Annotation of embedaddon/dhcp/server/mdb6.c, revision 1.1.1.1
1.1 misho 1: /*
1.1.1.1 ! misho 2: * Copyright (C) 2010-2012 by Internet Systems Consortium, Inc. ("ISC")
1.1 misho 3: * Copyright (C) 2007-2008 by Internet Systems Consortium, Inc. ("ISC")
4: *
5: * Permission to use, copy, modify, and distribute this software for any
6: * purpose with or without fee is hereby granted, provided that the above
7: * copyright notice and this permission notice appear in all copies.
8: *
9: * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
10: * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
11: * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
12: * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
13: * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
14: * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
15: * PERFORMANCE OF THIS SOFTWARE.
16: */
17:
1.1.1.1 ! misho 18: /*!
! 19: * \todo assert()
! 20: * \todo simplify functions, as pool is now in iaaddr
! 21: */
! 22:
! 23: /*! \file server/mdb6.c
! 24: *
! 25: * \page ipv6structures IPv6 Structures Overview
! 26: *
! 27: * A brief description of the IPv6 structures as reverse engineered.
! 28: *
! 29: * There are three major data strucutes involved in the database:
! 30: *
! 31: * - ipv6_pool - this contains information about a pool of addresses or prefixes
! 32: * that the server is using. This includes a hash table that
! 33: * tracks the active items and a pair of heap tables one for
! 34: * active items and one for non-active items. The heap tables
! 35: * are used to determine the next items to be modified due to
! 36: * timing events (expire mostly).
! 37: * - ia_xx - this contains information about a single IA from a request
! 38: * normally it will contain one pointer to a lease for the client
! 39: * but it may contain more in some circumstances. There are 3
! 40: * hash tables to aid in accessing these one each for NA, TA and PD.
! 41: * - iasubopt- the v6 lease structure. These are created dynamically when
! 42: * a client asks for something and will eventually be destroyed
! 43: * if the client doesn't re-ask for that item. A lease has space
! 44: * for backpointers to the IA and to the pool to which it belongs.
! 45: * The pool backpointer is always filled, the IA pointer may not be.
! 46: *
! 47: * In normal use we then have something like this:
! 48: *
! 49: * \verbatim
! 50: * ia hash tables
! 51: * ia_na_active +----------------+
! 52: * ia_ta_active +------------+ | pool |
! 53: * ia_pd_active | iasubopt |<--| active hash |
! 54: * +-----------------+ | aka lease |<--| active heap |
! 55: * | ia_xx | | pool ptr |-->| |
! 56: * | iasubopt array |<---| iaptr |<--| inactive heap |
! 57: * | lease ptr |--->| | | |
! 58: * +-----------------+ +------------+ +----------------+
! 59: * \endverbatim
! 60: *
! 61: * For the pool either the inactive heap will have a pointer
! 62: * or both the active heap and the active hash will have pointers.
! 63: *
! 64: * I think there are several major items to notice. The first is
! 65: * that as a lease moves around it will be added to and removed
! 66: * from the address hash table in the pool and between the active
! 67: * and inactive hash tables. The hash table and the active heap
! 68: * are used when the lease is either active or abandoned. The
! 69: * inactive heap is used for all other states. In particular a
! 70: * lease that has expired or been released will be cleaned
! 71: * (DDNS removal etc) and then moved to the inactive heap. After
! 72: * some time period (currently 1 hour) it will be freed.
! 73: *
! 74: * The second is that when a client requests specific addresses,
! 75: * either because it previously owned them or if the server supplied
! 76: * them as part of a solicit, the server will try to lookup the ia_xx
! 77: * associated with the client and find the addresses there. If it
! 78: * does find appropriate leases it moves them from the old IA to
! 79: * a new IA and eventually replaces the old IA with the new IA
! 80: * in the IA hash tables.
! 81: *
! 82: */
1.1 misho 83: #include "config.h"
84:
85: #include <sys/types.h>
86: #include <time.h>
87: #include <netinet/in.h>
88:
89: #include "isc-dhcp/result.h"
90:
91: #include <stdarg.h>
92: #include "dhcpd.h"
93: #include "omapip/omapip.h"
94: #include "omapip/hash.h"
95: #include "dst/md5.h"
96:
97: HASH_FUNCTIONS(ia, unsigned char *, struct ia_xx, ia_hash_t,
98: ia_reference, ia_dereference, do_string_hash)
99:
100: ia_hash_t *ia_na_active;
101: ia_hash_t *ia_ta_active;
102: ia_hash_t *ia_pd_active;
103:
104: HASH_FUNCTIONS(iasubopt, struct in6_addr *, struct iasubopt, iasubopt_hash_t,
105: iasubopt_reference, iasubopt_dereference, do_string_hash)
106:
107: struct ipv6_pool **pools;
108: int num_pools;
109:
110: /*
111: * Create a new IAADDR/PREFIX structure.
112: *
113: * - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
114: * initialized to NULL
115: */
116: isc_result_t
117: iasubopt_allocate(struct iasubopt **iasubopt, const char *file, int line) {
118: struct iasubopt *tmp;
119:
120: if (iasubopt == NULL) {
121: log_error("%s(%d): NULL pointer reference", file, line);
122: return ISC_R_INVALIDARG;
123: }
124: if (*iasubopt != NULL) {
125: log_error("%s(%d): non-NULL pointer", file, line);
126: return ISC_R_INVALIDARG;
127: }
128:
129: tmp = dmalloc(sizeof(*tmp), file, line);
130: if (tmp == NULL) {
131: return ISC_R_NOMEMORY;
132: }
133:
134: tmp->refcnt = 1;
135: tmp->state = FTS_FREE;
136: tmp->heap_index = -1;
137: tmp->plen = 255;
138:
139: *iasubopt = tmp;
140: return ISC_R_SUCCESS;
141: }
142:
143: /*
144: * Reference an IAADDR/PREFIX structure.
145: *
146: * - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
147: * initialized to NULL
148: */
149: isc_result_t
150: iasubopt_reference(struct iasubopt **iasubopt, struct iasubopt *src,
151: const char *file, int line) {
152: if (iasubopt == NULL) {
153: log_error("%s(%d): NULL pointer reference", file, line);
154: return ISC_R_INVALIDARG;
155: }
156: if (*iasubopt != NULL) {
157: log_error("%s(%d): non-NULL pointer", file, line);
158: return ISC_R_INVALIDARG;
159: }
160: if (src == NULL) {
161: log_error("%s(%d): NULL pointer reference", file, line);
162: return ISC_R_INVALIDARG;
163: }
164: *iasubopt = src;
165: src->refcnt++;
166: return ISC_R_SUCCESS;
167: }
168:
169:
170: /*
171: * Dereference an IAADDR/PREFIX structure.
172: *
173: * If it is the last reference, then the memory for the
174: * structure is freed.
175: */
176: isc_result_t
177: iasubopt_dereference(struct iasubopt **iasubopt, const char *file, int line) {
178: struct iasubopt *tmp;
179:
180: if ((iasubopt == NULL) || (*iasubopt == NULL)) {
181: log_error("%s(%d): NULL pointer", file, line);
182: return ISC_R_INVALIDARG;
183: }
184:
185: tmp = *iasubopt;
186: *iasubopt = NULL;
187:
188: tmp->refcnt--;
189: if (tmp->refcnt < 0) {
190: log_error("%s(%d): negative refcnt", file, line);
191: tmp->refcnt = 0;
192: }
193: if (tmp->refcnt == 0) {
194: if (tmp->ia != NULL) {
195: ia_dereference(&(tmp->ia), file, line);
196: }
197: if (tmp->ipv6_pool != NULL) {
198: ipv6_pool_dereference(&(tmp->ipv6_pool), file, line);
199: }
200: if (tmp->scope != NULL) {
201: binding_scope_dereference(&tmp->scope, file, line);
202: }
203: dfree(tmp, file, line);
204: }
205:
206: return ISC_R_SUCCESS;
207: }
208:
209: /*
210: * Make the key that we use for IA.
211: */
212: isc_result_t
213: ia_make_key(struct data_string *key, u_int32_t iaid,
214: const char *duid, unsigned int duid_len,
215: const char *file, int line) {
216:
217: memset(key, 0, sizeof(*key));
218: key->len = duid_len + sizeof(iaid);
219: if (!buffer_allocate(&(key->buffer), key->len, file, line)) {
220: return ISC_R_NOMEMORY;
221: }
222: key->data = key->buffer->data;
223: memcpy((char *)key->data, &iaid, sizeof(iaid));
224: memcpy((char *)key->data + sizeof(iaid), duid, duid_len);
225:
226: return ISC_R_SUCCESS;
227: }
228:
229: /*
230: * Create a new IA structure.
231: *
232: * - ia must be a pointer to a (struct ia_xx *) pointer previously
233: * initialized to NULL
234: * - iaid and duid are values from the client
235: *
236: * XXXsk: we don't concern ourself with the byte order of the IAID,
237: * which might be a problem if we transfer this structure
238: * between machines of different byte order
239: */
240: isc_result_t
241: ia_allocate(struct ia_xx **ia, u_int32_t iaid,
242: const char *duid, unsigned int duid_len,
243: const char *file, int line) {
244: struct ia_xx *tmp;
245:
246: if (ia == NULL) {
247: log_error("%s(%d): NULL pointer reference", file, line);
248: return ISC_R_INVALIDARG;
249: }
250: if (*ia != NULL) {
251: log_error("%s(%d): non-NULL pointer", file, line);
252: return ISC_R_INVALIDARG;
253: }
254:
255: tmp = dmalloc(sizeof(*tmp), file, line);
256: if (tmp == NULL) {
257: return ISC_R_NOMEMORY;
258: }
259:
260: if (ia_make_key(&tmp->iaid_duid, iaid,
261: duid, duid_len, file, line) != ISC_R_SUCCESS) {
262: dfree(tmp, file, line);
263: return ISC_R_NOMEMORY;
264: }
265:
266: tmp->refcnt = 1;
267:
268: *ia = tmp;
269: return ISC_R_SUCCESS;
270: }
271:
272: /*
273: * Reference an IA structure.
