File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / dhcp / server / mdb6.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Oct 9 09:06:55 2012 UTC (11 years, 9 months ago) by misho
Branches: dhcp, MAIN
CVS tags: v4_1_R7p0, v4_1_R7, v4_1_R4, HEAD
dhcp 4.1 r7

    1: /*
    2:  * Copyright (C) 2010-2012 by Internet Systems Consortium, Inc. ("ISC")
    3:  * Copyright (C) 2007-2008 by Internet Systems Consortium, Inc. ("ISC")
    4:  *
    5:  * Permission to use, copy, modify, and distribute this software for any
    6:  * purpose with or without fee is hereby granted, provided that the above
    7:  * copyright notice and this permission notice appear in all copies.
    8:  *
    9:  * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
   10:  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
   11:  * AND FITNESS.  IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
   12:  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
   13:  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
   14:  * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
   15:  * PERFORMANCE OF THIS SOFTWARE.
   16:  */
   17: 
   18: /*!
   19:  * \todo assert()
   20:  * \todo simplify functions, as pool is now in iaaddr
   21:  */
   22: 
   23: /*! \file server/mdb6.c
   24:  *
   25:  * \page ipv6structures IPv6 Structures Overview
   26:  *
   27:  * A brief description of the IPv6 structures as reverse engineered.
   28:  *
   29:  * There are three major data strucutes involved in the database:
   30:  *
   31:  * - ipv6_pool - this contains information about a pool of addresses or prefixes
   32:  *             that the server is using.  This includes a hash table that
   33:  *             tracks the active items and a pair of heap tables one for
   34:  *             active items and one for non-active items.  The heap tables
   35:  *             are used to determine the next items to be modified due to
   36:  *             timing events (expire mostly).
   37:  * - ia_xx   - this contains information about a single IA from a request
   38:  *             normally it will contain one pointer to a lease for the client
   39:  *             but it may contain more in some circumstances.  There are 3
   40:  *             hash tables to aid in accessing these one each for NA, TA and PD.
   41:  * - iasubopt- the v6 lease structure.  These are created dynamically when
   42:  *             a client asks for something and will eventually be destroyed
   43:  *             if the client doesn't re-ask for that item.  A lease has space
   44:  *             for backpointers to the IA and to the pool to which it belongs.
   45:  *             The pool backpointer is always filled, the IA pointer may not be.
   46:  *
   47:  * In normal use we then have something like this:
   48:  *
   49:  * \verbatim
   50:  * ia hash tables
   51:  *  ia_na_active                           +----------------+
   52:  *  ia_ta_active          +------------+   | pool           |
   53:  *  ia_pd_active          | iasubopt   |<--|  active hash   |
   54:  * +-----------------+    | aka lease  |<--|  active heap   |
   55:  * | ia_xx           |    |  pool ptr  |-->|                |
   56:  * |  iasubopt array |<---|  iaptr     |<--|  inactive heap |
   57:  * |   lease ptr     |--->|            |   |                |
   58:  * +-----------------+    +------------+   +----------------+
   59:  * \endverbatim
   60:  *
   61:  * For the pool either the inactive heap will have a pointer
   62:  * or both the active heap and the active hash will have pointers.
   63:  *
   64:  * I think there are several major items to notice.   The first is
   65:  * that as a lease moves around it will be added to and removed
   66:  * from the address hash table in the pool and between the active
   67:  * and inactive hash tables.  The hash table and the active heap
   68:  * are used when the lease is either active or abandoned.  The
   69:  * inactive heap is used for all other states.  In particular a
   70:  * lease that has expired or been released will be cleaned
   71:  * (DDNS removal etc) and then moved to the inactive heap.  After
   72:  * some time period (currently 1 hour) it will be freed.
   73:  *
   74:  * The second is that when a client requests specific addresses,
   75:  * either because it previously owned them or if the server supplied
   76:  * them as part of a solicit, the server will try to lookup the ia_xx
   77:  * associated with the client and find the addresses there.  If it
   78:  * does find appropriate leases it moves them from the old IA to
   79:  * a new IA and eventually replaces the old IA with the new IA
   80:  * in the IA hash tables.
   81:  *
   82:  */
   83: #include "config.h"
   84: 
   85: #include <sys/types.h>
   86: #include <time.h>
   87: #include <netinet/in.h>
   88: 
   89: #include "isc-dhcp/result.h"
   90: 
   91: #include <stdarg.h>
   92: #include "dhcpd.h"
   93: #include "omapip/omapip.h"
   94: #include "omapip/hash.h"
   95: #include "dst/md5.h"
   96: 
   97: HASH_FUNCTIONS(ia, unsigned char *, struct ia_xx, ia_hash_t,
   98: 	       ia_reference, ia_dereference, do_string_hash)
   99: 
  100: ia_hash_t *ia_na_active;
  101: ia_hash_t *ia_ta_active;
  102: ia_hash_t *ia_pd_active;
  103: 
  104: HASH_FUNCTIONS(iasubopt, struct in6_addr *, struct iasubopt, iasubopt_hash_t,
  105: 	       iasubopt_reference, iasubopt_dereference, do_string_hash)
  106: 
  107: struct ipv6_pool **pools;
  108: int num_pools;
  109: 
  110: /*
  111:  * Create a new IAADDR/PREFIX structure.
  112:  *
  113:  * - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
  114:  *   initialized to NULL
  115:  */
  116: isc_result_t
  117: iasubopt_allocate(struct iasubopt **iasubopt, const char *file, int line) {
  118: 	struct iasubopt *tmp;
  119: 
  120: 	if (iasubopt == NULL) {
  121: 		log_error("%s(%d): NULL pointer reference", file, line);
  122: 		return ISC_R_INVALIDARG;
  123: 	}
  124: 	if (*iasubopt != NULL) {
  125: 		log_error("%s(%d): non-NULL pointer", file, line);
  126: 		return ISC_R_INVALIDARG;
  127: 	}
  128: 
  129: 	tmp = dmalloc(sizeof(*tmp), file, line);
  130: 	if (tmp == NULL) {
  131: 		return ISC_R_NOMEMORY;
  132: 	}
  133: 
  134: 	tmp->refcnt = 1;
  135: 	tmp->state = FTS_FREE;
  136: 	tmp->heap_index = -1;
  137: 	tmp->plen = 255;
  138: 
  139: 	*iasubopt = tmp;
  140: 	return ISC_R_SUCCESS;
  141: }
  142: 
  143: /*
  144:  * Reference an IAADDR/PREFIX structure.
  145:  *
  146:  * - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
  147:  *   initialized to NULL
  148:  */
  149: isc_result_t
  150: iasubopt_reference(struct iasubopt **iasubopt, struct iasubopt *src,
  151: 		 const char *file, int line) {
  152: 	if (iasubopt == NULL) {
  153: 		log_error("%s(%d): NULL pointer reference", file, line);
  154: 		return ISC_R_INVALIDARG;
  155: 	}
  156: 	if (*iasubopt != NULL) {
  157: 		log_error("%s(%d): non-NULL pointer", file, line);
  158: 		return ISC_R_INVALIDARG;
  159: 	}
  160: 	if (src == NULL) {
  161: 		log_error("%s(%d): NULL pointer reference", file, line);
  162: 		return ISC_R_INVALIDARG;
  163: 	}
  164: 	*iasubopt = src;
  165: 	src->refcnt++;
  166: 	return ISC_R_SUCCESS;
  167: }
  168: 
  169: 
  170: /*
  171:  * Dereference an IAADDR/PREFIX structure.
  172:  *
  173:  * If it is the last reference, then the memory for the 
  174:  * structure is freed.
  175:  */
  176: isc_result_t
  177: iasubopt_dereference(struct iasubopt **iasubopt, const char *file, int line) {
  178: 	struct iasubopt *tmp;
  179: 
  180: 	if ((iasubopt == NULL) || (*iasubopt == NULL)) {
  181: 		log_error("%s(%d): NULL pointer", file, line);
  182: 		return ISC_R_INVALIDARG;
  183: 	}
  184: 
  185: 	tmp = *iasubopt;
  186: 	*iasubopt = NULL;
  187: 
  188: 	tmp->refcnt--;
  189: 	if (tmp->refcnt < 0) {
  190: 		log_error("%s(%d): negative refcnt", file, line);
  191: 		tmp->refcnt = 0;
  192: 	}
  193: 	if (tmp->refcnt == 0) {
  194: 		if (tmp->ia != NULL) {
  195: 			ia_dereference(&(tmp->ia), file, line);
  196: 		}
  197: 		if (tmp->ipv6_pool != NULL) {
  198: 			ipv6_pool_dereference(&(tmp->ipv6_pool), file, line);
  199: 		}
  200: 		if (tmp->scope != NULL) {
  201: 			binding_scope_dereference(&tmp->scope, file, line);
  202: 		}
  203: 		dfree(tmp, file, line);
  204: 	}
  205: 
  206: 	return ISC_R_SUCCESS;
  207: }
  208: 
  209: /* 
  210:  * Make the key that we use for IA.
  211:  */
  212: isc_result_t
  213: ia_make_key(struct data_string *key, u_int32_t iaid,
  214: 	    const char *duid, unsigned int duid_len,
  215: 	    const char *file, int line) {
  216: 
  217: 	memset(key, 0, sizeof(*key));
  218: 	key->len = duid_len + sizeof(iaid);
  219: 	if (!buffer_allocate(&(key->buffer), key->len, file, line)) {
  220: 		return ISC_R_NOMEMORY;
  221: 	}
  222: 	key->data = key->buffer->data;
  223: 	memcpy((char *)key->data, &iaid, sizeof(iaid));
  224: 	memcpy((char *)key->data + sizeof(iaid), duid, duid_len);
  225: 
  226: 	return ISC_R_SUCCESS;
  227: }
  228: 
  229: /*
  230:  * Create a new IA structure.
  231:  *
  232:  * - ia must be a pointer to a (struct ia_xx *) pointer previously
  233:  *   initialized to NULL
  234:  * - iaid and duid are values from the client
  235:  *
  236:  * XXXsk: we don't concern ourself with the byte order of the IAID, 
  237:  *        which might be a problem if we transfer this structure 
  238:  *        between machines of different byte order
  239:  */
  240: isc_result_t
  241: ia_allocate(struct ia_xx **ia, u_int32_t iaid, 
  242: 	    const char *duid, unsigned int duid_len,
  243: 	    const char *file, int line) {
  244: 	struct ia_xx *tmp;
  245: 
  246: 	if (ia == NULL) {
  247: 		log_error("%s(%d): NULL pointer reference", file, line);
  248: 		return ISC_R_INVALIDARG;
  249: 	}
  250: 	if (*ia != NULL) {
  251: 		log_error("%s(%d): non-NULL pointer", file, line);
  252: 		return ISC_R_INVALIDARG;
  253: 	}
  254: 
  255: 	tmp = dmalloc(sizeof(*tmp), file, line);
  256: 	if (tmp == NULL) {
  257: 		return ISC_R_NOMEMORY;
  258: 	}
  259: 
  260: 	if (ia_make_key(&tmp->iaid_duid, iaid, 
  261: 			duid, duid_len, file, line) != ISC_R_SUCCESS) {
  262: 		dfree(tmp, file, line);
  263: 		return ISC_R_NOMEMORY;
  264: 	}
  265: 
  266: 	tmp->refcnt = 1;
  267: 
  268: 	*ia = tmp;
  269: 	return ISC_R_SUCCESS;
  270: }
  271: 
  272: /*
  273:  * Reference an IA structure.
