File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / dnsmasq / src / dnssec.c
Revision 1.1.1.3 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Wed Mar 17 00:56:46 2021 UTC (3 years, 4 months ago) by misho
Branches: elwix, dnsmasq, MAIN
CVS tags: v2_84, HEAD
dnsmasq 2.84

    1: /* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com>
    2:            and Copyright (c) 2012-2020 Simon Kelley
    3: 
    4:    This program is free software; you can redistribute it and/or modify
    5:    it under the terms of the GNU General Public License as published by
    6:    the Free Software Foundation; version 2 dated June, 1991, or
    7:    (at your option) version 3 dated 29 June, 2007.
    8: 
    9:    This program is distributed in the hope that it will be useful,
   10:    but WITHOUT ANY WARRANTY; without even the implied warranty of
   11:    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   12:    GNU General Public License for more details.
   13: 
   14:    You should have received a copy of the GNU General Public License
   15:    along with this program.  If not, see <http://www.gnu.org/licenses/>.
   16: */
   17: 
   18: #include "dnsmasq.h"
   19: 
   20: #ifdef HAVE_DNSSEC
   21: 
   22: #define SERIAL_UNDEF  -100
   23: #define SERIAL_EQ        0
   24: #define SERIAL_LT       -1
   25: #define SERIAL_GT        1
   26: 
   27: /* Convert from presentation format to wire format, in place.
   28:    Also map UC -> LC.
   29:    Note that using extract_name to get presentation format
   30:    then calling to_wire() removes compression and maps case,
   31:    thus generating names in canonical form.
   32:    Calling to_wire followed by from_wire is almost an identity,
   33:    except that the UC remains mapped to LC. 
   34: 
   35:    Note that both /000 and '.' are allowed within labels. These get
   36:    represented in presentation format using NAME_ESCAPE as an escape
   37:    character. In theory, if all the characters in a name were /000 or
   38:    '.' or NAME_ESCAPE then all would have to be escaped, so the 
   39:    presentation format would be twice as long as the spec (1024). 
   40:    The buffers are all declared as 2049 (allowing for the trailing zero) 
   41:    for this reason.
   42: */
   43: static int to_wire(char *name)
   44: {
   45:   unsigned char *l, *p, *q, term;
   46:   int len;
   47: 
   48:   for (l = (unsigned char*)name; *l != 0; l = p)
   49:     {
   50:       for (p = l; *p != '.' && *p != 0; p++)
   51: 	if (*p >= 'A' && *p <= 'Z')
   52: 	  *p = *p - 'A' + 'a';
   53: 	else if (*p == NAME_ESCAPE)
   54: 	  {
   55: 	    for (q = p; *q; q++)
   56: 	      *q = *(q+1);
   57: 	    (*p)--;
   58: 	  }
   59:       term = *p;
   60:       
   61:       if ((len = p - l) != 0)
   62: 	memmove(l+1, l, len);
   63:       *l = len;
   64:       
   65:       p++;
   66:       
   67:       if (term == 0)
   68: 	*p = 0;
   69:     }
   70:   
   71:   return l + 1 - (unsigned char *)name;
   72: }
   73: 
   74: /* Note: no compression  allowed in input. */
   75: static void from_wire(char *name)
   76: {
   77:   unsigned char *l, *p, *last;
   78:   int len;
   79:   
   80:   for (last = (unsigned char *)name; *last != 0; last += *last+1);
   81:   
   82:   for (l = (unsigned char *)name; *l != 0; l += len+1)
   83:     {
   84:       len = *l;
   85:       memmove(l, l+1, len);
   86:       for (p = l; p < l + len; p++)
   87: 	if (*p == '.' || *p == 0 || *p == NAME_ESCAPE)
   88: 	  {
   89: 	    memmove(p+1, p, 1 + last - p);
   90: 	    len++;
   91: 	    *p++ = NAME_ESCAPE; 
   92: 	    (*p)++;
   93: 	  }
   94: 	
   95:       l[len] = '.';
   96:     }
   97: 
   98:   if ((char *)l != name)
   99:     *(l-1) = 0;
  100: }
  101: 
  102: /* Input in presentation format */
  103: static int count_labels(char *name)
  104: {
  105:   int i;
  106:   char *p;
  107:   
  108:   if (*name == 0)
  109:     return 0;
  110: 
  111:   for (p = name, i = 0; *p; p++)
  112:     if (*p == '.')
  113:       i++;
  114: 
  115:   /* Don't count empty first label. */
  116:   return *name == '.' ? i : i+1;
  117: }
  118: 
  119: /* Implement RFC1982 wrapped compare for 32-bit numbers */
  120: static int serial_compare_32(u32 s1, u32 s2)
  121: {
  122:   if (s1 == s2)
  123:     return SERIAL_EQ;
  124: 
  125:   if ((s1 < s2 && (s2 - s1) < (1UL<<31)) ||
  126:       (s1 > s2 && (s1 - s2) > (1UL<<31)))
  127:     return SERIAL_LT;
  128:   if ((s1 < s2 && (s2 - s1) > (1UL<<31)) ||
  129:       (s1 > s2 && (s1 - s2) < (1UL<<31)))
  130:     return SERIAL_GT;
  131:   return SERIAL_UNDEF;
  132: }
  133: 
  134: /* Called at startup. If the timestamp file is configured and exists, put its mtime on
  135:    timestamp_time. If it doesn't exist, create it, and set the mtime to 1-1-2015.