274: *
275: * - ia must be a pointer to a (struct ia_xx *) pointer previously
276: * initialized to NULL
277: */
278: isc_result_t
279: ia_reference(struct ia_xx **ia, struct ia_xx *src,
280: const char *file, int line) {
281: if (ia == NULL) {
282: log_error("%s(%d): NULL pointer reference", file, line);
283: return ISC_R_INVALIDARG;
284: }
285: if (*ia != NULL) {
286: log_error("%s(%d): non-NULL pointer", file, line);
287: return ISC_R_INVALIDARG;
288: }
289: if (src == NULL) {
290: log_error("%s(%d): NULL pointer reference", file, line);
291: return ISC_R_INVALIDARG;
292: }
293: *ia = src;
294: src->refcnt++;
295: return ISC_R_SUCCESS;
296: }
297:
298: /*
299: * Dereference an IA structure.
300: *
301: * If it is the last reference, then the memory for the
302: * structure is freed.
303: */
304: isc_result_t
305: ia_dereference(struct ia_xx **ia, const char *file, int line) {
306: struct ia_xx *tmp;
307: int i;
308:
309: if ((ia == NULL) || (*ia == NULL)) {
310: log_error("%s(%d): NULL pointer", file, line);
311: return ISC_R_INVALIDARG;
312: }
313:
314: tmp = *ia;
315: *ia = NULL;
316:
317: tmp->refcnt--;
318: if (tmp->refcnt < 0) {
319: log_error("%s(%d): negative refcnt", file, line);
320: tmp->refcnt = 0;
321: }
322: if (tmp->refcnt == 0) {
323: if (tmp->iasubopt != NULL) {
324: for (i=0; i<tmp->num_iasubopt; i++) {
325: iasubopt_dereference(&(tmp->iasubopt[i]),
326: file, line);
327: }
328: dfree(tmp->iasubopt, file, line);
329: }
330: data_string_forget(&(tmp->iaid_duid), file, line);
331: dfree(tmp, file, line);
332: }
333: return ISC_R_SUCCESS;
334: }
335:
336:
337: /*
338: * Add an IAADDR/PREFIX entry to an IA structure.
339: */
340: isc_result_t
341: ia_add_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
342: const char *file, int line) {
343: int max;
344: struct iasubopt **new;
345:
346: /*
347: * Grow our array if we need to.
348: *
349: * Note: we pick 4 as the increment, as that seems a reasonable
350: * guess as to how many addresses/prefixes we might expect
351: * on an interface.
352: */
353: if (ia->max_iasubopt <= ia->num_iasubopt) {
354: max = ia->max_iasubopt + 4;
355: new = dmalloc(max * sizeof(struct iasubopt *), file, line);
356: if (new == NULL) {
357: return ISC_R_NOMEMORY;
358: }
359: memcpy(new, ia->iasubopt,
360: ia->num_iasubopt * sizeof(struct iasubopt *));
361: ia->iasubopt = new;
362: ia->max_iasubopt = max;
363: }
364:
365: iasubopt_reference(&(ia->iasubopt[ia->num_iasubopt]), iasubopt,
366: file, line);
367: ia->num_iasubopt++;
368:
369: return ISC_R_SUCCESS;
370: }
371:
372: /*
373: * Remove an IAADDR/PREFIX entry to an IA structure.
374: *
375: * Note: if a suboption appears more than once, then only ONE will be removed.
376: */
377: void
378: ia_remove_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
379: const char *file, int line) {
380: int i, j;
1.1.1.1 ! misho 381: if (ia == NULL || iasubopt == NULL)
! 382: return;
1.1 misho 383:
384: for (i=0; i<ia->num_iasubopt; i++) {
385: if (ia->iasubopt[i] == iasubopt) {
386: /* remove this sub option */
387: iasubopt_dereference(&(ia->iasubopt[i]), file, line);
388: /* move remaining suboption pointers down one */
389: for (j=i+1; j < ia->num_iasubopt; j++) {
390: ia->iasubopt[j-1] = ia->iasubopt[j];
391: }
392: /* decrease our total count */
393: /* remove the back-reference in the suboption itself */
394: ia_dereference(&iasubopt->ia, file, line);
395: ia->num_iasubopt--;
396: return;
397: }
398: }
399: log_error("%s(%d): IAADDR/PREFIX not in IA", file, line);
400: }
401:
402: /*
403: * Remove all addresses/prefixes from an IA.
404: */
405: void
406: ia_remove_all_lease(struct ia_xx *ia, const char *file, int line) {
407: int i;
408:
409: for (i=0; i<ia->num_iasubopt; i++) {
410: ia_dereference(&(ia->iasubopt[i]->ia), file, line);
411: iasubopt_dereference(&(ia->iasubopt[i]), file, line);
412: }
413: ia->num_iasubopt = 0;
414: }
415:
416: /*
417: * Compare two IA.
418: */
419: isc_boolean_t
420: ia_equal(const struct ia_xx *a, const struct ia_xx *b)
421: {
422: isc_boolean_t found;
423: int i, j;
424:
425: /*
426: * Handle cases where one or both of the inputs is NULL.
427: */
428: if (a == NULL) {
429: if (b == NULL) {
430: return ISC_TRUE;
431: } else {
432: return ISC_FALSE;
433: }
434: }
435:
436: /*
437: * Check the type is the same.
438: */
439: if (a->ia_type != b->ia_type) {
440: return ISC_FALSE;
441: }
442:
443: /*
444: * Check the DUID is the same.
445: */
446: if (a->iaid_duid.len != b->iaid_duid.len) {
447: return ISC_FALSE;
448: }
449: if (memcmp(a->iaid_duid.data,
450: b->iaid_duid.data, a->iaid_duid.len) != 0) {
451: return ISC_FALSE;
452: }
453:
454: /*
455: * Make sure we have the same number of addresses/prefixes in each.
456: */
457: if (a->num_iasubopt != b->num_iasubopt) {
458: return ISC_FALSE;
459: }
460:
461: /*
462: * Check that each address/prefix is present in both.
463: */
464: for (i=0; i<a->num_iasubopt; i++) {
465: found = ISC_FALSE;
466: for (j=0; j<a->num_iasubopt; j++) {
467: if (a->iasubopt[i]->plen != b->iasubopt[i]->plen)
468: continue;
469: if (memcmp(&(a->iasubopt[i]->addr),
470: &(b->iasubopt[j]->addr),
471: sizeof(struct in6_addr)) == 0) {
472: found = ISC_TRUE;
473: break;
474: }
475: }
476: if (!found) {
477: return ISC_FALSE;
478: }
479: }
480:
481: /*
482: * These are the same in every way we care about.
483: */
484: return ISC_TRUE;
485: }
486:
487: /*
488: * Helper function for lease heaps.
489: * Makes the top of the heap the oldest lease.
490: */
491: static isc_boolean_t
492: lease_older(void *a, void *b) {
493: struct iasubopt *la = (struct iasubopt *)a;
494: struct iasubopt *lb = (struct iasubopt *)b;
495:
496: if (la->hard_lifetime_end_time == lb->hard_lifetime_end_time) {
497: return difftime(la->soft_lifetime_end_time,
498: lb->soft_lifetime_end_time) < 0;
499: } else {
500: return difftime(la->hard_lifetime_end_time,
501: lb->hard_lifetime_end_time) < 0;
502: }
503: }
504:
505: /*
506: * Helper function for lease address/prefix heaps.
507: * Callback when an address's position in the heap changes.
508: */
509: static void
510: lease_index_changed(void *iasubopt, unsigned int new_heap_index) {
511: ((struct iasubopt *)iasubopt)-> heap_index = new_heap_index;
512: }
513:
514:
515: /*
516: * Create a new IPv6 lease pool structure.
517: *
518: * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
519: * initialized to NULL
520: */
521: isc_result_t
522: ipv6_pool_allocate(struct ipv6_pool **pool, u_int16_t type,
523: const struct in6_addr *start_addr, int bits,
524: int units, const char *file, int line) {
525: struct ipv6_pool *tmp;
526:
527: if (pool == NULL) {
528: log_error("%s(%d): NULL pointer reference", file, line);
529: return ISC_R_INVALIDARG;
530: }
531: if (*pool != NULL) {
532: log_error("%s(%d): non-NULL pointer", file, line);
533: return ISC_R_INVALIDARG;
534: }
535:
536: tmp = dmalloc(sizeof(*tmp), file, line);
537: if (tmp == NULL) {
538: return ISC_R_NOMEMORY;
539: }
540:
541: tmp->refcnt = 1;
542: tmp->pool_type = type;
543: tmp->start_addr = *start_addr;
544: tmp->bits = bits;
545: tmp->units = units;
546: if (!iasubopt_new_hash(&tmp->leases, DEFAULT_HASH_SIZE, file, line)) {
547: dfree(tmp, file, line);
548: return ISC_R_NOMEMORY;
549: }
550: if (isc_heap_create(lease_older, lease_index_changed,
551: 0, &(tmp->active_timeouts)) != ISC_R_SUCCESS) {
552: iasubopt_free_hash_table(&(tmp->leases), file, line);
553: dfree(tmp, file, line);
554: return ISC_R_NOMEMORY;
555: }
556: if (isc_heap_create(lease_older, lease_index_changed,
557: 0, &(tmp->inactive_timeouts)) != ISC_R_SUCCESS) {
558: isc_heap_destroy(&(tmp->active_timeouts));
559: iasubopt_free_hash_table(&(tmp->leases), file, line);
560: dfree(tmp, file, line);
561: return ISC_R_NOMEMORY;
562: }
563:
564: *pool = tmp;
565: return ISC_R_SUCCESS;
566: }
567:
568: /*
569: * Reference an IPv6 pool structure.