  274:  *
  275:  * - ia must be a pointer to a (struct ia_xx *) pointer previously
  276:  *   initialized to NULL
  277:  */
  278: isc_result_t
  279: ia_reference(struct ia_xx **ia, struct ia_xx *src,
  280: 	     const char *file, int line) {
  281: 	if (ia == NULL) {
  282: 		log_error("%s(%d): NULL pointer reference", file, line);
  283: 		return ISC_R_INVALIDARG;
  284: 	}
  285: 	if (*ia != NULL) {
  286: 		log_error("%s(%d): non-NULL pointer", file, line);
  287: 		return ISC_R_INVALIDARG;
  288: 	}
  289: 	if (src == NULL) {
  290: 		log_error("%s(%d): NULL pointer reference", file, line);
  291: 		return ISC_R_INVALIDARG;
  292: 	}
  293: 	*ia = src;
  294: 	src->refcnt++;
  295: 	return ISC_R_SUCCESS;
  296: }
  297: 
  298: /*
  299:  * Dereference an IA structure.
  300:  *
  301:  * If it is the last reference, then the memory for the 
  302:  * structure is freed.
  303:  */
  304: isc_result_t
  305: ia_dereference(struct ia_xx **ia, const char *file, int line) {
  306: 	struct ia_xx *tmp;
  307: 	int i;
  308: 
  309: 	if ((ia == NULL) || (*ia == NULL)) {
  310: 		log_error("%s(%d): NULL pointer", file, line);
  311: 		return ISC_R_INVALIDARG;
  312: 	}
  313: 
  314: 	tmp = *ia;
  315: 	*ia = NULL;
  316: 
  317: 	tmp->refcnt--;
  318: 	if (tmp->refcnt < 0) {
  319: 		log_error("%s(%d): negative refcnt", file, line);
  320: 		tmp->refcnt = 0;
  321: 	}
  322: 	if (tmp->refcnt == 0) {
  323: 		if (tmp->iasubopt != NULL) {
  324: 			for (i=0; i<tmp->num_iasubopt; i++) {
  325: 				iasubopt_dereference(&(tmp->iasubopt[i]), 
  326: 						     file, line);
  327: 			}
  328: 			dfree(tmp->iasubopt, file, line);
  329: 		}
  330: 		data_string_forget(&(tmp->iaid_duid), file, line);
  331: 		dfree(tmp, file, line);
  332: 	}
  333: 	return ISC_R_SUCCESS;
  334: }
  335: 
  336: 
  337: /*
  338:  * Add an IAADDR/PREFIX entry to an IA structure.
  339:  */
  340: isc_result_t
  341: ia_add_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt, 
  342: 		const char *file, int line) {
  343: 	int max;
  344: 	struct iasubopt **new;
  345: 
  346: 	/* 
  347: 	 * Grow our array if we need to.
  348: 	 * 
  349: 	 * Note: we pick 4 as the increment, as that seems a reasonable
  350: 	 *       guess as to how many addresses/prefixes we might expect
  351: 	 *       on an interface.
  352: 	 */
  353: 	if (ia->max_iasubopt <= ia->num_iasubopt) {
  354: 		max = ia->max_iasubopt + 4;
  355: 		new = dmalloc(max * sizeof(struct iasubopt *), file, line);
  356: 		if (new == NULL) {
  357: 			return ISC_R_NOMEMORY;
  358: 		}
  359: 		memcpy(new, ia->iasubopt, 
  360: 		       ia->num_iasubopt * sizeof(struct iasubopt *));
  361: 		ia->iasubopt = new;
  362: 		ia->max_iasubopt = max;
  363: 	}
  364: 
  365: 	iasubopt_reference(&(ia->iasubopt[ia->num_iasubopt]), iasubopt, 
  366: 			   file, line);
  367: 	ia->num_iasubopt++;
  368: 
  369: 	return ISC_R_SUCCESS;
  370: }
  371: 
  372: /*
  373:  * Remove an IAADDR/PREFIX entry to an IA structure.
  374:  *
  375:  * Note: if a suboption appears more than once, then only ONE will be removed.
  376:  */
  377: void
  378: ia_remove_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
  379: 		   const char *file, int line) {
  380: 	int i, j;
  381:         if (ia == NULL || iasubopt == NULL)
  382:             return;
  383: 
  384: 	for (i=0; i<ia->num_iasubopt; i++) {
  385: 		if (ia->iasubopt[i] == iasubopt) {
  386: 			/* remove this sub option */
  387: 			iasubopt_dereference(&(ia->iasubopt[i]), file, line);
  388: 			/* move remaining suboption pointers down one */
  389: 			for (j=i+1; j < ia->num_iasubopt; j++) {
  390: 				ia->iasubopt[j-1] = ia->iasubopt[j];
  391: 			}
  392: 			/* decrease our total count */
  393: 			/* remove the back-reference in the suboption itself */
  394: 			ia_dereference(&iasubopt->ia, file, line);
  395: 			ia->num_iasubopt--;
  396: 			return;
  397: 		}
  398: 	}
  399: 	log_error("%s(%d): IAADDR/PREFIX not in IA", file, line);
  400: }
  401: 
  402: /*
  403:  * Remove all addresses/prefixes from an IA.
  404:  */
  405: void
  406: ia_remove_all_lease(struct ia_xx *ia, const char *file, int line) {
  407: 	int i;
  408: 
  409: 	for (i=0; i<ia->num_iasubopt; i++) {
  410: 		ia_dereference(&(ia->iasubopt[i]->ia), file, line);
  411: 		iasubopt_dereference(&(ia->iasubopt[i]), file, line);
  412: 	}
  413: 	ia->num_iasubopt = 0;
  414: }
  415: 
  416: /*
  417:  * Compare two IA.
  418:  */
  419: isc_boolean_t
  420: ia_equal(const struct ia_xx *a, const struct ia_xx *b) 
  421: {
  422: 	isc_boolean_t found;
  423: 	int i, j;
  424: 
  425: 	/*
  426: 	 * Handle cases where one or both of the inputs is NULL.
  427: 	 */
  428: 	if (a == NULL) {
  429: 		if (b == NULL) {
  430: 			return ISC_TRUE;
  431: 		} else {
  432: 			return ISC_FALSE;
  433: 		}
  434: 	}	
  435: 
  436: 	/*
  437: 	 * Check the type is the same.
  438: 	 */
  439: 	if (a->ia_type != b->ia_type) {
  440: 		return ISC_FALSE;
  441: 	}
  442: 
  443: 	/*
  444: 	 * Check the DUID is the same.
  445: 	 */
  446: 	if (a->iaid_duid.len != b->iaid_duid.len) {
  447: 		return ISC_FALSE;
  448: 	}
  449: 	if (memcmp(a->iaid_duid.data, 
  450: 		   b->iaid_duid.data, a->iaid_duid.len) != 0) {
  451: 		return ISC_FALSE;
  452: 	}
  453: 
  454: 	/*
  455: 	 * Make sure we have the same number of addresses/prefixes in each.
  456: 	 */
  457: 	if (a->num_iasubopt != b->num_iasubopt) {
  458: 		return ISC_FALSE;
  459: 	}
  460: 
  461: 	/*
  462: 	 * Check that each address/prefix is present in both.
  463: 	 */
  464: 	for (i=0; i<a->num_iasubopt; i++) {
  465: 		found = ISC_FALSE;
  466: 		for (j=0; j<a->num_iasubopt; j++) {
  467: 			if (a->iasubopt[i]->plen != b->iasubopt[i]->plen)
  468: 				continue;
  469: 			if (memcmp(&(a->iasubopt[i]->addr),
  470: 			           &(b->iasubopt[j]->addr), 
  471: 				   sizeof(struct in6_addr)) == 0) {
  472: 				found = ISC_TRUE;
  473: 				break;
  474: 			}
  475: 		}
  476: 		if (!found) {
  477: 			return ISC_FALSE;
  478: 		}
  479: 	}
  480: 
  481: 	/*
  482: 	 * These are the same in every way we care about.
  483: 	 */
  484: 	return ISC_TRUE;
  485: }
  486: 
  487: /*
  488:  * Helper function for lease heaps.
  489:  * Makes the top of the heap the oldest lease.
  490:  */
  491: static isc_boolean_t 
  492: lease_older(void *a, void *b) {
  493: 	struct iasubopt *la = (struct iasubopt *)a;
  494: 	struct iasubopt *lb = (struct iasubopt *)b;
  495: 
  496: 	if (la->hard_lifetime_end_time == lb->hard_lifetime_end_time) {
  497: 		return difftime(la->soft_lifetime_end_time,
  498: 				lb->soft_lifetime_end_time) < 0;
  499: 	} else {
  500: 		return difftime(la->hard_lifetime_end_time, 
  501: 				lb->hard_lifetime_end_time) < 0;
  502: 	}
  503: }
  504: 
  505: /*
  506:  * Helper function for lease address/prefix heaps.
  507:  * Callback when an address's position in the heap changes.
  508:  */
  509: static void
  510: lease_index_changed(void *iasubopt, unsigned int new_heap_index) {
  511: 	((struct iasubopt *)iasubopt)-> heap_index = new_heap_index;
  512: }
  513: 
  514: 
  515: /*
  516:  * Create a new IPv6 lease pool structure.
  517:  *
  518:  * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
  519:  *   initialized to NULL
  520:  */
  521: isc_result_t
  522: ipv6_pool_allocate(struct ipv6_pool **pool, u_int16_t type,
  523: 		   const struct in6_addr *start_addr, int bits, 
  524: 		   int units, const char *file, int line) {
  525: 	struct ipv6_pool *tmp;
  526: 
  527: 	if (pool == NULL) {
  528: 		log_error("%s(%d): NULL pointer reference", file, line);
  529: 		return ISC_R_INVALIDARG;
  530: 	}
  531: 	if (*pool != NULL) {
  532: 		log_error("%s(%d): non-NULL pointer", file, line);
  533: 		return ISC_R_INVALIDARG;
  534: 	}
  535: 
  536: 	tmp = dmalloc(sizeof(*tmp), file, line);
  537: 	if (tmp == NULL) {
  538: 		return ISC_R_NOMEMORY;
  539: 	}
  540: 
  541: 	tmp->refcnt = 1;
  542: 	tmp->pool_type = type;
  543: 	tmp->start_addr = *start_addr;
  544: 	tmp->bits = bits;
  545: 	tmp->units = units;
  546: 	if (!iasubopt_new_hash(&tmp->leases, DEFAULT_HASH_SIZE, file, line)) {
  547: 		dfree(tmp, file, line);
  548: 		return ISC_R_NOMEMORY;
  549: 	}
  550: 	if (isc_heap_create(lease_older, lease_index_changed,
  551: 			    0, &(tmp->active_timeouts)) != ISC_R_SUCCESS) {
  552: 		iasubopt_free_hash_table(&(tmp->leases), file, line);
  553: 		dfree(tmp, file, line);
  554: 		return ISC_R_NOMEMORY;
  555: 	}
  556: 	if (isc_heap_create(lease_older, lease_index_changed,
  557: 			    0, &(tmp->inactive_timeouts)) != ISC_R_SUCCESS) {
  558: 		isc_heap_destroy(&(tmp->active_timeouts));
  559: 		iasubopt_free_hash_table(&(tmp->leases), file, line);
  560: 		dfree(tmp, file, line);
  561: 		return ISC_R_NOMEMORY;
  562: 	}
  563: 
  564: 	*pool = tmp;
  565: 	return ISC_R_SUCCESS;
  566: }
  567: 
  568: /*
  569:  * Reference an IPv6 pool structure.
