version 1.1, 2014/06/15 16:31:38
|
version 1.1.1.2, 2016/11/02 09:57:01
|
Line 1
|
Line 1
|
/* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com> |
/* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com> |
and Copyright (c) 2012-2014 Simon Kelley | and Copyright (c) 2012-2016 Simon Kelley |
|
|
This program is free software; you can redistribute it and/or modify |
This program is free software; you can redistribute it and/or modify |
it under the terms of the GNU General Public License as published by |
it under the terms of the GNU General Public License as published by |
Line 26
|
Line 26
|
# include <nettle/ecc-curve.h> |
# include <nettle/ecc-curve.h> |
#endif |
#endif |
#include <nettle/nettle-meta.h> |
#include <nettle/nettle-meta.h> |
#include <gmp.h> | #include <nettle/bignum.h> |
|
|
|
/* Nettle-3.0 moved to a new API for DSA. We use a name that's defined in the new API |
|
to detect Nettle-3, and invoke the backwards compatibility mode. */ |
|
#ifdef dsa_params_init |
|
#include <nettle/dsa-compat.h> |
|
#endif |
|
|
#define SERIAL_UNDEF -100 |
#define SERIAL_UNDEF -100 |
#define SERIAL_EQ 0 |
#define SERIAL_EQ 0 |
#define SERIAL_LT -1 |
#define SERIAL_LT -1 |
Line 64 static char *algo_digest_name(int algo)
|
Line 70 static char *algo_digest_name(int algo)
|
default: return NULL; |
default: return NULL; |
} |
} |
} |
} |
| |
| /* http://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml */ |
| static char *nsec3_digest_name(int digest) |
| { |
| switch (digest) |
| { |
| case 1: return "sha1"; |
| default: return NULL; |
| } |
| } |
| |
/* Find pointer to correct hash function in nettle library */ |
/* Find pointer to correct hash function in nettle library */ |
static const struct nettle_hash *hash_find(char *name) |
static const struct nettle_hash *hash_find(char *name) |
{ |
{ |
Line 120 static int hash_init(const struct nettle_hash *hash, v
|
Line 136 static int hash_init(const struct nettle_hash *hash, v
|
return 1; |
return 1; |
} |
} |
|
|
static int rsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, | static int dnsmasq_rsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, |
unsigned char *digest, int algo) | unsigned char *digest, size_t digest_len, int algo) |
{ |
{ |
unsigned char *p; |
unsigned char *p; |
size_t exp_len; |
size_t exp_len; |
|
|
static struct rsa_public_key *key = NULL; |
static struct rsa_public_key *key = NULL; |
static mpz_t sig_mpz; |
static mpz_t sig_mpz; |
|
|
|
(void)digest_len; |
|
|
if (key == NULL) |
if (key == NULL) |
{ |
{ |
Line 172 static int rsa_verify(struct blockdata *key_data, unsi
|
Line 190 static int rsa_verify(struct blockdata *key_data, unsi
|
return 0; |
return 0; |
} |
} |
|
|
static int dsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, | static int dnsmasq_dsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, |
unsigned char *digest, int algo) | unsigned char *digest, size_t digest_len, int algo) |
{ |
{ |
unsigned char *p; |
unsigned char *p; |
unsigned int t; |
unsigned int t; |
Line 181 static int dsa_verify(struct blockdata *key_data, unsi
|
Line 199 static int dsa_verify(struct blockdata *key_data, unsi
|
static struct dsa_public_key *key = NULL; |
static struct dsa_public_key *key = NULL; |
static struct dsa_signature *sig_struct; |
static struct dsa_signature *sig_struct; |
|
|
|
(void)digest_len; |
|
|
if (key == NULL) |
if (key == NULL) |
{ |
{ |
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))) || |
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))) || |
Line 268 static int dnsmasq_ecdsa_verify(struct blockdata *key_
|
Line 288 static int dnsmasq_ecdsa_verify(struct blockdata *key_
|
} |
} |
|
|
if (sig_len != 2*t || key_len != 2*t || |
if (sig_len != 2*t || key_len != 2*t || |
(p = blockdata_retrieve(key_data, key_len, NULL))) | !(p = blockdata_retrieve(key_data, key_len, NULL))) |
return 0; |
return 0; |
|
|
mpz_import(x, t , 1, 1, 0, 0, p); |
mpz_import(x, t , 1, 1, 0, 0, p); |
Line 284 static int dnsmasq_ecdsa_verify(struct blockdata *key_
|
Line 304 static int dnsmasq_ecdsa_verify(struct blockdata *key_
|
} |
} |
#endif |
#endif |
|
|
static int verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, | static int (*verify_func(int algo))(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, |
unsigned char *digest, size_t digest_len, int algo) | unsigned char *digest, size_t digest_len, int algo) |
{ |
{ |
(void)digest_len; | |
| /* Enure at runtime that we have support for this digest */ |
| if (!hash_find(algo_digest_name(algo))) |
| return NULL; |
| |
| /* This switch defines which sig algorithms we support, can't introspect Nettle for that. */ |
switch (algo) |
switch (algo) |
{ |
{ |
case 1: case 5: case 7: case 8: case 10: |
case 1: case 5: case 7: case 8: case 10: |
return rsa_verify(key_data, key_len, sig, sig_len, digest, algo); | return dnsmasq_rsa_verify; |
|
|
case 3: case 6: |
case 3: case 6: |
return dsa_verify(key_data, key_len, sig, sig_len, digest, algo); | return dnsmasq_dsa_verify; |
|
|
#ifndef NO_NETTLE_ECC |
#ifndef NO_NETTLE_ECC |
case 13: case 14: |
case 13: case 14: |
return dnsmasq_ecdsa_verify(key_data, key_len, sig, sig_len, digest, digest_len, algo); | return dnsmasq_ecdsa_verify; |
#endif |
#endif |
} |
} |
|
|
return 0; | return NULL; |
} |
} |
|
|
|
static int verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, |
|
unsigned char *digest, size_t digest_len, int algo) |
|
{ |
|
|
|
int (*func)(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len, |
|
unsigned char *digest, size_t digest_len, int algo); |
|
|
|
func = verify_func(algo); |
|
|
|
if (!func) |
|
return 0; |
|
|
|
return (*func)(key_data, key_len, sig, sig_len, digest, digest_len, algo); |
|
} |
|
|
/* Convert from presentation format to wire format, in place. |
/* Convert from presentation format to wire format, in place. |
Also map UC -> LC. |
Also map UC -> LC. |
Note that using extract_name to get presentation format |
Note that using extract_name to get presentation format |
Line 313 static int verify(struct blockdata *key_data, unsigned
|
Line 352 static int verify(struct blockdata *key_data, unsigned
|
thus generating names in canonical form. |
thus generating names in canonical form. |
Calling to_wire followed by from_wire is almost an identity, |
Calling to_wire followed by from_wire is almost an identity, |
except that the UC remains mapped to LC. |
except that the UC remains mapped to LC. |
|
|
|
Note that both /000 and '.' are allowed within labels. These get |
|
represented in presentation format using NAME_ESCAPE as an escape |
|
character. In theory, if all the characters in a name were /000 or |
|
'.' or NAME_ESCAPE then all would have to be escaped, so the |
|
presentation format would be twice as long as the spec (1024). |
|
The buffers are all delcared as 2049 (allowing for the trailing zero) |
|
for this reason. |
*/ |
*/ |
static int to_wire(char *name) |
static int to_wire(char *name) |
{ |
{ |
unsigned char *l, *p, term; | unsigned char *l, *p, *q, term; |
int len; |
int len; |
|
|
for (l = (unsigned char*)name; *l != 0; l = p) |
for (l = (unsigned char*)name; *l != 0; l = p) |
Line 324 static int to_wire(char *name)
|
Line 371 static int to_wire(char *name)
|
for (p = l; *p != '.' && *p != 0; p++) |
for (p = l; *p != '.' && *p != 0; p++) |
if (*p >= 'A' && *p <= 'Z') |
if (*p >= 'A' && *p <= 'Z') |
*p = *p - 'A' + 'a'; |
*p = *p - 'A' + 'a'; |
| else if (*p == NAME_ESCAPE) |
| { |
| for (q = p; *q; q++) |
| *q = *(q+1); |
| (*p)--; |
| } |
term = *p; |
term = *p; |
|
|
if ((len = p - l) != 0) |
if ((len = p - l) != 0) |
Line 343 static int to_wire(char *name)
|
Line 395 static int to_wire(char *name)
|
/* Note: no compression allowed in input. */ |
/* Note: no compression allowed in input. */ |
static void from_wire(char *name) |
static void from_wire(char *name) |
{ |
{ |
unsigned char *l; | unsigned char *l, *p, *last; |
int len; |
int len; |
| |
| for (last = (unsigned char *)name; *last != 0; last += *last+1); |
| |
for (l = (unsigned char *)name; *l != 0; l += len+1) |
for (l = (unsigned char *)name; *l != 0; l += len+1) |
{ |
{ |
len = *l; |
len = *l; |
memmove(l, l+1, len); |
memmove(l, l+1, len); |
|
for (p = l; p < l + len; p++) |
|
if (*p == '.' || *p == 0 || *p == NAME_ESCAPE) |
|
{ |
|
memmove(p+1, p, 1 + last - p); |
|
len++; |
|
*p++ = NAME_ESCAPE; |
|
(*p)++; |
|
} |
|
|
l[len] = '.'; |
l[len] = '.'; |
} |
} |
|
|
Line 373 static int count_labels(char *name)
|
Line 436 static int count_labels(char *name)
|
} |
} |
|
|
/* Implement RFC1982 wrapped compare for 32-bit numbers */ |
/* Implement RFC1982 wrapped compare for 32-bit numbers */ |
static int serial_compare_32(unsigned long s1, unsigned long s2) | static int serial_compare_32(u32 s1, u32 s2) |
{ |
{ |
if (s1 == s2) |
if (s1 == s2) |
return SERIAL_EQ; |
return SERIAL_EQ; |
Line 387 static int serial_compare_32(unsigned long s1, unsigne
|
Line 450 static int serial_compare_32(unsigned long s1, unsigne
|
return SERIAL_UNDEF; |
return SERIAL_UNDEF; |
} |
} |
|
|
/* Check whether today/now is between date_start and date_end */ | /* Called at startup. If the timestamp file is configured and exists, put its mtime on |
static int check_date_range(unsigned long date_start, unsigned long date_end) | timestamp_time. If it doesn't exist, create it, and set the mtime to 1-1-2015. |
| return -1 -> Cannot create file. |
| 0 -> not using timestamp, or timestamp exists and is in past. |
| 1 -> timestamp exists and is in future. |
| */ |
| |
| static time_t timestamp_time; |
| |
| int setup_timestamp(void) |
{ |
{ |
unsigned long curtime; | struct stat statbuf; |
| |
| daemon->back_to_the_future = 0; |
| |
| if (!daemon->timestamp_file) |
| return 0; |
| |
| if (stat(daemon->timestamp_file, &statbuf) != -1) |
| { |
| timestamp_time = statbuf.st_mtime; |
| check_and_exit: |
| if (difftime(timestamp_time, time(0)) <= 0) |
| { |
| /* time already OK, update timestamp, and do key checking from the start. */ |
| if (utime(daemon->timestamp_file, NULL) == -1) |
| my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno)); |
| daemon->back_to_the_future = 1; |
| return 0; |
| } |
| return 1; |
| } |
| |
| if (errno == ENOENT) |
| { |
| /* NB. for explanation of O_EXCL flag, see comment on pidfile in dnsmasq.c */ |
| int fd = open(daemon->timestamp_file, O_WRONLY | O_CREAT | O_NONBLOCK | O_EXCL, 0666); |
| if (fd != -1) |
| { |
| struct utimbuf timbuf; |
|
|
|
close(fd); |
|
|
|
timestamp_time = timbuf.actime = timbuf.modtime = 1420070400; /* 1-1-2015 */ |
|
if (utime(daemon->timestamp_file, &timbuf) == 0) |
|
goto check_and_exit; |
|
} |
|
} |
|
|
|
return -1; |
|
} |
|
|
|
/* Check whether today/now is between date_start and date_end */ |
|
static int check_date_range(u32 date_start, u32 date_end) |
|
{ |
|
unsigned long curtime = time(0); |
