single socket and IP_PKTINFO to
* send the packet out the correct interface.
*/
static void *control_buf = NULL;
static size_t control_buf_len = 0;
static void
allocate_cmsg_cbuf(void) {
control_buf_len = CMSG_SPACE(sizeof(struct in6_pktinfo));
control_buf = dmalloc(control_buf_len, MDL);
return;
}
#endif /* DHCPv6, IP_PKTINFO ... */
#ifdef DHCPv6
/*
* For both send_packet6() and receive_packet6() we need to use the
* sendmsg()/recvmsg() functions rather than the simpler send()/recv()
* functions.
*
* In the case of send_packet6(), we need to do this in order to insure
* that the reply packet leaves on the same interface that it arrived
* on.
*
* In the case of receive_packet6(), we need to do this in order to
* get the IP address the packet was sent to. This is used to identify
* whether a packet is multicast or unicast.
*
* Helpful man pages: recvmsg, readv (talks about the iovec stuff), cmsg.
*
* Also see the sections in RFC 3542 about IPV6_PKTINFO.
*/
/* Send an IPv6 packet */
ssize_t send_packet6(struct interface_info *interface,
const unsigned char *raw, size_t len,
struct sockaddr_in6 *to) {
struct msghdr m;
struct iovec v;
int result;
struct in6_pktinfo *pktinfo;
struct cmsghdr *cmsg;
/*
* If necessary allocate space for the control message header.
* The space is common between send and receive.
*/
if (control_buf == NULL) {
allocate_cmsg_cbuf();
if (control_buf == NULL) {
log_error("send_packet6: unable to allocate cmsg header");
return(ENOMEM);
}
}
memset(control_buf, 0, control_buf_len);
/*
* Initialize our message header structure.
*/
memset(&m, 0, sizeof(m));
/*
* Set the target address we're sending to.
*/
m.msg_name = to;
m.msg_namelen = sizeof(*to);
/*
* Set the data buffer we're sending. (Using this wacky
* "scatter-gather" stuff... we only have a single chunk
* of data to send, so we declare a single vector entry.)
*/
v.iov_base = (char *)raw;
v.iov_len = len;
m.msg_iov = &v;
m.msg_iovlen = 1;
/*
* Setting the interface is a bit more involved.
*
* We have to create a "control message", and set that to
* define the IPv6 packet information. We could set the
* source address if we wanted, but we can safely let the
* kernel decide what that should be.
*/
m.msg_control = control_buf;
m.msg_controllen = control_buf_len;
cmsg = CMSG_FIRSTHDR(&m);
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(*pktinfo));
pktinfo = (struct in6_pktinfo *)CMSG_DATA(cmsg);
memset(pktinfo, 0, sizeof(*pktinfo));
pktinfo->ipi6_ifindex = if_nametoindex(interface->name);
m.msg_controllen = cmsg->cmsg_len;
result = sendmsg(interface->wfdesc, &m, 0);
if (result < 0) {
log_error("send_packet6: %m");
}
return result;
}
#endif /* DHCPv6 */
#ifdef USE_SOCKET_RECEIVE
ssize_t receive_packet (interface, buf, len, from, hfrom)
struct interface_info *interface;
unsigned char *buf;
size_t len;
struct sockaddr_in *from;
struct hardware *hfrom;
{
#if !(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO))
SOCKLEN_T flen = sizeof *from;
#endif
int result;
/*
* The normal Berkeley socket interface doesn't give us any way
* to know what hardware interface we received the message on,
* but we should at least make sure the structure is emptied.
*/
memset(hfrom, 0, sizeof(*hfrom));
#ifdef IGNORE_HOSTUNREACH
int retry = 0;
do {
#endif
#if defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && defined(USE_V4_PKTINFO)
struct msghdr m;
struct iovec v;
struct cmsghdr *cmsg;
struct in_pktinfo *pktinfo;
unsigned int ifindex;
/*
* If necessary allocate space for the control message header.
* The space is common between send and receive.
*/
if (control_buf == NULL) {
allocate_cmsg_cbuf();
if (control_buf == NULL) {
log_error("receive_packet: unable to allocate cmsg "
"header");
return(ENOMEM);
}
}
memset(control_buf, 0, control_buf_len);
/*
* Initialize our message header structure.
*/
memset(&m, 0, sizeof(m));
/*
* Point so we can get the from address.
*/
m.msg_name = from;
m.msg_namelen = sizeof(*from);
/*
* Set the data buffer we're receiving. (Using this wacky
* "scatter-gather" stuff... but we that doesn't really make
* sense for us, so we use a single vector entry.)
*/
v.iov_base = buf;
v.iov_len = len;
m.msg_iov = &v;
m.msg_iovlen = 1;
/*
* Getting the interface is a bit more involved.