  570:  *
  571:  * - pool must be a pointer to a (struct pool *) pointer previously
  572:  *   initialized to NULL
  573:  */
  574: isc_result_t
  575: ipv6_pool_reference(struct ipv6_pool **pool, struct ipv6_pool *src,
  576: 		    const char *file, int line) {
  577: 	if (pool == NULL) {
  578: 		log_error("%s(%d): NULL pointer reference", file, line);
  579: 		return ISC_R_INVALIDARG;
  580: 	}
  581: 	if (*pool != NULL) {
  582: 		log_error("%s(%d): non-NULL pointer", file, line);
  583: 		return ISC_R_INVALIDARG;
  584: 	}
  585: 	if (src == NULL) {
  586: 		log_error("%s(%d): NULL pointer reference", file, line);
  587: 		return ISC_R_INVALIDARG;
  588: 	}
  589: 	*pool = src;
  590: 	src->refcnt++;
  591: 	return ISC_R_SUCCESS;
  592: }
  593: 
  594: /* 
  595:  * Note: Each IAADDR/PREFIX in a pool is referenced by the pool. This is needed
  596:  * to prevent the lease from being garbage collected out from under the
  597:  * pool.
  598:  *
  599:  * The references are made from the hash and from the heap. The following
  600:  * helper functions dereference these when a pool is destroyed.
  601:  */
  602: 
  603: /*
  604:  * Helper function for pool cleanup.
  605:  * Dereference each of the hash entries in a pool.
  606:  */
  607: static isc_result_t 
  608: dereference_hash_entry(const void *name, unsigned len, void *value) {
  609: 	struct iasubopt *iasubopt = (struct iasubopt *)value;
  610: 
  611: 	iasubopt_dereference(&iasubopt, MDL);
  612: 	return ISC_R_SUCCESS;
  613: }
  614: 
  615: /*
  616:  * Helper function for pool cleanup.
  617:  * Dereference each of the heap entries in a pool.
  618:  */
  619: static void
  620: dereference_heap_entry(void *value, void *dummy) {
  621: 	struct iasubopt *iasubopt = (struct iasubopt *)value;
  622: 
  623: 	iasubopt_dereference(&iasubopt, MDL);
  624: }
  625: 
  626: 
  627: /*
  628:  * Dereference an IPv6 pool structure.
  629:  *
  630:  * If it is the last reference, then the memory for the 
  631:  * structure is freed.
  632:  */
  633: isc_result_t
  634: ipv6_pool_dereference(struct ipv6_pool **pool, const char *file, int line) {
  635: 	struct ipv6_pool *tmp;
  636: 
  637: 	if ((pool == NULL) || (*pool == NULL)) {
  638: 		log_error("%s(%d): NULL pointer", file, line);
  639: 		return ISC_R_INVALIDARG;
  640: 	}
  641: 
  642: 	tmp = *pool;
  643: 	*pool = NULL;
  644: 
  645: 	tmp->refcnt--;
  646: 	if (tmp->refcnt < 0) {
  647: 		log_error("%s(%d): negative refcnt", file, line);
  648: 		tmp->refcnt = 0;
  649: 	}
  650: 	if (tmp->refcnt == 0) {
  651: 		iasubopt_hash_foreach(tmp->leases, dereference_hash_entry);
  652: 		iasubopt_free_hash_table(&(tmp->leases), file, line);
  653: 		isc_heap_foreach(tmp->active_timeouts, 
  654: 				 dereference_heap_entry, NULL);
  655: 		isc_heap_destroy(&(tmp->active_timeouts));
  656: 		isc_heap_foreach(tmp->inactive_timeouts, 
  657: 				 dereference_heap_entry, NULL);
  658: 		isc_heap_destroy(&(tmp->inactive_timeouts));
  659: 		dfree(tmp, file, line);
  660: 	}
  661: 
  662: 	return ISC_R_SUCCESS;
  663: }
  664: 
  665: /* 
  666:  * Create an address by hashing the input, and using that for
  667:  * the non-network part.
  668:  */
  669: static void
  670: build_address6(struct in6_addr *addr, 
  671: 	       const struct in6_addr *net_start_addr, int net_bits, 
  672: 	       const struct data_string *input) {
  673: 	MD5_CTX ctx;
  674: 	int net_bytes;
  675: 	int i;
  676: 	char *str;
  677: 	const char *net_str;
  678: 
  679: 	/* 
  680: 	 * Use MD5 to get a nice 128 bit hash of the input.
  681: 	 * Yes, we know MD5 isn't cryptographically sound. 
  682: 	 * No, we don't care.
  683: 	 */
  684: 	MD5_Init(&ctx);
  685: 	MD5_Update(&ctx, input->data, input->len);
  686: 	MD5_Final((unsigned char *)addr, &ctx);
  687: 
  688: 	/*
  689: 	 * Copy the [0..128] network bits over.
  690: 	 */
  691: 	str = (char *)addr;
  692: 	net_str = (const char *)net_start_addr;
  693: 	net_bytes = net_bits / 8;
  694: 	for (i = 0; i < net_bytes; i++) {
  695: 		str[i] = net_str[i];
  696: 	}
  697: 	switch (net_bits % 8) {
  698: 		case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
  699: 		case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
  700: 		case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
  701: 		case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
  702: 		case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
  703: 		case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
  704: 		case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
  705: 	}
  706: 	/* set the 'u' bit to zero for /64s. */
  707: 	if (net_bits == 64)
  708: 		str[8] &= ~0x02;
  709: }
  710: 
  711: /* 
  712:  * Create a temporary address by a variant of RFC 4941 algo.
  713:  * Note: this should not be used for prefixes shorter than 64 bits.
  714:  */
  715: static void
  716: build_temporary6(struct in6_addr *addr, 
  717: 		 const struct in6_addr *net_start_addr, int net_bits,
  718: 		 const struct data_string *input) {
  719: 	static u_int8_t history[8];
  720: 	static u_int32_t counter = 0;
  721: 	MD5_CTX ctx;
  722: 	unsigned char md[16];
  723: 	extern int dst_s_random(u_int8_t *, unsigned);
  724: 
  725: 	/*
  726: 	 * First time/time to reseed.
  727: 	 * Please use a good pseudo-random generator here!
  728: 	 */
  729: 	if (counter == 0) {
  730: 		if (dst_s_random(history, 8) != 8)
  731: 			log_fatal("Random failed.");
  732: 	}
  733: 
  734: 	/* 
  735: 	 * Use MD5 as recommended by RFC 4941.
  736: 	 */
  737: 	MD5_Init(&ctx);
  738: 	MD5_Update(&ctx, history, 8UL);
  739: 	MD5_Update(&ctx, input->data, input->len);
  740: 	MD5_Final(md, &ctx);
  741: 
  742: 	/*
  743: 	 * Build the address.
  744: 	 */
  745: 	if (net_bits == 64) {
  746: 		memcpy(&addr->s6_addr[0], &net_start_addr->s6_addr[0], 8);
  747: 		memcpy(&addr->s6_addr[8], md, 8);
  748: 		addr->s6_addr[8] &= ~0x02;
  749: 	} else {
  750: 		int net_bytes;
  751: 		int i;
  752: 		char *str;
  753: 		const char *net_str;
  754: 
  755: 		/*
  756: 		 * Copy the [0..128] network bits over.
  757: 		 */
  758: 		str = (char *)addr;
  759: 		net_str = (const char *)net_start_addr;
  760: 		net_bytes = net_bits / 8;
  761: 		for (i = 0; i < net_bytes; i++) {
  762: 			str[i] = net_str[i];
  763: 		}
  764: 		memcpy(str + net_bytes, md, 16 - net_bytes);
  765: 		switch (net_bits % 8) {
  766: 		case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
  767: 		case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
  768: 		case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
  769: 		case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
  770: 		case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
  771: 		case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
  772: 		case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
  773: 		}
  774: 	}
  775: 
  776: 
  777: 	/*
  778: 	 * Save history for the next call.
  779: 	 */
  780: 	memcpy(history, md + 8, 8);
  781: 	counter++;
  782: }
  783: 
  784: /* Reserved Subnet Router Anycast ::0:0:0:0. */
  785: static struct in6_addr rtany;
  786: /* Reserved Subnet Anycasts ::fdff:ffff:ffff:ff80-::fdff:ffff:ffff:ffff. */
  787: static struct in6_addr resany;
  788: 
  789: /*
  790:  * Create a lease for the given address and client duid.
  791:  *
  792:  * - pool must be a pointer to a (struct pool *) pointer previously
  793:  *   initialized to NULL
  794:  *
  795:  * Right now we simply hash the DUID, and if we get a collision, we hash 
  796:  * again until we find a free address. We try this a fixed number of times,
  797:  * to avoid getting stuck in a loop (this is important on small pools
  798:  * where we can run out of space).
  799:  *
  800:  * We return the number of attempts that it took to find an available
  801:  * lease. This tells callers when a pool is are filling up, as
  802:  * well as an indication of how full the pool is; statistically the 
  803:  * more full a pool is the more attempts must be made before finding
  804:  * a free lease. Realistically this will only happen in very full
  805:  * pools.
  806:  *
  807:  * We probably want different algorithms depending on the network size, in
  808:  * the long term.
  809:  */
  810: isc_result_t
  811: create_lease6(struct ipv6_pool *pool, struct iasubopt **addr, 
  812: 	      unsigned int *attempts,
  813: 	      const struct data_string *uid, time_t soft_lifetime_end_time) {
  814: 	struct data_string ds;
  815: 	struct in6_addr tmp;
  816: 	struct iasubopt *test_iaaddr;
  817: 	struct data_string new_ds;
  818: 	struct iasubopt *iaaddr;
  819: 	isc_result_t result;
  820: 	isc_boolean_t reserved_iid;
  821: 	static isc_boolean_t init_resiid = ISC_FALSE;
  822: 
  823: 	/*
  824: 	 * Fill the reserved IIDs.
  825: 	 */
  826: 	if (!init_resiid) {
  827: 		memset(&rtany, 0, 16);
  828: 		memset(&resany, 0, 8);
  829: 		resany.s6_addr[8] = 0xfd;
  830: 		memset(&resany.s6_addr[9], 0xff, 6);
  831: 		init_resiid = ISC_TRUE;
  832: 	}
  833: 
  834: 	/* 
  835: 	 * Use the UID as our initial seed for the hash
  836: 	 */
  837: 	memset(&ds, 0, sizeof(ds));
  838: 	data_string_copy(&ds, (struct data_string *)uid, MDL);
  839: 
  840: 	*attempts = 0;
  841: 	for (;;) {
  842: 		/*
  843: 		 * Give up at some point.