|
|
/* Checking timestamps may be temporarily disabled */ |
/* Checking timestamps may be temporarily disabled */ |
if (option_bool(OPT_DNSSEC_TIME)) | |
| /* If the current time if _before_ the timestamp |
| on our persistent timestamp file, then assume the |
| time if not yet correct, and don't check the |
| key timestamps. As soon as the current time is |
| later then the timestamp, update the timestamp |
| and start checking keys */ |
| if (daemon->timestamp_file) |
| { |
| if (daemon->back_to_the_future == 0 && difftime(timestamp_time, curtime) <= 0) |
| { |
| if (utime(daemon->timestamp_file, NULL) != 0) |
| my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno)); |
| |
| daemon->back_to_the_future = 1; |
| set_option_bool(OPT_DNSSEC_TIME); |
| queue_event(EVENT_RELOAD); /* purge cache */ |
| } |
| |
| if (daemon->back_to_the_future == 0) |
| return 1; |
| } |
| else if (option_bool(OPT_DNSSEC_TIME)) |
return 1; |
return 1; |
|
|
curtime = time(0); |
|
|
|
/* We must explicitly check against wanted values, because of SERIAL_UNDEF */ |
/* We must explicitly check against wanted values, because of SERIAL_UNDEF */ |
return serial_compare_32(curtime, date_start) == SERIAL_GT |
return serial_compare_32(curtime, date_start) == SERIAL_GT |
&& serial_compare_32(curtime, date_end) == SERIAL_LT; |
&& serial_compare_32(curtime, date_end) == SERIAL_LT; |
} |
} |
|
|
static u16 *get_desc(int type) |
|
{ |
|
/* List of RRtypes which include domains in the data. |
|
0 -> domain |
|
integer -> no of plain bytes |
|
-1 -> end |
|
|
|
zero is not a valid RRtype, so the final entry is returned for |
|
anything which needs no mangling. |
|
*/ |
|
|
|
static u16 rr_desc[] = |
|
{ |
|
T_NS, 0, -1, |
|
T_MD, 0, -1, |
|
T_MF, 0, -1, |
|
T_CNAME, 0, -1, |
|
T_SOA, 0, 0, -1, |
|
T_MB, 0, -1, |
|
T_MG, 0, -1, |
|
T_MR, 0, -1, |
|
T_PTR, 0, -1, |
|
T_MINFO, 0, 0, -1, |
|
T_MX, 2, 0, -1, |
|
T_RP, 0, 0, -1, |
|
T_AFSDB, 2, 0, -1, |
|
T_RT, 2, 0, -1, |
|
T_SIG, 18, 0, -1, |
|
T_PX, 2, 0, 0, -1, |
|
T_NXT, 0, -1, |
|
T_KX, 2, 0, -1, |
|
T_SRV, 6, 0, -1, |
|
T_DNAME, 0, -1, |
|
0, -1 /* wildcard/catchall */ |
|
}; |
|
|
|
u16 *p = rr_desc; |
|
|
|
while (*p != type && *p != 0) |
|
while (*p++ != (u16)-1); |
|
|
|
return p+1; |
|
} |
|
|
|
/* Return bytes of canonicalised rdata, when the return value is zero, the remaining |
/* Return bytes of canonicalised rdata, when the return value is zero, the remaining |
data, pointed to by *p, should be used raw. */ |
data, pointed to by *p, should be used raw. */ |
static int get_rdata(struct dns_header *header, size_t plen, unsigned char *end, char *buff, | static int get_rdata(struct dns_header *header, size_t plen, unsigned char *end, char *buff, int bufflen, |
unsigned char **p, u16 **desc) |
unsigned char **p, u16 **desc) |
{ |
{ |
int d = **desc; |
int d = **desc; |
|
|
(*desc)++; |
|
|
|
/* No more data needs mangling */ |
/* No more data needs mangling */ |
if (d == (u16)-1) |
if (d == (u16)-1) |
return 0; | { |
| /* If there's more data than we have space for, just return what fits, |
| we'll get called again for more chunks */ |
| if (end - *p > bufflen) |
| { |
| memcpy(buff, *p, bufflen); |
| *p += bufflen; |
| return bufflen; |
| } |
| |
| return 0; |
| } |
| |
| (*desc)++; |
|
|
if (d == 0 && extract_name(header, plen, p, buff, 1, 0)) |
if (d == 0 && extract_name(header, plen, p, buff, 1, 0)) |
/* domain-name, canonicalise */ |
/* domain-name, canonicalise */ |
Line 479 static int get_rdata(struct dns_header *header, size_t
|
Line 581 static int get_rdata(struct dns_header *header, size_t
|
} |
} |
} |
} |
|
|
static int expand_workspace(unsigned char ***wkspc, int *sz, int new) |
|
{ |
|
unsigned char **p; |
|
int new_sz = *sz; |
|
|
|
if (new_sz > new) |
|
return 1; |
|
|
|
if (new >= 100) |
|
return 0; |
|
|
|
new_sz += 5; |
|
|
|
if (!(p = whine_malloc((new_sz) * sizeof(unsigned char **)))) |
|
return 0; |
|
|
|
if (*wkspc) |
|
{ |
|
memcpy(p, *wkspc, *sz * sizeof(unsigned char **)); |
|
free(*wkspc); |
|
} |
|
|
|
*wkspc = p; |
|
*sz = new_sz; |
|
|
|
return 1; |
|
} |
|
|
|
/* Bubble sort the RRset into the canonical order. |
/* Bubble sort the RRset into the canonical order. |
Note that the byte-streams from two RRs may get unsynced: consider |
Note that the byte-streams from two RRs may get unsynced: consider |
RRs which have two domain-names at the start and then other data. |
RRs which have two domain-names at the start and then other data. |
Line 553 static void sort_rrset(struct dns_header *header, size
|
Line 627 static void sort_rrset(struct dns_header *header, size
|
if (left1 != 0) |
if (left1 != 0) |
memmove(buff1, buff1 + len1 - left1, left1); |
memmove(buff1, buff1 + len1 - left1, left1); |
|
|
if ((len1 = get_rdata(header, plen, end1, buff1 + left1, &p1, &dp1)) == 0) | if ((len1 = get_rdata(header, plen, end1, buff1 + left1, (MAXDNAME * 2) - left1, &p1, &dp1)) == 0) |
{ |
{ |
quit = 1; |
quit = 1; |
len1 = end1 - p1; |
len1 = end1 - p1; |
Line 564 static void sort_rrset(struct dns_header *header, size
|
Line 638 static void sort_rrset(struct dns_header *header, size
|
if (left2 != 0) |
if (left2 != 0) |
memmove(buff2, buff2 + len2 - left2, left2); |
memmove(buff2, buff2 + len2 - left2, left2); |
|
|
if ((len2 = get_rdata(header, plen, end2, buff2 + left2, &p2, &dp2)) == 0) | if ((len2 = get_rdata(header, plen, end2, buff2 + left2, (MAXDNAME *2) - left2, &p2, &dp2)) == 0) |
{ |
{ |
quit = 1; |
quit = 1; |
len2 = end2 - p2; |
len2 = end2 - p2; |
Line 593 static void sort_rrset(struct dns_header *header, size
|
Line 667 static void sort_rrset(struct dns_header *header, size
|
} while (swap); |
} while (swap); |
} |
} |
|
|
/* Validate a single RRset (class, type, name) in the supplied DNS reply | static unsigned char **rrset = NULL, **sigs = NULL; |
Return code: | |
STAT_SECURE if it validates. | |
STAT_SECURE_WILDCARD if it validates and is the result of wildcard expansion. | |
STAT_NO_SIG no RRsigs found. | |
STAT_INSECURE RRset empty. | |
STAT_BOGUS signature is wrong, bad packet. | |
STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname) | |
|
|
if key is non-NULL, use that key, which has the algo and tag given in the params of those names, | /* Get pointers to RRset menbers and signature(s) for same. |
otherwise find the key in the cache. | Check signatures, and return keyname associated in keyname. */ |
| static int explore_rrset(struct dns_header *header, size_t plen, int class, int type, |
name is unchanged on exit. keyname is used as workspace and trashed. | char *name, char *keyname, int *sigcnt, int *rrcnt) |
*/ | |
static int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class, | |
int type, char *name, char *keyname, struct blockdata *key, int keylen, int algo_in, int keytag_in) | |
{ |
{ |
static unsigned char **rrset = NULL, **sigs = NULL; | static int rrset_sz = 0, sig_sz = 0; |
static int rrset_sz = 0, sig_sz = 0; | |
| |
unsigned char *p; |
unsigned char *p; |
int rrsetidx, sigidx, res, rdlen, j, name_labels; | int rrsetidx, sigidx, j, rdlen, res; |
struct crec *crecp = NULL; | int gotkey = 0; |
int type_covered, algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag; | |
u16 *rr_desc = get_desc(type); | |
|
|
if (!(p = skip_questions(header, plen))) |
if (!(p = skip_questions(header, plen))) |
return STAT_BOGUS; |
return STAT_BOGUS; |
|
|
name_labels = count_labels(name); /* For 4035 5.3.2 check */ | /* look for RRSIGs for this RRset and get pointers to each RR in the set. */ |
| |
/* look for RRSIGs for this RRset and get pointers to each RR in the set. */ | |
for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount); |
for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount); |
j != 0; j--) |
j != 0; j--) |
{ |
{ |
unsigned char *pstart, *pdata; |
unsigned char *pstart, *pdata; |
int stype, sclass; | int stype, sclass, type_covered; |
|
|
pstart = p; |
pstart = p; |
|
|
Line 645 static int validate_rrset(time_t now, struct dns_heade
|
Line 703 static int validate_rrset(time_t now, struct dns_heade
|
GETSHORT(rdlen, p); |
GETSHORT(rdlen, p); |
|
|
if (!CHECK_LEN(header, p, plen, rdlen)) |
if (!CHECK_LEN(header, p, plen, rdlen)) |
return STAT_BOGUS; | return 0; |
|
|
if (res == 1 && sclass == class) |
if (res == 1 && sclass == class) |
{ |
{ |
if (stype == type) |
if (stype == type) |
{ |
{ |
if (!expand_workspace(&rrset, &rrset_sz, rrsetidx)) |
if (!expand_workspace(&rrset, &rrset_sz, rrsetidx)) |
return STAT_BOGUS; | return 0; |
|
|
rrset[rrsetidx++] = pstart; |
rrset[rrsetidx++] = pstart; |
} |
} |
Line 660 static int validate_rrset(time_t now, struct dns_heade
|
Line 718 static int validate_rrset(time_t now, struct dns_heade
|
if (stype == T_RRSIG) |
if (stype == T_RRSIG) |
{ |
{ |
if (rdlen < 18) |
if (rdlen < 18) |
return STAT_BOGUS; /* bad packet */ | return 0; /* bad packet */ |
|
|
GETSHORT(type_covered, p); |
GETSHORT(type_covered, p); |
|
p += 16; /* algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag */ |
|
|
|
if (gotkey) |
|
{ |
|
/* If there's more than one SIG, ensure they all have same keyname */ |
|
if (extract_name(header, plen, &p, keyname, 0, 0) != 1) |
|
return 0; |
|
} |
|
else |
|
{ |
|
gotkey = 1; |
|
|
|
if (!extract_name(header, plen, &p, keyname, 1, 0)) |
|
return 0; |
|
|
|
/* RFC 4035 5.3.1 says that the Signer's Name field MUST equal |
|
the name of the zone containing the RRset. We can't tell that |
|
for certain, but we can check that the RRset name is equal to |
|
or encloses the signers name, which should be enough to stop |
|
an attacker using signatures made with the key of an unrelated |
|
zone he controls. Note that the root key is always allowed. */ |
|
if (*keyname != 0) |
|
{ |
|
char *name_start; |
|
for (name_start = name; !hostname_isequal(name_start, keyname); ) |
|
if ((name_start = strchr(name_start, '.'))) |
|
name_start++; /* chop a label off and try again */ |
|
else |
|
return 0; |
|
} |
|
} |
|
|
|
|
if (type_covered == type) |
if (type_covered == type) |
{ |
{ |
if (!expand_workspace(&sigs, &sig_sz, sigidx)) |
if (!expand_workspace(&sigs, &sig_sz, sigidx)) |
return STAT_BOGUS; | return 0; |
|
|
sigs[sigidx++] = pdata; |
sigs[sigidx++] = pdata; |
} |
} |
Line 677 static int validate_rrset(time_t now, struct dns_heade
|
Line 767 static int validate_rrset(time_t now, struct dns_heade
|
} |
} |
|
|
if (!ADD_RDLEN(header, p, plen, rdlen)) |
if (!ADD_RDLEN(header, p, plen, rdlen)) |
return STAT_BOGUS; | return 0; |
} |
} |
|
|
/* RRset empty */ | *sigcnt = sigidx; |
if (rrsetidx == 0) | *rrcnt = rrsetidx; |
return STAT_INSECURE; | |
|
|
/* no RRSIGs */ | return 1; |
if (sigidx == 0) | } |
return STAT_NO_SIG; | |
| /* Validate a single RRset (class, type, name) in the supplied DNS reply |
| Return code: |
| STAT_SECURE if it validates. |
| STAT_SECURE_WILDCARD if it validates and is the result of wildcard expansion. |