*
* We set up some space for a "control message". We have
* previously asked the kernel to give us packet
* information (when we initialized the interface), so we
* should get the interface index from that.
*/
m.msg_control = control_buf;
m.msg_controllen = control_buf_len;
result = recvmsg(interface->rfdesc, &m, 0);
if (result >= 0) {
/*
* If we did read successfully, then we need to loop
* through the control messages we received and
* find the one with our inteface index.
*/
cmsg = CMSG_FIRSTHDR(&m);
while (cmsg != NULL) {
if ((cmsg->cmsg_level == IPPROTO_IP) &&
(cmsg->cmsg_type == IP_PKTINFO)) {
pktinfo = (struct in_pktinfo *)CMSG_DATA(cmsg);
ifindex = pktinfo->ipi_ifindex;
/*
* We pass the ifindex back to the caller
* using the unused hfrom parameter avoiding
* interface changes between sockets and
* the discover code.
*/
memcpy(hfrom->hbuf, &ifindex, sizeof(ifindex));
return (result);
}
cmsg = CMSG_NXTHDR(&m, cmsg);
}
/*
* We didn't find the necessary control message
* flag it as an error
*/
result = -1;
errno = EIO;
}
#else
result = recvfrom(interface -> rfdesc, (char *)buf, len, 0,
(struct sockaddr *)from, &flen);
#endif /* IP_PKTINFO ... */
#ifdef IGNORE_HOSTUNREACH
} while (result < 0 &&
(errno == EHOSTUNREACH ||
errno == ECONNREFUSED) &&
retry++ < 10);
#endif
return (result);
}
#endif /* USE_SOCKET_RECEIVE */
#ifdef DHCPv6
ssize_t
receive_packet6(struct interface_info *interface,
unsigned char *buf, size_t len,
struct sockaddr_in6 *from, struct in6_addr *to_addr,
unsigned int *if_idx)
{
struct msghdr m;
struct iovec v;
int result;
struct cmsghdr *cmsg;
struct in6_pktinfo *pktinfo;
/*
* If necessary allocate space for the control message header.
* The space is common between send and receive.
*/
if (control_buf == NULL) {
allocate_cmsg_cbuf();
if (control_buf == NULL) {
log_error("receive_packet6: unable to allocate cmsg "
"header");
return(ENOMEM);
}
}
memset(control_buf, 0, control_buf_len);
/*
* Initialize our message header structure.
*/
memset(&m, 0, sizeof(m));
/*
* Point so we can get the from address.
*/
m.msg_name = from;
m.msg_namelen = sizeof(*from);
/*
* Set the data buffer we're receiving. (Using this wacky
* "scatter-gather" stuff... but we that doesn't really make
* sense for us, so we use a single vector entry.)
*/
v.iov_base = buf;
v.iov_len = len;
m.msg_iov = &v;
m.msg_iovlen = 1;
/*
* Getting the interface is a bit more involved.
*
* We set up some space for a "control message". We have
* previously asked the kernel to give us packet
* information (when we initialized the interface), so we
* should get the destination address from that.
*/
m.msg_control = control_buf;
m.msg_controllen = control_buf_len;
result = recvmsg(interface->rfdesc, &m, 0);
if (result >= 0) {
/*
* If we did read successfully, then we need to loop
* through the control messages we received and
* find the one with our destination address.
*/
cmsg = CMSG_FIRSTHDR(&m);
while (cmsg != NULL) {
if ((cmsg->cmsg_level == IPPROTO_IPV6) &&
(cmsg->cmsg_type == IPV6_PKTINFO)) {
pktinfo = (struct in6_pktinfo *)CMSG_DATA(cmsg);
*to_addr = pktinfo->ipi6_addr;
*if_idx = pktinfo->ipi6_ifindex;
return (result);
}
cmsg = CMSG_NXTHDR(&m, cmsg);
}
/*
* We didn't find the necessary control message
* flag is as an error
*/
result = -1;
errno = EIO;
}
return (result);
}
#endif /* DHCPv6 */
#if defined (USE_SOCKET_FALLBACK)
/* This just reads in a packet and silently discards it. */
isc_result_t fallback_discard (object)
omapi_object_t *object;
{
char buf [1540];
struct sockaddr_in from;
SOCKLEN_T flen = sizeof from;
int status;
struct interface_info *interface;
if (object -> type != dhcp_type_interface)
return ISC_R_INVALIDARG;
interface = (struct interface_info *)object;
status = recvfrom (interface -> wfdesc, buf, sizeof buf, 0,
(struct sockaddr *)&from, &flen);
#if defined (DEBUG)
/* Only report fallback discard errors if we're debugging. */
if (status < 0) {
log_error ("fallback_discard: %m");
return ISC_R_UNEXPECTED;
}
#else
/* ignore the fact that status value is never used */
IGNORE_UNUSED(status);
#endif
return ISC_R_SUCCESS;
}
#endif /* USE_SOCKET_FALLBACK */
#if defined (USE_SOCKET_SEND)
int can_unicast_without_arp (ip)
struct interface_info *ip;
{
return 0;
}
int can_receive_unicast_unconfigured (ip)
struct interface_info *ip;
{
#if defined (SOCKET_CAN_RECEIVE_UNICAST_UNCONFIGURED)
return 1;
#else
return 0;
#endif
}
int supports_multiple_interfaces (ip)
struct interface_info *ip;
{
#if defined(SO_BINDTODEVICE) || \
(defined(IP_PKTINFO) && defined(IP_RECVPKTINFO) && \
defined(USE_V4_PKTINFO))
return(1);
#else
return(0);
#endif
}
/* If we have SO_BINDTODEVICE, set up a fallback interface; otherwise,
do not. */
void maybe_setup_fallback ()
{
#if defined (USE_SOCKET_FALLBACK)
isc_result_t status;
struct interface_info *fbi = (struct interface_info *)0;
if (setup_fallback (&fbi, MDL)) {
fbi -> wfdesc = if_register_socket (fbi, AF_INET, 0);
fbi -> rfdesc = fbi -> wfdesc;
log_info ("Sending on Socket/%s%s%s",
fbi -> name,
(fbi -> shared_network ? "/" : ""),
(fbi -> shared_network ?