  136:    return -1 -> Cannot create file.
  137:            0 -> not using timestamp, or timestamp exists and is in past.
  138:            1 -> timestamp exists and is in future.
  139: */
  140: 
  141: static time_t timestamp_time;
  142: 
  143: int setup_timestamp(void)
  144: {
  145:   struct stat statbuf;
  146:   
  147:   daemon->back_to_the_future = 0;
  148:   
  149:   if (!daemon->timestamp_file)
  150:     return 0;
  151:   
  152:   if (stat(daemon->timestamp_file, &statbuf) != -1)
  153:     {
  154:       timestamp_time = statbuf.st_mtime;
  155:     check_and_exit:
  156:       if (difftime(timestamp_time, time(0)) <=  0)
  157: 	{
  158: 	  /* time already OK, update timestamp, and do key checking from the start. */
  159: 	  if (utimes(daemon->timestamp_file, NULL) == -1)
  160: 	    my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno));
  161: 	  daemon->back_to_the_future = 1;
  162: 	  return 0;
  163: 	}
  164:       return 1;
  165:     }
  166:   
  167:   if (errno == ENOENT)
  168:     {
  169:       /* NB. for explanation of O_EXCL flag, see comment on pidfile in dnsmasq.c */ 
  170:       int fd = open(daemon->timestamp_file, O_WRONLY | O_CREAT | O_NONBLOCK | O_EXCL, 0666);
  171:       if (fd != -1)
  172: 	{
  173: 	  struct timeval tv[2];
  174: 
  175: 	  close(fd);
  176: 	  
  177: 	  timestamp_time = 1420070400; /* 1-1-2015 */
  178: 	  tv[0].tv_sec = tv[1].tv_sec = timestamp_time;
  179: 	  tv[0].tv_usec = tv[1].tv_usec = 0;
  180: 	  if (utimes(daemon->timestamp_file, tv) == 0)
  181: 	    goto check_and_exit;
  182: 	}
  183:     }
  184: 
  185:   return -1;
  186: }
  187: 
  188: /* Check whether today/now is between date_start and date_end */
  189: static int is_check_date(unsigned long curtime)
  190: {
  191:   /* Checking timestamps may be temporarily disabled */
  192:     
  193:   /* If the current time if _before_ the timestamp
  194:      on our persistent timestamp file, then assume the
  195:      time if not yet correct, and don't check the
  196:      key timestamps. As soon as the current time is
  197:      later then the timestamp, update the timestamp
  198:      and start checking keys */
  199:   if (daemon->timestamp_file)
  200:     {
  201:       if (daemon->back_to_the_future == 0 && difftime(timestamp_time, curtime) <= 0)
  202: 	{
  203: 	  if (utimes(daemon->timestamp_file, NULL) != 0)
  204: 	    my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno));
  205: 	  
  206: 	  my_syslog(LOG_INFO, _("system time considered valid, now checking DNSSEC signature timestamps."));
  207: 	  daemon->back_to_the_future = 1;
  208: 	  daemon->dnssec_no_time_check = 0;
  209: 	  queue_event(EVENT_RELOAD); /* purge cache */
  210: 	} 
  211: 
  212:       return daemon->back_to_the_future;
  213:     }
  214:   else
  215:     return !daemon->dnssec_no_time_check;
  216: }
  217: 
  218: /* Check whether today/now is between date_start and date_end */
  219: static int check_date_range(unsigned long curtime, u32 date_start, u32 date_end)
  220: {
  221:   /* We must explicitly check against wanted values, because of SERIAL_UNDEF */
  222:   return serial_compare_32(curtime, date_start) == SERIAL_GT
  223:     && serial_compare_32(curtime, date_end) == SERIAL_LT;
  224: }
  225: 
  226: /* Return bytes of canonicalised rrdata one by one.
  227:    Init state->ip with the RR, and state->end with the end of same.
  228:    Init state->op to NULL.
  229:    Init state->desc to RR descriptor.
  230:    Init state->buff with a MAXDNAME * 2 buffer.
  231:    
  232:    After each call which returns 1, state->op points to the next byte of data.
  233:    On returning 0, the end has been reached.
