/*
* Copyright (C) 2010-2012 by Internet Systems Consortium, Inc. ("ISC")
* Copyright (C) 2007-2008 by Internet Systems Consortium, Inc. ("ISC")
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*!
* \todo assert()
* \todo simplify functions, as pool is now in iaaddr
*/
/*! \file server/mdb6.c
*
* \page ipv6structures IPv6 Structures Overview
*
* A brief description of the IPv6 structures as reverse engineered.
*
* There are three major data strucutes involved in the database:
*
* - ipv6_pool - this contains information about a pool of addresses or prefixes
* that the server is using. This includes a hash table that
* tracks the active items and a pair of heap tables one for
* active items and one for non-active items. The heap tables
* are used to determine the next items to be modified due to
* timing events (expire mostly).
* - ia_xx - this contains information about a single IA from a request
* normally it will contain one pointer to a lease for the client
* but it may contain more in some circumstances. There are 3
* hash tables to aid in accessing these one each for NA, TA and PD.
* - iasubopt- the v6 lease structure. These are created dynamically when
* a client asks for something and will eventually be destroyed
* if the client doesn't re-ask for that item. A lease has space
* for backpointers to the IA and to the pool to which it belongs.
* The pool backpointer is always filled, the IA pointer may not be.
*
* In normal use we then have something like this:
*
* \verbatim
* ia hash tables
* ia_na_active +----------------+
* ia_ta_active +------------+ | pool |
* ia_pd_active | iasubopt |<--| active hash |
* +-----------------+ | aka lease |<--| active heap |
* | ia_xx | | pool ptr |-->| |
* | iasubopt array |<---| iaptr |<--| inactive heap |
* | lease ptr |--->| | | |
* +-----------------+ +------------+ +----------------+
* \endverbatim
*
* For the pool either the inactive heap will have a pointer
* or both the active heap and the active hash will have pointers.
*
* I think there are several major items to notice. The first is
* that as a lease moves around it will be added to and removed
* from the address hash table in the pool and between the active
* and inactive hash tables. The hash table and the active heap
* are used when the lease is either active or abandoned. The
* inactive heap is used for all other states. In particular a
* lease that has expired or been released will be cleaned
* (DDNS removal etc) and then moved to the inactive heap. After
* some time period (currently 1 hour) it will be freed.
*
* The second is that when a client requests specific addresses,
* either because it previously owned them or if the server supplied
* them as part of a solicit, the server will try to lookup the ia_xx
* associated with the client and find the addresses there. If it
* does find appropriate leases it moves them from the old IA to
* a new IA and eventually replaces the old IA with the new IA
* in the IA hash tables.
*
*/
#include "config.h"
#include <sys/types.h>
#include <time.h>
#include <netinet/in.h>
#include "isc-dhcp/result.h"
#include <stdarg.h>
#include "dhcpd.h"
#include "omapip/omapip.h"
#include "omapip/hash.h"
#include "dst/md5.h"
HASH_FUNCTIONS(ia, unsigned char *, struct ia_xx, ia_hash_t,
ia_reference, ia_dereference, do_string_hash)
ia_hash_t *ia_na_active;
ia_hash_t *ia_ta_active;
ia_hash_t *ia_pd_active;
HASH_FUNCTIONS(iasubopt, struct in6_addr *, struct iasubopt, iasubopt_hash_t,
iasubopt_reference, iasubopt_dereference, do_string_hash)
struct ipv6_pool **pools;
int num_pools;
/*
* Create a new IAADDR/PREFIX structure.
*
* - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
* initialized to NULL
*/
isc_result_t
iasubopt_allocate(struct iasubopt **iasubopt, const char *file, int line) {
struct iasubopt *tmp;
if (iasubopt == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
if (*iasubopt != NULL) {
log_error("%s(%d): non-NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
tmp = dmalloc(sizeof(*tmp), file, line);
if (tmp == NULL) {
return ISC_R_NOMEMORY;
}
tmp->refcnt = 1;
tmp->state = FTS_FREE;
tmp->heap_index = -1;
tmp->plen = 255;
*iasubopt = tmp;
return ISC_R_SUCCESS;
}
/*
* Reference an IAADDR/PREFIX structure.
*
* - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
* initialized to NULL
*/
isc_result_t
iasubopt_reference(struct iasubopt **iasubopt, struct iasubopt *src,
const char *file, int line) {
if (iasubopt == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
if (*iasubopt != NULL) {
log_error("%s(%d): non-NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
if (src == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
*iasubopt = src;
src->refcnt++;
return ISC_R_SUCCESS;
}
/*
* Dereference an IAADDR/PREFIX structure.
*
* If it is the last reference, then the memory for the
* structure is freed.
*/
isc_result_t
iasubopt_dereference(struct iasubopt **iasubopt, const char *file, int line) {
struct iasubopt *tmp;
if ((iasubopt == NULL) || (*iasubopt == NULL)) {
log_error("%s(%d): NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
tmp = *iasubopt;
*iasubopt = NULL;
tmp->refcnt--;
if (tmp->refcnt < 0) {
log_error("%s(%d): negative refcnt", file, line);
tmp->refcnt = 0;
}
if (tmp->refcnt == 0) {
if (tmp->ia != NULL) {
ia_dereference(&(tmp->ia), file, line);
}
if (tmp->ipv6_pool != NULL) {
ipv6_pool_dereference(&(tmp->ipv6_pool), file, line);
}
if (tmp->scope != NULL) {
binding_scope_dereference(&tmp->scope, file, line);
}
dfree(tmp, file, line);
}
return ISC_R_SUCCESS;
}
/*
* Make the key that we use for IA.
*/
isc_result_t
ia_make_key(struct data_string *key, u_int32_t iaid,
const char *duid, unsigned int duid_len,
const char *file, int line) {
memset(key, 0, sizeof(*key));
key->len = duid_len + sizeof(iaid);
if (!buffer_allocate(&(key->buffer), key->len, file, line)) {
return ISC_R_NOMEMORY;
}
key->data = key->buffer->data;
memcpy((char *)key->data, &iaid, sizeof(iaid));
memcpy((char *)key->data + sizeof(iaid), duid, duid_len);
return ISC_R_SUCCESS;
}
/*
* Create a new IA structure.
*
* - ia must be a pointer to a (struct ia_xx *) pointer previously
* initialized to NULL
* - iaid and duid are values from the client
*
* XXXsk: we don't concern ourself with the byte order of the IAID,
* which might be a problem if we transfer this structure
* between machines of different byte order
*/
isc_result_t
ia_allocate(struct ia_xx **ia, u_int32_t iaid,
const char *duid, unsigned int duid_len,
const char *file, int line) {
struct ia_xx *tmp;
if (ia == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
if (*ia != NULL) {
log_error("%s(%d): non-NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
tmp = dmalloc(sizeof(*tmp), file, line);
if (tmp == NULL) {
return ISC_R_NOMEMORY;
}
if (ia_make_key(&tmp->iaid_duid, iaid,
duid, duid_len, file, line) != ISC_R_SUCCESS) {
dfree(tmp, file, line);
return ISC_R_NOMEMORY;
}
tmp->refcnt = 1;
*ia = tmp;
return ISC_R_SUCCESS;
}
/*
* Reference an IA structure.