| (In this case *wildcard_out points to the "body" of the wildcard within name.) |
| STAT_BOGUS signature is wrong, bad packet. |
| STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname) |
| STAT_NEED_DS need DS to complete validation (name is returned in keyname) |
| |
| If key is non-NULL, use that key, which has the algo and tag given in the params of those names, |
| otherwise find the key in the cache. |
| |
| Name is unchanged on exit. keyname is used as workspace and trashed. |
| |
| Call explore_rrset first to find and count RRs and sigs. |
| */ |
| static int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class, int type, int sigidx, int rrsetidx, |
| char *name, char *keyname, char **wildcard_out, struct blockdata *key, int keylen, int algo_in, int keytag_in) |
| { |
| unsigned char *p; |
| int rdlen, j, name_labels, algo, labels, orig_ttl, key_tag; |
| struct crec *crecp = NULL; |
| u16 *rr_desc = rrfilter_desc(type); |
| u32 sig_expiration, sig_inception |
| ; |
| if (wildcard_out) |
| *wildcard_out = NULL; |
|
|
|
name_labels = count_labels(name); /* For 4035 5.3.2 check */ |
|
|
/* Sort RRset records into canonical order. |
/* Sort RRset records into canonical order. |
Note that at this point keyname and daemon->workspacename buffs are |
Note that at this point keyname and daemon->workspacename buffs are |
unused, and used as workspace by the sort. */ |
unused, and used as workspace by the sort. */ |
Line 718 static int validate_rrset(time_t now, struct dns_heade
|
Line 836 static int validate_rrset(time_t now, struct dns_heade
|
if (!extract_name(header, plen, &p, keyname, 1, 0)) |
if (!extract_name(header, plen, &p, keyname, 1, 0)) |
return STAT_BOGUS; |
return STAT_BOGUS; |
|
|
/* RFC 4035 5.3.1 says that the Signer's Name field MUST equal |
|
the name of the zone containing the RRset. We can't tell that |
|
for certain, but we can check that the RRset name is equal to |
|
or encloses the signers name, which should be enough to stop |
|
an attacker using signatures made with the key of an unrelated |
|
zone he controls. Note that the root key is always allowed. */ |
|
if (*keyname != 0) |
|
{ |
|
int failed = 0; |
|
|
|
for (name_start = name; !hostname_isequal(name_start, keyname); ) |
|
if ((name_start = strchr(name_start, '.'))) |
|
name_start++; /* chop a label off and try again */ |
|
else |
|
{ |
|
failed = 1; |
|
break; |
|
} |
|
|
|
/* Bad sig, try another */ |
|
if (failed) |
|
continue; |
|
} |
|
|
|
/* Other 5.3.1 checks */ |
|
if (!check_date_range(sig_inception, sig_expiration) || |
if (!check_date_range(sig_inception, sig_expiration) || |
labels > name_labels || |
labels > name_labels || |
!(hash = hash_find(algo_digest_name(algo))) || |
!(hash = hash_find(algo_digest_name(algo))) || |
!hash_init(hash, &ctx, &digest)) |
!hash_init(hash, &ctx, &digest)) |
continue; |
continue; |
| |
/* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */ |
/* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */ |
if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY))) |
if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY))) |
return STAT_NEED_KEY; |
return STAT_NEED_KEY; |
Line 780 static int validate_rrset(time_t now, struct dns_heade
|
Line 873 static int validate_rrset(time_t now, struct dns_heade
|
{ |
{ |
int k; |
int k; |
for (k = name_labels - labels; k != 0; k--) |
for (k = name_labels - labels; k != 0; k--) |
while (*name_start != '.' && *name_start != 0) | { |
name_start++; | while (*name_start != '.' && *name_start != 0) |
| name_start++; |
| if (k != 1 && *name_start == '.') |
| name_start++; |
| } |
| |
| if (wildcard_out) |
| *wildcard_out = name_start+1; |
| |
name_start--; |
name_start--; |
*name_start = '*'; |
*name_start = '*'; |
} |
} |
Line 798 static int validate_rrset(time_t now, struct dns_heade
|
Line 899 static int validate_rrset(time_t now, struct dns_heade
|
|
|
end = p + rdlen; |
end = p + rdlen; |
|
|
/* canonicalise rdata and calculate length of same, use name buffer as workspace */ | /* canonicalise rdata and calculate length of same, use name buffer as workspace. |
| Note that name buffer is twice MAXDNAME long in DNSSEC mode. */ |
cp = p; |
cp = p; |
dp = rr_desc; |
dp = rr_desc; |
for (len = 0; (seg = get_rdata(header, plen, end, name, &cp, &dp)) != 0; len += seg); | for (len = 0; (seg = get_rdata(header, plen, end, name, MAXDNAME * 2, &cp, &dp)) != 0; len += seg); |
len += end - cp; |
len += end - cp; |
len = htons(len); |
len = htons(len); |
hash->update(ctx, 2, (unsigned char *)&len); |
hash->update(ctx, 2, (unsigned char *)&len); |
Line 809 static int validate_rrset(time_t now, struct dns_heade
|
Line 911 static int validate_rrset(time_t now, struct dns_heade
|
/* Now canonicalise again and digest. */ |
/* Now canonicalise again and digest. */ |
cp = p; |
cp = p; |
dp = rr_desc; |
dp = rr_desc; |
while ((seg = get_rdata(header, plen, end, name, &cp, &dp))) | while ((seg = get_rdata(header, plen, end, name, MAXDNAME * 2, &cp, &dp))) |
hash->update(ctx, seg, (unsigned char *)name); |
hash->update(ctx, seg, (unsigned char *)name); |
if (cp != end) |
if (cp != end) |
hash->update(ctx, end - cp, cp); |
hash->update(ctx, end - cp, cp); |
Line 842 static int validate_rrset(time_t now, struct dns_heade
|
Line 944 static int validate_rrset(time_t now, struct dns_heade
|
return STAT_BOGUS; |
return STAT_BOGUS; |
} |
} |
|
|
|
|
/* The DNS packet is expected to contain the answer to a DNSKEY query. |
/* The DNS packet is expected to contain the answer to a DNSKEY query. |
Put all DNSKEYs in the answer which are valid into the cache. |
Put all DNSKEYs in the answer which are valid into the cache. |
return codes: |
return codes: |
STAT_INSECURE No DNSKEYs in reply. | STAT_OK Done, key(s) in cache. |
STAT_SECURE At least one valid DNSKEY found and in cache. | STAT_BOGUS No DNSKEYs found, which can be validated with DS, |
STAT_BOGUS No DNSKEYs found, which can be validated with DS, | or self-sign for DNSKEY RRset is not valid, bad packet. |
or self-sign for DNSKEY RRset is not valid, bad packet. | STAT_NEED_DS DS records to validate a key not found, name in keyname |
STAT_NEED_DS DS records to validate a key not found, name in keyname | STAT_NEED_KEY DNSKEY records to validate a key not found, name in keyname |
*/ |
*/ |
int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
{ |
{ |
unsigned char *psave, *p = (unsigned char *)(header+1); |
unsigned char *psave, *p = (unsigned char *)(header+1); |
struct crec *crecp, *recp1; |
struct crec *crecp, *recp1; |
int rc, j, qtype, qclass, ttl, rdlen, flags, algo, valid, keytag, type_covered; | int rc, j, qtype, qclass, ttl, rdlen, flags, algo, valid, keytag; |
struct blockdata *key; |
struct blockdata *key; |
struct all_addr a; |
struct all_addr a; |
|
|
Line 866 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 969 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
GETSHORT(qtype, p); |
GETSHORT(qtype, p); |
GETSHORT(qclass, p); |
GETSHORT(qclass, p); |
|
|
if (qtype != T_DNSKEY || qclass != class) | if (qtype != T_DNSKEY || qclass != class || ntohs(header->ancount) == 0) |
return STAT_BOGUS; |
return STAT_BOGUS; |
|
|
if (ntohs(header->ancount) == 0) |
|
return STAT_INSECURE; |
|
|
|
/* See if we have cached a DS record which validates this key */ |
/* See if we have cached a DS record which validates this key */ |
if (!(crecp = cache_find_by_name(NULL, name, now, F_DS))) |
if (!(crecp = cache_find_by_name(NULL, name, now, F_DS))) |
Line 879 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 979 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
return STAT_NEED_DS; |
return STAT_NEED_DS; |
} |
} |
|
|
/* If we've cached that DS provably doesn't exist, result must be INSECURE */ |
|
if (crecp->flags & F_NEG) |
|
return STAT_INSECURE; |
|
|
|
/* NOTE, we need to find ONE DNSKEY which matches the DS */ |
/* NOTE, we need to find ONE DNSKEY which matches the DS */ |
for (valid = 0, j = ntohs(header->ancount); j != 0 && !valid; j--) |
for (valid = 0, j = ntohs(header->ancount); j != 0 && !valid; j--) |
{ |
{ |
Line 935 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1031 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
void *ctx; |
void *ctx; |
unsigned char *digest, *ds_digest; |
unsigned char *digest, *ds_digest; |
const struct nettle_hash *hash; |
const struct nettle_hash *hash; |
| int sigcnt, rrcnt; |
| |
if (recp1->addr.ds.algo == algo && |
if (recp1->addr.ds.algo == algo && |
recp1->addr.ds.keytag == keytag && |
recp1->addr.ds.keytag == keytag && |
recp1->uid == (unsigned int)class && |
recp1->uid == (unsigned int)class && |
Line 953 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1050 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
|
|
from_wire(name); |
from_wire(name); |
|
|
if (recp1->addr.ds.keylen == (int)hash->digest_size && | if (!(recp1->flags & F_NEG) && |
| recp1->addr.ds.keylen == (int)hash->digest_size && |
(ds_digest = blockdata_retrieve(recp1->addr.key.keydata, recp1->addr.ds.keylen, NULL)) && |
(ds_digest = blockdata_retrieve(recp1->addr.key.keydata, recp1->addr.ds.keylen, NULL)) && |
memcmp(ds_digest, digest, recp1->addr.ds.keylen) == 0 && |
memcmp(ds_digest, digest, recp1->addr.ds.keylen) == 0 && |
validate_rrset(now, header, plen, class, T_DNSKEY, name, keyname, key, rdlen - 4, algo, keytag) == STAT_SECURE) | explore_rrset(header, plen, class, T_DNSKEY, name, keyname, &sigcnt, &rrcnt) && |
| sigcnt != 0 && rrcnt != 0 && |
| validate_rrset(now, header, plen, class, T_DNSKEY, sigcnt, rrcnt, name, keyname, |
| NULL, key, rdlen - 4, algo, keytag) == STAT_SECURE) |
{ |
{ |
valid = 1; |
valid = 1; |
break; |
break; |
Line 968 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1069 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
|
|
if (valid) |
if (valid) |
{ |
{ |
/* DNSKEY RRset determined to be OK, now cache it and the RRsigs that sign it. */ | /* DNSKEY RRset determined to be OK, now cache it. */ |
cache_start_insert(); |
cache_start_insert(); |
|
|
p = skip_questions(header, plen); |
p = skip_questions(header, plen); |
Line 977 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1078 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
{ |
{ |
/* Ensure we have type, class TTL and length */ |
/* Ensure we have type, class TTL and length */ |
if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
return STAT_INSECURE; /* bad packet */ | return STAT_BOGUS; /* bad packet */ |
|
|
GETSHORT(qtype, p); |
GETSHORT(qtype, p); |
GETSHORT(qclass, p); |
GETSHORT(qclass, p); |
Line 1008 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1109 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
if ((key = blockdata_alloc((char*)p, rdlen - 4))) |
if ((key = blockdata_alloc((char*)p, rdlen - 4))) |
{ |
{ |
if (!(recp1 = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DNSSECOK))) |