  234: */
  235: struct rdata_state {
  236:   u16 *desc;
  237:   size_t c;
  238:   unsigned char *end, *ip, *op;
  239:   char *buff;
  240: };
  241: 
  242: static int get_rdata(struct dns_header *header, size_t plen, struct rdata_state *state)
  243: {
  244:   int d;
  245:   
  246:   if (state->op && state->c != 1)
  247:     {
  248:       state->op++;
  249:       state->c--;
  250:       return 1;
  251:     }
  252: 
  253:   while (1)
  254:     {
  255:       d = *(state->desc);
  256:       
  257:       if (d == (u16)-1)
  258: 	{
  259: 	  /* all the bytes to the end. */
  260: 	  if ((state->c = state->end - state->ip) != 0)
  261: 	    {
  262: 	      state->op = state->ip;
  263: 	      state->ip = state->end;;
  264: 	    }
  265: 	  else
  266: 	    return 0;
  267: 	}
  268:       else
  269: 	{
  270: 	  state->desc++;
  271: 	  
  272: 	  if (d == (u16)0)
  273: 	    {
  274: 	      /* domain-name, canonicalise */
  275: 	      int len;
  276: 	      
  277: 	      if (!extract_name(header, plen, &state->ip, state->buff, 1, 0) ||
  278: 		  (len = to_wire(state->buff)) == 0)
  279: 		continue;
  280: 	      
  281: 	      state->c = len;
  282: 	      state->op = (unsigned char *)state->buff;
  283: 	    }
  284: 	  else
  285: 	    {
  286: 	      /* plain data preceding a domain-name, don't run off the end of the data */
  287: 	      if ((state->end - state->ip) < d)
  288: 		d = state->end - state->ip;
  289: 	      
  290: 	      if (d == 0)
  291: 		continue;
  292: 		  
  293: 	      state->op = state->ip;
  294: 	      state->c = d;
  295: 	      state->ip += d;
  296: 	    }
  297: 	}
  298:       
  299:       return 1;
  300:     }
  301: }
  302: 
  303: /* Bubble sort the RRset into the canonical order. */
  304: 
  305: static int sort_rrset(struct dns_header *header, size_t plen, u16 *rr_desc, int rrsetidx, 
  306: 		      unsigned char **rrset, char *buff1, char *buff2)
  307: {
  308:   int swap, i, j;
  309:   
  310:   do
  311:     {
  312:       for (swap = 0, i = 0; i < rrsetidx-1; i++)
  313: 	{
  314: 	  int rdlen1, rdlen2;
  315: 	  struct rdata_state state1, state2;
  316: 	  
  317: 	  /* Note that these have been determined to be OK previously,
  318: 	     so we don't need to check for NULL return here. */
  319: 	  state1.ip = skip_name(rrset[i], header, plen, 10);
  320: 	  state2.ip = skip_name(rrset[i+1], header, plen, 10);
  321: 	  state1.op = state2.op = NULL;
  322: 	  state1.buff = buff1;
  323: 	  state2.buff = buff2;
  324: 	  state1.desc = state2.desc = rr_desc;
  325: 	  
  326: 	  state1.ip += 8; /* skip class, type, ttl */
  327: 	  GETSHORT(rdlen1, state1.ip);
  328: 	  if (!CHECK_LEN(header, state1.ip, plen, rdlen1))
  329: 	    return rrsetidx; /* short packet */
  330: 	  state1.end = state1.ip + rdlen1;
  331: 	  
  332: 	  state2.ip += 8; /* skip class, type, ttl */
  333: 	  GETSHORT(rdlen2, state2.ip);
  334: 	  if (!CHECK_LEN(header, state2.ip, plen, rdlen2))
  335: 	    return rrsetidx; /* short packet */
  336: 	  state2.end = state2.ip + rdlen2; 
  337: 
  338: 	  /* If the RR has no names in it then canonicalisation
  339: 	     is the identity function and we can compare
  340: 	     the RRs directly. If not we compare the 
  341: 	     canonicalised RRs one byte at a time. */
  342: 	  if (*rr_desc == (u16)-1)	  
  343: 	    {
  344: 	      int rdmin = rdlen1 > rdlen2 ? rdlen2 : rdlen1;
  345: 	      int cmp = memcmp(state1.ip, state2.ip, rdmin);
  346: 	      
  347: 	      if (cmp > 0 || (cmp == 0 && rdlen1 > rdmin))
  348: 		{
  349: 		  unsigned char *tmp = rrset[i+1];
  350: 		  rrset[i+1] = rrset[i];
  351: 		  rrset[i] = tmp;
  352: 		  swap = 1;
  353: 		}
  354: 	      else if (cmp == 0 && (rdlen1 == rdlen2))
  355: 		{
  356: 		  /* Two RRs are equal, remove one copy. RFC 4034, para 6.3 */
  357: 		  for (j = i+1; j < rrsetidx-1; j++)
  358: 		    rrset[j] = rrset[j+1];
  359: 		  rrsetidx--;
  360: 		  i--;
  361: 		}
  362: 	    }
  363: 	  else
  364: 	    /* Comparing canonicalised RRs, byte-at-a-time. */
  365: 	    while (1)
  366: 	      {
  367: 		int ok1, ok2;
  368: 		
  369: 		ok1 = get_rdata(header, plen, &state1);
  370: 		ok2 = get_rdata(header, plen, &state2);
  371: 		
  372: 		if (!ok1 && !ok2)
  373: 		  {
  374: 		    /* Two RRs are equal, remove one copy. RFC 4034, para 6.3 */
  375: 		    for (j = i+1; j < rrsetidx-1; j++)
  376: 		      rrset[j] = rrset[j+1];
  377: 		    rrsetidx--;
  378: 		    i--;
  379: 		    break;
  380: 		  }
  381: 		else if (ok1 && (!ok2 || *state1.op > *state2.op)) 
  382: 		  {
  383: 		    unsigned char *tmp = rrset[i+1];
  384: 		    rrset[i+1] = rrset[i];
  385: 		    rrset[i] = tmp;
  386: 		    swap = 1;
  387: 		    break;
  388: 		  }
  389: 		else if (ok2 && (!ok1 || *state2.op > *state1.op))
  390: 		  break;
  391: 		
  392: 		/* arrive here when bytes are equal, go round the loop again
  393: 		   and compare the next ones. */
  394: 	      }
  395: 	}
  396:     } while (swap);
  397: 
  398:   return rrsetidx;
  399: }
  400: 
  401: static unsigned char **rrset = NULL, **sigs = NULL;
  402: 
  403: /* Get pointers to RRset members and signature(s) for same.