*
* - ia must be a pointer to a (struct ia_xx *) pointer previously
* initialized to NULL
*/
isc_result_t
ia_reference(struct ia_xx **ia, struct ia_xx *src,
const char *file, int line) {
if (ia == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
if (*ia != NULL) {
log_error("%s(%d): non-NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
if (src == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
*ia = src;
src->refcnt++;
return ISC_R_SUCCESS;
}
/*
* Dereference an IA structure.
*
* If it is the last reference, then the memory for the
* structure is freed.
*/
isc_result_t
ia_dereference(struct ia_xx **ia, const char *file, int line) {
struct ia_xx *tmp;
int i;
if ((ia == NULL) || (*ia == NULL)) {
log_error("%s(%d): NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
tmp = *ia;
*ia = NULL;
tmp->refcnt--;
if (tmp->refcnt < 0) {
log_error("%s(%d): negative refcnt", file, line);
tmp->refcnt = 0;
}
if (tmp->refcnt == 0) {
if (tmp->iasubopt != NULL) {
for (i=0; i<tmp->num_iasubopt; i++) {
iasubopt_dereference(&(tmp->iasubopt[i]),
file, line);
}
dfree(tmp->iasubopt, file, line);
}
data_string_forget(&(tmp->iaid_duid), file, line);
dfree(tmp, file, line);
}
return ISC_R_SUCCESS;
}
/*
* Add an IAADDR/PREFIX entry to an IA structure.
*/
isc_result_t
ia_add_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
const char *file, int line) {
int max;
struct iasubopt **new;
/*
* Grow our array if we need to.
*
* Note: we pick 4 as the increment, as that seems a reasonable
* guess as to how many addresses/prefixes we might expect
* on an interface.
*/
if (ia->max_iasubopt <= ia->num_iasubopt) {
max = ia->max_iasubopt + 4;
new = dmalloc(max * sizeof(struct iasubopt *), file, line);
if (new == NULL) {
return ISC_R_NOMEMORY;
}
memcpy(new, ia->iasubopt,
ia->num_iasubopt * sizeof(struct iasubopt *));
ia->iasubopt = new;
ia->max_iasubopt = max;
}
iasubopt_reference(&(ia->iasubopt[ia->num_iasubopt]), iasubopt,
file, line);
ia->num_iasubopt++;
return ISC_R_SUCCESS;
}
/*
* Remove an IAADDR/PREFIX entry to an IA structure.
*
* Note: if a suboption appears more than once, then only ONE will be removed.
*/
void
ia_remove_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
const char *file, int line) {
int i, j;
if (ia == NULL || iasubopt == NULL)
return;
for (i=0; i<ia->num_iasubopt; i++) {
if (ia->iasubopt[i] == iasubopt) {
/* remove this sub option */
iasubopt_dereference(&(ia->iasubopt[i]), file, line);
/* move remaining suboption pointers down one */
for (j=i+1; j < ia->num_iasubopt; j++) {
ia->iasubopt[j-1] = ia->iasubopt[j];
}
/* decrease our total count */
/* remove the back-reference in the suboption itself */
ia_dereference(&iasubopt->ia, file, line);
ia->num_iasubopt--;
return;
}
}
log_error("%s(%d): IAADDR/PREFIX not in IA", file, line);
}
/*
* Remove all addresses/prefixes from an IA.
*/
void
ia_remove_all_lease(struct ia_xx *ia, const char *file, int line) {
int i;
for (i=0; i<ia->num_iasubopt; i++) {
ia_dereference(&(ia->iasubopt[i]->ia), file, line);
iasubopt_dereference(&(ia->iasubopt[i]), file, line);
}
ia->num_iasubopt = 0;
}
/*
* Compare two IA.
*/
isc_boolean_t
ia_equal(const struct ia_xx *a, const struct ia_xx *b)
{
isc_boolean_t found;
int i, j;
/*
* Handle cases where one or both of the inputs is NULL.
*/
if (a == NULL) {
if (b == NULL) {
return ISC_TRUE;
} else {
return ISC_FALSE;
}
}
/*
* Check the type is the same.
*/
if (a->ia_type != b->ia_type) {
return ISC_FALSE;
}
/*
* Check the DUID is the same.
*/
if (a->iaid_duid.len != b->iaid_duid.len) {
return ISC_FALSE;
}
if (memcmp(a->iaid_duid.data,
b->iaid_duid.data, a->iaid_duid.len) != 0) {
return ISC_FALSE;
}
/*
* Make sure we have the same number of addresses/prefixes in each.
*/
if (a->num_iasubopt != b->num_iasubopt) {
return ISC_FALSE;
}
/*
* Check that each address/prefix is present in both.
*/
for (i=0; i<a->num_iasubopt; i++) {
found = ISC_FALSE;
for (j=0; j<a->num_iasubopt; j++) {
if (a->iasubopt[i]->plen != b->iasubopt[i]->plen)
continue;
if (memcmp(&(a->iasubopt[i]->addr),
&(b->iasubopt[j]->addr),
sizeof(struct in6_addr)) == 0) {
found = ISC_TRUE;
break;
}
}
if (!found) {
return ISC_FALSE;
}
}
/*
* These are the same in every way we care about.
*/
return ISC_TRUE;
}
/*
* Helper function for lease heaps.
* Makes the top of the heap the oldest lease.
*/
static isc_boolean_t
lease_older(void *a, void *b) {
struct iasubopt *la = (struct iasubopt *)a;
struct iasubopt *lb = (struct iasubopt *)b;
if (la->hard_lifetime_end_time == lb->hard_lifetime_end_time) {
return difftime(la->soft_lifetime_end_time,
lb->soft_lifetime_end_time) < 0;
} else {
return difftime(la->hard_lifetime_end_time,
lb->hard_lifetime_end_time) < 0;
}
}
/*
* Helper function for lease address/prefix heaps.
* Callback when an address's position in the heap changes.
*/
static void
lease_index_changed(void *iasubopt, unsigned int new_heap_index) {
((struct iasubopt *)iasubopt)-> heap_index = new_heap_index;
}
/*
* Create a new IPv6 lease pool structure.
*
* - pool must be a pointer to a (struct ipv6_pool *) pointer previously
* initialized to NULL
*/
isc_result_t
ipv6_pool_allocate(struct ipv6_pool **pool, u_int16_t type,
const struct in6_addr *start_addr, int bits,
int units, const char *file, int line) {
struct ipv6_pool *tmp;
if (pool == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
if (*pool != NULL) {
log_error("%s(%d): non-NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
tmp = dmalloc(sizeof(*tmp), file, line);
if (tmp == NULL) {
return ISC_R_NOMEMORY;
}
tmp->refcnt = 1;
tmp->pool_type = type;
tmp->start_addr = *start_addr;
tmp->bits = bits;
tmp->units = units;
if (!iasubopt_new_hash(&tmp->leases, DEFAULT_HASH_SIZE, file, line)) {
dfree(tmp, file, line);
return ISC_R_NOMEMORY;
}
if (isc_heap_create(lease_older, lease_index_changed,
0, &(tmp->active_timeouts)) != ISC_R_SUCCESS) {
iasubopt_free_hash_table(&(tmp->leases), file, line);
dfree(tmp, file, line);
return ISC_R_NOMEMORY;
}
if (isc_heap_create(lease_older, lease_index_changed,
0, &(tmp->inactive_timeouts)) != ISC_R_SUCCESS) {
isc_heap_destroy(&(tmp->active_timeouts));
iasubopt_free_hash_table(&(tmp->leases), file, line);
dfree(tmp, file, line);
return ISC_R_NOMEMORY;
}
*pool = tmp;
return ISC_R_SUCCESS;
}
/*
* Reference an IPv6 pool structure.