570: *
571: * - pool must be a pointer to a (struct pool *) pointer previously
572: * initialized to NULL
573: */
574: isc_result_t
575: ipv6_pool_reference(struct ipv6_pool **pool, struct ipv6_pool *src,
576: const char *file, int line) {
577: if (pool == NULL) {
578: log_error("%s(%d): NULL pointer reference", file, line);
579: return ISC_R_INVALIDARG;
580: }
581: if (*pool != NULL) {
582: log_error("%s(%d): non-NULL pointer", file, line);
583: return ISC_R_INVALIDARG;
584: }
585: if (src == NULL) {
586: log_error("%s(%d): NULL pointer reference", file, line);
587: return ISC_R_INVALIDARG;
588: }
589: *pool = src;
590: src->refcnt++;
591: return ISC_R_SUCCESS;
592: }
593:
594: /*
595: * Note: Each IAADDR/PREFIX in a pool is referenced by the pool. This is needed
596: * to prevent the lease from being garbage collected out from under the
597: * pool.
598: *
599: * The references are made from the hash and from the heap. The following
600: * helper functions dereference these when a pool is destroyed.
601: */
602:
603: /*
604: * Helper function for pool cleanup.
605: * Dereference each of the hash entries in a pool.
606: */
607: static isc_result_t
608: dereference_hash_entry(const void *name, unsigned len, void *value) {
609: struct iasubopt *iasubopt = (struct iasubopt *)value;
610:
611: iasubopt_dereference(&iasubopt, MDL);
612: return ISC_R_SUCCESS;
613: }
614:
615: /*
616: * Helper function for pool cleanup.
617: * Dereference each of the heap entries in a pool.
618: */
619: static void
620: dereference_heap_entry(void *value, void *dummy) {
621: struct iasubopt *iasubopt = (struct iasubopt *)value;
622:
623: iasubopt_dereference(&iasubopt, MDL);
624: }
625:
626:
627: /*
628: * Dereference an IPv6 pool structure.
629: *
630: * If it is the last reference, then the memory for the
631: * structure is freed.
632: */
633: isc_result_t
634: ipv6_pool_dereference(struct ipv6_pool **pool, const char *file, int line) {
635: struct ipv6_pool *tmp;
636:
637: if ((pool == NULL) || (*pool == NULL)) {
638: log_error("%s(%d): NULL pointer", file, line);
639: return ISC_R_INVALIDARG;
640: }
641:
642: tmp = *pool;
643: *pool = NULL;
644:
645: tmp->refcnt--;
646: if (tmp->refcnt < 0) {
647: log_error("%s(%d): negative refcnt", file, line);
648: tmp->refcnt = 0;
649: }
650: if (tmp->refcnt == 0) {
651: iasubopt_hash_foreach(tmp->leases, dereference_hash_entry);
652: iasubopt_free_hash_table(&(tmp->leases), file, line);
653: isc_heap_foreach(tmp->active_timeouts,
654: dereference_heap_entry, NULL);
655: isc_heap_destroy(&(tmp->active_timeouts));
656: isc_heap_foreach(tmp->inactive_timeouts,
657: dereference_heap_entry, NULL);
658: isc_heap_destroy(&(tmp->inactive_timeouts));
659: dfree(tmp, file, line);
660: }
661:
662: return ISC_R_SUCCESS;
663: }
664:
665: /*
666: * Create an address by hashing the input, and using that for
667: * the non-network part.
668: */
669: static void
670: build_address6(struct in6_addr *addr,
671: const struct in6_addr *net_start_addr, int net_bits,
672: const struct data_string *input) {
673: MD5_CTX ctx;
674: int net_bytes;
675: int i;
676: char *str;
677: const char *net_str;
678:
679: /*
680: * Use MD5 to get a nice 128 bit hash of the input.
681: * Yes, we know MD5 isn't cryptographically sound.
682: * No, we don't care.
683: */
684: MD5_Init(&ctx);
685: MD5_Update(&ctx, input->data, input->len);
686: MD5_Final((unsigned char *)addr, &ctx);
687:
688: /*
689: * Copy the [0..128] network bits over.
690: */
691: str = (char *)addr;
692: net_str = (const char *)net_start_addr;
693: net_bytes = net_bits / 8;
694: for (i = 0; i < net_bytes; i++) {
695: str[i] = net_str[i];
696: }
697: switch (net_bits % 8) {
698: case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
699: case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
700: case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
701: case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
702: case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
703: case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
704: case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
705: }
706: /* set the 'u' bit to zero for /64s. */
707: if (net_bits == 64)
708: str[8] &= ~0x02;
709: }
710:
711: /*
712: * Create a temporary address by a variant of RFC 4941 algo.
713: * Note: this should not be used for prefixes shorter than 64 bits.
714: */
715: static void
716: build_temporary6(struct in6_addr *addr,
717: const struct in6_addr *net_start_addr, int net_bits,
718: const struct data_string *input) {
719: static u_int8_t history[8];
720: static u_int32_t counter = 0;
721: MD5_CTX ctx;
722: unsigned char md[16];
723: extern int dst_s_random(u_int8_t *, unsigned);
724:
725: /*
726: * First time/time to reseed.
727: * Please use a good pseudo-random generator here!
728: */
729: if (counter == 0) {
730: if (dst_s_random(history, 8) != 8)
731: log_fatal("Random failed.");
732: }
733:
734: /*
735: * Use MD5 as recommended by RFC 4941.
736: */
737: MD5_Init(&ctx);
738: MD5_Update(&ctx, history, 8UL);
739: MD5_Update(&ctx, input->data, input->len);
740: MD5_Final(md, &ctx);
741:
742: /*
743: * Build the address.
744: */
745: if (net_bits == 64) {
746: memcpy(&addr->s6_addr[0], &net_start_addr->s6_addr[0], 8);
747: memcpy(&addr->s6_addr[8], md, 8);
748: addr->s6_addr[8] &= ~0x02;
749: } else {
750: int net_bytes;
751: int i;
752: char *str;
753: const char *net_str;
754:
755: /*
756: * Copy the [0..128] network bits over.
757: */
758: str = (char *)addr;
759: net_str = (const char *)net_start_addr;
760: net_bytes = net_bits / 8;
761: for (i = 0; i < net_bytes; i++) {
762: str[i] = net_str[i];
763: }
764: memcpy(str + net_bytes, md, 16 - net_bytes);
765: switch (net_bits % 8) {
766: case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
767: case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
768: case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
769: case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
770: case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
771: case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
772: case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
773: }
774: }
775:
776:
777: /*
778: * Save history for the next call.
779: */
780: memcpy(history, md + 8, 8);
781: counter++;
782: }
783:
784: /* Reserved Subnet Router Anycast ::0:0:0:0. */
785: static struct in6_addr rtany;
786: /* Reserved Subnet Anycasts ::fdff:ffff:ffff:ff80-::fdff:ffff:ffff:ffff. */
787: static struct in6_addr resany;
788:
789: /*
790: * Create a lease for the given address and client duid.
791: *
792: * - pool must be a pointer to a (struct pool *) pointer previously
793: * initialized to NULL
794: *
795: * Right now we simply hash the DUID, and if we get a collision, we hash
796: * again until we find a free address. We try this a fixed number of times,
797: * to avoid getting stuck in a loop (this is important on small pools
798: * where we can run out of space).
799: *
800: * We return the number of attempts that it took to find an available
801: * lease. This tells callers when a pool is are filling up, as
802: * well as an indication of how full the pool is; statistically the
803: * more full a pool is the more attempts must be made before finding
804: * a free lease. Realistically this will only happen in very full
805: * pools.
806: *
807: * We probably want different algorithms depending on the network size, in
808: * the long term.
809: */
810: isc_result_t
811: create_lease6(struct ipv6_pool *pool, struct iasubopt **addr,
812: unsigned int *attempts,
813: const struct data_string *uid, time_t soft_lifetime_end_time) {
814: struct data_string ds;
815: struct in6_addr tmp;
816: struct iasubopt *test_iaaddr;
817: struct data_string new_ds;
818: struct iasubopt *iaaddr;
819: isc_result_t result;
820: isc_boolean_t reserved_iid;
821: static isc_boolean_t init_resiid = ISC_FALSE;
822:
823: /*
824: * Fill the reserved IIDs.
825: */
826: if (!init_resiid) {
827: memset(&rtany, 0, 16);
828: memset(&resany, 0, 8);
829: resany.s6_addr[8] = 0xfd;
830: memset(&resany.s6_addr[9], 0xff, 6);
831: init_resiid = ISC_TRUE;
832: }
833:
834: /*
835: * Use the UID as our initial seed for the hash
836: */
837: memset(&ds, 0, sizeof(ds));
838: data_string_copy(&ds, (struct data_string *)uid, MDL);
839:
840: *attempts = 0;
841: for (;;) {
842: /*
843: * Give up at some point.
844: */
845: if (++(*attempts) > 100) {
846: data_string_forget(&ds, MDL);
847: return ISC_R_NORESOURCES;
848: }
849:
850: /*
851: * Build a resource.