  404:    Check signatures, and return keyname associated in keyname. */
  405: static int explore_rrset(struct dns_header *header, size_t plen, int class, int type, 
  406: 			 char *name, char *keyname, int *sigcnt, int *rrcnt)
  407: {
  408:   static int rrset_sz = 0, sig_sz = 0; 
  409:   unsigned char *p;
  410:   int rrsetidx, sigidx, j, rdlen, res;
  411:   int gotkey = 0;
  412: 
  413:   if (!(p = skip_questions(header, plen)))
  414:     return 0;
  415: 
  416:    /* look for RRSIGs for this RRset and get pointers to each RR in the set. */
  417:   for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount); 
  418:        j != 0; j--) 
  419:     {
  420:       unsigned char *pstart, *pdata;
  421:       int stype, sclass, type_covered;
  422: 
  423:       pstart = p;
  424:       
  425:       if (!(res = extract_name(header, plen, &p, name, 0, 10)))
  426: 	return 0; /* bad packet */
  427:       
  428:       GETSHORT(stype, p);
  429:       GETSHORT(sclass, p);
  430:            
  431:       pdata = p;
  432: 
  433:       p += 4; /* TTL */
  434:       GETSHORT(rdlen, p);
  435:       
  436:       if (!CHECK_LEN(header, p, plen, rdlen))
  437: 	return 0; 
  438:       
  439:       if (res == 1 && sclass == class)
  440: 	{
  441: 	  if (stype == type)
  442: 	    {
  443: 	      if (!expand_workspace(&rrset, &rrset_sz, rrsetidx))
  444: 		return 0; 
  445: 	      
  446: 	      rrset[rrsetidx++] = pstart;
  447: 	    }
  448: 	  
  449: 	  if (stype == T_RRSIG)
  450: 	    {
  451: 	      if (rdlen < 18)
  452: 		return 0; /* bad packet */ 
  453: 	      
  454: 	      GETSHORT(type_covered, p);
  455: 	      p += 16; /* algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag */
  456: 	      
  457: 	      if (gotkey)
  458: 		{
  459: 		  /* If there's more than one SIG, ensure they all have same keyname */
  460: 		  if (extract_name(header, plen, &p, keyname, 0, 0) != 1)
  461: 		    return 0;
  462: 		}
  463: 	      else
  464: 		{
  465: 		  gotkey = 1;
  466: 		  
  467: 		  if (!extract_name(header, plen, &p, keyname, 1, 0))
  468: 		    return 0;
  469: 		  
  470: 		  /* RFC 4035 5.3.1 says that the Signer's Name field MUST equal
  471: 		     the name of the zone containing the RRset. We can't tell that
  472: 		     for certain, but we can check that  the RRset name is equal to
  473: 		     or encloses the signers name, which should be enough to stop 
  474: 		     an attacker using signatures made with the key of an unrelated 
  475: 		     zone he controls. Note that the root key is always allowed. */
  476: 		  if (*keyname != 0)
  477: 		    {
  478: 		      char *name_start;
  479: 		      for (name_start = name; !hostname_isequal(name_start, keyname); )
  480: 			if ((name_start = strchr(name_start, '.')))
  481: 			  name_start++; /* chop a label off and try again */
  482: 			else
  483: 			  return 0;
  484: 		    }
  485: 		}
  486: 		  
  487: 	      
  488: 	      if (type_covered == type)
  489: 		{
  490: 		  if (!expand_workspace(&sigs, &sig_sz, sigidx))
  491: 		    return 0; 
  492: 		  
  493: 		  sigs[sigidx++] = pdata;
  494: 		} 
  495: 	      
  496: 	      p = pdata + 6; /* restore for ADD_RDLEN */
  497: 	    }
  498: 	}
  499:       
  500:       if (!ADD_RDLEN(header, p, plen, rdlen))
  501: 	return 0;
  502:     }
  503:   
  504:   *sigcnt = sigidx;
  505:   *rrcnt = rrsetidx;
  506: 
  507:   return 1;
  508: }
  509: 
  510: /* Validate a single RRset (class, type, name) in the supplied DNS reply 
  511:    Return code:
  512:    STAT_SECURE   if it validates.
  513:    STAT_SECURE_WILDCARD if it validates and is the result of wildcard expansion.
  514:    (In this case *wildcard_out points to the "body" of the wildcard within name.) 
  515:    STAT_BOGUS    signature is wrong, bad packet.
  516:    STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname)
  517:    STAT_NEED_DS  need DS to complete validation (name is returned in keyname)
  518: 
  519:    If key is non-NULL, use that key, which has the algo and tag given in the params of those names,
  520:    otherwise find the key in the cache.
  521: 
  522:    Name is unchanged on exit. keyname is used as workspace and trashed.
  523: 
  524:    Call explore_rrset first to find and count RRs and sigs.