*
* - pool must be a pointer to a (struct pool *) pointer previously
* initialized to NULL
*/
isc_result_t
ipv6_pool_reference(struct ipv6_pool **pool, struct ipv6_pool *src,
const char *file, int line) {
if (pool == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
if (*pool != NULL) {
log_error("%s(%d): non-NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
if (src == NULL) {
log_error("%s(%d): NULL pointer reference", file, line);
return ISC_R_INVALIDARG;
}
*pool = src;
src->refcnt++;
return ISC_R_SUCCESS;
}
/*
* Note: Each IAADDR/PREFIX in a pool is referenced by the pool. This is needed
* to prevent the lease from being garbage collected out from under the
* pool.
*
* The references are made from the hash and from the heap. The following
* helper functions dereference these when a pool is destroyed.
*/
/*
* Helper function for pool cleanup.
* Dereference each of the hash entries in a pool.
*/
static isc_result_t
dereference_hash_entry(const void *name, unsigned len, void *value) {
struct iasubopt *iasubopt = (struct iasubopt *)value;
iasubopt_dereference(&iasubopt, MDL);
return ISC_R_SUCCESS;
}
/*
* Helper function for pool cleanup.
* Dereference each of the heap entries in a pool.
*/
static void
dereference_heap_entry(void *value, void *dummy) {
struct iasubopt *iasubopt = (struct iasubopt *)value;
iasubopt_dereference(&iasubopt, MDL);
}
/*
* Dereference an IPv6 pool structure.
*
* If it is the last reference, then the memory for the
* structure is freed.
*/
isc_result_t
ipv6_pool_dereference(struct ipv6_pool **pool, const char *file, int line) {
struct ipv6_pool *tmp;
if ((pool == NULL) || (*pool == NULL)) {
log_error("%s(%d): NULL pointer", file, line);
return ISC_R_INVALIDARG;
}
tmp = *pool;
*pool = NULL;
tmp->refcnt--;
if (tmp->refcnt < 0) {
log_error("%s(%d): negative refcnt", file, line);
tmp->refcnt = 0;
}
if (tmp->refcnt == 0) {
iasubopt_hash_foreach(tmp->leases, dereference_hash_entry);
iasubopt_free_hash_table(&(tmp->leases), file, line);
isc_heap_foreach(tmp->active_timeouts,
dereference_heap_entry, NULL);
isc_heap_destroy(&(tmp->active_timeouts));
isc_heap_foreach(tmp->inactive_timeouts,
dereference_heap_entry, NULL);
isc_heap_destroy(&(tmp->inactive_timeouts));
dfree(tmp, file, line);
}
return ISC_R_SUCCESS;
}
/*
* Create an address by hashing the input, and using that for
* the non-network part.
*/
static void
build_address6(struct in6_addr *addr,
const struct in6_addr *net_start_addr, int net_bits,
const struct data_string *input) {
MD5_CTX ctx;
int net_bytes;
int i;
char *str;
const char *net_str;
/*
* Use MD5 to get a nice 128 bit hash of the input.
* Yes, we know MD5 isn't cryptographically sound.
* No, we don't care.
*/
MD5_Init(&ctx);
MD5_Update(&ctx, input->data, input->len);
MD5_Final((unsigned char *)addr, &ctx);
/*
* Copy the [0..128] network bits over.
*/
str = (char *)addr;
net_str = (const char *)net_start_addr;
net_bytes = net_bits / 8;
for (i = 0; i < net_bytes; i++) {
str[i] = net_str[i];
}
switch (net_bits % 8) {
case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
}
/* set the 'u' bit to zero for /64s. */
if (net_bits == 64)
str[8] &= ~0x02;
}
/*
* Create a temporary address by a variant of RFC 4941 algo.
* Note: this should not be used for prefixes shorter than 64 bits.
*/
static void
build_temporary6(struct in6_addr *addr,
const struct in6_addr *net_start_addr, int net_bits,
const struct data_string *input) {
static u_int8_t history[8];
static u_int32_t counter = 0;
MD5_CTX ctx;
unsigned char md[16];
extern int dst_s_random(u_int8_t *, unsigned);
/*
* First time/time to reseed.
* Please use a good pseudo-random generator here!
*/
if (counter == 0) {
if (dst_s_random(history, 8) != 8)
log_fatal("Random failed.");
}
/*
* Use MD5 as recommended by RFC 4941.
*/
MD5_Init(&ctx);
MD5_Update(&ctx, history, 8UL);
MD5_Update(&ctx, input->data, input->len);
MD5_Final(md, &ctx);
/*
* Build the address.
*/
if (net_bits == 64) {
memcpy(&addr->s6_addr[0], &net_start_addr->s6_addr[0], 8);
memcpy(&addr->s6_addr[8], md, 8);
addr->s6_addr[8] &= ~0x02;
} else {
int net_bytes;
int i;
char *str;
const char *net_str;
/*
* Copy the [0..128] network bits over.
*/
str = (char *)addr;
net_str = (const char *)net_start_addr;
net_bytes = net_bits / 8;
for (i = 0; i < net_bytes; i++) {
str[i] = net_str[i];
}
memcpy(str + net_bytes, md, 16 - net_bytes);
switch (net_bits % 8) {
case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
}
}
/*
* Save history for the next call.
*/
memcpy(history, md + 8, 8);
counter++;
}
/* Reserved Subnet Router Anycast ::0:0:0:0. */
static struct in6_addr rtany;
/* Reserved Subnet Anycasts ::fdff:ffff:ffff:ff80-::fdff:ffff:ffff:ffff. */
static struct in6_addr resany;
/*
* Create a lease for the given address and client duid.
*
* - pool must be a pointer to a (struct pool *) pointer previously
* initialized to NULL
*
* Right now we simply hash the DUID, and if we get a collision, we hash
* again until we find a free address. We try this a fixed number of times,
* to avoid getting stuck in a loop (this is important on small pools
* where we can run out of space).
*
* We return the number of attempts that it took to find an available
* lease. This tells callers when a pool is are filling up, as
* well as an indication of how full the pool is; statistically the
* more full a pool is the more attempts must be made before finding
* a free lease. Realistically this will only happen in very full
* pools.
*
* We probably want different algorithms depending on the network size, in
* the long term.
*/
isc_result_t
create_lease6(struct ipv6_pool *pool, struct iasubopt **addr,
unsigned int *attempts,
const struct data_string *uid, time_t soft_lifetime_end_time) {
struct data_string ds;
struct in6_addr tmp;
struct iasubopt *test_iaaddr;
struct data_string new_ds;
struct iasubopt *iaaddr;
isc_result_t result;
isc_boolean_t reserved_iid;
static isc_boolean_t init_resiid = ISC_FALSE;
/*
* Fill the reserved IIDs.
*/
if (!init_resiid) {
memset(&rtany, 0, 16);
memset(&resany, 0, 8);
resany.s6_addr[8] = 0xfd;
memset(&resany.s6_addr[9], 0xff, 6);
init_resiid = ISC_TRUE;
}
/*
* Use the UID as our initial seed for the hash
*/
memset(&ds, 0, sizeof(ds));
data_string_copy(&ds, (struct data_string *)uid, MDL);
*attempts = 0;
for (;;) {
/*
* Give up at some point.
*/
if (++(*attempts) > 100) {
data_string_forget(&ds, MDL);
return ISC_R_NORESOURCES;
}
/*
* Build a resource.