if (!(recp1 = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DNSSECOK))) |
blockdata_free(key); | { |
| blockdata_free(key); |
| return STAT_BOGUS; |
| } |
else |
else |
{ |
{ |
a.addr.keytag = keytag; | a.addr.log.keytag = keytag; |
log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %u"); | a.addr.log.algo = algo; |
| if (verify_func(algo)) |
| log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu"); |
| else |
| log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu (not supported)"); |
|
|
recp1->addr.key.keylen = rdlen - 4; |
recp1->addr.key.keylen = rdlen - 4; |
recp1->addr.key.keydata = key; |
recp1->addr.key.keydata = key; |
Line 1022 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1130 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
} |
} |
} |
} |
} |
} |
else if (qtype == T_RRSIG) | |
{ | |
/* RRSIG, cache if covers DNSKEY RRset */ | |
if (rdlen < 18) | |
return STAT_BOGUS; /* bad packet */ | |
| |
GETSHORT(type_covered, p); | |
| |
if (type_covered == T_DNSKEY) | |
{ | |
a.addr.dnssec.class = class; | |
a.addr.dnssec.type = type_covered; | |
| |
algo = *p++; | |
p += 13; /* labels, orig_ttl, expiration, inception */ | |
GETSHORT(keytag, p); | |
if ((key = blockdata_alloc((char*)psave, rdlen))) | |
{ | |
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DS))) | |
blockdata_free(key); | |
else | |
{ | |
crecp->addr.sig.keydata = key; | |
crecp->addr.sig.keylen = rdlen; | |
crecp->addr.sig.keytag = keytag; | |
crecp->addr.sig.type_covered = type_covered; | |
crecp->addr.sig.algo = algo; | |
} | |
} | |
} | |
} | |
| |
p = psave; |
p = psave; |
} |
} |
|
|
Line 1063 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
Line 1140 int dnssec_validate_by_ds(time_t now, struct dns_heade
|
|
|
/* commit cache insert. */ |
/* commit cache insert. */ |
cache_end_insert(); |
cache_end_insert(); |
return STAT_SECURE; | return STAT_OK; |
} |
} |
|
|
log_query(F_UPSTREAM, name, NULL, "BOGUS DNSKEY"); | log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DNSKEY"); |
return STAT_BOGUS; |
return STAT_BOGUS; |
} |
} |
|
|
/* The DNS packet is expected to contain the answer to a DS query |
/* The DNS packet is expected to contain the answer to a DS query |
Put all DSs in the answer which are valid into the cache. |
Put all DSs in the answer which are valid into the cache. |
|
Also handles replies which prove that there's no DS at this location, |
|
either because the zone is unsigned or this isn't a zone cut. These are |
|
cached too. |
return codes: |
return codes: |
STAT_INSECURE no DS in reply or not signed. | STAT_OK At least one valid DS found and in cache. |
STAT_SECURE At least one valid DS found and in cache. | STAT_BOGUS no DS in reply or not signed, fails validation, bad packet. |
STAT_NO_DS It's proved there's no DS here. | STAT_NEED_KEY DNSKEY records to validate a DS not found, name in keyname |
STAT_BOGUS At least one DS found, which fails validation, bad packet. | STAT_NEED_DS DS record needed. |
STAT_NEED_DNSKEY DNSKEY records to validate a DS not found, name in keyname | |
*/ |
*/ |
|
|
int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
{ |
{ |
unsigned char *p = (unsigned char *)(header+1); |
unsigned char *p = (unsigned char *)(header+1); |
int qtype, qclass, val, i, neganswer; | int qtype, qclass, rc, i, neganswer, nons; |
| int aclass, atype, rdlen; |
| unsigned long ttl; |
| struct all_addr a; |
|
|
if (ntohs(header->qdcount) != 1 || |
if (ntohs(header->qdcount) != 1 || |
!(p = skip_name(p, header, plen, 4))) |
!(p = skip_name(p, header, plen, 4))) |
Line 1093 int dnssec_validate_ds(time_t now, struct dns_header *
|
Line 1175 int dnssec_validate_ds(time_t now, struct dns_header *
|
GETSHORT(qclass, p); |
GETSHORT(qclass, p); |
|
|
if (qtype != T_DS || qclass != class) |
if (qtype != T_DS || qclass != class) |
val = STAT_BOGUS; | rc = STAT_BOGUS; |
else |
else |
val = dnssec_validate_reply(now, header, plen, name, keyname, NULL, &neganswer); | rc = dnssec_validate_reply(now, header, plen, name, keyname, NULL, 0, &neganswer, &nons); |
| /* Note dnssec_validate_reply() will have cached positive answers */ |
if (val == STAT_NO_SIG) | |
val = STAT_INSECURE; | |
|
|
|
if (rc == STAT_INSECURE) |
|
rc = STAT_BOGUS; |
|
|
p = (unsigned char *)(header+1); |
p = (unsigned char *)(header+1); |
extract_name(header, plen, &p, name, 1, 4); |
extract_name(header, plen, &p, name, 1, 4); |
p += 4; /* qtype, qclass */ |
p += 4; /* qtype, qclass */ |
|
|
if (!(p = skip_section(p, ntohs(header->ancount), header, plen))) | /* If the key needed to validate the DS is on the same domain as the DS, we'll |
return STAT_BOGUS; | loop getting nowhere. Stop that now. This can happen of the DS answer comes |
| from the DS's zone, and not the parent zone. */ |
| if (rc == STAT_BOGUS || (rc == STAT_NEED_KEY && hostname_isequal(name, keyname))) |
| { |
| log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DS"); |
| return STAT_BOGUS; |
| } |
|
|
if (val == STAT_BOGUS) | if (rc != STAT_SECURE) |
log_query(F_UPSTREAM, name, NULL, "BOGUS DS"); | return rc; |
| |
if ((val == STAT_SECURE || val == STAT_INSECURE) && neganswer) | if (!neganswer) |
{ |
{ |
int rdlen, flags = F_FORWARD | F_DS | F_NEG; | cache_start_insert(); |
unsigned long ttl, minttl = ULONG_MAX; | |
struct all_addr a; | for (i = 0; i < ntohs(header->ancount); i++) |
| { |
| if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
| return STAT_BOGUS; /* bad packet */ |
| |
| GETSHORT(atype, p); |
| GETSHORT(aclass, p); |
| GETLONG(ttl, p); |
| GETSHORT(rdlen, p); |
| |
| if (!CHECK_LEN(header, p, plen, rdlen)) |
| return STAT_BOGUS; /* bad packet */ |
| |
| if (aclass == class && atype == T_DS && rc == 1) |
| { |
| int algo, digest, keytag; |
| unsigned char *psave = p; |
| struct blockdata *key; |
| struct crec *crecp; |
|
|
|
if (rdlen < 4) |
|
return STAT_BOGUS; /* bad packet */ |
|
|
|
GETSHORT(keytag, p); |
|
algo = *p++; |
|
digest = *p++; |
|
|
|
/* Cache needs to known class for DNSSEC stuff */ |
|
a.addr.dnssec.class = class; |
|
|
|
if ((key = blockdata_alloc((char*)p, rdlen - 4))) |
|
{ |
|
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DS | F_DNSSECOK))) |
|
{ |
|
blockdata_free(key); |
|
return STAT_BOGUS; |
|
} |
|
else |
|
{ |
|
a.addr.log.keytag = keytag; |
|
a.addr.log.algo = algo; |
|
a.addr.log.digest = digest; |
|
if (hash_find(ds_digest_name(digest)) && verify_func(algo)) |
|
log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu"); |
|
else |
|
log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu (not supported)"); |
|
|
|
crecp->addr.ds.digest = digest; |
|
crecp->addr.ds.keydata = key; |
|
crecp->addr.ds.algo = algo; |
|
crecp->addr.ds.keytag = keytag; |
|
crecp->addr.ds.keylen = rdlen - 4; |
|
} |
|
} |
|
|
|
p = psave; |
|
} |
|
if (!ADD_RDLEN(header, p, plen, rdlen)) |
|
return STAT_BOGUS; /* bad packet */ |
|
} |
|
|
|
cache_end_insert(); |
|
|
|
} |
|
else |
|
{ |
|
int flags = F_FORWARD | F_DS | F_NEG | F_DNSSECOK; |
|
unsigned long minttl = ULONG_MAX; |
|
|
|
if (!(p = skip_section(p, ntohs(header->ancount), header, plen))) |
|
return STAT_BOGUS; |
|
|
if (RCODE(header) == NXDOMAIN) |
if (RCODE(header) == NXDOMAIN) |
flags |= F_NXDOMAIN; |
flags |= F_NXDOMAIN; |
|
|
if (val == STAT_SECURE) | /* We only cache validated DS records, DNSSECOK flag hijacked |
flags |= F_DNSSECOK; | to store presence/absence of NS. */ |
| if (nons) |
| flags &= ~F_DNSSECOK; |
|
|
for (i = ntohs(header->nscount); i != 0; i--) |
for (i = ntohs(header->nscount); i != 0; i--) |
{ |
{ |
if (!(p = skip_name(p, header, plen, 0))) |
if (!(p = skip_name(p, header, plen, 0))) |
return STAT_BOGUS; |
return STAT_BOGUS; |
|
|
GETSHORT(qtype, p); | GETSHORT(atype, p); |
GETSHORT(qclass, p); | GETSHORT(aclass, p); |
GETLONG(ttl, p); |
GETLONG(ttl, p); |
GETSHORT(rdlen, p); |
GETSHORT(rdlen, p); |
| |
if (!CHECK_LEN(header, p, plen, rdlen)) |
if (!CHECK_LEN(header, p, plen, rdlen)) |
return STAT_BOGUS; /* bad packet */ |
return STAT_BOGUS; /* bad packet */ |
| |
if (qclass != class || qtype != T_SOA) | if (aclass != class || atype != T_SOA) |
{ |
{ |
p += rdlen; |
p += rdlen; |
continue; |
continue; |
} |
} |
| |
if (ttl < minttl) |
if (ttl < minttl) |
minttl = ttl; |
minttl = ttl; |
|
|
Line 1164 int dnssec_validate_ds(time_t now, struct dns_header *
|
Line 1325 int dnssec_validate_ds(time_t now, struct dns_header *
|
cache_start_insert(); |
cache_start_insert(); |
|
|
a.addr.dnssec.class = class; |
a.addr.dnssec.class = class; |
cache_insert(name, &a, now, ttl, flags); | if (!cache_insert(name, &a, now, ttl, flags)) |
| return STAT_BOGUS; |
|
|
cache_end_insert(); | cache_end_insert(); |
| |
| log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "no DS"); |
} |
} |
|
|
return (val == STAT_SECURE) ? STAT_NO_DS : STAT_INSECURE; |
|
} |
} |
| |
return val; | return STAT_OK; |
} |
} |
|
|
|
|
/* 4034 6.1 */ |
/* 4034 6.1 */ |
static int hostname_cmp(const char *a, const char *b) |
static int hostname_cmp(const char *a, const char *b) |
{ |
{ |
Line 1234 static int hostname_cmp(const char *a, const char *b)
|
Line 1397 static int hostname_cmp(const char *a, const char *b)
|
if (sb == b) |
if (sb == b) |
return 1; |
return 1; |
|
|
ea = sa--; | ea = --sa; |
eb = sb--; | eb = --sb; |
} |
} |
} |
} |
|
|
/* Find all the NSEC or NSEC3 records in a reply. |
|
return an array of pointers to them. */ |
|
static int find_nsec_records(struct dns_header *header, size_t plen, unsigned char ***nsecsetp, int *nsecsetl, int class_reqd) |
|
{ |
|
static unsigned char **nsecset = NULL; |
|
static int nsecset_sz = 0; |
|
|
|
int type_found = 0; |
|
unsigned char *p = skip_questions(header, plen); |
|
int type, class, rdlen, i, nsecs_found; |
|
|
|
/* Move to NS section */ |
|
if (!p || !(p = skip_section(p, ntohs(header->ancount), header, plen))) |
|
return 0; |
|
|
|
for (nsecs_found = 0, i = ntohs(header->nscount); i != 0; i--) |
|
{ |
|
unsigned char *pstart = p; |
|
|
|
if (!(p = skip_name(p, header, plen, 10))) |
|
return 0; |
|
|
|
GETSHORT(type, p); |
|
GETSHORT(class, p); |
|
p += 4; /* TTL */ |
|
GETSHORT(rdlen, p); |
|
|
|
if (class == class_reqd && (type == T_NSEC || type == T_NSEC3)) |
|
{ |
|
/* No mixed NSECing 'round here, thankyouverymuch */ |
|
if (type_found == T_NSEC && type == T_NSEC3) |
|
return 0; |
|
if (type_found == T_NSEC3 && type == T_NSEC) |
|
return 0; |
|
|
|
type_found = type; |
|
|
|
if (!expand_workspace(&nsecset, &nsecset_sz, nsecs_found)) |
|
return 0; |
|
|
|
nsecset[nsecs_found++] = pstart; |
|
} |
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen)) |
|
return 0; |
|
} |
|
|
|
*nsecsetp = nsecset; |
|
*nsecsetl = nsecs_found; |
|
|
|
return type_found; |
|
} |
|
|
|
static int prove_non_existence_nsec(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count, |