852: */
853: switch (pool->pool_type) {
854: case D6O_IA_NA:
855: /* address */
856: build_address6(&tmp, &pool->start_addr,
857: pool->bits, &ds);
858: break;
859: case D6O_IA_TA:
860: /* temporary address */
861: build_temporary6(&tmp, &pool->start_addr,
862: pool->bits, &ds);
863: break;
864: case D6O_IA_PD:
865: /* prefix */
866: log_error("create_lease6: prefix pool.");
867: return ISC_R_INVALIDARG;
868: default:
869: log_error("create_lease6: untyped pool.");
870: return ISC_R_INVALIDARG;
871: }
872:
873: /*
1.1.1.1 ! misho 874: * Avoid reserved interface IDs. (cf. RFC 5453)
1.1 misho 875: */
876: reserved_iid = ISC_FALSE;
1.1.1.1 ! misho 877: if (memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) {
1.1 misho 878: reserved_iid = ISC_TRUE;
879: }
880: if (!reserved_iid &&
1.1.1.1 ! misho 881: (memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
1.1 misho 882: ((tmp.s6_addr[15] & 0x80) == 0x80)) {
883: reserved_iid = ISC_TRUE;
884: }
885:
886: /*
887: * If this address is not in use, we're happy with it
888: */
889: test_iaaddr = NULL;
890: if (!reserved_iid &&
891: (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
892: &tmp, sizeof(tmp), MDL) == 0)) {
893: break;
894: }
895: if (test_iaaddr != NULL)
896: iasubopt_dereference(&test_iaaddr, MDL);
897:
898: /*
899: * Otherwise, we create a new input, adding the address
900: */
901: memset(&new_ds, 0, sizeof(new_ds));
902: new_ds.len = ds.len + sizeof(tmp);
903: if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
904: data_string_forget(&ds, MDL);
905: return ISC_R_NOMEMORY;
906: }
907: new_ds.data = new_ds.buffer->data;
908: memcpy(new_ds.buffer->data, ds.data, ds.len);
909: memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
910: data_string_forget(&ds, MDL);
911: data_string_copy(&ds, &new_ds, MDL);
912: data_string_forget(&new_ds, MDL);
913: }
914:
915: data_string_forget(&ds, MDL);
916:
917: /*
918: * We're happy with the address, create an IAADDR
919: * to hold it.
920: */
921: iaaddr = NULL;
922: result = iasubopt_allocate(&iaaddr, MDL);
923: if (result != ISC_R_SUCCESS) {
924: return result;
925: }
926: iaaddr->plen = 0;
927: memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
928:
929: /*
930: * Add the lease to the pool (note state is free, not active?!).
931: */
932: result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
933: if (result == ISC_R_SUCCESS) {
934: iasubopt_reference(addr, iaaddr, MDL);
935: }
936: iasubopt_dereference(&iaaddr, MDL);
937: return result;
938: }
939:
1.1.1.1 ! misho 940:
! 941: /*!
! 942: *
! 943: * \brief Cleans up leases when reading from a lease file
! 944: *
! 945: * This function is only expected to be run when reading leases in from a file.
! 946: * It checks to see if a lease already exists for the new leases's address.
! 947: * We don't add expired leases to the structures when reading a lease file
! 948: * which limits what can happen. We have two variables the owners of the leases
! 949: * being the same or different and the new lease being active or non-active:
! 950: * Owners active
! 951: * same no remove old lease and its connections
! 952: * same yes nothing to do, other code will update the structures.
! 953: * diff no nothing to do
! 954: * diff yes this combination shouldn't happen, we should only have a
! 955: * single active lease per address at a time and that lease
! 956: * should move to non-active before any other lease can
! 957: * become active for that address.
! 958: * Currently we delete the previous lease and pass an error
! 959: * to the caller who should log an error.
! 960: *
! 961: * When we remove a lease we remove it from the hash table and active heap
! 962: * (remember only active leases are in the structures at this time) for the
! 963: * pool, and from the IA's array. If, after we've removed the pointer from
! 964: * IA's array to the lease, the IA has no more pointers we remove it from
! 965: * the appropriate hash table as well.
! 966: *
! 967: * \param[in] ia_table = the hash table for the IA
! 968: * \param[in] pool = the pool to update
! 969: * \param[in] lease = the new lease we want to add
! 970: * \param[in] ia = the new ia we are building
! 971: *
! 972: * \return
! 973: * ISC_R_SUCCESS = the incoming lease and any previous lease were in
! 974: * an expected state - one of the first 3 options above.
! 975: * If necessary the old lease was removed.
! 976: * ISC_R_FAILURE = there is already an active lease for the address in
! 977: * the incoming lease. This shouldn't happen if it does
! 978: * flag an error for the caller to log.
! 979: */
! 980:
! 981: isc_result_t
! 982: cleanup_lease6(ia_hash_t *ia_table,
! 983: struct ipv6_pool *pool,
! 984: struct iasubopt *lease,
! 985: struct ia_xx *ia) {
! 986:
! 987: struct iasubopt *test_iasubopt, *tmp_iasubopt;
! 988: struct ia_xx *old_ia;
! 989: isc_result_t status = ISC_R_SUCCESS;
! 990:
! 991: test_iasubopt = NULL;
! 992: old_ia = NULL;
! 993:
! 994: /*
! 995: * Look up the address - if we don't find a lease
! 996: * we don't need to do anything.
! 997: */
! 998: if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
! 999: &lease->addr, sizeof(lease->addr),
! 1000: MDL) == 0) {
! 1001: return (ISC_R_SUCCESS);
! 1002: }
! 1003:
! 1004: if (test_iasubopt->ia == NULL) {
! 1005: /* no old ia, no work to do */
! 1006: iasubopt_dereference(&test_iasubopt, MDL);
! 1007: return (status);
! 1008: }
! 1009:
! 1010: ia_reference(&old_ia, test_iasubopt->ia, MDL);
! 1011:
! 1012: if ((old_ia->iaid_duid.len == ia->iaid_duid.len) &&
! 1013: (memcmp((unsigned char *)ia->iaid_duid.data,
! 1014: (unsigned char *)old_ia->iaid_duid.data,
! 1015: ia->iaid_duid.len) == 0)) {
! 1016: /* same IA */
! 1017: if ((lease->state == FTS_ACTIVE) ||
! 1018: (lease->state == FTS_ABANDONED)) {
! 1019: /* still active, no need to delete */
! 1020: goto cleanup;
! 1021: }
! 1022: } else {
! 1023: /* different IA */
! 1024: if ((lease->state != FTS_ACTIVE) &&
! 1025: (lease->state != FTS_ABANDONED)) {
! 1026: /* new lease isn't active, no work */
! 1027: goto cleanup;
! 1028: }
! 1029:
! 1030: /*
! 1031: * We appear to have two active leases, this shouldn't happen.
! 1032: * Before a second lease can be set to active the first lease
! 1033: * should be set to inactive (released, expired etc). For now
! 1034: * delete the previous lease and indicate a failure to the
! 1035: * caller so it can generate a warning.
! 1036: * In the future we may try and determine which is the better
! 1037: * lease to keep.
! 1038: */
! 1039:
! 1040: status = ISC_R_FAILURE;
! 1041: }
! 1042:
! 1043: /*
! 1044: * Remove the old lease from the active heap and from the hash table
! 1045: * then remove the lease from the IA and clean up the IA if necessary.
! 1046: */
! 1047: isc_heap_delete(pool->active_timeouts, test_iasubopt->heap_index);
! 1048: pool->num_active--;
! 1049:
! 1050: iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
! 1051: sizeof(test_iasubopt->addr), MDL);
! 1052: ia_remove_iasubopt(old_ia, test_iasubopt, MDL);
! 1053: if (old_ia->num_iasubopt <= 0) {
! 1054: ia_hash_delete(ia_table,
! 1055: (unsigned char *)old_ia->iaid_duid.data,
! 1056: old_ia->iaid_duid.len, MDL);
! 1057: }
! 1058:
! 1059: /*
! 1060: * We derefenrece the subopt here as we've just removed it from
! 1061: * the hash table in the pool. We need to make a copy as we
! 1062: * need to derefernece it again later.
! 1063: */
! 1064: tmp_iasubopt = test_iasubopt;
! 1065: iasubopt_dereference(&tmp_iasubopt, MDL);
! 1066:
! 1067: cleanup:
! 1068: ia_dereference(&old_ia, MDL);
! 1069:
! 1070: /*
! 1071: * Clean up the reference, this is in addition to the deference
! 1072: * above after removing the entry from the hash table
! 1073: */
! 1074: iasubopt_dereference(&test_iasubopt, MDL);
! 1075:
! 1076: return (status);
! 1077: }
! 1078:
1.1 misho 1079: /*
1080: * Put a lease in the pool directly. This is intended to be used when
1081: * loading leases from the file.
1082: */
1083: isc_result_t
1084: add_lease6(struct ipv6_pool *pool, struct iasubopt *lease,
1085: time_t valid_lifetime_end_time) {
1086: isc_result_t insert_result;
1087: struct iasubopt *test_iasubopt;
1088: struct iasubopt *tmp_iasubopt;
1089:
1090: /* If a state was not assigned by the caller, assume active. */
1091: if (lease->state == 0)
1092: lease->state = FTS_ACTIVE;
1093:
1094: ipv6_pool_reference(&lease->ipv6_pool, pool, MDL);
1095:
1096: /*
1097: * If this IAADDR/PREFIX is already in our structures, remove the
1098: * old one.