*/
switch (pool->pool_type) {
case D6O_IA_NA:
/* address */
build_address6(&tmp, &pool->start_addr,
pool->bits, &ds);
break;
case D6O_IA_TA:
/* temporary address */
build_temporary6(&tmp, &pool->start_addr,
pool->bits, &ds);
break;
case D6O_IA_PD:
/* prefix */
log_error("create_lease6: prefix pool.");
return ISC_R_INVALIDARG;
default:
log_error("create_lease6: untyped pool.");
return ISC_R_INVALIDARG;
}
/*
* Avoid reserved interface IDs. (cf. RFC 5453)
*/
reserved_iid = ISC_FALSE;
if (memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) {
reserved_iid = ISC_TRUE;
}
if (!reserved_iid &&
(memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
((tmp.s6_addr[15] & 0x80) == 0x80)) {
reserved_iid = ISC_TRUE;
}
/*
* If this address is not in use, we're happy with it
*/
test_iaaddr = NULL;
if (!reserved_iid &&
(iasubopt_hash_lookup(&test_iaaddr, pool->leases,
&tmp, sizeof(tmp), MDL) == 0)) {
break;
}
if (test_iaaddr != NULL)
iasubopt_dereference(&test_iaaddr, MDL);
/*
* Otherwise, we create a new input, adding the address
*/
memset(&new_ds, 0, sizeof(new_ds));
new_ds.len = ds.len + sizeof(tmp);
if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
data_string_forget(&ds, MDL);
return ISC_R_NOMEMORY;
}
new_ds.data = new_ds.buffer->data;
memcpy(new_ds.buffer->data, ds.data, ds.len);
memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
data_string_forget(&ds, MDL);
data_string_copy(&ds, &new_ds, MDL);
data_string_forget(&new_ds, MDL);
}
data_string_forget(&ds, MDL);
/*
* We're happy with the address, create an IAADDR
* to hold it.
*/
iaaddr = NULL;
result = iasubopt_allocate(&iaaddr, MDL);
if (result != ISC_R_SUCCESS) {
return result;
}
iaaddr->plen = 0;
memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
/*
* Add the lease to the pool (note state is free, not active?!).
*/
result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
if (result == ISC_R_SUCCESS) {
iasubopt_reference(addr, iaaddr, MDL);
}
iasubopt_dereference(&iaaddr, MDL);
return result;
}
/*!
*
* \brief Cleans up leases when reading from a lease file
*
* This function is only expected to be run when reading leases in from a file.
* It checks to see if a lease already exists for the new leases's address.
* We don't add expired leases to the structures when reading a lease file
* which limits what can happen. We have two variables the owners of the leases
* being the same or different and the new lease being active or non-active:
* Owners active
* same no remove old lease and its connections
* same yes nothing to do, other code will update the structures.
* diff no nothing to do
* diff yes this combination shouldn't happen, we should only have a
* single active lease per address at a time and that lease
* should move to non-active before any other lease can
* become active for that address.
* Currently we delete the previous lease and pass an error
* to the caller who should log an error.
*
* When we remove a lease we remove it from the hash table and active heap
* (remember only active leases are in the structures at this time) for the
* pool, and from the IA's array. If, after we've removed the pointer from
* IA's array to the lease, the IA has no more pointers we remove it from
* the appropriate hash table as well.
*
* \param[in] ia_table = the hash table for the IA
* \param[in] pool = the pool to update
* \param[in] lease = the new lease we want to add
* \param[in] ia = the new ia we are building
*
* \return
* ISC_R_SUCCESS = the incoming lease and any previous lease were in
* an expected state - one of the first 3 options above.
* If necessary the old lease was removed.
* ISC_R_FAILURE = there is already an active lease for the address in
* the incoming lease. This shouldn't happen if it does
* flag an error for the caller to log.
*/
isc_result_t
cleanup_lease6(ia_hash_t *ia_table,
struct ipv6_pool *pool,
struct iasubopt *lease,
struct ia_xx *ia) {
struct iasubopt *test_iasubopt, *tmp_iasubopt;
struct ia_xx *old_ia;
isc_result_t status = ISC_R_SUCCESS;
test_iasubopt = NULL;
old_ia = NULL;
/*
* Look up the address - if we don't find a lease
* we don't need to do anything.
*/
if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
&lease->addr, sizeof(lease->addr),
MDL) == 0) {
return (ISC_R_SUCCESS);
}
if (test_iasubopt->ia == NULL) {
/* no old ia, no work to do */
iasubopt_dereference(&test_iasubopt, MDL);
return (status);
}
ia_reference(&old_ia, test_iasubopt->ia, MDL);
if ((old_ia->iaid_duid.len == ia->iaid_duid.len) &&
(memcmp((unsigned char *)ia->iaid_duid.data,
(unsigned char *)old_ia->iaid_duid.data,
ia->iaid_duid.len) == 0)) {
/* same IA */
if ((lease->state == FTS_ACTIVE) ||
(lease->state == FTS_ABANDONED)) {
/* still active, no need to delete */
goto cleanup;
}
} else {
/* different IA */
if ((lease->state != FTS_ACTIVE) &&
(lease->state != FTS_ABANDONED)) {
/* new lease isn't active, no work */
goto cleanup;
}
/*
* We appear to have two active leases, this shouldn't happen.
* Before a second lease can be set to active the first lease
* should be set to inactive (released, expired etc). For now
* delete the previous lease and indicate a failure to the
* caller so it can generate a warning.
* In the future we may try and determine which is the better
* lease to keep.
*/
status = ISC_R_FAILURE;
}
/*
* Remove the old lease from the active heap and from the hash table
* then remove the lease from the IA and clean up the IA if necessary.
*/
isc_heap_delete(pool->active_timeouts, test_iasubopt->heap_index);
pool->num_active--;
iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
sizeof(test_iasubopt->addr), MDL);
ia_remove_iasubopt(old_ia, test_iasubopt, MDL);
if (old_ia->num_iasubopt <= 0) {
ia_hash_delete(ia_table,
(unsigned char *)old_ia->iaid_duid.data,
old_ia->iaid_duid.len, MDL);
}
/*
* We derefenrece the subopt here as we've just removed it from
* the hash table in the pool. We need to make a copy as we
* need to derefernece it again later.
*/
tmp_iasubopt = test_iasubopt;
iasubopt_dereference(&tmp_iasubopt, MDL);
cleanup:
ia_dereference(&old_ia, MDL);
/*
* Clean up the reference, this is in addition to the deference
* above after removing the entry from the hash table
*/
iasubopt_dereference(&test_iasubopt, MDL);
return (status);
}
/*
* Put a lease in the pool directly. This is intended to be used when
* loading leases from the file.
*/
isc_result_t
add_lease6(struct ipv6_pool *pool, struct iasubopt *lease,
time_t valid_lifetime_end_time) {
isc_result_t insert_result;
struct iasubopt *test_iasubopt;
struct iasubopt *tmp_iasubopt;
/* If a state was not assigned by the caller, assume active. */
if (lease->state == 0)
lease->state = FTS_ACTIVE;
ipv6_pool_reference(&lease->ipv6_pool, pool, MDL);
/*
* If this IAADDR/PREFIX is already in our structures, remove the
* old one.
*/
test_iasubopt = NULL;
if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
&lease->addr, sizeof(lease->addr), MDL)) {
/* XXX: we should probably ask the lease what heap it is on
* (as a consistency check).