static int prove_non_existence_nsec(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count, |
char *workspace1, char *workspace2, char *name, int type) | char *workspace1, char *workspace2, char *name, int type, int *nons) |
{ |
{ |
int i, rc, rdlen; |
int i, rc, rdlen; |
unsigned char *p, *psave; |
unsigned char *p, *psave; |
int offset = (type & 0xff) >> 3; |
int offset = (type & 0xff) >> 3; |
int mask = 0x80 >> (type & 0x07); |
int mask = 0x80 >> (type & 0x07); |
|
|
|
if (nons) |
|
*nons = 1; |
|
|
/* Find NSEC record that proves name doesn't exist */ |
/* Find NSEC record that proves name doesn't exist */ |
for (i = 0; i < nsec_count; i++) |
for (i = 0; i < nsec_count; i++) |
{ |
{ |
p = nsecs[i]; |
p = nsecs[i]; |
if (!extract_name(header, plen, &p, workspace1, 1, 10)) |
if (!extract_name(header, plen, &p, workspace1, 1, 10)) |
return STAT_BOGUS; | return 0; |
p += 8; /* class, type, TTL */ |
p += 8; /* class, type, TTL */ |
GETSHORT(rdlen, p); |
GETSHORT(rdlen, p); |
psave = p; |
psave = p; |
if (!extract_name(header, plen, &p, workspace2, 1, 10)) |
if (!extract_name(header, plen, &p, workspace2, 1, 10)) |
return STAT_BOGUS; | return 0; |
|
|
rc = hostname_cmp(workspace1, name); |
rc = hostname_cmp(workspace1, name); |
|
|
Line 1318 static int prove_non_existence_nsec(struct dns_header
|
Line 1431 static int prove_non_existence_nsec(struct dns_header
|
{ |
{ |
/* 4035 para 5.4. Last sentence */ |
/* 4035 para 5.4. Last sentence */ |
if (type == T_NSEC || type == T_RRSIG) |
if (type == T_NSEC || type == T_RRSIG) |
return STAT_SECURE; | return 1; |
|
|
/* NSEC with the same name as the RR we're testing, check |
/* NSEC with the same name as the RR we're testing, check |
that the type in question doesn't appear in the type map */ |
that the type in question doesn't appear in the type map */ |
rdlen -= p - psave; |
rdlen -= p - psave; |
/* rdlen is now length of type map, and p points to it */ |
/* rdlen is now length of type map, and p points to it */ |
|
|
|
/* If we can prove that there's no NS record, return that information. */ |
|
if (nons && rdlen >= 2 && p[0] == 0 && (p[2] & (0x80 >> T_NS)) != 0) |
|
*nons = 0; |
|
|
|
if (rdlen >= 2 && p[0] == 0) |
|
{ |
|
/* A CNAME answer would also be valid, so if there's a CNAME is should |
|
have been returned. */ |
|
if ((p[2] & (0x80 >> T_CNAME)) != 0) |
|
return 0; |
|
|
|
/* If the SOA bit is set for a DS record, then we have the |
|
DS from the wrong side of the delegation. */ |
|
if (type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0) |
|
return 0; |
|
} |
|
|
while (rdlen >= 2) |
while (rdlen >= 2) |
{ |
{ |
if (!CHECK_LEN(header, p, plen, rdlen)) |
if (!CHECK_LEN(header, p, plen, rdlen)) |
return STAT_BOGUS; | return 0; |
|
|
if (p[0] == type >> 8) |
if (p[0] == type >> 8) |
{ |
{ |
/* Does the NSEC say our type exists? */ |
/* Does the NSEC say our type exists? */ |
if (offset < p[1] && (p[offset+2] & mask) != 0) |
if (offset < p[1] && (p[offset+2] & mask) != 0) |
return STAT_BOGUS; | return 0; |
|
|
break; /* finshed checking */ |
break; /* finshed checking */ |
} |
} |
Line 1343 static int prove_non_existence_nsec(struct dns_header
|
Line 1473 static int prove_non_existence_nsec(struct dns_header
|
p += p[1]; |
p += p[1]; |
} |
} |
|
|
return STAT_SECURE; | return 1; |
} |
} |
else if (rc == -1) |
else if (rc == -1) |
{ |
{ |
/* Normal case, name falls between NSEC name and next domain name, |
/* Normal case, name falls between NSEC name and next domain name, |
wrap around case, name falls between NSEC name (rc == -1) and end */ |
wrap around case, name falls between NSEC name (rc == -1) and end */ |
if (hostname_cmp(workspace2, name) == 1 || hostname_cmp(workspace1, workspace2) == 1) | if (hostname_cmp(workspace2, name) >= 0 || hostname_cmp(workspace1, workspace2) >= 0) |
return STAT_SECURE; | return 1; |
} |
} |
else |
else |
{ |
{ |
/* wrap around case, name falls between start and next domain name */ |
/* wrap around case, name falls between start and next domain name */ |
if (hostname_cmp(workspace1, workspace2) == 1 && hostname_cmp(workspace2, name) == 1) | if (hostname_cmp(workspace1, workspace2) >= 0 && hostname_cmp(workspace2, name) >=0 ) |
return STAT_SECURE; | return 1; |
} |
} |
} |
} |
|
|
return STAT_BOGUS; | return 0; |
} |
} |
|
|
/* return digest length, or zero on error */ |
/* return digest length, or zero on error */ |
Line 1425 static int base32_decode(char *in, unsigned char *out)
|
Line 1555 static int base32_decode(char *in, unsigned char *out)
|
return p - out; |
return p - out; |
} |
} |
|
|
|
static int check_nsec3_coverage(struct dns_header *header, size_t plen, int digest_len, unsigned char *digest, int type, |
|
char *workspace1, char *workspace2, unsigned char **nsecs, int nsec_count, int *nons) |
|
{ |
|
int i, hash_len, salt_len, base32_len, rdlen, flags; |
|
unsigned char *p, *psave; |
|
|
|
for (i = 0; i < nsec_count; i++) |
|
if ((p = nsecs[i])) |
|
{ |
|
if (!extract_name(header, plen, &p, workspace1, 1, 0) || |
|
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) |
|
return 0; |
|
|
|
p += 8; /* class, type, TTL */ |
|
GETSHORT(rdlen, p); |
|
psave = p; |
|
p++; /* algo */ |
|
flags = *p++; /* flags */ |
|
p += 2; /* iterations */ |
|
salt_len = *p++; /* salt_len */ |
|
p += salt_len; /* salt */ |
|
hash_len = *p++; /* p now points to next hashed name */ |
|
|
|
if (!CHECK_LEN(header, p, plen, hash_len)) |
|
return 0; |
|
|
|
if (digest_len == base32_len && hash_len == base32_len) |
|
{ |
|
int rc = memcmp(workspace2, digest, digest_len); |
|
|
|
if (rc == 0) |
|
{ |
|
/* We found an NSEC3 whose hashed name exactly matches the query, so |
|
we just need to check the type map. p points to the RR data for the record. */ |
|
|
|
int offset = (type & 0xff) >> 3; |
|
int mask = 0x80 >> (type & 0x07); |
|
|
|
p += hash_len; /* skip next-domain hash */ |
|
rdlen -= p - psave; |
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen)) |
|
return 0; |
|
|
|
if (rdlen >= 2 && p[0] == 0) |
|
{ |
|
/* If we can prove that there's no NS record, return that information. */ |
|
if (nons && (p[2] & (0x80 >> T_NS)) != 0) |
|
*nons = 0; |
|
|
|
/* A CNAME answer would also be valid, so if there's a CNAME is should |
|
have been returned. */ |
|
if ((p[2] & (0x80 >> T_CNAME)) != 0) |
|
return 0; |
|
|
|
/* If the SOA bit is set for a DS record, then we have the |
|
DS from the wrong side of the delegation. */ |
|
if (type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0) |
|
return 0; |
|
} |
|
|
|
while (rdlen >= 2) |
|
{ |
|
if (p[0] == type >> 8) |
|
{ |
|
/* Does the NSEC3 say our type exists? */ |
|
if (offset < p[1] && (p[offset+2] & mask) != 0) |
|
return 0; |
|
|
|
break; /* finshed checking */ |
|
} |
|
|
|
rdlen -= p[1]; |
|
p += p[1]; |
|
} |
|
|
|
return 1; |
|
} |
|
else if (rc < 0) |
|
{ |
|
/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash, |
|
wrap around case, name-hash falls between NSEC3 name-hash and end */ |
|
if (memcmp(p, digest, digest_len) >= 0 || memcmp(workspace2, p, digest_len) >= 0) |
|
{ |
|
if ((flags & 0x01) && nons) /* opt out */ |
|
*nons = 0; |
|
|
|
return 1; |
|
} |
|
} |
|
else |
|
{ |
|
/* wrap around case, name falls between start and next domain name */ |
|
if (memcmp(workspace2, p, digest_len) >= 0 && memcmp(p, digest, digest_len) >= 0) |
|
{ |
|
if ((flags & 0x01) && nons) /* opt out */ |
|
*nons = 0; |
|
|
|
return 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
static int prove_non_existence_nsec3(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count, |
static int prove_non_existence_nsec3(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count, |
char *workspace1, char *workspace2, char *name, int type) | char *workspace1, char *workspace2, char *name, int type, char *wildname, int *nons) |
{ |
{ |
unsigned char *salt, *p, *digest; |
unsigned char *salt, *p, *digest; |
int digest_len, i, iterations, salt_len, hash_len, base32_len, algo = 0; | int digest_len, i, iterations, salt_len, base32_len, algo = 0; |
struct nettle_hash const *hash; |
struct nettle_hash const *hash; |
char *closest_encloser, *next_closest, *wildcard; |
char *closest_encloser, *next_closest, *wildcard; |
| |
| if (nons) |
| *nons = 1; |
| |
/* Look though the NSEC3 records to find the first one with |
/* Look though the NSEC3 records to find the first one with |
an algorithm we support (currently only algo == 1). | an algorithm we support. |
|
|
Take the algo, iterations, and salt of that record |
Take the algo, iterations, and salt of that record |
as the ones we're going to use, and prune any |
as the ones we're going to use, and prune any |
Line 1443 static int prove_non_existence_nsec3(struct dns_header
|
Line 1683 static int prove_non_existence_nsec3(struct dns_header
|
for (i = 0; i < nsec_count; i++) |
for (i = 0; i < nsec_count; i++) |
{ |
{ |
if (!(p = skip_name(nsecs[i], header, plen, 15))) |
if (!(p = skip_name(nsecs[i], header, plen, 15))) |
return STAT_BOGUS; /* bad packet */ | return 0; /* bad packet */ |
|
|
p += 10; /* type, class, TTL, rdlen */ |
p += 10; /* type, class, TTL, rdlen */ |
algo = *p++; |
algo = *p++; |
|
|
if (algo == 1) | if ((hash = hash_find(nsec3_digest_name(algo)))) |
break; /* known algo */ |
break; /* known algo */ |
} |
} |
|
|
/* No usable NSEC3s */ |
/* No usable NSEC3s */ |
if (i == nsec_count) |
if (i == nsec_count) |
return STAT_BOGUS; | return 0; |
|
|
p++; /* flags */ |
p++; /* flags */ |
|
|
GETSHORT (iterations, p); |
GETSHORT (iterations, p); |
|
/* Upper-bound iterations, to avoid DoS. |
|
Strictly, there are lower bounds for small keys, but |
|
since we don't have key size info here, at least limit |
|
to the largest bound, for 4096-bit keys. RFC 5155 10.3 */ |
|
if (iterations > 2500) |
|
return 0; |
|
|
salt_len = *p++; |
salt_len = *p++; |
salt = p; |
salt = p; |
if (!CHECK_LEN(header, salt, plen, salt_len)) |
if (!CHECK_LEN(header, salt, plen, salt_len)) |
return STAT_BOGUS; /* bad packet */ | return 0; /* bad packet */ |
|
|
/* Now prune so we only have NSEC3 records with same iterations, salt and algo */ |
/* Now prune so we only have NSEC3 records with same iterations, salt and algo */ |
for (i = 0; i < nsec_count; i++) |
for (i = 0; i < nsec_count; i++) |
{ |
{ |
unsigned char *nsec3p = nsecs[i]; |
unsigned char *nsec3p = nsecs[i]; |
int this_iter; | int this_iter, flags; |
|
|
nsecs[i] = NULL; /* Speculative, will be restored if OK. */ |
nsecs[i] = NULL; /* Speculative, will be restored if OK. */ |
|
|
if (!(p = skip_name(nsec3p, header, plen, 15))) |
if (!(p = skip_name(nsec3p, header, plen, 15))) |
return STAT_BOGUS; /* bad packet */ | return 0; /* bad packet */ |
|
|
p += 10; /* type, class, TTL, rdlen */ |
p += 10; /* type, class, TTL, rdlen */ |
|
|
if (*p++ != algo) |
if (*p++ != algo) |
continue; |
continue; |
|
|
p++; /* flags */ | flags = *p++; /* flags */ |