1099: */
1100: test_iasubopt = NULL;
1101: if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
1102: &lease->addr, sizeof(lease->addr), MDL)) {
1103: /* XXX: we should probably ask the lease what heap it is on
1104: * (as a consistency check).
1105: * XXX: we should probably have one function to "put this lease
1106: * on its heap" rather than doing these if's everywhere. If
1107: * you add more states to this list, don't.
1108: */
1109: if ((test_iasubopt->state == FTS_ACTIVE) ||
1110: (test_iasubopt->state == FTS_ABANDONED)) {
1111: isc_heap_delete(pool->active_timeouts,
1112: test_iasubopt->heap_index);
1113: pool->num_active--;
1114: } else {
1115: isc_heap_delete(pool->inactive_timeouts,
1116: test_iasubopt->heap_index);
1117: pool->num_inactive--;
1118: }
1119:
1120: iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
1121: sizeof(test_iasubopt->addr), MDL);
1122:
1123: /*
1124: * We're going to do a bit of evil trickery here.
1125: *
1126: * We need to dereference the entry once to remove our
1127: * current reference (in test_iasubopt), and then one
1128: * more time to remove the reference left when the
1129: * address was added to the pool before.
1130: */
1131: tmp_iasubopt = test_iasubopt;
1132: iasubopt_dereference(&test_iasubopt, MDL);
1133: iasubopt_dereference(&tmp_iasubopt, MDL);
1134: }
1135:
1136: /*
1137: * Add IAADDR/PREFIX to our structures.
1138: */
1139: tmp_iasubopt = NULL;
1140: iasubopt_reference(&tmp_iasubopt, lease, MDL);
1141: if ((tmp_iasubopt->state == FTS_ACTIVE) ||
1142: (tmp_iasubopt->state == FTS_ABANDONED)) {
1143: tmp_iasubopt->hard_lifetime_end_time = valid_lifetime_end_time;
1144: iasubopt_hash_add(pool->leases, &tmp_iasubopt->addr,
1145: sizeof(tmp_iasubopt->addr), lease, MDL);
1146: insert_result = isc_heap_insert(pool->active_timeouts,
1147: tmp_iasubopt);
1148: if (insert_result == ISC_R_SUCCESS)
1149: pool->num_active++;
1150: } else {
1151: tmp_iasubopt->soft_lifetime_end_time = valid_lifetime_end_time;
1152: insert_result = isc_heap_insert(pool->inactive_timeouts,
1153: tmp_iasubopt);
1154: if (insert_result == ISC_R_SUCCESS)
1155: pool->num_inactive++;
1156: }
1157: if (insert_result != ISC_R_SUCCESS) {
1158: iasubopt_hash_delete(pool->leases, &lease->addr,
1159: sizeof(lease->addr), MDL);
1160: iasubopt_dereference(&tmp_iasubopt, MDL);
1161: return insert_result;
1162: }
1163:
1164: /*
1165: * Note: we intentionally leave tmp_iasubopt referenced; there
1166: * is a reference in the heap/hash, after all.
1167: */
1168:
1169: return ISC_R_SUCCESS;
1170: }
1171:
1172: /*
1173: * Determine if an address is present in a pool or not.
1174: */
1175: isc_boolean_t
1176: lease6_exists(const struct ipv6_pool *pool, const struct in6_addr *addr) {
1177: struct iasubopt *test_iaaddr;
1178:
1179: test_iaaddr = NULL;
1180: if (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
1181: (void *)addr, sizeof(*addr), MDL)) {
1182: iasubopt_dereference(&test_iaaddr, MDL);
1183: return ISC_TRUE;
1184: } else {
1185: return ISC_FALSE;
1186: }
1187: }
1188:
1.1.1.1 ! misho 1189: /*!
! 1190: *
! 1191: * \brief Check if address is available to a lease
! 1192: *
! 1193: * Determine if the address in the lease is available to that
! 1194: * lease. Either the address isn't in use or it is in use
! 1195: * but by that lease.
! 1196: *
! 1197: * \param[in] lease = lease to check
! 1198: *
! 1199: * \return
! 1200: * ISC_TRUE = The lease is allowed to use that address
! 1201: * ISC_FALSE = The lease isn't allowed to use that address
! 1202: */
! 1203: isc_boolean_t
! 1204: lease6_usable(struct iasubopt *lease) {
! 1205: struct iasubopt *test_iaaddr;
! 1206: isc_boolean_t status = ISC_TRUE;
! 1207:
! 1208: test_iaaddr = NULL;
! 1209: if (iasubopt_hash_lookup(&test_iaaddr, lease->ipv6_pool->leases,
! 1210: (void *)&lease->addr,
! 1211: sizeof(lease->addr), MDL)) {
! 1212: if (test_iaaddr != lease) {
! 1213: status = ISC_FALSE;
! 1214: }
! 1215: iasubopt_dereference(&test_iaaddr, MDL);
! 1216: }
! 1217:
! 1218: return (status);
! 1219: }
! 1220:
1.1 misho 1221: /*
1222: * Put the lease on our active pool.
1223: */
1224: static isc_result_t
1225: move_lease_to_active(struct ipv6_pool *pool, struct iasubopt *lease) {
1226: isc_result_t insert_result;
1227: int old_heap_index;
1228:
1229: old_heap_index = lease->heap_index;
1230: insert_result = isc_heap_insert(pool->active_timeouts, lease);
1231: if (insert_result == ISC_R_SUCCESS) {
1232: iasubopt_hash_add(pool->leases, &lease->addr,
1233: sizeof(lease->addr), lease, MDL);
1234: isc_heap_delete(pool->inactive_timeouts, old_heap_index);
1235: pool->num_active++;
1236: pool->num_inactive--;
1237: lease->state = FTS_ACTIVE;
1238: }
1239: return insert_result;
1240: }
1241:
1.1.1.1 ! misho 1242: /*!
! 1243: * \brief Renew a lease in the pool.
! 1244: *
! 1245: * The hard_lifetime_end_time of the lease should be set to
! 1246: * the current expiration time.
! 1247: * The soft_lifetime_end_time of the lease should be set to
! 1248: * the desired expiration time.
! 1249: *
! 1250: * This routine will compare the two and call the correct
! 1251: * heap routine to move the lease. If the lease is active
! 1252: * and the new expiration time is greater (the normal case)
! 1253: * then we call isc_heap_decreased() as a larger time is a
! 1254: * lower priority. If the new expiration time is less then
! 1255: * we call isc_heap_increased().
! 1256: *
! 1257: * If the lease is abandoned then it will be on the active list
! 1258: * and we will always call isc_heap_increased() as the previous
! 1259: * expiration would have been all 1s (as close as we can get
! 1260: * to infinite).
1.1 misho 1261: *
1.1.1.1 ! misho 1262: * If the lease is moving to active we call that routine
! 1263: * which will move it from the inactive list to the active list.
1.1 misho 1264: *
1.1.1.1 ! misho 1265: * \param pool a pool the lease belongs to
! 1266: * \param lease the lease to be renewed
! 1267: *
! 1268: * \return result of the renew operation (ISC_R_SUCCESS if successful,
! 1269: ISC_R_NOMEMORY when run out of memory)
1.1 misho 1270: */
1271: isc_result_t
1272: renew_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
1.1.1.1 ! misho 1273: time_t old_end_time = lease->hard_lifetime_end_time;
! 1274: lease->hard_lifetime_end_time = lease->soft_lifetime_end_time;
! 1275: lease->soft_lifetime_end_time = 0;
! 1276:
1.1 misho 1277: if (lease->state == FTS_ACTIVE) {
1.1.1.1 ! misho 1278: if (old_end_time <= lease->hard_lifetime_end_time) {
! 1279: isc_heap_decreased(pool->active_timeouts,
! 1280: lease->heap_index);
! 1281: } else {
! 1282: isc_heap_increased(pool->active_timeouts,
! 1283: lease->heap_index);
! 1284: }
1.1 misho 1285: return ISC_R_SUCCESS;
1286: } else if (lease->state == FTS_ABANDONED) {
1287: char tmp_addr[INET6_ADDRSTRLEN];
1288: lease->state = FTS_ACTIVE;
1289: isc_heap_increased(pool->active_timeouts, lease->heap_index);
1290: log_info("Reclaiming previously abandoned address %s",
1291: inet_ntop(AF_INET6, &(lease->addr), tmp_addr,
1292: sizeof(tmp_addr)));
1293: return ISC_R_SUCCESS;
1294: } else {
1295: return move_lease_to_active(pool, lease);
1296: }
1297: }
1298:
1299: /*
1300: * Put the lease on our inactive pool, with the specified state.
1301: */
1302: static isc_result_t
1303: move_lease_to_inactive(struct ipv6_pool *pool, struct iasubopt *lease,
1304: binding_state_t state) {
1305: isc_result_t insert_result;
1306: int old_heap_index;
1307:
1308: old_heap_index = lease->heap_index;
1309: insert_result = isc_heap_insert(pool->inactive_timeouts, lease);
1310: if (insert_result == ISC_R_SUCCESS) {
1311: /* Process events upon expiration. */
1312: if (pool->pool_type != D6O_IA_PD) {
1313: ddns_removals(NULL, lease);
1314: }
1315:
1316: /* Binding scopes are no longer valid after expiry or
1317: * release.
1318: */
1319: if (lease->scope != NULL) {
1320: binding_scope_dereference(&lease->scope, MDL);
1321: }
1322:
1323: iasubopt_hash_delete(pool->leases,
1324: &lease->addr, sizeof(lease->addr), MDL);
1325: isc_heap_delete(pool->active_timeouts, old_heap_index);
1326: lease->state = state;
1327: pool->num_active--;
1328: pool->num_inactive++;
1329: }
1330: return insert_result;
1331: }
1332:
1333: /*
1334: * Expire the oldest lease if it's lifetime_end_time is
1335: * older than the given time.