* XXX: we should probably have one function to "put this lease
* on its heap" rather than doing these if's everywhere. If
* you add more states to this list, don't.
*/
if ((test_iasubopt->state == FTS_ACTIVE) ||
(test_iasubopt->state == FTS_ABANDONED)) {
isc_heap_delete(pool->active_timeouts,
test_iasubopt->heap_index);
pool->num_active--;
} else {
isc_heap_delete(pool->inactive_timeouts,
test_iasubopt->heap_index);
pool->num_inactive--;
}
iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
sizeof(test_iasubopt->addr), MDL);
/*
* We're going to do a bit of evil trickery here.
*
* We need to dereference the entry once to remove our
* current reference (in test_iasubopt), and then one
* more time to remove the reference left when the
* address was added to the pool before.
*/
tmp_iasubopt = test_iasubopt;
iasubopt_dereference(&test_iasubopt, MDL);
iasubopt_dereference(&tmp_iasubopt, MDL);
}
/*
* Add IAADDR/PREFIX to our structures.
*/
tmp_iasubopt = NULL;
iasubopt_reference(&tmp_iasubopt, lease, MDL);
if ((tmp_iasubopt->state == FTS_ACTIVE) ||
(tmp_iasubopt->state == FTS_ABANDONED)) {
tmp_iasubopt->hard_lifetime_end_time = valid_lifetime_end_time;
iasubopt_hash_add(pool->leases, &tmp_iasubopt->addr,
sizeof(tmp_iasubopt->addr), lease, MDL);
insert_result = isc_heap_insert(pool->active_timeouts,
tmp_iasubopt);
if (insert_result == ISC_R_SUCCESS)
pool->num_active++;
} else {
tmp_iasubopt->soft_lifetime_end_time = valid_lifetime_end_time;
insert_result = isc_heap_insert(pool->inactive_timeouts,
tmp_iasubopt);
if (insert_result == ISC_R_SUCCESS)
pool->num_inactive++;
}
if (insert_result != ISC_R_SUCCESS) {
iasubopt_hash_delete(pool->leases, &lease->addr,
sizeof(lease->addr), MDL);
iasubopt_dereference(&tmp_iasubopt, MDL);
return insert_result;
}
/*
* Note: we intentionally leave tmp_iasubopt referenced; there
* is a reference in the heap/hash, after all.
*/
return ISC_R_SUCCESS;
}
/*
* Determine if an address is present in a pool or not.
*/
isc_boolean_t
lease6_exists(const struct ipv6_pool *pool, const struct in6_addr *addr) {
struct iasubopt *test_iaaddr;
test_iaaddr = NULL;
if (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
(void *)addr, sizeof(*addr), MDL)) {
iasubopt_dereference(&test_iaaddr, MDL);
return ISC_TRUE;
} else {
return ISC_FALSE;
}
}
/*!
*
* \brief Check if address is available to a lease
*
* Determine if the address in the lease is available to that
* lease. Either the address isn't in use or it is in use
* but by that lease.
*
* \param[in] lease = lease to check
*
* \return
* ISC_TRUE = The lease is allowed to use that address
* ISC_FALSE = The lease isn't allowed to use that address
*/
isc_boolean_t
lease6_usable(struct iasubopt *lease) {
struct iasubopt *test_iaaddr;
isc_boolean_t status = ISC_TRUE;
test_iaaddr = NULL;
if (iasubopt_hash_lookup(&test_iaaddr, lease->ipv6_pool->leases,
(void *)&lease->addr,
sizeof(lease->addr), MDL)) {
if (test_iaaddr != lease) {
status = ISC_FALSE;
}
iasubopt_dereference(&test_iaaddr, MDL);
}
return (status);
}
/*
* Put the lease on our active pool.
*/
static isc_result_t
move_lease_to_active(struct ipv6_pool *pool, struct iasubopt *lease) {
isc_result_t insert_result;
int old_heap_index;
old_heap_index = lease->heap_index;
insert_result = isc_heap_insert(pool->active_timeouts, lease);
if (insert_result == ISC_R_SUCCESS) {
iasubopt_hash_add(pool->leases, &lease->addr,
sizeof(lease->addr), lease, MDL);
isc_heap_delete(pool->inactive_timeouts, old_heap_index);
pool->num_active++;
pool->num_inactive--;
lease->state = FTS_ACTIVE;
}
return insert_result;
}
/*!
* \brief Renew a lease in the pool.
*
* The hard_lifetime_end_time of the lease should be set to
* the current expiration time.
* The soft_lifetime_end_time of the lease should be set to
* the desired expiration time.
*
* This routine will compare the two and call the correct
* heap routine to move the lease. If the lease is active
* and the new expiration time is greater (the normal case)
* then we call isc_heap_decreased() as a larger time is a
* lower priority. If the new expiration time is less then
* we call isc_heap_increased().
*
* If the lease is abandoned then it will be on the active list
* and we will always call isc_heap_increased() as the previous
* expiration would have been all 1s (as close as we can get
* to infinite).
*
* If the lease is moving to active we call that routine
* which will move it from the inactive list to the active list.
*
* \param pool a pool the lease belongs to
* \param lease the lease to be renewed
*
* \return result of the renew operation (ISC_R_SUCCESS if successful,
ISC_R_NOMEMORY when run out of memory)
*/
isc_result_t
renew_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
time_t old_end_time = lease->hard_lifetime_end_time;
lease->hard_lifetime_end_time = lease->soft_lifetime_end_time;
lease->soft_lifetime_end_time = 0;
if (lease->state == FTS_ACTIVE) {
if (old_end_time <= lease->hard_lifetime_end_time) {
isc_heap_decreased(pool->active_timeouts,
lease->heap_index);
} else {
isc_heap_increased(pool->active_timeouts,
lease->heap_index);
}
return ISC_R_SUCCESS;
} else if (lease->state == FTS_ABANDONED) {
char tmp_addr[INET6_ADDRSTRLEN];
lease->state = FTS_ACTIVE;
isc_heap_increased(pool->active_timeouts, lease->heap_index);
log_info("Reclaiming previously abandoned address %s",
inet_ntop(AF_INET6, &(lease->addr), tmp_addr,
sizeof(tmp_addr)));
return ISC_R_SUCCESS;
} else {
return move_lease_to_active(pool, lease);
}
}
/*
* Put the lease on our inactive pool, with the specified state.
*/
static isc_result_t
move_lease_to_inactive(struct ipv6_pool *pool, struct iasubopt *lease,
binding_state_t state) {
isc_result_t insert_result;
int old_heap_index;
old_heap_index = lease->heap_index;
insert_result = isc_heap_insert(pool->inactive_timeouts, lease);
if (insert_result == ISC_R_SUCCESS) {
/* Process events upon expiration. */
if (pool->pool_type != D6O_IA_PD) {
ddns_removals(NULL, lease);
}
/* Binding scopes are no longer valid after expiry or
* release.
*/
if (lease->scope != NULL) {
binding_scope_dereference(&lease->scope, MDL);
}
iasubopt_hash_delete(pool->leases,
&lease->addr, sizeof(lease->addr), MDL);
isc_heap_delete(pool->active_timeouts, old_heap_index);
lease->state = state;
pool->num_active--;
pool->num_inactive++;
}
return insert_result;
}
/*
* Expire the oldest lease if it's lifetime_end_time is
* older than the given time.
*
* - leasep must be a pointer to a (struct iasubopt *) pointer previously
* initialized to NULL
*
* On return leasep has a reference to the removed entry. It is left
* pointing to NULL if the oldest lease has not expired.