|
|
|
/* 5155 8.2 */ |
|
if (flags != 0 && flags != 1) |
|
continue; |
|
|
GETSHORT(this_iter, p); |
GETSHORT(this_iter, p); |
if (this_iter != iterations) |
if (this_iter != iterations) |
continue; |
continue; |
Line 1489 static int prove_non_existence_nsec3(struct dns_header
|
Line 1741 static int prove_non_existence_nsec3(struct dns_header
|
continue; |
continue; |
|
|
if (!CHECK_LEN(header, p, plen, salt_len)) |
if (!CHECK_LEN(header, p, plen, salt_len)) |
return STAT_BOGUS; /* bad packet */ | return 0; /* bad packet */ |
|
|
if (memcmp(p, salt, salt_len) != 0) |
if (memcmp(p, salt, salt_len) != 0) |
continue; |
continue; |
Line 1498 static int prove_non_existence_nsec3(struct dns_header
|
Line 1750 static int prove_non_existence_nsec3(struct dns_header
|
nsecs[i] = nsec3p; |
nsecs[i] = nsec3p; |
} |
} |
|
|
/* Algo is checked as 1 above */ | if ((digest_len = hash_name(name, &digest, hash, salt, salt_len, iterations)) == 0) |
if (!(hash = hash_find("sha1"))) | return 0; |
return STAT_BOGUS; | |
| if (check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, nons)) |
| return 1; |
|
|
/* Now, we need the "closest encloser NSEC3" */ | /* Can't find an NSEC3 which covers the name directly, we need the "closest encloser NSEC3" |
| or an answer inferred from a wildcard record. */ |
closest_encloser = name; |
closest_encloser = name; |
next_closest = NULL; |
next_closest = NULL; |
|
|
Line 1511 static int prove_non_existence_nsec3(struct dns_header
|
Line 1766 static int prove_non_existence_nsec3(struct dns_header
|
if (*closest_encloser == '.') |
if (*closest_encloser == '.') |
closest_encloser++; |
closest_encloser++; |
|
|
|
if (wildname && hostname_isequal(closest_encloser, wildname)) |
|
break; |
|
|
if ((digest_len = hash_name(closest_encloser, &digest, hash, salt, salt_len, iterations)) == 0) |
if ((digest_len = hash_name(closest_encloser, &digest, hash, salt, salt_len, iterations)) == 0) |
return STAT_BOGUS; | return 0; |
|
|
for (i = 0; i < nsec_count; i++) |
for (i = 0; i < nsec_count; i++) |
if ((p = nsecs[i])) |
if ((p = nsecs[i])) |
{ |
{ |
if (!extract_name(header, plen, &p, workspace1, 1, 0) || |
if (!extract_name(header, plen, &p, workspace1, 1, 0) || |
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) |
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) |
return STAT_BOGUS; | return 0; |
|
|
if (digest_len == base32_len && |
if (digest_len == base32_len && |
memcmp(digest, workspace2, digest_len) == 0) |
memcmp(digest, workspace2, digest_len) == 0) |
Line 1533 static int prove_non_existence_nsec3(struct dns_header
|
Line 1791 static int prove_non_existence_nsec3(struct dns_header
|
} |
} |
while ((closest_encloser = strchr(closest_encloser, '.'))); |
while ((closest_encloser = strchr(closest_encloser, '.'))); |
|
|
/* No usable NSEC3s */ | if (!closest_encloser || !next_closest) |
if (i == nsec_count) | return 0; |
return STAT_BOGUS; | |
|
|
if (!next_closest) | /* Look for NSEC3 that proves the non-existence of the next-closest encloser */ |
| if ((digest_len = hash_name(next_closest, &digest, hash, salt, salt_len, iterations)) == 0) |
| return 0; |
| |
| if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL)) |
| return 0; |
| |
| /* Finally, check that there's no seat of wildcard synthesis */ |
| if (!wildname) |
{ |
{ |
/* We found an NSEC3 whose hashed name exactly matches the query, so | if (!(wildcard = strchr(next_closest, '.')) || wildcard == next_closest) |
Now we just need to check the type map. p points to the RR data for the record. */ | return 0; |
int rdlen; | |
unsigned char *psave; | |
int offset = (type & 0xff) >> 3; | |
int mask = 0x80 >> (type & 0x07); | |
|
|
p += 8; /* class, type, TTL */ | wildcard--; |
GETSHORT(rdlen, p); | *wildcard = '*'; |
psave = p; | |
p += 5 + salt_len; /* algo, flags, iterations, salt_len, salt */ | |
hash_len = *p++; | |
if (!CHECK_LEN(header, p, plen, hash_len)) | |
return STAT_BOGUS; /* bad packet */ | |
p += hash_len; | |
rdlen -= p - psave; | |
|
|
while (rdlen >= 2) | if ((digest_len = hash_name(wildcard, &digest, hash, salt, salt_len, iterations)) == 0) |
{ | return 0; |
if (!CHECK_LEN(header, p, plen, rdlen)) | |
return STAT_BOGUS; | |
| |
if (p[0] == type >> 8) | |
{ | |
/* Does the NSEC3 say our type exists? */ | |
if (offset < p[1] && (p[offset+2] & mask) != 0) | |
return STAT_BOGUS; | |
| |
break; /* finshed checking */ | |
} | |
| |
rdlen -= p[1]; | |
p += p[1]; | |
} | |
|
|
return STAT_SECURE; | if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL)) |
| return 0; |
} |
} |
|
|
|
return 1; |
|
} |
|
|
/* Look for NSEC3 that proves the non-existence of the next-closest encloser */ | static int prove_non_existence(struct dns_header *header, size_t plen, char *keyname, char *name, int qtype, int qclass, char *wildname, int *nons) |
if ((digest_len = hash_name(next_closest, &digest, hash, salt, salt_len, iterations)) == 0) | { |
return STAT_BOGUS; | static unsigned char **nsecset = NULL; |
| static int nsecset_sz = 0; |
for (i = 0; i < nsec_count; i++) | |
if ((p = nsecs[i])) | |
{ | |
if (!extract_name(header, plen, &p, workspace1, 1, 0) || | |
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) | |
return STAT_BOGUS; | |
| |
p += 15 + salt_len; /* class, type, TTL, rdlen, algo, flags, iterations, salt_len, salt */ | |
hash_len = *p++; /* p now points to next hashed name */ | |
| |
if (!CHECK_LEN(header, p, plen, hash_len)) | |
return STAT_BOGUS; | |
| |
if (digest_len == base32_len && hash_len == base32_len) | |
{ | |
if (memcmp(workspace2, digest, digest_len) <= 0) | |
{ | |
/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash, | |
wrap around case, name-hash falls between NSEC3 name-hash and end */ | |
if (memcmp(p, digest, digest_len) > 0 || memcmp(workspace2, p, digest_len) > 0) | |
return STAT_SECURE; | |
} | |
else | |
{ | |
/* wrap around case, name falls between start and next domain name */ | |
if (memcmp(workspace2, p, digest_len) > 0 && memcmp(p, digest, digest_len) > 0) | |
return STAT_SECURE; | |
} | |
} | |
} | |
|
|
/* Finally, check that there's no seat of wildcard synthesis */ | int type_found = 0; |
if (!(wildcard = strchr(next_closest, '.')) || wildcard == next_closest) | unsigned char *p = skip_questions(header, plen); |
return STAT_BOGUS; | int type, class, rdlen, i, nsecs_found; |
|
|
wildcard--; | /* Move to NS section */ |
*wildcard = '*'; | if (!p || !(p = skip_section(p, ntohs(header->ancount), header, plen))) |
| return 0; |
|
|
if ((digest_len = hash_name(wildcard, &digest, hash, salt, salt_len, iterations)) == 0) | for (nsecs_found = 0, i = ntohs(header->nscount); i != 0; i--) |
return STAT_BOGUS; | { |
| unsigned char *pstart = p; |
| |
| if (!(p = skip_name(p, header, plen, 10))) |
| return 0; |
| |
| GETSHORT(type, p); |
| GETSHORT(class, p); |
| p += 4; /* TTL */ |
| GETSHORT(rdlen, p); |
| |
| if (class == qclass && (type == T_NSEC || type == T_NSEC3)) |
| { |
| /* No mixed NSECing 'round here, thankyouverymuch */ |
| if (type_found != 0 && type_found != type) |
| return 0; |
| |
| type_found = type; |
| |
| if (!expand_workspace(&nsecset, &nsecset_sz, nsecs_found)) |
| return 0; |
| |
| nsecset[nsecs_found++] = pstart; |
| } |
| |
| if (!ADD_RDLEN(header, p, plen, rdlen)) |
| return 0; |
| } |
|
|
for (i = 0; i < nsec_count; i++) | if (type_found == T_NSEC) |
if ((p = nsecs[i])) | return prove_non_existence_nsec(header, plen, nsecset, nsecs_found, daemon->workspacename, keyname, name, qtype, nons); |
{ | else if (type_found == T_NSEC3) |
if (!extract_name(header, plen, &p, workspace1, 1, 0) || | return prove_non_existence_nsec3(header, plen, nsecset, nsecs_found, daemon->workspacename, keyname, name, qtype, wildname, nons); |
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) | else |
return STAT_BOGUS; | return 0; |
| |
p += 15 + salt_len; /* class, type, TTL, rdlen, algo, flags, iterations, salt_len, salt */ | |
hash_len = *p++; /* p now points to next hashed name */ | |
| |
if (!CHECK_LEN(header, p, plen, hash_len)) | |
return STAT_BOGUS; | |
| |
if (digest_len == base32_len && hash_len == base32_len) | |
{ | |
if (memcmp(workspace2, digest, digest_len) <= 0) | |
{ | |
/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash, | |
wrap around case, name-hash falls between NSEC3 name-hash and end */ | |
if (memcmp(p, digest, digest_len) > 0 || memcmp(workspace2, p, digest_len) > 0) | |
return STAT_SECURE; | |
} | |
else | |
{ | |
/* wrap around case, name falls between start and next domain name */ | |
if (memcmp(workspace2, p, digest_len) > 0 && memcmp(p, digest, digest_len) > 0) | |
return STAT_SECURE; | |
} | |
} | |
} | |
| |
return STAT_BOGUS; | |
} |
} |
| |
/* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) */ | /* Check signing status of name. |
/* Returns are the same as validate_rrset, plus the class if the missing key is in *class */ | returns: |
int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int *class, int *neganswer) | STAT_SECURE zone is signed. |
| STAT_INSECURE zone proved unsigned. |
| STAT_NEED_DS require DS record of name returned in keyname. |
| STAT_NEED_KEY require DNSKEY record of name returned in keyname. |
| name returned unaltered. |
| */ |
| static int zone_status(char *name, int class, char *keyname, time_t now) |
{ |
{ |
unsigned char *ans_start, *qname, *p1, *p2, **nsecs; | int name_start = strlen(name); /* for when TA is root */ |
int type1, class1, rdlen1, type2, class2, rdlen2, qclass, qtype; | struct crec *crecp; |
int i, j, rc, nsec_count, cname_count = CNAME_CHAIN; | char *p; |
int nsec_type = 0, have_answer = 0; | |
|
|
|
/* First, work towards the root, looking for a trust anchor. |
|
This can either be one configured, or one previously cached. |
|
We can assume, if we don't find one first, that there is |
|
a trust anchor at the root. */ |
|
for (p = name; p; p = strchr(p, '.')) |
|
{ |
|
if (*p == '.') |
|
p++; |
|
|
|
if (cache_find_by_name(NULL, p, now, F_DS)) |
|
{ |
|
name_start = p - name; |
|
break; |
|
} |
|
} |
|
|
|
/* Now work away from the trust anchor */ |
|
while (1) |
|
{ |
|
strcpy(keyname, &name[name_start]); |
|
|
|
if (!(crecp = cache_find_by_name(NULL, keyname, now, F_DS))) |
|
return STAT_NEED_DS; |
|
|
|
/* F_DNSSECOK misused in DS cache records to non-existance of NS record. |
|
F_NEG && !F_DNSSECOK implies that we've proved there's no DS record here, |
|
but that's because there's no NS record either, ie this isn't the start |
|
of a zone. We only prove that the DNS tree below a node is unsigned when |
|
we prove that we're at a zone cut AND there's no DS record. */ |
|
if (crecp->flags & F_NEG) |
|
{ |
|
if (crecp->flags & F_DNSSECOK) |
|
return STAT_INSECURE; /* proved no DS here */ |
|
} |
|
else |
|
{ |
|
/* If all the DS records have digest and/or sig algos we don't support, |
|
then the zone is insecure. Note that if an algo |