  525: 
  526:    ttl_out is the floor on TTL, based on TTL and orig_ttl and expiration of sig used to validate.
  527: */
  528: static int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class, int type, int sigidx, int rrsetidx, 
  529: 			  char *name, char *keyname, char **wildcard_out, struct blockdata *key, int keylen,
  530: 			  int algo_in, int keytag_in, unsigned long *ttl_out)
  531: {
  532:   unsigned char *p;
  533:   int rdlen, j, name_labels, algo, labels, key_tag;
  534:   struct crec *crecp = NULL;
  535:   u16 *rr_desc = rrfilter_desc(type);
  536:   u32 sig_expiration, sig_inception;
  537: 
  538:   unsigned long curtime = time(0);
  539:   int time_check = is_check_date(curtime);
  540:   
  541:   if (wildcard_out)
  542:     *wildcard_out = NULL;
  543:   
  544:   name_labels = count_labels(name); /* For 4035 5.3.2 check */
  545: 
  546:   /* Sort RRset records into canonical order. 
  547:      Note that at this point keyname and daemon->workspacename buffs are
  548:      unused, and used as workspace by the sort. */
  549:   rrsetidx = sort_rrset(header, plen, rr_desc, rrsetidx, rrset, daemon->workspacename, keyname);
  550:          
  551:   /* Now try all the sigs to try and find one which validates */
  552:   for (j = 0; j <sigidx; j++)
  553:     {
  554:       unsigned char *psav, *sig, *digest;
  555:       int i, wire_len, sig_len;
  556:       const struct nettle_hash *hash;
  557:       void *ctx;
  558:       char *name_start;
  559:       u32 nsigttl, ttl, orig_ttl;
  560:       
  561:       p = sigs[j];
  562:       GETLONG(ttl, p);
  563:       GETSHORT(rdlen, p); /* rdlen >= 18 checked previously */
  564:       psav = p;
  565:       
  566:       p += 2; /* type_covered - already checked */
  567:       algo = *p++;
  568:       labels = *p++;
  569:       GETLONG(orig_ttl, p);
  570:       GETLONG(sig_expiration, p);
  571:       GETLONG(sig_inception, p);
  572:       GETSHORT(key_tag, p);
  573:       
  574:       if (!extract_name(header, plen, &p, keyname, 1, 0))
  575: 	return STAT_BOGUS;
  576: 
  577:       if ((time_check && !check_date_range(curtime, sig_inception, sig_expiration)) ||
  578: 	  labels > name_labels ||
  579: 	  !(hash = hash_find(algo_digest_name(algo))) ||
  580: 	  !hash_init(hash, &ctx, &digest))
  581: 	continue;
  582: 
  583:       /* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */
  584:       if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY)))
  585: 	return STAT_NEED_KEY;
  586: 
  587:        if (ttl_out)
  588: 	 {
  589: 	   /* 4035 5.3.3 rules on TTLs */
  590: 	   if (orig_ttl < ttl)
  591: 	     ttl = orig_ttl;
  592: 	   
  593: 	   if (time_check && difftime(sig_expiration, curtime) < ttl)
  594: 	     ttl = difftime(sig_expiration, curtime);
  595: 
  596: 	   *ttl_out = ttl;
  597: 	 }
  598:        
  599:       sig = p;
  600:       sig_len = rdlen - (p - psav);
  601:               
  602:       nsigttl = htonl(orig_ttl);
  603:       
  604:       hash->update(ctx, 18, psav);
  605:       wire_len = to_wire(keyname);
  606:       hash->update(ctx, (unsigned int)wire_len, (unsigned char*)keyname);
  607:       from_wire(keyname);
  608: 
  609: #define RRBUFLEN 128 /* Most RRs are smaller than this. */
  610:       
  611:       for (i = 0; i < rrsetidx; ++i)
  612: 	{
  613: 	  int j;
  614: 	  struct rdata_state state;
  615: 	  u16 len;
  616: 	  unsigned char rrbuf[RRBUFLEN];
  617: 	  
  618: 	  p = rrset[i];
  619: 	  
  620: 	  if (!extract_name(header, plen, &p, name, 1, 10)) 
  621: 	    return STAT_BOGUS;
  622: 
  623: 	  name_start = name;
  624: 	  
  625: 	  /* if more labels than in RRsig name, hash *.<no labels in rrsig labels field>  4035 5.3.2 */
  626: 	  if (labels < name_labels)
  627: 	    {
  628: 	      for (j = name_labels - labels; j != 0; j--)
  629: 		{
  630: 		  while (*name_start != '.' && *name_start != 0)
  631: 		    name_start++;
  632: 		  if (j != 1 && *name_start == '.')
  633: 		    name_start++;
  634: 		}
  635: 	      
  636: 	      if (wildcard_out)
  637: 		*wildcard_out = name_start+1;
  638: 
  639: 	      name_start--;
  640: 	      *name_start = '*';
  641: 	    }
  642: 	  
  643: 	  wire_len = to_wire(name_start);
  644: 	  hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name_start);
  645: 	  hash->update(ctx, 4, p); /* class and type */
  646: 	  hash->update(ctx, 4, (unsigned char *)&nsigttl);
  647: 
  648: 	  p += 8; /* skip type, class, ttl */
  649: 	  GETSHORT(rdlen, p);
  650: 	  if (!CHECK_LEN(header, p, plen, rdlen))
  651: 	    return STAT_BOGUS; 
  652: 
  653: 	  /* Optimisation for RR types which need no cannonicalisation.