*/
isc_result_t
expire_lease6(struct iasubopt **leasep, struct ipv6_pool *pool, time_t now) {
struct iasubopt *tmp;
isc_result_t result;
if (leasep == NULL) {
log_error("%s(%d): NULL pointer reference", MDL);
return ISC_R_INVALIDARG;
}
if (*leasep != NULL) {
log_error("%s(%d): non-NULL pointer", MDL);
return ISC_R_INVALIDARG;
}
if (pool->num_active > 0) {
tmp = (struct iasubopt *)
isc_heap_element(pool->active_timeouts, 1);
if (now > tmp->hard_lifetime_end_time) {
result = move_lease_to_inactive(pool, tmp,
FTS_EXPIRED);
if (result == ISC_R_SUCCESS) {
iasubopt_reference(leasep, tmp, MDL);
}
return result;
}
}
return ISC_R_SUCCESS;
}
/*
* For a declined lease, leave it on the "active" pool, but mark
* it as declined. Give it an infinite (well, really long) life.
*/
isc_result_t
decline_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
isc_result_t result;
if ((lease->state != FTS_ACTIVE) &&
(lease->state != FTS_ABANDONED)) {
result = move_lease_to_active(pool, lease);
if (result != ISC_R_SUCCESS) {
return result;
}
}
lease->state = FTS_ABANDONED;
lease->hard_lifetime_end_time = MAX_TIME;
isc_heap_decreased(pool->active_timeouts, lease->heap_index);
return ISC_R_SUCCESS;
}
/*
* Put the returned lease on our inactive pool.
*/
isc_result_t
release_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
if (lease->state == FTS_ACTIVE) {
return move_lease_to_inactive(pool, lease, FTS_RELEASED);
} else {
return ISC_R_SUCCESS;
}
}
/*
* Create a prefix by hashing the input, and using that for
* the part subject to allocation.
*/
void
build_prefix6(struct in6_addr *pref,
const struct in6_addr *net_start_pref,
int pool_bits, int pref_bits,
const struct data_string *input) {
MD5_CTX ctx;
int net_bytes;
int i;
char *str;
const char *net_str;
/*
* Use MD5 to get a nice 128 bit hash of the input.
* Yes, we know MD5 isn't cryptographically sound.
* No, we don't care.
*/
MD5_Init(&ctx);
MD5_Update(&ctx, input->data, input->len);
MD5_Final((unsigned char *)pref, &ctx);
/*
* Copy the network bits over.
*/
str = (char *)pref;
net_str = (const char *)net_start_pref;
net_bytes = pool_bits / 8;
for (i = 0; i < net_bytes; i++) {
str[i] = net_str[i];
}
i = net_bytes;
switch (pool_bits % 8) {
case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
}
/*
* Zero the remaining bits.
*/
net_bytes = pref_bits / 8;
for (i=net_bytes+1; i<16; i++) {
str[i] = 0;
}
i = net_bytes;
switch (pref_bits % 8) {
case 0: str[i] &= 0; break;
case 1: str[i] &= 0x80; break;
case 2: str[i] &= 0xC0; break;
case 3: str[i] &= 0xE0; break;
case 4: str[i] &= 0xF0; break;
case 5: str[i] &= 0xF8; break;
case 6: str[i] &= 0xFC; break;
case 7: str[i] &= 0xFE; break;
}
}
/*
* Create a lease for the given prefix and client duid.
*
* - pool must be a pointer to a (struct pool *) pointer previously
* initialized to NULL
*
* Right now we simply hash the DUID, and if we get a collision, we hash
* again until we find a free prefix. We try this a fixed number of times,
* to avoid getting stuck in a loop (this is important on small pools
* where we can run out of space).
*
* We return the number of attempts that it took to find an available
* prefix. This tells callers when a pool is are filling up, as
* well as an indication of how full the pool is; statistically the
* more full a pool is the more attempts must be made before finding
* a free prefix. Realistically this will only happen in very full
* pools.
*
* We probably want different algorithms depending on the network size, in
* the long term.
*/
isc_result_t
create_prefix6(struct ipv6_pool *pool, struct iasubopt **pref,
unsigned int *attempts,
const struct data_string *uid,
time_t soft_lifetime_end_time) {
struct data_string ds;
struct in6_addr tmp;
struct iasubopt *test_iapref;
struct data_string new_ds;
struct iasubopt *iapref;
isc_result_t result;
/*
* Use the UID as our initial seed for the hash
*/
memset(&ds, 0, sizeof(ds));
data_string_copy(&ds, (struct data_string *)uid, MDL);
*attempts = 0;
for (;;) {
/*
* Give up at some point.
*/
if (++(*attempts) > 10) {
data_string_forget(&ds, MDL);
return ISC_R_NORESOURCES;
}
/*
* Build a prefix
*/
build_prefix6(&tmp, &pool->start_addr,
pool->bits, pool->units, &ds);
/*
* If this prefix is not in use, we're happy with it
*/
test_iapref = NULL;
if (iasubopt_hash_lookup(&test_iapref, pool->leases,
&tmp, sizeof(tmp), MDL) == 0) {
break;
}
iasubopt_dereference(&test_iapref, MDL);
/*
* Otherwise, we create a new input, adding the prefix
*/
memset(&new_ds, 0, sizeof(new_ds));
new_ds.len = ds.len + sizeof(tmp);
if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
data_string_forget(&ds, MDL);
return ISC_R_NOMEMORY;
}
new_ds.data = new_ds.buffer->data;
memcpy(new_ds.buffer->data, ds.data, ds.len);
memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
data_string_forget(&ds, MDL);
data_string_copy(&ds, &new_ds, MDL);
data_string_forget(&new_ds, MDL);
}
data_string_forget(&ds, MDL);
/*
* We're happy with the prefix, create an IAPREFIX
* to hold it.
*/
iapref = NULL;
result = iasubopt_allocate(&iapref, MDL);
if (result != ISC_R_SUCCESS) {
return result;
}
iapref->plen = (u_int8_t)pool->units;
memcpy(&iapref->addr, &tmp, sizeof(iapref->addr));
/*
* Add the prefix to the pool (note state is free, not active?!).
*/
result = add_lease6(pool, iapref, soft_lifetime_end_time);
if (result == ISC_R_SUCCESS) {
iasubopt_reference(pref, iapref, MDL);
}
iasubopt_dereference(&iapref, MDL);
return result;
}
/*
* Determine if a prefix is present in a pool or not.
*/
isc_boolean_t
prefix6_exists(const struct ipv6_pool *pool,
const struct in6_addr *pref, u_int8_t plen) {
struct iasubopt *test_iapref;
if ((int)plen != pool->units)
return ISC_FALSE;
test_iapref = NULL;
if (iasubopt_hash_lookup(&test_iapref, pool->leases,
(void *)pref, sizeof(*pref), MDL)) {
iasubopt_dereference(&test_iapref, MDL);
return ISC_TRUE;
} else {
return ISC_FALSE;
}
}
/*
* Mark an IPv6 address/prefix as unavailable from a pool.
*
* This is used for host entries and the addresses of the server itself.
*/
isc_result_t
mark_lease_unavailable(struct ipv6_pool *pool, const struct in6_addr *addr) {
struct iasubopt *dummy_iasubopt;
isc_result_t result;
dummy_iasubopt = NULL;
result = iasubopt_allocate(&dummy_iasubopt, MDL);
if (result == ISC_R_SUCCESS) {
dummy_iasubopt->addr = *addr;
iasubopt_hash_add(pool->leases, &dummy_iasubopt->addr,
sizeof(*addr), dummy_iasubopt, MDL);
}
return result;
}
/*
* Add a pool.