  844: 		 */
  845: 		if (++(*attempts) > 100) {
  846: 			data_string_forget(&ds, MDL);
  847: 			return ISC_R_NORESOURCES;
  848: 		}
  849: 
  850: 		/* 
  851: 		 * Build a resource.
  852: 		 */
  853: 		switch (pool->pool_type) {
  854: 		case D6O_IA_NA:
  855: 			/* address */
  856: 			build_address6(&tmp, &pool->start_addr,
  857: 				       pool->bits, &ds);
  858: 			break;
  859: 		case D6O_IA_TA:
  860: 			/* temporary address */
  861: 			build_temporary6(&tmp, &pool->start_addr,
  862: 					 pool->bits, &ds);
  863: 			break;
  864: 		case D6O_IA_PD:
  865: 			/* prefix */
  866: 			log_error("create_lease6: prefix pool.");
  867: 			return ISC_R_INVALIDARG;
  868: 		default:
  869: 			log_error("create_lease6: untyped pool.");
  870: 			return ISC_R_INVALIDARG;
  871: 		}
  872: 
  873: 		/*
  874: 		 * Avoid reserved interface IDs. (cf. RFC 5453)
  875: 		 */
  876: 		reserved_iid = ISC_FALSE;
  877: 		if (memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) {
  878: 			reserved_iid = ISC_TRUE;
  879: 		}
  880: 		if (!reserved_iid &&
  881: 		    (memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
  882: 		    ((tmp.s6_addr[15] & 0x80) == 0x80)) {
  883: 			reserved_iid = ISC_TRUE;
  884: 		}
  885: 
  886: 		/*
  887: 		 * If this address is not in use, we're happy with it
  888: 		 */
  889: 		test_iaaddr = NULL;
  890: 		if (!reserved_iid &&
  891: 		    (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
  892: 					  &tmp, sizeof(tmp), MDL) == 0)) {
  893: 			break;
  894: 		}
  895: 		if (test_iaaddr != NULL)
  896: 			iasubopt_dereference(&test_iaaddr, MDL);
  897: 
  898: 		/* 
  899: 		 * Otherwise, we create a new input, adding the address
  900: 		 */
  901: 		memset(&new_ds, 0, sizeof(new_ds));
  902: 		new_ds.len = ds.len + sizeof(tmp);
  903: 		if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
  904: 			data_string_forget(&ds, MDL);
  905: 			return ISC_R_NOMEMORY;
  906: 		}
  907: 		new_ds.data = new_ds.buffer->data;
  908: 		memcpy(new_ds.buffer->data, ds.data, ds.len);
  909: 		memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
  910: 		data_string_forget(&ds, MDL);
  911: 		data_string_copy(&ds, &new_ds, MDL);
  912: 		data_string_forget(&new_ds, MDL);
  913: 	}
  914: 
  915: 	data_string_forget(&ds, MDL);
  916: 
  917: 	/* 
  918: 	 * We're happy with the address, create an IAADDR
  919: 	 * to hold it.
  920: 	 */
  921: 	iaaddr = NULL;
  922: 	result = iasubopt_allocate(&iaaddr, MDL);
  923: 	if (result != ISC_R_SUCCESS) {
  924: 		return result;
  925: 	}
  926: 	iaaddr->plen = 0;
  927: 	memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
  928: 
  929: 	/*
  930: 	 * Add the lease to the pool (note state is free, not active?!).
  931: 	 */
  932: 	result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
  933: 	if (result == ISC_R_SUCCESS) {
  934: 		iasubopt_reference(addr, iaaddr, MDL);
  935: 	}
  936: 	iasubopt_dereference(&iaaddr, MDL);
  937: 	return result;
  938: }
  939: 
  940: 
  941: /*!
  942:  *
  943:  * \brief Cleans up leases when reading from a lease file
  944:  *
  945:  * This function is only expected to be run when reading leases in from a file.
  946:  * It checks to see if a lease already exists for the new leases's address.
  947:  * We don't add expired leases to the structures when reading a lease file
  948:  * which limits what can happen.  We have two variables the owners of the leases
  949:  * being the same or different and the new lease being active or non-active:
  950:  * Owners active
  951:  * same   no     remove old lease and its connections
  952:  * same   yes    nothing to do, other code will update the structures.
  953:  * diff   no     nothing to do
  954:  * diff   yes    this combination shouldn't happen, we should only have a
  955:  *               single active lease per address at a time and that lease
  956:  *               should move to non-active before any other lease can
  957:  *               become active for that address.
  958:  *               Currently we delete the previous lease and pass an error
  959:  *               to the caller who should log an error.
  960:  *
  961:  * When we remove a lease we remove it from the hash table and active heap
  962:  * (remember only active leases are in the structures at this time) for the
  963:  * pool, and from the IA's array.  If, after we've removed the pointer from
  964:  * IA's array to the lease, the IA has no more pointers we remove it from
  965:  * the appropriate hash table as well.
  966:  *
  967:  * \param[in] ia_table = the hash table for the IA
  968:  * \param[in] pool     = the pool to update
  969:  * \param[in] lease    = the new lease we want to add
  970:  * \param[in] ia       = the new ia we are building
  971:  *
  972:  * \return
  973:  * ISC_R_SUCCESS = the incoming lease and any previous lease were in
  974:  *                 an expected state - one of the first 3 options above.
  975:  *                 If necessary the old lease was removed.
  976:  * ISC_R_FAILURE = there is already an active lease for the address in
  977:  *                 the incoming lease.  This shouldn't happen if it does
  978:  *                 flag an error for the caller to log.
  979:  */
  980: 
  981: isc_result_t
  982: cleanup_lease6(ia_hash_t *ia_table,
  983: 	       struct ipv6_pool *pool,
  984: 	       struct iasubopt *lease,
  985: 	       struct ia_xx *ia) {
  986: 
  987: 	struct iasubopt *test_iasubopt, *tmp_iasubopt;
  988: 	struct ia_xx *old_ia;
  989: 	isc_result_t status = ISC_R_SUCCESS;
  990: 
  991: 	test_iasubopt = NULL;
  992: 	old_ia = NULL;
  993: 
  994: 	/*
  995: 	 * Look up the address - if we don't find a lease
  996: 	 * we don't need to do anything.
  997: 	 */
  998: 	if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
  999: 				 &lease->addr, sizeof(lease->addr),
 1000: 				 MDL) == 0) {
 1001: 		return (ISC_R_SUCCESS);
 1002: 	}
 1003: 
 1004: 	if (test_iasubopt->ia == NULL) {
 1005: 		/* no old ia, no work to do */
 1006: 		iasubopt_dereference(&test_iasubopt, MDL);
 1007: 		return (status);
 1008: 	}
 1009: 
 1010: 	ia_reference(&old_ia, test_iasubopt->ia, MDL);
 1011: 
 1012: 	if ((old_ia->iaid_duid.len == ia->iaid_duid.len) &&
 1013: 	    (memcmp((unsigned char *)ia->iaid_duid.data,
 1014: 		    (unsigned char *)old_ia->iaid_duid.data,
 1015: 		    ia->iaid_duid.len) == 0)) {
 1016: 		/* same IA */
 1017: 		if ((lease->state == FTS_ACTIVE) ||
 1018: 		    (lease->state == FTS_ABANDONED)) {
 1019: 			/* still active, no need to delete */
 1020: 			goto cleanup;
 1021: 		}
 1022: 	} else {
 1023: 		/* different IA */
 1024: 		if ((lease->state != FTS_ACTIVE) &&
 1025: 		    (lease->state != FTS_ABANDONED)) {
 1026: 			/* new lease isn't active, no work */
 1027: 			goto cleanup;
 1028: 		}
 1029: 
 1030: 		/*
 1031: 		 * We appear to have two active leases, this shouldn't happen.
 1032: 		 * Before a second lease can be set to active the first lease
 1033: 		 * should be set to inactive (released, expired etc). For now
 1034: 		 * delete the previous lease and indicate a failure to the
 1035: 		 * caller so it can generate a warning.
 1036: 		 * In the future we may try and determine which is the better
 1037: 		 * lease to keep.
 1038: 		 */
 1039: 
 1040: 		status = ISC_R_FAILURE;
 1041: 	}
 1042: 
 1043: 	/*
 1044: 	 * Remove the old lease from the active heap and from the hash table
 1045: 	 * then remove the lease from the IA and clean up the IA if necessary.
 1046: 	 */
 1047: 	isc_heap_delete(pool->active_timeouts, test_iasubopt->heap_index);
 1048: 	pool->num_active--;
 1049: 
 1050: 	iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
 1051: 			     sizeof(test_iasubopt->addr), MDL);
 1052: 	ia_remove_iasubopt(old_ia, test_iasubopt, MDL);
 1053: 	if (old_ia->num_iasubopt <= 0) {
 1054: 		ia_hash_delete(ia_table,
 1055: 			       (unsigned char *)old_ia->iaid_duid.data,
 1056: 			       old_ia->iaid_duid.len, MDL);
 1057: 	}
 1058: 
 1059: 	/*
 1060: 	 * We derefenrece the subopt here as we've just removed it from
 1061: 	 * the hash table in the pool.  We need to make a copy as we
 1062: 	 * need to derefernece it again later.
 1063: 	 */
 1064: 	tmp_iasubopt = test_iasubopt;
 1065: 	iasubopt_dereference(&tmp_iasubopt, MDL);
 1066: 
 1067:       cleanup:
 1068: 	ia_dereference(&old_ia, MDL);
 1069: 
 1070: 	/*
 1071: 	 * Clean up the reference, this is in addition to the deference
 1072: 	 * above after removing the entry from the hash table
 1073: 	 */
 1074: 	iasubopt_dereference(&test_iasubopt, MDL);
 1075: 
 1076: 	return (status);
 1077: }
 1078: 
 1079: /*
 1080:  * Put a lease in the pool directly. This is intended to be used when
 1081:  * loading leases from the file.
 1082:  */
 1083: isc_result_t
 1084: add_lease6(struct ipv6_pool *pool, struct iasubopt *lease,
 1085: 	   time_t valid_lifetime_end_time) {
 1086: 	isc_result_t insert_result;
 1087: 	struct iasubopt *test_iasubopt;
 1088: 	struct iasubopt *tmp_iasubopt;
 1089: 
 1090: 	/* If a state was not assigned by the caller, assume active. */
 1091: 	if (lease->state == 0)
 1092: 		lease->state = FTS_ACTIVE;
 1093: 
 1094: 	ipv6_pool_reference(&lease->ipv6_pool, pool, MDL);
 1095: 
 1096: 	/*
 1097: 	 * If this IAADDR/PREFIX is already in our structures, remove the 
 1098: 	 * old one.
 1099: 	 */
 1100: 	test_iasubopt = NULL;
 1101: 	if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
 1102: 				 &lease->addr, sizeof(lease->addr), MDL)) {
 1103: 		/* XXX: we should probably ask the lease what heap it is on
 1104: 		 * (as a consistency check).