  654: 	     This includes DNSKEY DS NSEC and NSEC3, which are also long, so
  655: 	     it saves lots of calls to get_rdata, and avoids the pessimal
  656: 	     segmented insertion, even with a small rrbuf[].
  657: 	     
  658: 	     If canonicalisation is not needed, a simple insertion into the hash works.
  659: 	  */
  660: 	  if (*rr_desc == (u16)-1)
  661: 	    {
  662: 	      len = htons(rdlen);
  663: 	      hash->update(ctx, 2, (unsigned char *)&len);
  664: 	      hash->update(ctx, rdlen, p);
  665: 	    }
  666: 	  else
  667: 	    {
  668: 	      /* canonicalise rdata and calculate length of same, use 
  669: 		 name buffer as workspace for get_rdata. */
  670: 	      state.ip = p;
  671: 	      state.op = NULL;
  672: 	      state.desc = rr_desc;
  673: 	      state.buff = name;
  674: 	      state.end = p + rdlen;
  675: 	      
  676: 	      for (j = 0; get_rdata(header, plen, &state); j++)
  677: 		if (j < RRBUFLEN)
  678: 		  rrbuf[j] = *state.op;
  679: 	      
  680: 	      len = htons((u16)j);
  681: 	      hash->update(ctx, 2, (unsigned char *)&len); 
  682: 	      
  683: 	      /* If the RR is shorter than RRBUFLEN (most of them, in practice)
  684: 		 then we can just digest it now. If it exceeds RRBUFLEN we have to
  685: 		 go back to the start and do it in chunks. */
  686: 	      if (j >= RRBUFLEN)
  687: 		{
  688: 		  state.ip = p;
  689: 		  state.op = NULL;
  690: 		  state.desc = rr_desc;
  691: 		  
  692: 		  for (j = 0; get_rdata(header, plen, &state); j++)
  693: 		    {
  694: 		      rrbuf[j] = *state.op;
  695: 		      
  696: 		      if (j == RRBUFLEN - 1)
  697: 			{
  698: 			  hash->update(ctx, RRBUFLEN, rrbuf);
  699: 			  j = -1;
  700: 			}
  701: 		    }
  702: 		}
  703: 	      
  704: 	      if (j != 0)
  705: 		hash->update(ctx, j, rrbuf);
  706: 	    }
  707: 	}
  708:      
  709:       hash->digest(ctx, hash->digest_size, digest);
  710:       
  711:       /* namebuff used for workspace above, restore to leave unchanged on exit */
  712:       p = (unsigned char*)(rrset[0]);
  713:       extract_name(header, plen, &p, name, 1, 0);
  714: 
  715:       if (key)
  716: 	{
  717: 	  if (algo_in == algo && keytag_in == key_tag &&
  718: 	      verify(key, keylen, sig, sig_len, digest, hash->digest_size, algo))
  719: 	    return STAT_SECURE;
  720: 	}
  721:       else
  722: 	{
  723: 	  /* iterate through all possible keys 4035 5.3.1 */
  724: 	  for (; crecp; crecp = cache_find_by_name(crecp, keyname, now, F_DNSKEY))
  725: 	    if (crecp->addr.key.algo == algo && 
  726: 		crecp->addr.key.keytag == key_tag &&
  727: 		crecp->uid == (unsigned int)class &&
  728: 		verify(crecp->addr.key.keydata, crecp->addr.key.keylen, sig, sig_len, digest, hash->digest_size, algo))
  729: 	      return (labels < name_labels) ? STAT_SECURE_WILDCARD : STAT_SECURE;
  730: 	}
  731:     }
  732: 
  733:   return STAT_BOGUS;
  734: }
  735:  
  736: 
  737: /* The DNS packet is expected to contain the answer to a DNSKEY query.
  738:    Put all DNSKEYs in the answer which are valid into the cache.
  739:    return codes:
  740:          STAT_OK        Done, key(s) in cache.
  741: 	 STAT_BOGUS     No DNSKEYs found, which  can be validated with DS,
  742: 	                or self-sign for DNSKEY RRset is not valid, bad packet.