1336: *
1337: * - leasep must be a pointer to a (struct iasubopt *) pointer previously
1338: * initialized to NULL
1339: *
1340: * On return leasep has a reference to the removed entry. It is left
1341: * pointing to NULL if the oldest lease has not expired.
1342: */
1343: isc_result_t
1344: expire_lease6(struct iasubopt **leasep, struct ipv6_pool *pool, time_t now) {
1345: struct iasubopt *tmp;
1346: isc_result_t result;
1347:
1348: if (leasep == NULL) {
1349: log_error("%s(%d): NULL pointer reference", MDL);
1350: return ISC_R_INVALIDARG;
1351: }
1352: if (*leasep != NULL) {
1353: log_error("%s(%d): non-NULL pointer", MDL);
1354: return ISC_R_INVALIDARG;
1355: }
1356:
1357: if (pool->num_active > 0) {
1358: tmp = (struct iasubopt *)
1359: isc_heap_element(pool->active_timeouts, 1);
1360: if (now > tmp->hard_lifetime_end_time) {
1361: result = move_lease_to_inactive(pool, tmp,
1362: FTS_EXPIRED);
1363: if (result == ISC_R_SUCCESS) {
1364: iasubopt_reference(leasep, tmp, MDL);
1365: }
1366: return result;
1367: }
1368: }
1369: return ISC_R_SUCCESS;
1370: }
1371:
1372:
1373: /*
1374: * For a declined lease, leave it on the "active" pool, but mark
1375: * it as declined. Give it an infinite (well, really long) life.
1376: */
1377: isc_result_t
1378: decline_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
1379: isc_result_t result;
1380:
1381: if ((lease->state != FTS_ACTIVE) &&
1382: (lease->state != FTS_ABANDONED)) {
1383: result = move_lease_to_active(pool, lease);
1384: if (result != ISC_R_SUCCESS) {
1385: return result;
1386: }
1387: }
1388: lease->state = FTS_ABANDONED;
1389: lease->hard_lifetime_end_time = MAX_TIME;
1390: isc_heap_decreased(pool->active_timeouts, lease->heap_index);
1391: return ISC_R_SUCCESS;
1392: }
1393:
1394: /*
1395: * Put the returned lease on our inactive pool.
1396: */
1397: isc_result_t
1398: release_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
1399: if (lease->state == FTS_ACTIVE) {
1400: return move_lease_to_inactive(pool, lease, FTS_RELEASED);
1401: } else {
1402: return ISC_R_SUCCESS;
1403: }
1404: }
1405:
1406: /*
1407: * Create a prefix by hashing the input, and using that for
1408: * the part subject to allocation.
1409: */
1.1.1.1 ! misho 1410: void
1.1 misho 1411: build_prefix6(struct in6_addr *pref,
1412: const struct in6_addr *net_start_pref,
1413: int pool_bits, int pref_bits,
1414: const struct data_string *input) {
1415: MD5_CTX ctx;
1416: int net_bytes;
1417: int i;
1418: char *str;
1419: const char *net_str;
1420:
1421: /*
1422: * Use MD5 to get a nice 128 bit hash of the input.
1423: * Yes, we know MD5 isn't cryptographically sound.
1424: * No, we don't care.
1425: */
1426: MD5_Init(&ctx);
1427: MD5_Update(&ctx, input->data, input->len);
1428: MD5_Final((unsigned char *)pref, &ctx);
1429:
1430: /*
1431: * Copy the network bits over.
1432: */
1433: str = (char *)pref;
1434: net_str = (const char *)net_start_pref;
1435: net_bytes = pool_bits / 8;
1436: for (i = 0; i < net_bytes; i++) {
1437: str[i] = net_str[i];
1438: }
1439: i = net_bytes;
1440: switch (pool_bits % 8) {
1441: case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
1442: case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
1443: case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
1444: case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
1445: case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
1446: case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
1447: case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
1448: }
1449: /*
1450: * Zero the remaining bits.
1451: */
1452: net_bytes = pref_bits / 8;
1453: for (i=net_bytes+1; i<16; i++) {
1454: str[i] = 0;
1455: }
1456: i = net_bytes;
1457: switch (pref_bits % 8) {
1458: case 0: str[i] &= 0; break;
1459: case 1: str[i] &= 0x80; break;
1460: case 2: str[i] &= 0xC0; break;
1461: case 3: str[i] &= 0xE0; break;
1462: case 4: str[i] &= 0xF0; break;
1463: case 5: str[i] &= 0xF8; break;
1464: case 6: str[i] &= 0xFC; break;
1465: case 7: str[i] &= 0xFE; break;
1466: }
1467: }
1468:
1469: /*
1470: * Create a lease for the given prefix and client duid.
1471: *
1472: * - pool must be a pointer to a (struct pool *) pointer previously
1473: * initialized to NULL
1474: *
1475: * Right now we simply hash the DUID, and if we get a collision, we hash
1476: * again until we find a free prefix. We try this a fixed number of times,
1477: * to avoid getting stuck in a loop (this is important on small pools
1478: * where we can run out of space).
1479: *
1480: * We return the number of attempts that it took to find an available
1481: * prefix. This tells callers when a pool is are filling up, as
1482: * well as an indication of how full the pool is; statistically the
1483: * more full a pool is the more attempts must be made before finding
1484: * a free prefix. Realistically this will only happen in very full
1485: * pools.
1486: *
1487: * We probably want different algorithms depending on the network size, in
1488: * the long term.
1489: */
1490: isc_result_t
1491: create_prefix6(struct ipv6_pool *pool, struct iasubopt **pref,
1492: unsigned int *attempts,
1493: const struct data_string *uid,
1494: time_t soft_lifetime_end_time) {
1495: struct data_string ds;
1496: struct in6_addr tmp;
1497: struct iasubopt *test_iapref;
1498: struct data_string new_ds;
1499: struct iasubopt *iapref;
1500: isc_result_t result;
1501:
1502: /*
1503: * Use the UID as our initial seed for the hash
1504: */
1505: memset(&ds, 0, sizeof(ds));
1506: data_string_copy(&ds, (struct data_string *)uid, MDL);
1507:
1508: *attempts = 0;
1509: for (;;) {
1510: /*
1511: * Give up at some point.
1512: */
1513: if (++(*attempts) > 10) {
1514: data_string_forget(&ds, MDL);
1515: return ISC_R_NORESOURCES;
1516: }
1517:
1518: /*
1519: * Build a prefix
1520: */
1521: build_prefix6(&tmp, &pool->start_addr,
1522: pool->bits, pool->units, &ds);
1523:
1524: /*
1525: * If this prefix is not in use, we're happy with it
1526: */
1527: test_iapref = NULL;
1528: if (iasubopt_hash_lookup(&test_iapref, pool->leases,
1529: &tmp, sizeof(tmp), MDL) == 0) {
1530: break;
1531: }
1532: iasubopt_dereference(&test_iapref, MDL);
1533:
1534: /*
1535: * Otherwise, we create a new input, adding the prefix
1536: */
1537: memset(&new_ds, 0, sizeof(new_ds));
1538: new_ds.len = ds.len + sizeof(tmp);
1539: if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
1540: data_string_forget(&ds, MDL);
1541: return ISC_R_NOMEMORY;
1542: }
1543: new_ds.data = new_ds.buffer->data;
1544: memcpy(new_ds.buffer->data, ds.data, ds.len);
1545: memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
1546: data_string_forget(&ds, MDL);
1547: data_string_copy(&ds, &new_ds, MDL);
1548: data_string_forget(&new_ds, MDL);
1549: }
1550:
1551: data_string_forget(&ds, MDL);
1552:
1553: /*
1554: * We're happy with the prefix, create an IAPREFIX
1555: * to hold it.
1556: */
1557: iapref = NULL;
1558: result = iasubopt_allocate(&iapref, MDL);
1559: if (result != ISC_R_SUCCESS) {
1560: return result;
1561: }
1562: iapref->plen = (u_int8_t)pool->units;
1563: memcpy(&iapref->addr, &tmp, sizeof(iapref->addr));
1564:
1565: /*
1566: * Add the prefix to the pool (note state is free, not active?!).
1567: */
1568: result = add_lease6(pool, iapref, soft_lifetime_end_time);
1569: if (result == ISC_R_SUCCESS) {
1570: iasubopt_reference(pref, iapref, MDL);
1571: }
1572: iasubopt_dereference(&iapref, MDL);
1573: return result;
1574: }
1575:
1576: /*
1577: * Determine if a prefix is present in a pool or not.
1578: */
1579: isc_boolean_t
1580: prefix6_exists(const struct ipv6_pool *pool,
1581: const struct in6_addr *pref, u_int8_t plen) {
1582: struct iasubopt *test_iapref;
1583:
1584: if ((int)plen != pool->units)
1585: return ISC_FALSE;
1586:
1587: test_iapref = NULL;
1588: if (iasubopt_hash_lookup(&test_iapref, pool->leases,
1589: (void *)pref, sizeof(*pref), MDL)) {
1590: iasubopt_dereference(&test_iapref, MDL);
1591: return ISC_TRUE;
1592: } else {
1593: return ISC_FALSE;
1594: }
1595: }
1596:
1597: /*
1598: * Mark an IPv6 address/prefix as unavailable from a pool.
1599: *
1600: * This is used for host entries and the addresses of the server itself.