|
appears in the DS, then RRSIGs for that algo MUST |
|
exist for each RRset: 4035 para 2.2 So if we find |
|
a DS here with digest and sig we can do, we're entitled |
|
to assume we can validate the zone and if we can't later, |
|
because an RRSIG is missing we return BOGUS. |
|
*/ |
|
do |
|
{ |
|
if (crecp->uid == (unsigned int)class && |
|
hash_find(ds_digest_name(crecp->addr.ds.digest)) && |
|
verify_func(crecp->addr.ds.algo)) |
|
break; |
|
} |
|
while ((crecp = cache_find_by_name(crecp, keyname, now, F_DS))); |
|
|
|
if (!crecp) |
|
return STAT_INSECURE; |
|
} |
|
|
|
if (name_start == 0) |
|
break; |
|
|
|
for (p = &name[name_start-2]; (*p != '.') && (p != name); p--); |
|
|
|
if (p != name) |
|
p++; |
|
|
|
name_start = p - name; |
|
} |
|
|
|
return STAT_SECURE; |
|
} |
|
|
|
/* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) |
|
Return code: |
|
STAT_SECURE if it validates. |
|
STAT_INSECURE at least one RRset not validated, because in unsigned zone. |
|
STAT_BOGUS signature is wrong, bad packet, no validation where there should be. |
|
STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname, class in *class) |
|
STAT_NEED_DS need DS to complete validation (name is returned in keyname) |
|
*/ |
|
int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, |
|
int *class, int check_unsigned, int *neganswer, int *nons) |
|
{ |
|
static unsigned char **targets = NULL; |
|
static int target_sz = 0; |
|
|
|
unsigned char *ans_start, *p1, *p2; |
|
int type1, class1, rdlen1, type2, class2, rdlen2, qclass, qtype, targetidx; |
|
int i, j, rc; |
|
|
if (neganswer) |
if (neganswer) |
*neganswer = 0; |
*neganswer = 0; |
|
|
Line 1674 int dnssec_validate_reply(time_t now, struct dns_heade
|
Line 1983 int dnssec_validate_reply(time_t now, struct dns_heade
|
if (RCODE(header) != NXDOMAIN && RCODE(header) != NOERROR) |
if (RCODE(header) != NXDOMAIN && RCODE(header) != NOERROR) |
return STAT_INSECURE; |
return STAT_INSECURE; |
|
|
qname = p1 = (unsigned char *)(header+1); | p1 = (unsigned char *)(header+1); |
|
|
|
/* Find all the targets we're looking for answers to. |
|
The zeroth array element is for the query, subsequent ones |
|
for CNAME targets, unless the query is for a CNAME. */ |
|
|
|
if (!expand_workspace(&targets, &target_sz, 0)) |
|
return STAT_BOGUS; |
|
|
|
targets[0] = p1; |
|
targetidx = 1; |
|
|
if (!extract_name(header, plen, &p1, name, 1, 4)) |
if (!extract_name(header, plen, &p1, name, 1, 4)) |
return STAT_BOGUS; |
return STAT_BOGUS; |
| |
GETSHORT(qtype, p1); |
GETSHORT(qtype, p1); |
GETSHORT(qclass, p1); |
GETSHORT(qclass, p1); |
ans_start = p1; |
ans_start = p1; |
|
|
if (qtype == T_ANY) |
|
have_answer = 1; |
|
|
|
/* Can't validate an RRISG query */ | /* Can't validate an RRSIG query */ |
if (qtype == T_RRSIG) |
if (qtype == T_RRSIG) |
return STAT_INSECURE; |
return STAT_INSECURE; |
|
|
cname_loop: |
|
for (j = ntohs(header->ancount); j != 0; j--) |
|
{ |
|
/* leave pointer to missing name in qname */ |
|
|
|
if (!(rc = extract_name(header, plen, &p1, name, 0, 10))) |
|
return STAT_BOGUS; /* bad packet */ |
|
|
|
GETSHORT(type2, p1); |
|
GETSHORT(class2, p1); |
|
p1 += 4; /* TTL */ |
|
GETSHORT(rdlen2, p1); |
|
|
|
if (rc == 1 && qclass == class2) |
|
{ |
|
/* Do we have an answer for the question? */ |
|
if (type2 == qtype) |
|
{ |
|
have_answer = 1; |
|
break; |
|
} |
|
else if (type2 == T_CNAME) |
|
{ |
|
qname = p1; |
|
|
|
/* looped CNAMES */ |
|
if (!cname_count-- || !extract_name(header, plen, &p1, name, 1, 0)) |
|
return STAT_BOGUS; |
|
|
|
p1 = ans_start; |
|
goto cname_loop; |
|
} |
|
} |
|
|
|
if (!ADD_RDLEN(header, p1, plen, rdlen2)) |
|
return STAT_BOGUS; |
|
} |
|
|
|
if (neganswer && !have_answer) |
|
*neganswer = 1; |
|
|
|
/* No data, therefore no sigs */ |
|
if (ntohs(header->ancount) + ntohs(header->nscount) == 0) |
|
return STAT_NO_SIG; |
|
|
|
|
if (qtype != T_CNAME) |
|
for (j = ntohs(header->ancount); j != 0; j--) |
|
{ |
|
if (!(p1 = skip_name(p1, header, plen, 10))) |
|
return STAT_BOGUS; /* bad packet */ |
|
|
|
GETSHORT(type2, p1); |
|
p1 += 6; /* class, TTL */ |
|
GETSHORT(rdlen2, p1); |
|
|
|
if (type2 == T_CNAME) |
|
{ |
|
if (!expand_workspace(&targets, &target_sz, targetidx)) |
|
return STAT_BOGUS; |
|
|
|
targets[targetidx++] = p1; /* pointer to target name */ |
|
} |
|
|
|
if (!ADD_RDLEN(header, p1, plen, rdlen2)) |
|
return STAT_BOGUS; |
|
} |
|
|
for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++) |
for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++) |
{ |
{ |
if (!extract_name(header, plen, &p1, name, 1, 10)) |
if (!extract_name(header, plen, &p1, name, 1, 10)) |
Line 1769 int dnssec_validate_reply(time_t now, struct dns_heade
|
Line 2062 int dnssec_validate_reply(time_t now, struct dns_heade
|
/* Not done, validate now */ |
/* Not done, validate now */ |
if (j == i) |
if (j == i) |
{ |
{ |
int ttl, keytag, algo, digest, type_covered; | int sigcnt, rrcnt; |
unsigned char *psave; | char *wildname; |
struct all_addr a; | |
struct blockdata *key; | |
struct crec *crecp; | |
|
|
rc = validate_rrset(now, header, plen, class1, type1, name, keyname, NULL, 0, 0, 0); | if (!explore_rrset(header, plen, class1, type1, name, keyname, &sigcnt, &rrcnt)) |
| return STAT_BOGUS; |
if (rc == STAT_SECURE_WILDCARD) | |
| /* No signatures for RRset. We can be configured to assume this is OK and return a INSECURE result. */ |
| if (sigcnt == 0) |
{ |
{ |
/* An attacker replay a wildcard answer with a different | if (check_unsigned) |
answer and overlay a genuine RR. To prove this | { |
hasn't happened, the answer must prove that | rc = zone_status(name, class1, keyname, now); |
the gennuine record doesn't exist. Check that here. */ | if (rc == STAT_SECURE) |
if (!nsec_type && !(nsec_type = find_nsec_records(header, plen, &nsecs, &nsec_count, class1))) | rc = STAT_BOGUS; |
return STAT_BOGUS; /* No NSECs or bad packet */ | if (class) |
| *class = class1; /* Class for NEED_DS or NEED_KEY */ |
| } |
| else |
| rc = STAT_INSECURE; |
|
|
if (nsec_type == T_NSEC) | return rc; |
rc = prove_non_existence_nsec(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, type1); | } |
else | |
rc = prove_non_existence_nsec3(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, type1); | /* explore_rrset() gives us key name from sigs in keyname. |
| Can't overwrite name here. */ |
| strcpy(daemon->workspacename, keyname); |
| rc = zone_status(daemon->workspacename, class1, keyname, now); |
|
|
if (rc != STAT_SECURE) | if (rc != STAT_SECURE) |
return rc; | |
} | |
else if (rc != STAT_SECURE) | |
{ |
{ |
|
/* Zone is insecure, don't need to validate RRset */ |
if (class) |
if (class) |
*class = class1; /* Class for DS or DNSKEY */ | *class = class1; /* Class for NEED_DS or NEED_KEY */ |
return rc; |
return rc; |
} | } |
|
|
/* Cache RRsigs in answer section, and if we just validated a DS RRset, cache it */ | rc = validate_rrset(now, header, plen, class1, type1, sigcnt, rrcnt, name, keyname, &wildname, NULL, 0, 0, 0); |
cache_start_insert(); | |
|
|
for (p2 = ans_start, j = 0; j < ntohs(header->ancount); j++) | if (rc == STAT_BOGUS || rc == STAT_NEED_KEY || rc == STAT_NEED_DS) |
{ |
{ |
if (!(rc = extract_name(header, plen, &p2, name, 0, 10))) | if (class) |
return STAT_BOGUS; /* bad packet */ | *class = class1; /* Class for DS or DNSKEY */ |
| return rc; |
GETSHORT(type2, p2); | } |
GETSHORT(class2, p2); | else |
GETLONG(ttl, p2); | { |
GETSHORT(rdlen2, p2); | /* rc is now STAT_SECURE or STAT_SECURE_WILDCARD */ |
| |
if (!CHECK_LEN(header, p2, plen, rdlen2)) | /* Note if we've validated either the answer to the question |
return STAT_BOGUS; /* bad packet */ | or the target of a CNAME. Any not noted will need NSEC or |
| to be in unsigned space. */ |
if (class2 == class1 && rc == 1) | |
{ | |
psave = p2; | |
|
|
if (type1 == T_DS && type2 == T_DS) | for (j = 0; j <targetidx; j++) |
{ | if ((p2 = targets[j])) |
if (rdlen2 < 4) | { |
return STAT_BOGUS; /* bad packet */ | if (!(rc = extract_name(header, plen, &p2, name, 0, 10))) |
| return STAT_BOGUS; /* bad packet */ |
GETSHORT(keytag, p2); | |
algo = *p2++; | if (class1 == qclass && rc == 1 && (type1 == T_CNAME || type1 == qtype || qtype == T_ANY )) |
digest = *p2++; | targets[j] = NULL; |
| } |
/* Cache needs to known class for DNSSEC stuff */ | |
a.addr.dnssec.class = class2; | /* An attacker replay a wildcard answer with a different |
| answer and overlay a genuine RR. To prove this |
if ((key = blockdata_alloc((char*)p2, rdlen2 - 4))) | hasn't happened, the answer must prove that |
{ | the gennuine record doesn't exist. Check that here. |
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DS | F_DNSSECOK))) | Note that we may not yet have validated the NSEC/NSEC3 RRsets. |
blockdata_free(key); | That's not a problem since if the RRsets later fail |
else | we'll return BOGUS then. */ |
{ | if (rc == STAT_SECURE_WILDCARD && !prove_non_existence(header, plen, keyname, name, type1, class1, wildname, NULL)) |
a.addr.keytag = keytag; | return STAT_BOGUS; |
log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %u"); | |
crecp->addr.ds.digest = digest; | |
crecp->addr.ds.keydata = key; | |
crecp->addr.ds.algo = algo; | |
crecp->addr.ds.keytag = keytag; | |
crecp->addr.ds.keylen = rdlen2 - 4; | |
} | |
} | |
} | |
else if (type2 == T_RRSIG) | |
{ | |
if (rdlen2 < 18) | |
return STAT_BOGUS; /* bad packet */ | |
| |
GETSHORT(type_covered, p2); | |
| |
if (type_covered == type1 && | |
(type_covered == T_A || type_covered == T_AAAA || | |
type_covered == T_CNAME || type_covered == T_DS || | |
type_covered == T_DNSKEY || type_covered == T_PTR)) | |
{ | |
a.addr.dnssec.type = type_covered; | |
a.addr.dnssec.class = class1; | |
| |
algo = *p2++; | |
p2 += 13; /* labels, orig_ttl, expiration, inception */ | |
GETSHORT(keytag, p2); | |
| |
if ((key = blockdata_alloc((char*)psave, rdlen2))) | |
{ | |
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DS))) | |
blockdata_free(key); | |
else | |
{ | |
crecp->addr.sig.keydata = key; | |
crecp->addr.sig.keylen = rdlen2; | |
crecp->addr.sig.keytag = keytag; | |
crecp->addr.sig.type_covered = type_covered; | |
crecp->addr.sig.algo = algo; | |
} | |
} | |
} | |
} | |
| |
p2 = psave; | |
} | |
| |
if (!ADD_RDLEN(header, p2, plen, rdlen2)) | |
return STAT_BOGUS; /* bad packet */ | |
} |
} |
|
|
cache_end_insert(); |
|
} |
} |
} |
} |
|
|
Line 1899 int dnssec_validate_reply(time_t now, struct dns_heade
|
Line 2141 int dnssec_validate_reply(time_t now, struct dns_heade
|
return STAT_BOGUS; |
return STAT_BOGUS; |
} |
} |
|
|
/* OK, all the RRsets validate, now see if we have a NODATA or NXDOMAIN reply */ | /* OK, all the RRsets validate, now see if we have a missing answer or CNAME target. */ |
if (have_answer) | for (j = 0; j <targetidx; j++) |
return STAT_SECURE; | if ((p2 = targets[j])) |
| { |