  743: 	 STAT_NEED_DS   DS records to validate a key not found, name in keyname 
  744: 	 STAT_NEED_KEY  DNSKEY records to validate a key not found, name in keyname 
  745: */
  746: int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
  747: {
  748:   unsigned char *psave, *p = (unsigned char *)(header+1);
  749:   struct crec *crecp, *recp1;
  750:   int rc, j, qtype, qclass, rdlen, flags, algo, valid, keytag;
  751:   unsigned long ttl, sig_ttl;
  752:   struct blockdata *key;
  753:   union all_addr a;
  754: 
  755:   if (ntohs(header->qdcount) != 1 ||
  756:       RCODE(header) == SERVFAIL || RCODE(header) == REFUSED ||
  757:       !extract_name(header, plen, &p, name, 1, 4))
  758:     return STAT_BOGUS;
  759: 
  760:   GETSHORT(qtype, p);
  761:   GETSHORT(qclass, p);
  762:   
  763:   if (qtype != T_DNSKEY || qclass != class || ntohs(header->ancount) == 0)
  764:     return STAT_BOGUS;
  765: 
  766:   /* See if we have cached a DS record which validates this key */
  767:   if (!(crecp = cache_find_by_name(NULL, name, now, F_DS)))
  768:     {
  769:       strcpy(keyname, name);
  770:       return STAT_NEED_DS;
  771:     }
  772:   
  773:   /* NOTE, we need to find ONE DNSKEY which matches the DS */
  774:   for (valid = 0, j = ntohs(header->ancount); j != 0 && !valid; j--) 
  775:     {
  776:       /* Ensure we have type, class  TTL and length */
  777:       if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
  778: 	return STAT_BOGUS; /* bad packet */
  779:   
  780:       GETSHORT(qtype, p); 
  781:       GETSHORT(qclass, p);
  782:       GETLONG(ttl, p);
  783:       GETSHORT(rdlen, p);
  784:  
  785:       if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4)
  786: 	return STAT_BOGUS; /* bad packet */
  787:       
  788:       if (qclass != class || qtype != T_DNSKEY || rc == 2)
  789: 	{
  790: 	  p += rdlen;
  791: 	  continue;
  792: 	}
  793:             
  794:       psave = p;
  795:       
  796:       GETSHORT(flags, p);
  797:       if (*p++ != 3)
  798: 	return STAT_BOGUS;
  799:       algo = *p++;
  800:       keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
  801:       key = NULL;
  802:       
  803:       /* key must have zone key flag set */
  804:       if (flags & 0x100)
  805: 	key = blockdata_alloc((char*)p, rdlen - 4);
  806:       
  807:       p = psave;
  808:       
  809:       if (!ADD_RDLEN(header, p, plen, rdlen))
  810: 	{
  811: 	  if (key)
  812: 	    blockdata_free(key);
  813: 	  return STAT_BOGUS; /* bad packet */
  814: 	}
  815: 
  816:       /* No zone key flag or malloc failure */
  817:       if (!key)
  818: 	continue;
  819:       
  820:       for (recp1 = crecp; recp1; recp1 = cache_find_by_name(recp1, name, now, F_DS))
  821: 	{
  822: 	  void *ctx;
  823: 	  unsigned char *digest, *ds_digest;
  824: 	  const struct nettle_hash *hash;
  825: 	  int sigcnt, rrcnt;
  826: 
  827: 	  if (recp1->addr.ds.algo == algo && 
  828: 	      recp1->addr.ds.keytag == keytag &&
  829: 	      recp1->uid == (unsigned int)class &&
  830: 	      (hash = hash_find(ds_digest_name(recp1->addr.ds.digest))) &&
  831: 	      hash_init(hash, &ctx, &digest))
  832: 	    
  833: 	    {
  834: 	      int wire_len = to_wire(name);
  835: 	      
  836: 	      /* Note that digest may be different between DSs, so 
  837: 		 we can't move this outside the loop. */
  838: 	      hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name);
  839: 	      hash->update(ctx, (unsigned int)rdlen, psave);
  840: 	      hash->digest(ctx, hash->digest_size, digest);
  841: 	      
  842: 	      from_wire(name);
  843: 	      
  844: 	      if (!(recp1->flags & F_NEG) &&
  845: 		  recp1->addr.ds.keylen == (int)hash->digest_size &&
  846: 		  (ds_digest = blockdata_retrieve(recp1->addr.ds.keydata, recp1->addr.ds.keylen, NULL)) &&
  847: 		  memcmp(ds_digest, digest, recp1->addr.ds.keylen) == 0 &&
  848: 		  explore_rrset(header, plen, class, T_DNSKEY, name, keyname, &sigcnt, &rrcnt) &&
  849: 		  sigcnt != 0 && rrcnt != 0 &&
  850: 		  validate_rrset(now, header, plen, class, T_DNSKEY, sigcnt, rrcnt, name, keyname, 
  851: 				 NULL, key, rdlen - 4, algo, keytag, &sig_ttl) == STAT_SECURE)
  852: 		{
  853: 		  valid = 1;
  854: 		  break;
  855: 		}
  856: 	    }
  857: 	}
  858:       blockdata_free(key);
  859:     }
  860: 
  861:   if (valid)
  862:     {
  863:       /* DNSKEY RRset determined to be OK, now cache it. */
  864:       cache_start_insert();
  865:       
  866:       p = skip_questions(header, plen);
  867: 
  868:       for (j = ntohs(header->ancount); j != 0; j--) 
  869: 	{
  870: 	  /* Ensure we have type, class  TTL and length */
  871: 	  if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
  872: 	    return STAT_BOGUS; /* bad packet */
  873: 	  
  874: 	  GETSHORT(qtype, p); 
  875: 	  GETSHORT(qclass, p);