 1105: 		 * XXX: we should probably have one function to "put this lease
 1106: 		 * on its heap" rather than doing these if's everywhere.  If
 1107: 		 * you add more states to this list, don't.
 1108: 		 */
 1109: 		if ((test_iasubopt->state == FTS_ACTIVE) ||
 1110: 		    (test_iasubopt->state == FTS_ABANDONED)) {
 1111: 			isc_heap_delete(pool->active_timeouts,
 1112: 					test_iasubopt->heap_index);
 1113: 			pool->num_active--;
 1114: 		} else {
 1115: 			isc_heap_delete(pool->inactive_timeouts,
 1116: 					test_iasubopt->heap_index);
 1117: 			pool->num_inactive--;
 1118: 		}
 1119: 
 1120: 		iasubopt_hash_delete(pool->leases, &test_iasubopt->addr, 
 1121: 				     sizeof(test_iasubopt->addr), MDL);
 1122: 
 1123: 		/*
 1124: 		 * We're going to do a bit of evil trickery here.
 1125: 		 *
 1126: 		 * We need to dereference the entry once to remove our
 1127: 		 * current reference (in test_iasubopt), and then one
 1128: 		 * more time to remove the reference left when the
 1129: 		 * address was added to the pool before.
 1130: 		 */
 1131: 		tmp_iasubopt = test_iasubopt;
 1132: 		iasubopt_dereference(&test_iasubopt, MDL);
 1133: 		iasubopt_dereference(&tmp_iasubopt, MDL);
 1134: 	}
 1135: 
 1136: 	/* 
 1137: 	 * Add IAADDR/PREFIX to our structures.
 1138: 	 */
 1139: 	tmp_iasubopt = NULL;
 1140: 	iasubopt_reference(&tmp_iasubopt, lease, MDL);
 1141: 	if ((tmp_iasubopt->state == FTS_ACTIVE) ||
 1142: 	    (tmp_iasubopt->state == FTS_ABANDONED)) {
 1143: 		tmp_iasubopt->hard_lifetime_end_time = valid_lifetime_end_time;
 1144: 		iasubopt_hash_add(pool->leases, &tmp_iasubopt->addr, 
 1145: 				  sizeof(tmp_iasubopt->addr), lease, MDL);
 1146: 		insert_result = isc_heap_insert(pool->active_timeouts,
 1147: 						tmp_iasubopt);
 1148: 		if (insert_result == ISC_R_SUCCESS)
 1149: 			pool->num_active++;
 1150: 	} else {
 1151: 		tmp_iasubopt->soft_lifetime_end_time = valid_lifetime_end_time;
 1152: 		insert_result = isc_heap_insert(pool->inactive_timeouts,
 1153: 						tmp_iasubopt);
 1154: 		if (insert_result == ISC_R_SUCCESS)
 1155: 			pool->num_inactive++;
 1156: 	}
 1157: 	if (insert_result != ISC_R_SUCCESS) {
 1158: 		iasubopt_hash_delete(pool->leases, &lease->addr, 
 1159: 				     sizeof(lease->addr), MDL);
 1160: 		iasubopt_dereference(&tmp_iasubopt, MDL);
 1161: 		return insert_result;
 1162: 	}
 1163: 
 1164: 	/* 
 1165: 	 * Note: we intentionally leave tmp_iasubopt referenced; there
 1166: 	 * is a reference in the heap/hash, after all.
 1167: 	 */
 1168: 
 1169: 	return ISC_R_SUCCESS;
 1170: }
 1171: 
 1172: /*
 1173:  * Determine if an address is present in a pool or not.
 1174:  */
 1175: isc_boolean_t
 1176: lease6_exists(const struct ipv6_pool *pool, const struct in6_addr *addr) {
 1177: 	struct iasubopt *test_iaaddr;
 1178: 
 1179: 	test_iaaddr = NULL;
 1180: 	if (iasubopt_hash_lookup(&test_iaaddr, pool->leases, 
 1181: 				 (void *)addr, sizeof(*addr), MDL)) {
 1182: 		iasubopt_dereference(&test_iaaddr, MDL);
 1183: 		return ISC_TRUE;
 1184: 	} else {
 1185: 		return ISC_FALSE;
 1186: 	}
 1187: }
 1188: 
 1189: /*!
 1190:  *
 1191:  * \brief Check if address is available to a lease
 1192:  *
 1193:  * Determine if the address in the lease is available to that
 1194:  * lease.  Either the address isn't in use or it is in use
 1195:  * but by that lease.
 1196:  *
 1197:  * \param[in] lease = lease to check
 1198:  *
 1199:  * \return
 1200:  * ISC_TRUE  = The lease is allowed to use that address
 1201:  * ISC_FALSE = The lease isn't allowed to use that address
 1202:  */
 1203: isc_boolean_t
 1204: lease6_usable(struct iasubopt *lease) {
 1205: 	struct iasubopt *test_iaaddr;
 1206: 	isc_boolean_t status = ISC_TRUE;
 1207: 
 1208: 	test_iaaddr = NULL;
 1209: 	if (iasubopt_hash_lookup(&test_iaaddr, lease->ipv6_pool->leases,
 1210: 				 (void *)&lease->addr,
 1211: 				 sizeof(lease->addr), MDL)) {
 1212: 		if (test_iaaddr != lease) {
 1213: 			status = ISC_FALSE;
 1214: 		}
 1215: 		iasubopt_dereference(&test_iaaddr, MDL);
 1216: 	}
 1217: 
 1218: 	return (status);
 1219: }
 1220: 
 1221: /*
 1222:  * Put the lease on our active pool.
 1223:  */
 1224: static isc_result_t
 1225: move_lease_to_active(struct ipv6_pool *pool, struct iasubopt *lease) {
 1226: 	isc_result_t insert_result;
 1227: 	int old_heap_index;
 1228: 
 1229: 	old_heap_index = lease->heap_index;
 1230: 	insert_result = isc_heap_insert(pool->active_timeouts, lease);
 1231: 	if (insert_result == ISC_R_SUCCESS) {
 1232:        		iasubopt_hash_add(pool->leases, &lease->addr, 
 1233: 				  sizeof(lease->addr), lease, MDL);
 1234: 		isc_heap_delete(pool->inactive_timeouts, old_heap_index);
 1235: 		pool->num_active++;
 1236: 		pool->num_inactive--;
 1237: 		lease->state = FTS_ACTIVE;
 1238: 	}
 1239: 	return insert_result;
 1240: }
 1241: 
 1242: /*!
 1243:  * \brief Renew a lease in the pool.
 1244:  *
 1245:  * The hard_lifetime_end_time of the lease should be set to
 1246:  * the current expiration time.
 1247:  * The soft_lifetime_end_time of the lease should be set to
 1248:  * the desired expiration time.
 1249:  *
 1250:  * This routine will compare the two and call the correct
 1251:  * heap routine to move the lease.  If the lease is active
 1252:  * and the new expiration time is greater (the normal case)
 1253:  * then we call isc_heap_decreased() as a larger time is a
 1254:  * lower priority.  If the new expiration time is less then
 1255:  * we call isc_heap_increased().
 1256:  *
 1257:  * If the lease is abandoned then it will be on the active list
 1258:  * and we will always call isc_heap_increased() as the previous
 1259:  * expiration would have been all 1s (as close as we can get
 1260:  * to infinite).
 1261:  *
 1262:  * If the lease is moving to active we call that routine
 1263:  * which will move it from the inactive list to the active list.
 1264:  *
 1265:  * \param pool a pool the lease belongs to
 1266:  * \param lease the lease to be renewed
 1267:  *
 1268:  * \return result of the renew operation (ISC_R_SUCCESS if successful,
 1269:            ISC_R_NOMEMORY when run out of memory)
 1270:  */
 1271: isc_result_t
 1272: renew_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
 1273: 	time_t old_end_time = lease->hard_lifetime_end_time;
 1274: 	lease->hard_lifetime_end_time = lease->soft_lifetime_end_time;
 1275: 	lease->soft_lifetime_end_time = 0;
 1276: 
 1277: 	if (lease->state == FTS_ACTIVE) {
 1278: 		if (old_end_time <= lease->hard_lifetime_end_time) {
 1279: 			isc_heap_decreased(pool->active_timeouts,
 1280: 					   lease->heap_index);
 1281: 		} else {
 1282: 			isc_heap_increased(pool->active_timeouts,
 1283: 					   lease->heap_index);
 1284: 		}
 1285: 		return ISC_R_SUCCESS;
 1286: 	} else if (lease->state == FTS_ABANDONED) {
 1287: 		char tmp_addr[INET6_ADDRSTRLEN];
 1288:                 lease->state = FTS_ACTIVE;
 1289:                 isc_heap_increased(pool->active_timeouts, lease->heap_index);
 1290: 		log_info("Reclaiming previously abandoned address %s",
 1291: 			 inet_ntop(AF_INET6, &(lease->addr), tmp_addr,
 1292: 				   sizeof(tmp_addr)));
 1293:                 return ISC_R_SUCCESS;
 1294: 	} else {
 1295: 		return move_lease_to_active(pool, lease);
 1296: 	}
 1297: }
 1298: 
 1299: /*
 1300:  * Put the lease on our inactive pool, with the specified state.
 1301:  */
 1302: static isc_result_t
 1303: move_lease_to_inactive(struct ipv6_pool *pool, struct iasubopt *lease, 
 1304: 		       binding_state_t state) {
 1305: 	isc_result_t insert_result;
 1306: 	int old_heap_index;
 1307: 
 1308: 	old_heap_index = lease->heap_index;
 1309: 	insert_result = isc_heap_insert(pool->inactive_timeouts, lease);
 1310: 	if (insert_result == ISC_R_SUCCESS) {
 1311: 		/* Process events upon expiration. */
 1312: 		if (pool->pool_type != D6O_IA_PD) {
 1313: 			ddns_removals(NULL, lease);
 1314: 		}
 1315: 
 1316: 		/* Binding scopes are no longer valid after expiry or
 1317: 		 * release.
 1318: 		 */
 1319: 		if (lease->scope != NULL) {
 1320: 			binding_scope_dereference(&lease->scope, MDL);
 1321: 		}
 1322: 
 1323: 		iasubopt_hash_delete(pool->leases, 
 1324: 				     &lease->addr, sizeof(lease->addr), MDL);
 1325: 		isc_heap_delete(pool->active_timeouts, old_heap_index);
 1326: 		lease->state = state;
 1327: 		pool->num_active--;
 1328: 		pool->num_inactive++;
 1329: 	}
 1330: 	return insert_result;
 1331: }
 1332: 
 1333: /*
 1334:  * Expire the oldest lease if it's lifetime_end_time is 
 1335:  * older than the given time.
 1336:  *
 1337:  * - leasep must be a pointer to a (struct iasubopt *) pointer previously
 1338:  *   initialized to NULL
 1339:  *
 1340:  * On return leasep has a reference to the removed entry. It is left
 1341:  * pointing to NULL if the oldest lease has not expired.