1601: */
1602: isc_result_t
1603: mark_lease_unavailable(struct ipv6_pool *pool, const struct in6_addr *addr) {
1604: struct iasubopt *dummy_iasubopt;
1605: isc_result_t result;
1606:
1607: dummy_iasubopt = NULL;
1608: result = iasubopt_allocate(&dummy_iasubopt, MDL);
1609: if (result == ISC_R_SUCCESS) {
1610: dummy_iasubopt->addr = *addr;
1611: iasubopt_hash_add(pool->leases, &dummy_iasubopt->addr,
1612: sizeof(*addr), dummy_iasubopt, MDL);
1613: }
1614: return result;
1615: }
1616:
1617: /*
1618: * Add a pool.
1619: */
1620: isc_result_t
1621: add_ipv6_pool(struct ipv6_pool *pool) {
1622: struct ipv6_pool **new_pools;
1623:
1624: new_pools = dmalloc(sizeof(struct ipv6_pool *) * (num_pools+1), MDL);
1625: if (new_pools == NULL) {
1626: return ISC_R_NOMEMORY;
1627: }
1628:
1629: if (num_pools > 0) {
1630: memcpy(new_pools, pools,
1631: sizeof(struct ipv6_pool *) * num_pools);
1632: dfree(pools, MDL);
1633: }
1634: pools = new_pools;
1635:
1636: pools[num_pools] = NULL;
1637: ipv6_pool_reference(&pools[num_pools], pool, MDL);
1638: num_pools++;
1639: return ISC_R_SUCCESS;
1640: }
1641:
1642: static void
1643: cleanup_old_expired(struct ipv6_pool *pool) {
1644: struct iasubopt *tmp;
1645: struct ia_xx *ia;
1646: struct ia_xx *ia_active;
1647: unsigned char *tmpd;
1648: time_t timeout;
1649:
1650: while (pool->num_inactive > 0) {
1651: tmp = (struct iasubopt *)
1652: isc_heap_element(pool->inactive_timeouts, 1);
1653: if (tmp->hard_lifetime_end_time != 0) {
1654: timeout = tmp->hard_lifetime_end_time;
1655: timeout += EXPIRED_IPV6_CLEANUP_TIME;
1656: } else {
1657: timeout = tmp->soft_lifetime_end_time;
1658: }
1659: if (cur_time < timeout) {
1660: break;
1661: }
1662:
1663: isc_heap_delete(pool->inactive_timeouts, tmp->heap_index);
1664: pool->num_inactive--;
1665:
1666: if (tmp->ia != NULL) {
1667: /*
1668: * Check to see if this IA is in an active list,
1669: * but has no remaining resources. If so, remove it
1670: * from the active list.
1671: */
1672: ia = NULL;
1673: ia_reference(&ia, tmp->ia, MDL);
1674: ia_remove_iasubopt(ia, tmp, MDL);
1675: ia_active = NULL;
1676: tmpd = (unsigned char *)ia->iaid_duid.data;
1677: if ((ia->ia_type == D6O_IA_NA) &&
1678: (ia->num_iasubopt <= 0) &&
1679: (ia_hash_lookup(&ia_active, ia_na_active, tmpd,
1680: ia->iaid_duid.len, MDL) == 0) &&
1681: (ia_active == ia)) {
1682: ia_hash_delete(ia_na_active, tmpd,
1683: ia->iaid_duid.len, MDL);
1684: }
1685: if ((ia->ia_type == D6O_IA_TA) &&
1686: (ia->num_iasubopt <= 0) &&
1687: (ia_hash_lookup(&ia_active, ia_ta_active, tmpd,
1688: ia->iaid_duid.len, MDL) == 0) &&
1689: (ia_active == ia)) {
1690: ia_hash_delete(ia_ta_active, tmpd,
1691: ia->iaid_duid.len, MDL);
1692: }
1693: if ((ia->ia_type == D6O_IA_PD) &&
1694: (ia->num_iasubopt <= 0) &&
1695: (ia_hash_lookup(&ia_active, ia_pd_active, tmpd,
1696: ia->iaid_duid.len, MDL) == 0) &&
1697: (ia_active == ia)) {
1698: ia_hash_delete(ia_pd_active, tmpd,
1699: ia->iaid_duid.len, MDL);
1700: }
1701: ia_dereference(&ia, MDL);
1702: }
1703: iasubopt_dereference(&tmp, MDL);
1704: }
1705: }
1706:
1707: static void
1708: lease_timeout_support(void *vpool) {
1709: struct ipv6_pool *pool;
1710: struct iasubopt *lease;
1711:
1712: pool = (struct ipv6_pool *)vpool;
1713: for (;;) {
1714: /*
1715: * Get the next lease scheduled to expire.
1716: *
1717: * Note that if there are no leases in the pool,
1718: * expire_lease6() will return ISC_R_SUCCESS with
1719: * a NULL lease.
1720: */
1721: lease = NULL;
1722: if (expire_lease6(&lease, pool, cur_time) != ISC_R_SUCCESS) {
1723: break;
1724: }
1725: if (lease == NULL) {
1726: break;
1727: }
1728:
1729: /* Look to see if there were ddns updates, and if
1730: * so, drop them.
1731: *
1732: * DH: Do we want to do this on a special 'depref'
1733: * timer rather than expiration timer?
1734: */
1735: if (pool->pool_type != D6O_IA_PD) {
1736: ddns_removals(NULL, lease);
1737: }
1738:
1739: write_ia(lease->ia);
1740:
1741: iasubopt_dereference(&lease, MDL);
1742: }
1743:
1744: /*
1.1.1.1 ! misho 1745: * If appropriate commit and rotate the lease file
! 1746: * As commit_leases_timed() checks to see if we've done any writes
! 1747: * we don't bother tracking if this function called write _ia
! 1748: */
! 1749: (void) commit_leases_timed();
! 1750:
! 1751: /*
1.1 misho 1752: * Do some cleanup of our expired leases.
1753: */
1754: cleanup_old_expired(pool);
1755:
1756: /*
1757: * Schedule next round of expirations.
1758: */
1759: schedule_lease_timeout(pool);
1760: }
1761:
1762: /*
1763: * For a given pool, add a timer that will remove the next
1764: * lease to expire.
1765: */
1766: void
1767: schedule_lease_timeout(struct ipv6_pool *pool) {
1768: struct iasubopt *tmp;
1769: time_t timeout;
1770: time_t next_timeout;
1771: struct timeval tv;
1772:
1773: next_timeout = MAX_TIME;
1774:
1775: if (pool->num_active > 0) {
1776: tmp = (struct iasubopt *)
1777: isc_heap_element(pool->active_timeouts, 1);
1778: if (tmp->hard_lifetime_end_time < next_timeout) {
1779: next_timeout = tmp->hard_lifetime_end_time + 1;
1780: }
1781: }
1782:
1783: if (pool->num_inactive > 0) {
1784: tmp = (struct iasubopt *)
1785: isc_heap_element(pool->inactive_timeouts, 1);
1786: if (tmp->hard_lifetime_end_time != 0) {
1787: timeout = tmp->hard_lifetime_end_time;
1788: timeout += EXPIRED_IPV6_CLEANUP_TIME;
1789: } else {
1790: timeout = tmp->soft_lifetime_end_time + 1;
1791: }
1792: if (timeout < next_timeout) {
1793: next_timeout = timeout;
1794: }
1795: }
1796:
1797: if (next_timeout < MAX_TIME) {
1798: tv.tv_sec = next_timeout;
1799: tv.tv_usec = 0;
1800: add_timeout(&tv, lease_timeout_support, pool,
1801: (tvref_t)ipv6_pool_reference,
1802: (tvunref_t)ipv6_pool_dereference);
1803: }
1804: }
1805:
1806: /*
1807: * Schedule timeouts across all pools.
1808: */
1809: void
1810: schedule_all_ipv6_lease_timeouts(void) {
1811: int i;
1812:
1813: for (i=0; i<num_pools; i++) {
1814: schedule_lease_timeout(pools[i]);
1815: }
1816: }
1817:
1818: /*
1819: * Given an address and the length of the network mask, return
1820: * only the network portion.
1821: *
1822: * Examples:
1823: *
1824: * "fe80::216:6fff:fe49:7d9b", length 64 = "fe80::"
1825: * "2001:888:1936:2:216:6fff:fe49:7d9b", length 48 = "2001:888:1936::"
1826: */
1827: static void
1828: ipv6_network_portion(struct in6_addr *result,
1829: const struct in6_addr *addr, int bits) {
1830: unsigned char *addrp;
1831: int mask_bits;
1832: int bytes;
1833: int extra_bits;
1834: int i;
1835:
1836: static const unsigned char bitmasks[] = {
1837: 0x00, 0xFE, 0xFC, 0xF8,
1838: 0xF0, 0xE0, 0xC0, 0x80,
1839: };
1840:
1841: /*
1842: * Sanity check our bits. ;)
1843: */
1844: if ((bits < 0) || (bits > 128)) {
1845: log_fatal("ipv6_network_portion: bits %d not between 0 and 128",
1846: bits);
1847: }
1848:
1849: /*
1850: * Copy our address portion.
1851: */
1852: *result = *addr;
1853: addrp = ((unsigned char *)result) + 15;
1854:
1855: /*
1856: * Zero out masked portion.
1857: */
1858: mask_bits = 128 - bits;
1859: bytes = mask_bits / 8;
1860: extra_bits = mask_bits % 8;
1861:
1862: for (i=0; i<bytes; i++) {
1863: *addrp = 0;
1864: addrp--;
1865: }
1866: if (extra_bits) {
1867: *addrp &= bitmasks[extra_bits];
1868: }
1869: }
1870:
1871: /*
1872: * Determine if the given address/prefix is in the pool.