/* NXDOMAIN or NODATA reply, prove that (name, class1, type1) can't exist */ | if (neganswer) |
/* First marshall the NSEC records, if we've not done it previously */ | *neganswer = 1; |
if (!nsec_type && !(nsec_type = find_nsec_records(header, plen, &nsecs, &nsec_count, qclass))) | |
return STAT_BOGUS; /* No NSECs */ | |
| |
/* Get name of missing answer */ | |
if (!extract_name(header, plen, &qname, name, 1, 0)) | |
return STAT_BOGUS; | |
| |
if (nsec_type == T_NSEC) | |
return prove_non_existence_nsec(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, qtype); | |
else | |
return prove_non_existence_nsec3(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, qtype); | |
} | |
|
|
/* Chase the CNAME chain in the packet until the first record which _doesn't validate. | if (!extract_name(header, plen, &p2, name, 1, 10)) |
Needed for proving answer in unsigned space. | return STAT_BOGUS; /* bad packet */ |
Return STAT_NEED_* | |
STAT_BOGUS - error | /* NXDOMAIN or NODATA reply, unanswered question is (name, qclass, qtype) */ |
STAT_INSECURE - name of first non-secure record in name | |
*/ | |
int dnssec_chase_cname(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname) | |
{ | |
unsigned char *p = (unsigned char *)(header+1); | |
int type, class, qclass, rdlen, j, rc; | |
int cname_count = CNAME_CHAIN; | |
|
|
/* Get question */ | /* For anything other than a DS record, this situation is OK if either |
if (!extract_name(header, plen, &p, name, 1, 4)) | the answer is in an unsigned zone, or there's a NSEC records. */ |
return STAT_BOGUS; | if (!prove_non_existence(header, plen, keyname, name, qtype, qclass, NULL, nons)) |
| { |
| /* Empty DS without NSECS */ |
| if (qtype == T_DS) |
| return STAT_BOGUS; |
| |
| if ((rc = zone_status(name, qclass, keyname, now)) != STAT_SECURE) |
| { |
| if (class) |
| *class = qclass; /* Class for NEED_DS or NEED_KEY */ |
| return rc; |
| } |
| |
| return STAT_BOGUS; /* signed zone, no NSECs */ |
| } |
| } |
|
|
p +=2; /* type */ | return STAT_SECURE; |
GETSHORT(qclass, p); | |
| |
while (1) | |
{ | |
for (j = ntohs(header->ancount); j != 0; j--) | |
{ | |
if (!(rc = extract_name(header, plen, &p, name, 0, 10))) | |
return STAT_BOGUS; /* bad packet */ | |
| |
GETSHORT(type, p); | |
GETSHORT(class, p); | |
p += 4; /* TTL */ | |
GETSHORT(rdlen, p); | |
| |
/* Not target, loop */ | |
if (rc == 2 || qclass != class) | |
{ | |
if (!ADD_RDLEN(header, p, plen, rdlen)) | |
return STAT_BOGUS; | |
continue; | |
} | |
| |
/* Got to end of CNAME chain. */ | |
if (type != T_CNAME) | |
return STAT_INSECURE; | |
| |
/* validate CNAME chain, return if insecure or need more data */ | |
rc = validate_rrset(now, header, plen, class, type, name, keyname, NULL, 0, 0, 0); | |
if (rc != STAT_SECURE) | |
{ | |
if (rc == STAT_NO_SIG) | |
rc = STAT_INSECURE; | |
return rc; | |
} | |
| |
/* Loop down CNAME chain/ */ | |
if (!cname_count-- || | |
!extract_name(header, plen, &p, name, 1, 0) || | |
!(p = skip_questions(header, plen))) | |
return STAT_BOGUS; | |
| |
break; | |
} | |
| |
/* End of CNAME chain */ | |
return STAT_INSECURE; | |
} | |
} |
} |
|
|
|
|
Line 2007 int dnskey_keytag(int alg, int flags, unsigned char *k
|
Line 2198 int dnskey_keytag(int alg, int flags, unsigned char *k
|
} |
} |
} |
} |
|
|
size_t dnssec_generate_query(struct dns_header *header, char *end, char *name, int class, int type, union mysockaddr *addr) | size_t dnssec_generate_query(struct dns_header *header, unsigned char *end, char *name, int class, |
| int type, union mysockaddr *addr, int edns_pktsz) |
{ |
{ |
unsigned char *p; |
unsigned char *p; |
char *types = querystr("dnssec-query", type); |
char *types = querystr("dnssec-query", type); |
|
size_t ret; |
|
|
if (addr->sa.sa_family == AF_INET) |
if (addr->sa.sa_family == AF_INET) |
log_query(F_DNSSEC | F_IPV4, name, (struct all_addr *)&addr->in.sin_addr, types); | log_query(F_NOEXTRA | F_DNSSEC | F_IPV4, name, (struct all_addr *)&addr->in.sin_addr, types); |
#ifdef HAVE_IPV6 |
#ifdef HAVE_IPV6 |
else |
else |
log_query(F_DNSSEC | F_IPV6, name, (struct all_addr *)&addr->in6.sin6_addr, types); | log_query(F_NOEXTRA | F_DNSSEC | F_IPV6, name, (struct all_addr *)&addr->in6.sin6_addr, types); |
#endif |
#endif |
|
|
header->qdcount = htons(1); |
header->qdcount = htons(1); |
Line 2039 size_t dnssec_generate_query(struct dns_header *header
|
Line 2232 size_t dnssec_generate_query(struct dns_header *header
|
PUTSHORT(type, p); |
PUTSHORT(type, p); |
PUTSHORT(class, p); |
PUTSHORT(class, p); |
|
|
return add_do_bit(header, p - (unsigned char *)header, end); | ret = add_do_bit(header, p - (unsigned char *)header, end); |
} | |
|
|
/* Go through a domain name, find "pointers" and fix them up based on how many bytes | if (find_pseudoheader(header, ret, NULL, &p, NULL, NULL)) |
we've chopped out of the packet, or check they don't point into an elided part. */ | PUTSHORT(edns_pktsz, p); |
static int check_name(unsigned char **namep, struct dns_header *header, size_t plen, int fixup, unsigned char **rrs, int rr_count) | |
{ | |
unsigned char *ansp = *namep; | |
|
|
while(1) | return ret; |
{ | |
unsigned int label_type; | |
| |
if (!CHECK_LEN(header, ansp, plen, 1)) | |
return 0; | |
| |
label_type = (*ansp) & 0xc0; | |
| |
if (label_type == 0xc0) | |
{ | |
/* pointer for compression. */ | |
unsigned int offset; | |
int i; | |
unsigned char *p; | |
| |
if (!CHECK_LEN(header, ansp, plen, 2)) | |
return 0; | |
| |
offset = ((*ansp++) & 0x3f) << 8; | |
offset |= *ansp++; | |
| |
p = offset + (unsigned char *)header; | |
| |
for (i = 0; i < rr_count; i++) | |
if (p < rrs[i]) | |
break; | |
else | |
if (i & 1) | |
offset -= rrs[i] - rrs[i-1]; | |
| |
/* does the pointer end up in an elided RR? */ | |
if (i & 1) | |
return 0; | |
| |
/* No, scale the pointer */ | |
if (fixup) | |
{ | |
ansp -= 2; | |
*ansp++ = (offset >> 8) | 0xc0; | |
*ansp++ = offset & 0xff; | |
} | |
break; | |
} | |
else if (label_type == 0x80) | |
return 0; /* reserved */ | |
else if (label_type == 0x40) | |
{ | |
/* Extended label type */ | |
unsigned int count; | |
| |
if (!CHECK_LEN(header, ansp, plen, 2)) | |
return 0; | |
| |
if (((*ansp++) & 0x3f) != 1) | |
return 0; /* we only understand bitstrings */ | |
| |
count = *(ansp++); /* Bits in bitstring */ | |
| |
if (count == 0) /* count == 0 means 256 bits */ | |
ansp += 32; | |
else | |
ansp += ((count-1)>>3)+1; | |
} | |
else | |
{ /* label type == 0 Bottom six bits is length */ | |
unsigned int len = (*ansp++) & 0x3f; | |
| |
if (!ADD_RDLEN(header, ansp, plen, len)) | |
return 0; | |
| |
if (len == 0) | |
break; /* zero length label marks the end. */ | |
} | |
} | |
| |
*namep = ansp; | |
| |
return 1; | |
} | |
| |
/* Go through RRs and check or fixup the domain names contained within */ | |
static int check_rrs(unsigned char *p, struct dns_header *header, size_t plen, int fixup, unsigned char **rrs, int rr_count) | |
{ | |
int i, type, class, rdlen; | |
unsigned char *pp; | |
| |
for (i = 0; i < ntohs(header->ancount) + ntohs(header->nscount) + ntohs(header->arcount); i++) | |
{ | |
pp = p; | |
| |
if (!(p = skip_name(p, header, plen, 10))) | |
return 0; | |
| |
GETSHORT(type, p); | |
GETSHORT(class, p); | |
p += 4; /* TTL */ | |
GETSHORT(rdlen, p); | |
| |
if (type != T_NSEC && type != T_NSEC3 && type != T_RRSIG) | |
{ | |
/* fixup name of RR */ | |
if (!check_name(&pp, header, plen, fixup, rrs, rr_count)) | |
return 0; | |
| |
if (class == C_IN) | |
{ | |
u16 *d; | |
| |
for (pp = p, d = get_desc(type); *d != (u16)-1; d++) | |
{ | |
if (*d != 0) | |
pp += *d; | |
else if (!check_name(&pp, header, plen, fixup, rrs, rr_count)) | |
return 0; | |
} | |
} | |
} | |
| |
if (!ADD_RDLEN(header, p, plen, rdlen)) | |
return 0; | |
} | |
| |
return 1; | |
} | |
| |
| |
size_t filter_rrsigs(struct dns_header *header, size_t plen) | |
{ | |
static unsigned char **rrs; | |
static int rr_sz = 0; | |
| |
unsigned char *p = (unsigned char *)(header+1); | |
int i, rdlen, qtype, qclass, rr_found, chop_an, chop_ns, chop_ar; | |
| |
if (ntohs(header->qdcount) != 1 || | |
!(p = skip_name(p, header, plen, 4))) | |
return plen; | |
| |
GETSHORT(qtype, p); | |
GETSHORT(qclass, p); | |
| |
/* First pass, find pointers to start and end of all the records we wish to elide: | |
records added for DNSSEC, unless explicity queried for */ | |
for (rr_found = 0, chop_ns = 0, chop_an = 0, chop_ar = 0, i = 0; | |
i < ntohs(header->ancount) + ntohs(header->nscount) + ntohs(header->arcount); | |
i++) | |
{ | |
unsigned char *pstart = p; | |
int type, class; | |
| |
if (!(p = skip_name(p, header, plen, 10))) | |
return plen; | |
| |
GETSHORT(type, p); | |
GETSHORT(class, p); | |
p += 4; /* TTL */ | |
GETSHORT(rdlen, p); | |
| |
if ((type == T_NSEC || type == T_NSEC3 || type == T_RRSIG) && | |
(type != qtype || class != qclass)) | |
{ | |
if (!expand_workspace(&rrs, &rr_sz, rr_found + 1)) | |
return plen; | |
| |
rrs[rr_found++] = pstart; | |
| |
if (!ADD_RDLEN(header, p, plen, rdlen)) | |
return plen; | |
| |
rrs[rr_found++] = p; | |
| |
if (i < ntohs(header->ancount)) | |
chop_an++; | |
else if (i < (ntohs(header->nscount) + ntohs(header->ancount))) | |
chop_ns++; | |
else | |
chop_ar++; | |
} | |
else if (!ADD_RDLEN(header, p, plen, rdlen)) | |
return plen; | |
} | |
| |
/* Nothing to do. */ | |
if (rr_found == 0) | |
return plen; | |
| |
/* Second pass, look for pointers in names in the records we're keeping and make sure they don't | |
point to records we're going to elide. This is theoretically possible, but unlikely. If | |
it happens, we give up and leave the answer unchanged. */ | |
p = (unsigned char *)(header+1); | |
| |
/* question first */ | |
if (!check_name(&p, header, plen, 0, rrs, rr_found)) | |
return plen; | |
p += 4; /* qclass, qtype */ | |
| |
/* Now answers and NS */ | |
if (!check_rrs(p, header, plen, 0, rrs, rr_found)) | |
return plen; | |
| |
/* Third pass, elide records */ | |
for (p = rrs[0], i = 1; i < rr_found; i += 2) | |
{ | |
unsigned char *start = rrs[i]; | |
unsigned char *end = (i != rr_found - 1) ? rrs[i+1] : ((unsigned char *)(header+1)) + plen; | |
| |
memmove(p, start, end-start); | |
p += end-start; | |
} | |
| |
plen = p - (unsigned char *)header; | |
header->ancount = htons(ntohs(header->ancount) - chop_an); | |
header->nscount = htons(ntohs(header->nscount) - chop_ns); | |
header->arcount = htons(ntohs(header->arcount) - chop_ar); | |
| |
/* Fourth pass, fix up pointers in the remaining records */ | |
p = (unsigned char *)(header+1); | |
| |
check_name(&p, header, plen, 1, rrs, rr_found); | |
p += 4; /* qclass, qtype */ | |
| |
check_rrs(p, header, plen, 1, rrs, rr_found); | |
| |
return plen; | |
} |
} |
|
|
unsigned char* hash_questions(struct dns_header *header, size_t plen, char *name) |
unsigned char* hash_questions(struct dns_header *header, size_t plen, char *name) |