 1342:  */
 1343: isc_result_t
 1344: expire_lease6(struct iasubopt **leasep, struct ipv6_pool *pool, time_t now) {
 1345: 	struct iasubopt *tmp;
 1346: 	isc_result_t result;
 1347: 
 1348: 	if (leasep == NULL) {
 1349: 		log_error("%s(%d): NULL pointer reference", MDL);
 1350: 		return ISC_R_INVALIDARG;
 1351: 	}
 1352: 	if (*leasep != NULL) {
 1353: 		log_error("%s(%d): non-NULL pointer", MDL);
 1354: 		return ISC_R_INVALIDARG;
 1355: 	}
 1356: 
 1357: 	if (pool->num_active > 0) {
 1358: 		tmp = (struct iasubopt *)
 1359: 				isc_heap_element(pool->active_timeouts, 1);
 1360: 		if (now > tmp->hard_lifetime_end_time) {
 1361: 			result = move_lease_to_inactive(pool, tmp,
 1362: 							FTS_EXPIRED);
 1363: 			if (result == ISC_R_SUCCESS) {
 1364: 				iasubopt_reference(leasep, tmp, MDL);
 1365: 			}
 1366: 			return result;
 1367: 		}
 1368: 	}
 1369: 	return ISC_R_SUCCESS;
 1370: }
 1371: 
 1372: 
 1373: /*
 1374:  * For a declined lease, leave it on the "active" pool, but mark
 1375:  * it as declined. Give it an infinite (well, really long) life.
 1376:  */
 1377: isc_result_t
 1378: decline_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
 1379: 	isc_result_t result;
 1380: 
 1381: 	if ((lease->state != FTS_ACTIVE) &&
 1382: 	    (lease->state != FTS_ABANDONED)) {
 1383: 		result = move_lease_to_active(pool, lease);
 1384: 		if (result != ISC_R_SUCCESS) {
 1385: 			return result;
 1386: 		}
 1387: 	}
 1388: 	lease->state = FTS_ABANDONED;
 1389: 	lease->hard_lifetime_end_time = MAX_TIME;
 1390: 	isc_heap_decreased(pool->active_timeouts, lease->heap_index);
 1391: 	return ISC_R_SUCCESS;
 1392: }
 1393: 
 1394: /*
 1395:  * Put the returned lease on our inactive pool.
 1396:  */
 1397: isc_result_t
 1398: release_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
 1399: 	if (lease->state == FTS_ACTIVE) {
 1400: 		return move_lease_to_inactive(pool, lease, FTS_RELEASED);
 1401: 	} else {
 1402: 		return ISC_R_SUCCESS;
 1403: 	}
 1404: }
 1405: 
 1406: /* 
 1407:  * Create a prefix by hashing the input, and using that for
 1408:  * the part subject to allocation.
 1409:  */
 1410: void
 1411: build_prefix6(struct in6_addr *pref, 
 1412: 	      const struct in6_addr *net_start_pref,
 1413: 	      int pool_bits, int pref_bits,
 1414: 	      const struct data_string *input) {
 1415: 	MD5_CTX ctx;
 1416: 	int net_bytes;
 1417: 	int i;
 1418: 	char *str;
 1419: 	const char *net_str;
 1420: 
 1421: 	/* 
 1422: 	 * Use MD5 to get a nice 128 bit hash of the input.
 1423: 	 * Yes, we know MD5 isn't cryptographically sound. 
 1424: 	 * No, we don't care.
 1425: 	 */
 1426: 	MD5_Init(&ctx);
 1427: 	MD5_Update(&ctx, input->data, input->len);
 1428: 	MD5_Final((unsigned char *)pref, &ctx);
 1429: 
 1430: 	/*
 1431: 	 * Copy the network bits over.
 1432: 	 */
 1433: 	str = (char *)pref;
 1434: 	net_str = (const char *)net_start_pref;
 1435: 	net_bytes = pool_bits / 8;
 1436: 	for (i = 0; i < net_bytes; i++) {
 1437: 		str[i] = net_str[i];
 1438: 	}
 1439: 	i = net_bytes;
 1440: 	switch (pool_bits % 8) {
 1441: 		case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
 1442: 		case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
 1443: 		case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
 1444: 		case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
 1445: 		case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
 1446: 		case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
 1447: 		case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
 1448: 	}
 1449: 	/*
 1450: 	 * Zero the remaining bits.
 1451: 	 */
 1452: 	net_bytes = pref_bits / 8;
 1453: 	for (i=net_bytes+1; i<16; i++) {
 1454: 		str[i] = 0;
 1455: 	}
 1456: 	i = net_bytes;
 1457: 	switch (pref_bits % 8) {
 1458: 		case 0: str[i] &= 0; break;
 1459: 		case 1: str[i] &= 0x80; break;
 1460: 		case 2: str[i] &= 0xC0; break;
 1461: 		case 3: str[i] &= 0xE0; break;
 1462: 		case 4: str[i] &= 0xF0; break;
 1463: 		case 5: str[i] &= 0xF8; break;
 1464: 		case 6: str[i] &= 0xFC; break;
 1465: 		case 7: str[i] &= 0xFE; break;
 1466: 	}
 1467: }
 1468: 
 1469: /*
 1470:  * Create a lease for the given prefix and client duid.
 1471:  *
 1472:  * - pool must be a pointer to a (struct pool *) pointer previously
 1473:  *   initialized to NULL
 1474:  *
 1475:  * Right now we simply hash the DUID, and if we get a collision, we hash 
 1476:  * again until we find a free prefix. We try this a fixed number of times,
 1477:  * to avoid getting stuck in a loop (this is important on small pools
 1478:  * where we can run out of space).
 1479:  *
 1480:  * We return the number of attempts that it took to find an available
 1481:  * prefix. This tells callers when a pool is are filling up, as
 1482:  * well as an indication of how full the pool is; statistically the 
 1483:  * more full a pool is the more attempts must be made before finding
 1484:  * a free prefix. Realistically this will only happen in very full
 1485:  * pools.
 1486:  *
 1487:  * We probably want different algorithms depending on the network size, in
 1488:  * the long term.
 1489:  */
 1490: isc_result_t
 1491: create_prefix6(struct ipv6_pool *pool, struct iasubopt **pref, 
 1492: 	       unsigned int *attempts,
 1493: 	       const struct data_string *uid,
 1494: 	       time_t soft_lifetime_end_time) {
 1495: 	struct data_string ds;
 1496: 	struct in6_addr tmp;
 1497: 	struct iasubopt *test_iapref;
 1498: 	struct data_string new_ds;
 1499: 	struct iasubopt *iapref;
 1500: 	isc_result_t result;
 1501: 
 1502: 	/* 
 1503: 	 * Use the UID as our initial seed for the hash
 1504: 	 */
 1505: 	memset(&ds, 0, sizeof(ds));
 1506: 	data_string_copy(&ds, (struct data_string *)uid, MDL);
 1507: 
 1508: 	*attempts = 0;
 1509: 	for (;;) {
 1510: 		/*
 1511: 		 * Give up at some point.
 1512: 		 */
 1513: 		if (++(*attempts) > 10) {
 1514: 			data_string_forget(&ds, MDL);
 1515: 			return ISC_R_NORESOURCES;
 1516: 		}
 1517: 
 1518: 		/* 
 1519: 		 * Build a prefix
 1520: 		 */
 1521: 		build_prefix6(&tmp, &pool->start_addr,
 1522: 			      pool->bits, pool->units, &ds);
 1523: 
 1524: 		/*
 1525: 		 * If this prefix is not in use, we're happy with it
 1526: 		 */
 1527: 		test_iapref = NULL;
 1528: 		if (iasubopt_hash_lookup(&test_iapref, pool->leases,
 1529: 					 &tmp, sizeof(tmp), MDL) == 0) {
 1530: 			break;
 1531: 		}
 1532: 		iasubopt_dereference(&test_iapref, MDL);
 1533: 
 1534: 		/* 
 1535: 		 * Otherwise, we create a new input, adding the prefix
 1536: 		 */
 1537: 		memset(&new_ds, 0, sizeof(new_ds));
 1538: 		new_ds.len = ds.len + sizeof(tmp);
 1539: 		if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
 1540: 			data_string_forget(&ds, MDL);
 1541: 			return ISC_R_NOMEMORY;
 1542: 		}
 1543: 		new_ds.data = new_ds.buffer->data;
 1544: 		memcpy(new_ds.buffer->data, ds.data, ds.len);
 1545: 		memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
 1546: 		data_string_forget(&ds, MDL);
 1547: 		data_string_copy(&ds, &new_ds, MDL);
 1548: 		data_string_forget(&new_ds, MDL);
 1549: 	}
 1550: 
 1551: 	data_string_forget(&ds, MDL);
 1552: 
 1553: 	/* 
 1554: 	 * We're happy with the prefix, create an IAPREFIX
 1555: 	 * to hold it.
 1556: 	 */
 1557: 	iapref = NULL;
 1558: 	result = iasubopt_allocate(&iapref, MDL);
 1559: 	if (result != ISC_R_SUCCESS) {
 1560: 		return result;
 1561: 	}
 1562: 	iapref->plen = (u_int8_t)pool->units;
 1563: 	memcpy(&iapref->addr, &tmp, sizeof(iapref->addr));
 1564: 
 1565: 	/*
 1566: 	 * Add the prefix to the pool (note state is free, not active?!).
 1567: 	 */
 1568: 	result = add_lease6(pool, iapref, soft_lifetime_end_time);
 1569: 	if (result == ISC_R_SUCCESS) {
 1570: 		iasubopt_reference(pref, iapref, MDL);
 1571: 	}
 1572: 	iasubopt_dereference(&iapref, MDL);
 1573: 	return result;
 1574: }
 1575: 
 1576: /*
 1577:  * Determine if a prefix is present in a pool or not.
 1578:  */
 1579: isc_boolean_t
 1580: prefix6_exists(const struct ipv6_pool *pool,
 1581: 	       const struct in6_addr *pref, u_int8_t plen) {
 1582: 	struct iasubopt *test_iapref;
 1583: 
 1584: 	if ((int)plen != pool->units)
 1585: 		return ISC_FALSE;
 1586: 
 1587: 	test_iapref = NULL;
 1588: 	if (iasubopt_hash_lookup(&test_iapref, pool->leases, 
 1589: 				 (void *)pref, sizeof(*pref), MDL)) {
 1590: 		iasubopt_dereference(&test_iapref, MDL);
 1591: 		return ISC_TRUE;
 1592: 	} else {
 1593: 		return ISC_FALSE;
 1594: 	}
 1595: }
 1596: 
 1597: /*
 1598:  * Mark an IPv6 address/prefix as unavailable from a pool.
 1599:  *
 1600:  * This is used for host entries and the addresses of the server itself.
 1601:  */
 1602: isc_result_t
 1603: mark_lease_unavailable(struct ipv6_pool *pool, const struct in6_addr *addr) {
 1604: 	struct iasubopt *dummy_iasubopt;
 1605: 	isc_result_t result;
 1606: 
 1607: 	dummy_iasubopt = NULL;
 1608: 	result = iasubopt_allocate(&dummy_iasubopt, MDL);
 1609: 	if (result == ISC_R_SUCCESS) {
 1610: 		dummy_iasubopt->addr = *addr;
 1611: 		iasubopt_hash_add(pool->leases, &dummy_iasubopt->addr,
 1612: 				  sizeof(*addr), dummy_iasubopt, MDL);
 1613: 	}
 1614: 	return result;
 1615: }
 1616: 
 1617: /* 
 1618:  * Add a pool.