*/
isc_result_t
add_ipv6_pool(struct ipv6_pool *pool) {
struct ipv6_pool **new_pools;
new_pools = dmalloc(sizeof(struct ipv6_pool *) * (num_pools+1), MDL);
if (new_pools == NULL) {
return ISC_R_NOMEMORY;
}
if (num_pools > 0) {
memcpy(new_pools, pools,
sizeof(struct ipv6_pool *) * num_pools);
dfree(pools, MDL);
}
pools = new_pools;
pools[num_pools] = NULL;
ipv6_pool_reference(&pools[num_pools], pool, MDL);
num_pools++;
return ISC_R_SUCCESS;
}
static void
cleanup_old_expired(struct ipv6_pool *pool) {
struct iasubopt *tmp;
struct ia_xx *ia;
struct ia_xx *ia_active;
unsigned char *tmpd;
time_t timeout;
while (pool->num_inactive > 0) {
tmp = (struct iasubopt *)
isc_heap_element(pool->inactive_timeouts, 1);
if (tmp->hard_lifetime_end_time != 0) {
timeout = tmp->hard_lifetime_end_time;
timeout += EXPIRED_IPV6_CLEANUP_TIME;
} else {
timeout = tmp->soft_lifetime_end_time;
}
if (cur_time < timeout) {
break;
}
isc_heap_delete(pool->inactive_timeouts, tmp->heap_index);
pool->num_inactive--;
if (tmp->ia != NULL) {
/*
* Check to see if this IA is in an active list,
* but has no remaining resources. If so, remove it
* from the active list.
*/
ia = NULL;
ia_reference(&ia, tmp->ia, MDL);
ia_remove_iasubopt(ia, tmp, MDL);
ia_active = NULL;
tmpd = (unsigned char *)ia->iaid_duid.data;
if ((ia->ia_type == D6O_IA_NA) &&
(ia->num_iasubopt <= 0) &&
(ia_hash_lookup(&ia_active, ia_na_active, tmpd,
ia->iaid_duid.len, MDL) == 0) &&
(ia_active == ia)) {
ia_hash_delete(ia_na_active, tmpd,
ia->iaid_duid.len, MDL);
}
if ((ia->ia_type == D6O_IA_TA) &&
(ia->num_iasubopt <= 0) &&
(ia_hash_lookup(&ia_active, ia_ta_active, tmpd,
ia->iaid_duid.len, MDL) == 0) &&
(ia_active == ia)) {
ia_hash_delete(ia_ta_active, tmpd,
ia->iaid_duid.len, MDL);
}
if ((ia->ia_type == D6O_IA_PD) &&
(ia->num_iasubopt <= 0) &&
(ia_hash_lookup(&ia_active, ia_pd_active, tmpd,
ia->iaid_duid.len, MDL) == 0) &&
(ia_active == ia)) {
ia_hash_delete(ia_pd_active, tmpd,
ia->iaid_duid.len, MDL);
}
ia_dereference(&ia, MDL);
}
iasubopt_dereference(&tmp, MDL);
}
}
static void
lease_timeout_support(void *vpool) {
struct ipv6_pool *pool;
struct iasubopt *lease;
pool = (struct ipv6_pool *)vpool;
for (;;) {
/*
* Get the next lease scheduled to expire.
*
* Note that if there are no leases in the pool,
* expire_lease6() will return ISC_R_SUCCESS with
* a NULL lease.
*/
lease = NULL;
if (expire_lease6(&lease, pool, cur_time) != ISC_R_SUCCESS) {
break;
}
if (lease == NULL) {
break;
}
/* Look to see if there were ddns updates, and if
* so, drop them.
*
* DH: Do we want to do this on a special 'depref'
* timer rather than expiration timer?
*/
if (pool->pool_type != D6O_IA_PD) {
ddns_removals(NULL, lease);
}
write_ia(lease->ia);
iasubopt_dereference(&lease, MDL);
}
/*
* If appropriate commit and rotate the lease file
* As commit_leases_timed() checks to see if we've done any writes
* we don't bother tracking if this function called write _ia
*/
(void) commit_leases_timed();
/*
* Do some cleanup of our expired leases.
*/
cleanup_old_expired(pool);
/*
* Schedule next round of expirations.
*/
schedule_lease_timeout(pool);
}
/*
* For a given pool, add a timer that will remove the next
* lease to expire.
*/
void
schedule_lease_timeout(struct ipv6_pool *pool) {
struct iasubopt *tmp;
time_t timeout;
time_t next_timeout;
struct timeval tv;
next_timeout = MAX_TIME;
if (pool->num_active > 0) {
tmp = (struct iasubopt *)
isc_heap_element(pool->active_timeouts, 1);
if (tmp->hard_lifetime_end_time < next_timeout) {
next_timeout = tmp->hard_lifetime_end_time + 1;
}
}
if (pool->num_inactive > 0) {
tmp = (struct iasubopt *)
isc_heap_element(pool->inactive_timeouts, 1);
if (tmp->hard_lifetime_end_time != 0) {
timeout = tmp->hard_lifetime_end_time;
timeout += EXPIRED_IPV6_CLEANUP_TIME;
} else {
timeout = tmp->soft_lifetime_end_time + 1;
}
if (timeout < next_timeout) {
next_timeout = timeout;
}
}
if (next_timeout < MAX_TIME) {
tv.tv_sec = next_timeout;
tv.tv_usec = 0;
add_timeout(&tv, lease_timeout_support, pool,
(tvref_t)ipv6_pool_reference,
(tvunref_t)ipv6_pool_dereference);
}
}
/*
* Schedule timeouts across all pools.
*/
void
schedule_all_ipv6_lease_timeouts(void) {
int i;
for (i=0; i<num_pools; i++) {
schedule_lease_timeout(pools[i]);
}
}
/*
* Given an address and the length of the network mask, return
* only the network portion.
*
* Examples:
*
* "fe80::216:6fff:fe49:7d9b", length 64 = "fe80::"
* "2001:888:1936:2:216:6fff:fe49:7d9b", length 48 = "2001:888:1936::"
*/
static void
ipv6_network_portion(struct in6_addr *result,
const struct in6_addr *addr, int bits) {
unsigned char *addrp;
int mask_bits;
int bytes;
int extra_bits;
int i;
static const unsigned char bitmasks[] = {
0x00, 0xFE, 0xFC, 0xF8,
0xF0, 0xE0, 0xC0, 0x80,
};
/*
* Sanity check our bits. ;)
*/
if ((bits < 0) || (bits > 128)) {
log_fatal("ipv6_network_portion: bits %d not between 0 and 128",
bits);
}
/*
* Copy our address portion.
*/
*result = *addr;
addrp = ((unsigned char *)result) + 15;
/*
* Zero out masked portion.
*/
mask_bits = 128 - bits;
bytes = mask_bits / 8;
extra_bits = mask_bits % 8;
for (i=0; i<bytes; i++) {
*addrp = 0;
addrp--;
}
if (extra_bits) {
*addrp &= bitmasks[extra_bits];
}
}
/*
* Determine if the given address/prefix is in the pool.