fbi -> shared_network -> name : ""));
status = omapi_register_io_object ((omapi_object_t *)fbi,
if_readsocket, 0,
fallback_discard, 0, 0);
if (status != ISC_R_SUCCESS)
log_fatal ("Can't register I/O handle for %s: %s",
fbi -> name, isc_result_totext (status));
interface_dereference (&fbi, MDL);
}
#endif
}
#if defined(sun) && defined(USE_V4_PKTINFO)
/* This code assumes the existence of SIOCGLIFHWADDR */
void
get_hw_addr(const char *name, struct hardware *hw) {
struct sockaddr_dl *dladdrp;
int sock, i;
struct lifreq lifr;
memset(&lifr, 0, sizeof (lifr));
(void) strlcpy(lifr.lifr_name, name, sizeof (lifr.lifr_name));
/*
* Check if the interface is a virtual or IPMP interface - in those
* cases it has no hw address, so generate a random one.
*/
if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
ioctl(sock, SIOCGLIFFLAGS, &lifr) < 0) {
if (sock != -1)
(void) close(sock);
#ifdef DHCPv6
/*
* If approrpriate try this with an IPv6 socket
*/
if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) >= 0 &&
ioctl(sock, SIOCGLIFFLAGS, &lifr) >= 0) {
goto flag_check;
}
if (sock != -1)
(void) close(sock);
#endif
log_fatal("Couldn't get interface flags for %s: %m", name);
}
flag_check:
if (lifr.lifr_flags & (IFF_VIRTUAL|IFF_IPMP)) {
hw->hlen = sizeof (hw->hbuf);
srandom((long)gethrtime());
hw->hbuf[0] = HTYPE_IPMP;
for (i = 1; i < hw->hlen; ++i) {
hw->hbuf[i] = random() % 256;
}
if (sock != -1)
(void) close(sock);
return;
}
if (ioctl(sock, SIOCGLIFHWADDR, &lifr) < 0)
log_fatal("Couldn't get interface hardware address for %s: %m",
name);
dladdrp = (struct sockaddr_dl *)&lifr.lifr_addr;
hw->hlen = dladdrp->sdl_alen+1;
switch (dladdrp->sdl_type) {
case DL_CSMACD: /* IEEE 802.3 */
case DL_ETHER:
hw->hbuf[0] = HTYPE_ETHER;
break;
case DL_TPR:
hw->hbuf[0] = HTYPE_IEEE802;
break;
case DL_FDDI:
hw->hbuf[0] = HTYPE_FDDI;
break;
case DL_IB:
hw->hbuf[0] = HTYPE_INFINIBAND;
break;
default:
log_fatal("%s: unsupported DLPI MAC type %lu", name,
(unsigned long)dladdrp->sdl_type);
}
memcpy(hw->hbuf+1, LLADDR(dladdrp), hw->hlen-1);
if (sock != -1)
(void) close(sock);
}
#endif /* defined(sun) */
#endif /* USE_SOCKET_SEND */
/*
* Code to set a handler for signals. This
* exists to allow us to ignore SIGPIPE signals
* but could be used for other purposes in the
* future.
*/
isc_result_t
dhcp_handle_signal(int sig, void (*handler)(int)) {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = handler;
if (sigfillset(&sa.sa_mask) != 0 ||
sigaction(sig, &sa, NULL) < 0) {
log_error("Unable to set up signal handler for %d, %m", sig);
return (ISC_R_UNEXPECTED);
}
return (ISC_R_SUCCESS);
}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>