 1619:  */
 1620: isc_result_t
 1621: add_ipv6_pool(struct ipv6_pool *pool) {
 1622: 	struct ipv6_pool **new_pools;
 1623: 
 1624: 	new_pools = dmalloc(sizeof(struct ipv6_pool *) * (num_pools+1), MDL);
 1625: 	if (new_pools == NULL) {
 1626: 		return ISC_R_NOMEMORY;
 1627: 	}
 1628: 
 1629: 	if (num_pools > 0) {
 1630: 		memcpy(new_pools, pools, 
 1631: 		       sizeof(struct ipv6_pool *) * num_pools);
 1632: 		dfree(pools, MDL);
 1633: 	}
 1634: 	pools = new_pools;
 1635: 
 1636: 	pools[num_pools] = NULL;
 1637: 	ipv6_pool_reference(&pools[num_pools], pool, MDL);
 1638: 	num_pools++;
 1639: 	return ISC_R_SUCCESS;
 1640: }
 1641: 
 1642: static void
 1643: cleanup_old_expired(struct ipv6_pool *pool) {
 1644: 	struct iasubopt *tmp;
 1645: 	struct ia_xx *ia;
 1646: 	struct ia_xx *ia_active;
 1647: 	unsigned char *tmpd;
 1648: 	time_t timeout;
 1649: 	
 1650: 	while (pool->num_inactive > 0) {
 1651: 		tmp = (struct iasubopt *)
 1652: 				isc_heap_element(pool->inactive_timeouts, 1);
 1653: 		if (tmp->hard_lifetime_end_time != 0) {
 1654: 			timeout = tmp->hard_lifetime_end_time;
 1655: 			timeout += EXPIRED_IPV6_CLEANUP_TIME;
 1656: 		} else {
 1657: 			timeout = tmp->soft_lifetime_end_time;
 1658: 		}
 1659: 		if (cur_time < timeout) {
 1660: 			break;
 1661: 		}
 1662: 
 1663: 		isc_heap_delete(pool->inactive_timeouts, tmp->heap_index);
 1664: 		pool->num_inactive--;
 1665: 
 1666: 		if (tmp->ia != NULL) {
 1667: 			/*
 1668: 			 * Check to see if this IA is in an active list,
 1669: 			 * but has no remaining resources. If so, remove it
 1670: 			 * from the active list.
 1671: 			 */
 1672: 			ia = NULL;
 1673: 			ia_reference(&ia, tmp->ia, MDL);
 1674: 			ia_remove_iasubopt(ia, tmp, MDL);
 1675: 			ia_active = NULL;
 1676: 			tmpd = (unsigned char *)ia->iaid_duid.data;
 1677: 			if ((ia->ia_type == D6O_IA_NA) &&
 1678: 			    (ia->num_iasubopt <= 0) &&
 1679: 			    (ia_hash_lookup(&ia_active, ia_na_active, tmpd,
 1680: 					    ia->iaid_duid.len, MDL) == 0) &&
 1681: 			    (ia_active == ia)) {
 1682: 				ia_hash_delete(ia_na_active, tmpd, 
 1683: 					       ia->iaid_duid.len, MDL);
 1684: 			}
 1685: 			if ((ia->ia_type == D6O_IA_TA) &&
 1686: 			    (ia->num_iasubopt <= 0) &&
 1687: 			    (ia_hash_lookup(&ia_active, ia_ta_active, tmpd,
 1688: 					    ia->iaid_duid.len, MDL) == 0) &&
 1689: 			    (ia_active == ia)) {
 1690: 				ia_hash_delete(ia_ta_active, tmpd, 
 1691: 					       ia->iaid_duid.len, MDL);
 1692: 			}
 1693: 			if ((ia->ia_type == D6O_IA_PD) &&
 1694: 			    (ia->num_iasubopt <= 0) &&
 1695: 			    (ia_hash_lookup(&ia_active, ia_pd_active, tmpd,
 1696: 					    ia->iaid_duid.len, MDL) == 0) &&
 1697: 			    (ia_active == ia)) {
 1698: 				ia_hash_delete(ia_pd_active, tmpd, 
 1699: 					       ia->iaid_duid.len, MDL);
 1700: 			}
 1701: 			ia_dereference(&ia, MDL);
 1702: 		}
 1703: 		iasubopt_dereference(&tmp, MDL);
 1704: 	}
 1705: }
 1706: 
 1707: static void
 1708: lease_timeout_support(void *vpool) {
 1709: 	struct ipv6_pool *pool;
 1710: 	struct iasubopt *lease;
 1711: 	
 1712: 	pool = (struct ipv6_pool *)vpool;
 1713: 	for (;;) {
 1714: 		/*
 1715: 		 * Get the next lease scheduled to expire.
 1716: 		 *
 1717: 		 * Note that if there are no leases in the pool, 
 1718: 		 * expire_lease6() will return ISC_R_SUCCESS with 
 1719: 		 * a NULL lease.
 1720: 		 */
 1721: 		lease = NULL;
 1722: 		if (expire_lease6(&lease, pool, cur_time) != ISC_R_SUCCESS) {
 1723: 			break;
 1724: 		}
 1725: 		if (lease == NULL) {
 1726: 			break;
 1727: 		}
 1728: 
 1729: 		/* Look to see if there were ddns updates, and if
 1730: 		 * so, drop them.
 1731: 		 *
 1732: 		 * DH: Do we want to do this on a special 'depref'
 1733: 		 * timer rather than expiration timer?
 1734: 		 */
 1735: 		if (pool->pool_type != D6O_IA_PD) {
 1736: 			ddns_removals(NULL, lease);
 1737: 		}
 1738: 
 1739: 		write_ia(lease->ia);
 1740: 
 1741: 		iasubopt_dereference(&lease, MDL);
 1742: 	}
 1743: 
 1744: 	/*
 1745: 	 * If appropriate commit and rotate the lease file
 1746: 	 * As commit_leases_timed() checks to see if we've done any writes
 1747: 	 * we don't bother tracking if this function called write _ia
 1748: 	 */
 1749: 	(void) commit_leases_timed();
 1750: 
 1751: 	/*
 1752: 	 * Do some cleanup of our expired leases.
 1753: 	 */
 1754: 	cleanup_old_expired(pool);
 1755: 
 1756: 	/*
 1757: 	 * Schedule next round of expirations.
 1758: 	 */
 1759: 	schedule_lease_timeout(pool);
 1760: }
 1761: 
 1762: /*
 1763:  * For a given pool, add a timer that will remove the next
 1764:  * lease to expire.
 1765:  */
 1766: void 
 1767: schedule_lease_timeout(struct ipv6_pool *pool) {
 1768: 	struct iasubopt *tmp;
 1769: 	time_t timeout;
 1770: 	time_t next_timeout;
 1771: 	struct timeval tv;
 1772: 
 1773: 	next_timeout = MAX_TIME;
 1774: 
 1775: 	if (pool->num_active > 0) {
 1776: 		tmp = (struct iasubopt *)
 1777: 				isc_heap_element(pool->active_timeouts, 1);
 1778: 		if (tmp->hard_lifetime_end_time < next_timeout) {
 1779: 			next_timeout = tmp->hard_lifetime_end_time + 1;
 1780: 		}
 1781: 	}
 1782: 
 1783: 	if (pool->num_inactive > 0) {
 1784: 		tmp = (struct iasubopt *)
 1785: 				isc_heap_element(pool->inactive_timeouts, 1);
 1786: 		if (tmp->hard_lifetime_end_time != 0) {
 1787: 			timeout = tmp->hard_lifetime_end_time;
 1788: 			timeout += EXPIRED_IPV6_CLEANUP_TIME;
 1789: 		} else {
 1790: 			timeout = tmp->soft_lifetime_end_time + 1;
 1791: 		}
 1792: 		if (timeout < next_timeout) {
 1793: 			next_timeout = timeout;
 1794: 		}
 1795: 	}
 1796: 
 1797: 	if (next_timeout < MAX_TIME) {
 1798: 		tv.tv_sec = next_timeout;
 1799: 		tv.tv_usec = 0;
 1800: 		add_timeout(&tv, lease_timeout_support, pool,
 1801: 			    (tvref_t)ipv6_pool_reference, 
 1802: 			    (tvunref_t)ipv6_pool_dereference);
 1803: 	}
 1804: }
 1805: 
 1806: /*
 1807:  * Schedule timeouts across all pools.
 1808:  */
 1809: void
 1810: schedule_all_ipv6_lease_timeouts(void) {
 1811: 	int i;
 1812: 
 1813: 	for (i=0; i<num_pools; i++) {
 1814: 		schedule_lease_timeout(pools[i]);
 1815: 	}
 1816: }
 1817: 
 1818: /* 
 1819:  * Given an address and the length of the network mask, return
 1820:  * only the network portion.
 1821:  *
 1822:  * Examples:
 1823:  *
 1824:  *   "fe80::216:6fff:fe49:7d9b", length 64 = "fe80::"
 1825:  *   "2001:888:1936:2:216:6fff:fe49:7d9b", length 48 = "2001:888:1936::"
 1826:  */
 1827: static void
 1828: ipv6_network_portion(struct in6_addr *result, 
 1829: 		     const struct in6_addr *addr, int bits) {
 1830: 	unsigned char *addrp;
 1831: 	int mask_bits;
 1832: 	int bytes;
 1833: 	int extra_bits;
 1834: 	int i;
 1835: 
 1836: 	static const unsigned char bitmasks[] = {
 1837: 		0x00, 0xFE, 0xFC, 0xF8, 
 1838: 		0xF0, 0xE0, 0xC0, 0x80, 
 1839: 	};
 1840: 
 1841: 	/* 
 1842: 	 *  Sanity check our bits. ;)
 1843: 	 */
 1844: 	if ((bits < 0) || (bits > 128)) {
 1845: 		log_fatal("ipv6_network_portion: bits %d not between 0 and 128",
 1846: 			  bits);
 1847: 	}
 1848: 
 1849: 	/* 
 1850: 	 * Copy our address portion.
 1851: 	 */
 1852: 	*result = *addr;
 1853: 	addrp = ((unsigned char *)result) + 15;
 1854: 
 1855: 	/* 
 1856: 	 * Zero out masked portion.
 1857: 	 */
 1858: 	mask_bits = 128 - bits;
 1859: 	bytes = mask_bits / 8;
 1860: 	extra_bits = mask_bits % 8;
 1861: 
 1862: 	for (i=0; i<bytes; i++) {
 1863: 		*addrp = 0;
 1864: 		addrp--;
 1865: 	}
 1866: 	if (extra_bits) {
 1867: 		*addrp &= bitmasks[extra_bits];
 1868: 	}
 1869: }
 1870: 
 1871: /*
 1872:  * Determine if the given address/prefix is in the pool.