1873: */
1874: isc_boolean_t
1875: ipv6_in_pool(const struct in6_addr *addr, const struct ipv6_pool *pool) {
1876: struct in6_addr tmp;
1877:
1878: ipv6_network_portion(&tmp, addr, pool->bits);
1879: if (memcmp(&tmp, &pool->start_addr, sizeof(tmp)) == 0) {
1880: return ISC_TRUE;
1881: } else {
1882: return ISC_FALSE;
1883: }
1884: }
1885:
1886: /*
1887: * Find the pool that contains the given address.
1888: *
1889: * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
1890: * initialized to NULL
1891: */
1892: isc_result_t
1893: find_ipv6_pool(struct ipv6_pool **pool, u_int16_t type,
1894: const struct in6_addr *addr) {
1895: int i;
1896:
1897: if (pool == NULL) {
1898: log_error("%s(%d): NULL pointer reference", MDL);
1899: return ISC_R_INVALIDARG;
1900: }
1901: if (*pool != NULL) {
1902: log_error("%s(%d): non-NULL pointer", MDL);
1903: return ISC_R_INVALIDARG;
1904: }
1905:
1906: for (i=0; i<num_pools; i++) {
1907: if (pools[i]->pool_type != type)
1908: continue;
1909: if (ipv6_in_pool(addr, pools[i])) {
1910: ipv6_pool_reference(pool, pools[i], MDL);
1911: return ISC_R_SUCCESS;
1912: }
1913: }
1914: return ISC_R_NOTFOUND;
1915: }
1916:
1917: /*
1918: * Helper function for the various functions that act across all
1919: * pools.
1920: */
1921: static isc_result_t
1922: change_leases(struct ia_xx *ia,
1923: isc_result_t (*change_func)(struct ipv6_pool *,
1924: struct iasubopt *)) {
1925: isc_result_t retval;
1926: isc_result_t renew_retval;
1927: struct ipv6_pool *pool;
1928: struct in6_addr *addr;
1929: int i;
1930:
1931: retval = ISC_R_SUCCESS;
1932: for (i=0; i<ia->num_iasubopt; i++) {
1933: pool = NULL;
1934: addr = &ia->iasubopt[i]->addr;
1935: if (find_ipv6_pool(&pool, ia->ia_type,
1936: addr) == ISC_R_SUCCESS) {
1937: renew_retval = change_func(pool, ia->iasubopt[i]);
1938: if (renew_retval != ISC_R_SUCCESS) {
1939: retval = renew_retval;
1940: }
1941: }
1942: /* XXXsk: should we warn if we don't find a pool? */
1943: }
1944: return retval;
1945: }
1946:
1947: /*
1948: * Renew all leases in an IA from all pools.
1949: *
1.1.1.1 ! misho 1950: * The new lifetime should be in the soft_lifetime_end_time
! 1951: * and will be moved to hard_lifetime_end_time by renew_lease6.
1.1 misho 1952: */
1953: isc_result_t
1954: renew_leases(struct ia_xx *ia) {
1955: return change_leases(ia, renew_lease6);
1956: }
1957:
1958: /*
1959: * Release all leases in an IA from all pools.
1960: */
1961: isc_result_t
1962: release_leases(struct ia_xx *ia) {
1963: return change_leases(ia, release_lease6);
1964: }
1965:
1966: /*
1967: * Decline all leases in an IA from all pools.
1968: */
1969: isc_result_t
1970: decline_leases(struct ia_xx *ia) {
1971: return change_leases(ia, decline_lease6);
1972: }
1973:
1974: #ifdef DHCPv6
1975: /*
1976: * Helper function to output leases.
1977: */
1978: static int write_error;
1979:
1980: static isc_result_t
1981: write_ia_leases(const void *name, unsigned len, void *value) {
1982: struct ia_xx *ia = (struct ia_xx *)value;
1983:
1984: if (!write_error) {
1985: if (!write_ia(ia)) {
1986: write_error = 1;
1987: }
1988: }
1989: return ISC_R_SUCCESS;
1990: }
1991:
1992: /*
1993: * Write all DHCPv6 information.
1994: */
1995: int
1996: write_leases6(void) {
1997: write_error = 0;
1998: write_server_duid();
1999: ia_hash_foreach(ia_na_active, write_ia_leases);
2000: if (write_error) {
2001: return 0;
2002: }
2003: ia_hash_foreach(ia_ta_active, write_ia_leases);
2004: if (write_error) {
2005: return 0;
2006: }
2007: ia_hash_foreach(ia_pd_active, write_ia_leases);
2008: if (write_error) {
2009: return 0;
2010: }
2011: return 1;
2012: }
2013: #endif /* DHCPv6 */
2014:
2015: static isc_result_t
2016: mark_hosts_unavailable_support(const void *name, unsigned len, void *value) {
2017: struct host_decl *h;
2018: struct data_string fixed_addr;
2019: struct in6_addr addr;
2020: struct ipv6_pool *p;
2021:
2022: h = (struct host_decl *)value;
2023:
2024: /*
2025: * If the host has no address, we don't need to mark anything.
2026: */
2027: if (h->fixed_addr == NULL) {
2028: return ISC_R_SUCCESS;
2029: }
2030:
2031: /*
2032: * Evaluate the fixed address.
2033: */
2034: memset(&fixed_addr, 0, sizeof(fixed_addr));
2035: if (!evaluate_option_cache(&fixed_addr, NULL, NULL, NULL, NULL, NULL,
2036: &global_scope, h->fixed_addr, MDL)) {
2037: log_error("mark_hosts_unavailable: "
2038: "error evaluating host address.");
2039: return ISC_R_SUCCESS;
2040: }
2041: if (fixed_addr.len != 16) {
2042: log_error("mark_hosts_unavailable: "
2043: "host address is not 128 bits.");
2044: return ISC_R_SUCCESS;
2045: }
2046: memcpy(&addr, fixed_addr.data, 16);
2047: data_string_forget(&fixed_addr, MDL);
2048:
2049: /*
2050: * Find the pool holding this host, and mark the address.
2051: * (I suppose it is arguably valid to have a host that does not
2052: * sit in any pool.)
2053: */
2054: p = NULL;
2055: if (find_ipv6_pool(&p, D6O_IA_NA, &addr) == ISC_R_SUCCESS) {
2056: mark_lease_unavailable(p, &addr);
2057: ipv6_pool_dereference(&p, MDL);
2058: }
2059: if (find_ipv6_pool(&p, D6O_IA_TA, &addr) == ISC_R_SUCCESS) {
2060: mark_lease_unavailable(p, &addr);
2061: ipv6_pool_dereference(&p, MDL);
2062: }
2063:
2064: return ISC_R_SUCCESS;
2065: }
2066:
2067: void
2068: mark_hosts_unavailable(void) {
2069: hash_foreach(host_name_hash, mark_hosts_unavailable_support);
2070: }
2071:
2072: static isc_result_t
2073: mark_phosts_unavailable_support(const void *name, unsigned len, void *value) {
2074: struct host_decl *h;
2075: struct iaddrcidrnetlist *l;
2076: struct in6_addr pref;
2077: struct ipv6_pool *p;
2078:
2079: h = (struct host_decl *)value;
2080:
2081: /*
2082: * If the host has no prefix, we don't need to mark anything.
2083: */
2084: if (h->fixed_prefix == NULL) {
2085: return ISC_R_SUCCESS;
2086: }
2087:
2088: /*
2089: * Get the fixed prefixes.
2090: */
2091: for (l = h->fixed_prefix; l != NULL; l = l->next) {
2092: if (l->cidrnet.lo_addr.len != 16) {
2093: continue;
2094: }
2095: memcpy(&pref, l->cidrnet.lo_addr.iabuf, 16);
2096:
2097: /*
2098: * Find the pool holding this host, and mark the prefix.
2099: * (I suppose it is arguably valid to have a host that does not
2100: * sit in any pool.)
2101: */
2102: p = NULL;
2103: if (find_ipv6_pool(&p, D6O_IA_PD, &pref) != ISC_R_SUCCESS) {
2104: continue;
2105: }
2106: if (l->cidrnet.bits != p->units) {
2107: ipv6_pool_dereference(&p, MDL);
2108: continue;
2109: }
2110: mark_lease_unavailable(p, &pref);
2111: ipv6_pool_dereference(&p, MDL);
2112: }
2113:
2114: return ISC_R_SUCCESS;
2115: }
2116:
2117: void
2118: mark_phosts_unavailable(void) {
2119: hash_foreach(host_name_hash, mark_phosts_unavailable_support);
2120: }
2121:
2122: void
2123: mark_interfaces_unavailable(void) {
2124: struct interface_info *ip;
2125: int i;
2126: struct ipv6_pool *p;
2127:
2128: ip = interfaces;
2129: while (ip != NULL) {
2130: for (i=0; i<ip->v6address_count; i++) {
2131: p = NULL;
2132: if (find_ipv6_pool(&p, D6O_IA_NA, &ip->v6addresses[i])
2133: == ISC_R_SUCCESS) {
2134: mark_lease_unavailable(p,
2135: &ip->v6addresses[i]);
2136: ipv6_pool_dereference(&p, MDL);
2137: }
2138: if (find_ipv6_pool(&p, D6O_IA_TA, &ip->v6addresses[i])
2139: == ISC_R_SUCCESS) {
2140: mark_lease_unavailable(p,
2141: &ip->v6addresses[i]);
2142: ipv6_pool_dereference(&p, MDL);
2143: }
2144: }
2145: ip = ip->next;
2146: }
2147: }
2148:
1.1.1.1 ! misho 2149: /* unittest moved to server/tests/mdb6_unittest.c */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>