*/
isc_boolean_t
ipv6_in_pool(const struct in6_addr *addr, const struct ipv6_pool *pool) {
struct in6_addr tmp;
ipv6_network_portion(&tmp, addr, pool->bits);
if (memcmp(&tmp, &pool->start_addr, sizeof(tmp)) == 0) {
return ISC_TRUE;
} else {
return ISC_FALSE;
}
}
/*
* Find the pool that contains the given address.
*
* - pool must be a pointer to a (struct ipv6_pool *) pointer previously
* initialized to NULL
*/
isc_result_t
find_ipv6_pool(struct ipv6_pool **pool, u_int16_t type,
const struct in6_addr *addr) {
int i;
if (pool == NULL) {
log_error("%s(%d): NULL pointer reference", MDL);
return ISC_R_INVALIDARG;
}
if (*pool != NULL) {
log_error("%s(%d): non-NULL pointer", MDL);
return ISC_R_INVALIDARG;
}
for (i=0; i<num_pools; i++) {
if (pools[i]->pool_type != type)
continue;
if (ipv6_in_pool(addr, pools[i])) {
ipv6_pool_reference(pool, pools[i], MDL);
return ISC_R_SUCCESS;
}
}
return ISC_R_NOTFOUND;
}
/*
* Helper function for the various functions that act across all
* pools.
*/
static isc_result_t
change_leases(struct ia_xx *ia,
isc_result_t (*change_func)(struct ipv6_pool *,
struct iasubopt *)) {
isc_result_t retval;
isc_result_t renew_retval;
struct ipv6_pool *pool;
struct in6_addr *addr;
int i;
retval = ISC_R_SUCCESS;
for (i=0; i<ia->num_iasubopt; i++) {
pool = NULL;
addr = &ia->iasubopt[i]->addr;
if (find_ipv6_pool(&pool, ia->ia_type,
addr) == ISC_R_SUCCESS) {
renew_retval = change_func(pool, ia->iasubopt[i]);
if (renew_retval != ISC_R_SUCCESS) {
retval = renew_retval;
}
}
/* XXXsk: should we warn if we don't find a pool? */
}
return retval;
}
/*
* Renew all leases in an IA from all pools.
*
* The new lifetime should be in the soft_lifetime_end_time
* and will be moved to hard_lifetime_end_time by renew_lease6.
*/
isc_result_t
renew_leases(struct ia_xx *ia) {
return change_leases(ia, renew_lease6);
}
/*
* Release all leases in an IA from all pools.
*/
isc_result_t
release_leases(struct ia_xx *ia) {
return change_leases(ia, release_lease6);
}
/*
* Decline all leases in an IA from all pools.
*/
isc_result_t
decline_leases(struct ia_xx *ia) {
return change_leases(ia, decline_lease6);
}
#ifdef DHCPv6
/*
* Helper function to output leases.
*/
static int write_error;
static isc_result_t
write_ia_leases(const void *name, unsigned len, void *value) {
struct ia_xx *ia = (struct ia_xx *)value;
if (!write_error) {
if (!write_ia(ia)) {
write_error = 1;
}
}
return ISC_R_SUCCESS;
}
/*
* Write all DHCPv6 information.
*/
int
write_leases6(void) {
write_error = 0;
write_server_duid();
ia_hash_foreach(ia_na_active, write_ia_leases);
if (write_error) {
return 0;
}
ia_hash_foreach(ia_ta_active, write_ia_leases);
if (write_error) {
return 0;
}
ia_hash_foreach(ia_pd_active, write_ia_leases);
if (write_error) {
return 0;
}
return 1;
}
#endif /* DHCPv6 */
static isc_result_t
mark_hosts_unavailable_support(const void *name, unsigned len, void *value) {
struct host_decl *h;
struct data_string fixed_addr;
struct in6_addr addr;
struct ipv6_pool *p;
h = (struct host_decl *)value;
/*
* If the host has no address, we don't need to mark anything.
*/
if (h->fixed_addr == NULL) {
return ISC_R_SUCCESS;
}
/*
* Evaluate the fixed address.
*/
memset(&fixed_addr, 0, sizeof(fixed_addr));
if (!evaluate_option_cache(&fixed_addr, NULL, NULL, NULL, NULL, NULL,
&global_scope, h->fixed_addr, MDL)) {
log_error("mark_hosts_unavailable: "
"error evaluating host address.");
return ISC_R_SUCCESS;
}
if (fixed_addr.len != 16) {
log_error("mark_hosts_unavailable: "
"host address is not 128 bits.");
return ISC_R_SUCCESS;
}
memcpy(&addr, fixed_addr.data, 16);
data_string_forget(&fixed_addr, MDL);
/*
* Find the pool holding this host, and mark the address.
* (I suppose it is arguably valid to have a host that does not
* sit in any pool.)
*/
p = NULL;
if (find_ipv6_pool(&p, D6O_IA_NA, &addr) == ISC_R_SUCCESS) {
mark_lease_unavailable(p, &addr);
ipv6_pool_dereference(&p, MDL);
}
if (find_ipv6_pool(&p, D6O_IA_TA, &addr) == ISC_R_SUCCESS) {
mark_lease_unavailable(p, &addr);
ipv6_pool_dereference(&p, MDL);
}
return ISC_R_SUCCESS;
}
void
mark_hosts_unavailable(void) {
hash_foreach(host_name_hash, mark_hosts_unavailable_support);
}
static isc_result_t
mark_phosts_unavailable_support(const void *name, unsigned len, void *value) {
struct host_decl *h;
struct iaddrcidrnetlist *l;
struct in6_addr pref;
struct ipv6_pool *p;
h = (struct host_decl *)value;
/*
* If the host has no prefix, we don't need to mark anything.
*/
if (h->fixed_prefix == NULL) {
return ISC_R_SUCCESS;
}
/*
* Get the fixed prefixes.
*/
for (l = h->fixed_prefix; l != NULL; l = l->next) {
if (l->cidrnet.lo_addr.len != 16) {
continue;
}
memcpy(&pref, l->cidrnet.lo_addr.iabuf, 16);
/*
* Find the pool holding this host, and mark the prefix.
* (I suppose it is arguably valid to have a host that does not
* sit in any pool.)
*/
p = NULL;
if (find_ipv6_pool(&p, D6O_IA_PD, &pref) != ISC_R_SUCCESS) {
continue;
}
if (l->cidrnet.bits != p->units) {
ipv6_pool_dereference(&p, MDL);
continue;
}
mark_lease_unavailable(p, &pref);
ipv6_pool_dereference(&p, MDL);
}
return ISC_R_SUCCESS;
}
void
mark_phosts_unavailable(void) {
hash_foreach(host_name_hash, mark_phosts_unavailable_support);
}
void
mark_interfaces_unavailable(void) {
struct interface_info *ip;
int i;
struct ipv6_pool *p;
ip = interfaces;
while (ip != NULL) {
for (i=0; i<ip->v6address_count; i++) {
p = NULL;
if (find_ipv6_pool(&p, D6O_IA_NA, &ip->v6addresses[i])
== ISC_R_SUCCESS) {
mark_lease_unavailable(p,
&ip->v6addresses[i]);
ipv6_pool_dereference(&p, MDL);
}
if (find_ipv6_pool(&p, D6O_IA_TA, &ip->v6addresses[i])
== ISC_R_SUCCESS) {
mark_lease_unavailable(p,
&ip->v6addresses[i]);
ipv6_pool_dereference(&p, MDL);
}
}
ip = ip->next;
}
}
/* unittest moved to server/tests/mdb6_unittest.c */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>