 1873:  */
 1874: isc_boolean_t
 1875: ipv6_in_pool(const struct in6_addr *addr, const struct ipv6_pool *pool) {
 1876: 	struct in6_addr tmp;
 1877: 
 1878: 	ipv6_network_portion(&tmp, addr, pool->bits);
 1879: 	if (memcmp(&tmp, &pool->start_addr, sizeof(tmp)) == 0) {
 1880: 		return ISC_TRUE;
 1881: 	} else {
 1882: 		return ISC_FALSE;
 1883: 	}
 1884: }
 1885: 
 1886: /*
 1887:  * Find the pool that contains the given address.
 1888:  *
 1889:  * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
 1890:  *   initialized to NULL
 1891:  */
 1892: isc_result_t
 1893: find_ipv6_pool(struct ipv6_pool **pool, u_int16_t type,
 1894: 	       const struct in6_addr *addr) {
 1895: 	int i;
 1896: 
 1897: 	if (pool == NULL) {
 1898: 		log_error("%s(%d): NULL pointer reference", MDL);
 1899: 		return ISC_R_INVALIDARG;
 1900: 	}
 1901: 	if (*pool != NULL) {
 1902: 		log_error("%s(%d): non-NULL pointer", MDL);
 1903: 		return ISC_R_INVALIDARG;
 1904: 	}
 1905: 
 1906: 	for (i=0; i<num_pools; i++) {
 1907: 		if (pools[i]->pool_type != type)
 1908: 			continue;
 1909: 		if (ipv6_in_pool(addr, pools[i])) { 
 1910: 			ipv6_pool_reference(pool, pools[i], MDL);
 1911: 			return ISC_R_SUCCESS;
 1912: 		}
 1913: 	}
 1914: 	return ISC_R_NOTFOUND;
 1915: }
 1916: 
 1917: /*
 1918:  * Helper function for the various functions that act across all
 1919:  * pools.
 1920:  */
 1921: static isc_result_t 
 1922: change_leases(struct ia_xx *ia, 
 1923: 	      isc_result_t (*change_func)(struct ipv6_pool *,
 1924: 					  struct iasubopt *)) {
 1925: 	isc_result_t retval;
 1926: 	isc_result_t renew_retval;
 1927: 	struct ipv6_pool *pool;
 1928: 	struct in6_addr *addr;
 1929: 	int i;
 1930: 
 1931: 	retval = ISC_R_SUCCESS;
 1932: 	for (i=0; i<ia->num_iasubopt; i++) {
 1933: 		pool = NULL;
 1934: 		addr = &ia->iasubopt[i]->addr;
 1935: 		if (find_ipv6_pool(&pool, ia->ia_type,
 1936: 				   addr) == ISC_R_SUCCESS) {
 1937: 			renew_retval = change_func(pool, ia->iasubopt[i]);
 1938: 			if (renew_retval != ISC_R_SUCCESS) {
 1939: 				retval = renew_retval;
 1940: 			}
 1941: 		}
 1942: 		/* XXXsk: should we warn if we don't find a pool? */
 1943: 	}
 1944: 	return retval;
 1945: }
 1946: 
 1947: /*
 1948:  * Renew all leases in an IA from all pools.
 1949:  *
 1950:  * The new lifetime should be in the soft_lifetime_end_time
 1951:  * and will be moved to hard_lifetime_end_time by renew_lease6.
 1952:  */
 1953: isc_result_t 
 1954: renew_leases(struct ia_xx *ia) {
 1955: 	return change_leases(ia, renew_lease6);
 1956: }
 1957: 
 1958: /*
 1959:  * Release all leases in an IA from all pools.
 1960:  */
 1961: isc_result_t 
 1962: release_leases(struct ia_xx *ia) {
 1963: 	return change_leases(ia, release_lease6);
 1964: }
 1965: 
 1966: /*
 1967:  * Decline all leases in an IA from all pools.
 1968:  */
 1969: isc_result_t 
 1970: decline_leases(struct ia_xx *ia) {
 1971: 	return change_leases(ia, decline_lease6);
 1972: }
 1973: 
 1974: #ifdef DHCPv6
 1975: /*
 1976:  * Helper function to output leases.
 1977:  */
 1978: static int write_error;
 1979: 
 1980: static isc_result_t 
 1981: write_ia_leases(const void *name, unsigned len, void *value) {
 1982: 	struct ia_xx *ia = (struct ia_xx *)value;
 1983: 	
 1984: 	if (!write_error) { 
 1985: 		if (!write_ia(ia)) {
 1986: 			write_error = 1;
 1987: 		}
 1988: 	}
 1989: 	return ISC_R_SUCCESS;
 1990: }
 1991: 
 1992: /*
 1993:  * Write all DHCPv6 information.
 1994:  */
 1995: int
 1996: write_leases6(void) {
 1997: 	write_error = 0;
 1998: 	write_server_duid();
 1999: 	ia_hash_foreach(ia_na_active, write_ia_leases);
 2000: 	if (write_error) {
 2001: 		return 0;
 2002: 	}
 2003: 	ia_hash_foreach(ia_ta_active, write_ia_leases);
 2004: 	if (write_error) {
 2005: 		return 0;
 2006: 	}
 2007: 	ia_hash_foreach(ia_pd_active, write_ia_leases);
 2008: 	if (write_error) {
 2009: 		return 0;
 2010: 	}
 2011: 	return 1;
 2012: }
 2013: #endif /* DHCPv6 */
 2014: 
 2015: static isc_result_t
 2016: mark_hosts_unavailable_support(const void *name, unsigned len, void *value) {
 2017: 	struct host_decl *h;
 2018: 	struct data_string fixed_addr;
 2019: 	struct in6_addr addr;
 2020: 	struct ipv6_pool *p;
 2021: 
 2022: 	h = (struct host_decl *)value;
 2023: 
 2024: 	/*
 2025: 	 * If the host has no address, we don't need to mark anything.
 2026: 	 */
 2027: 	if (h->fixed_addr == NULL) {
 2028: 		return ISC_R_SUCCESS;
 2029: 	}
 2030: 
 2031: 	/* 
 2032: 	 * Evaluate the fixed address.
 2033: 	 */
 2034: 	memset(&fixed_addr, 0, sizeof(fixed_addr));
 2035: 	if (!evaluate_option_cache(&fixed_addr, NULL, NULL, NULL, NULL, NULL,
 2036: 				   &global_scope, h->fixed_addr, MDL)) {
 2037: 		log_error("mark_hosts_unavailable: "
 2038: 			  "error evaluating host address.");
 2039: 		return ISC_R_SUCCESS;
 2040: 	}
 2041: 	if (fixed_addr.len != 16) {
 2042: 		log_error("mark_hosts_unavailable: "
 2043: 			  "host address is not 128 bits.");
 2044: 		return ISC_R_SUCCESS;
 2045: 	}
 2046: 	memcpy(&addr, fixed_addr.data, 16);
 2047: 	data_string_forget(&fixed_addr, MDL);
 2048: 
 2049: 	/*
 2050: 	 * Find the pool holding this host, and mark the address.
 2051: 	 * (I suppose it is arguably valid to have a host that does not
 2052: 	 * sit in any pool.)
 2053: 	 */
 2054: 	p = NULL;
 2055: 	if (find_ipv6_pool(&p, D6O_IA_NA, &addr) == ISC_R_SUCCESS) {
 2056: 		mark_lease_unavailable(p, &addr);
 2057: 		ipv6_pool_dereference(&p, MDL);
 2058: 	} 
 2059: 	if (find_ipv6_pool(&p, D6O_IA_TA, &addr) == ISC_R_SUCCESS) {
 2060: 		mark_lease_unavailable(p, &addr);
 2061: 		ipv6_pool_dereference(&p, MDL);
 2062: 	} 
 2063: 
 2064: 	return ISC_R_SUCCESS;
 2065: }
 2066: 
 2067: void
 2068: mark_hosts_unavailable(void) {
 2069: 	hash_foreach(host_name_hash, mark_hosts_unavailable_support);
 2070: }
 2071: 
 2072: static isc_result_t
 2073: mark_phosts_unavailable_support(const void *name, unsigned len, void *value) {
 2074: 	struct host_decl *h;
 2075: 	struct iaddrcidrnetlist *l;
 2076: 	struct in6_addr pref;
 2077: 	struct ipv6_pool *p;
 2078: 
 2079: 	h = (struct host_decl *)value;
 2080: 
 2081: 	/*
 2082: 	 * If the host has no prefix, we don't need to mark anything.
 2083: 	 */
 2084: 	if (h->fixed_prefix == NULL) {
 2085: 		return ISC_R_SUCCESS;
 2086: 	}
 2087: 
 2088: 	/* 
 2089: 	 * Get the fixed prefixes.
 2090: 	 */
 2091: 	for (l = h->fixed_prefix; l != NULL; l = l->next) {
 2092: 		if (l->cidrnet.lo_addr.len != 16) {
 2093: 			continue;
 2094: 		}
 2095: 		memcpy(&pref, l->cidrnet.lo_addr.iabuf, 16);
 2096: 
 2097: 		/*
 2098: 		 * Find the pool holding this host, and mark the prefix.
 2099: 		 * (I suppose it is arguably valid to have a host that does not
 2100: 		 * sit in any pool.)
 2101: 		 */
 2102: 		p = NULL;
 2103: 		if (find_ipv6_pool(&p, D6O_IA_PD, &pref) != ISC_R_SUCCESS) {
 2104: 			continue;
 2105: 		}
 2106: 		if (l->cidrnet.bits != p->units) {
 2107: 			ipv6_pool_dereference(&p, MDL);
 2108: 			continue;
 2109: 		}
 2110: 		mark_lease_unavailable(p, &pref);
 2111: 		ipv6_pool_dereference(&p, MDL);
 2112: 	} 
 2113: 
 2114: 	return ISC_R_SUCCESS;
 2115: }
 2116: 
 2117: void
 2118: mark_phosts_unavailable(void) {
 2119: 	hash_foreach(host_name_hash, mark_phosts_unavailable_support);
 2120: }
 2121: 
 2122: void 
 2123: mark_interfaces_unavailable(void) {
 2124: 	struct interface_info *ip;
 2125: 	int i;
 2126: 	struct ipv6_pool *p;
 2127: 
 2128: 	ip = interfaces;
 2129: 	while (ip != NULL) {
 2130: 		for (i=0; i<ip->v6address_count; i++) {
 2131: 			p = NULL;
 2132: 			if (find_ipv6_pool(&p, D6O_IA_NA, &ip->v6addresses[i]) 
 2133: 							== ISC_R_SUCCESS) {
 2134: 				mark_lease_unavailable(p, 
 2135: 						       &ip->v6addresses[i]);
 2136: 				ipv6_pool_dereference(&p, MDL);
 2137: 			} 
 2138: 			if (find_ipv6_pool(&p, D6O_IA_TA, &ip->v6addresses[i]) 
 2139: 							== ISC_R_SUCCESS) {
 2140: 				mark_lease_unavailable(p, 
 2141: 						       &ip->v6addresses[i]);
 2142: 				ipv6_pool_dereference(&p, MDL);
 2143: 			} 
 2144: 		}
 2145: 		ip = ip->next;
 2146: 	}
 2147: }
 2148: 
 2149: /* unittest moved to server/tests/mdb6_unittest.c */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>