  876: 	  GETLONG(ttl, p);
  877: 	  GETSHORT(rdlen, p);
  878: 
  879: 	  /* TTL may be limited by sig. */
  880: 	  if (sig_ttl < ttl)
  881: 	    ttl = sig_ttl;
  882: 	    
  883: 	  if (!CHECK_LEN(header, p, plen, rdlen))
  884: 	    return STAT_BOGUS; /* bad packet */
  885: 	  
  886: 	  if (qclass == class && rc == 1)
  887: 	    {
  888: 	      psave = p;
  889: 	      
  890: 	      if (qtype == T_DNSKEY)
  891: 		{
  892: 		  if (rdlen < 4)
  893: 		    return STAT_BOGUS; /* bad packet */
  894: 		  
  895: 		  GETSHORT(flags, p);
  896: 		  if (*p++ != 3)
  897: 		    return STAT_BOGUS;
  898: 		  algo = *p++;
  899: 		  keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
  900: 		  
  901: 		  if ((key = blockdata_alloc((char*)p, rdlen - 4)))
  902: 		    {
  903: 		      a.key.keylen = rdlen - 4;
  904: 		      a.key.keydata = key;
  905: 		      a.key.algo = algo;
  906: 		      a.key.keytag = keytag;
  907: 		      a.key.flags = flags;
  908: 		      
  909: 		      if (!cache_insert(name, &a, class, now, ttl, F_FORWARD | F_DNSKEY | F_DNSSECOK))
  910: 			{
  911: 			  blockdata_free(key);
  912: 			  return STAT_BOGUS;
  913: 			}
  914: 		      else
  915: 			{
  916: 			  a.log.keytag = keytag;
  917: 			  a.log.algo = algo;
  918: 			  if (algo_digest_name(algo))
  919: 			    log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu");
  920: 			  else
  921: 			    log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu (not supported)");
  922: 			}
  923: 		    }
  924: 		}
  925: 	      	      
  926: 	      p = psave;
  927: 	    }
  928: 
  929: 	  if (!ADD_RDLEN(header, p, plen, rdlen))
  930: 	    return STAT_BOGUS; /* bad packet */
  931: 	}
  932:       
  933:       /* commit cache insert. */
  934:       cache_end_insert();
  935:       return STAT_OK;
  936:     }
  937: 
  938:   log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DNSKEY");
  939:   return STAT_BOGUS;
  940: }
  941: 
  942: /* The DNS packet is expected to contain the answer to a DS query
  943:    Put all DSs in the answer which are valid into the cache.
  944:    Also handles replies which prove that there's no DS at this location, 
  945:    either because the zone is unsigned or this isn't a zone cut. These are
  946:    cached too.
  947:    return codes:
  948:    STAT_OK          At least one valid DS found and in cache.
  949:    STAT_BOGUS       no DS in reply or not signed, fails validation, bad packet.
  950:    STAT_NEED_KEY    DNSKEY records to validate a DS not found, name in keyname
  951:    STAT_NEED_DS     DS record needed.
  952: */
  953: 
  954: int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
  955: {
  956:   unsigned char *p = (unsigned char *)(header+1);
  957:   int qtype, qclass, rc, i, neganswer, nons, neg_ttl = 0;
  958:   int aclass, atype, rdlen;
  959:   unsigned long ttl;
  960:   union all_addr a;
  961: 
  962:   if (ntohs(header->qdcount) != 1 ||
  963:       !(p = skip_name(p, header, plen, 4)))
  964:     return STAT_BOGUS;
  965:   
  966:   GETSHORT(qtype, p);
  967:   GETSHORT(qclass, p);
  968: 
  969:   if (qtype != T_DS || qclass != class)
  970:     rc = STAT_BOGUS;
  971:   else
  972:     rc = dnssec_validate_reply(now, header, plen, name, keyname, NULL, 0, &neganswer, &nons, &neg_ttl);
  973:   
  974:   if (rc == STAT_INSECURE)
  975:     {
  976:       my_syslog(LOG_WARNING, _("Insecure DS reply received for %s, check domain configuration and upstream DNS server DNSSEC support"), name);
  977:       rc = STAT_BOGUS;
  978:     }
  979:   
  980:   p = (unsigned char *)(header+1);
  981:   extract_name(header, plen, &p, name, 1, 4);
  982:   p += 4; /* qtype, qclass */
  983:   
  984:   /* If the key needed to validate the DS is on the same domain as the DS, we'll
  985:      loop getting nowhere. Stop that now. This can happen of the DS answer comes
  986:      from the DS's zone, and not the parent zone. */
  987:   if (rc == STAT_BOGUS || (rc == STAT_NEED_KEY && hostname_isequal(name, keyname)))
  988:     {
  989:       log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DS");
  990:       return STAT_BOGUS;
  991:     }
  992:   
  993:   if (rc != STAT_SECURE)
  994:     return rc;
  995:    
  996:   if (!neganswer)
  997:     {
  998:       cache_start_insert();
  999:       
 1000:       for (i = 0; i < ntohs(header->ancount); i++)
 1001: 	{
 1002: 	  if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
 1003: 	    return STAT_BOGUS; /* bad packet */
 1004: 	  
 1005: 	  GETSHORT(atype, p);
 1006: 	  GETSHORT(aclass, p);
 1007: 	  GETLONG(ttl, p);
 1008: 	  GETSHORT(rdlen, p);
 1009: 	  
 1010: 	  if (!CHECK_LEN(header, p, plen, rdlen))
 1011: 	    return STAT_BOGUS; /* bad packet */
 1012: 	  
 1013: 	  if (aclass == class && atype == T_DS && rc == 1)
 1014: 	    { 
 1015: 	      int algo, digest, keytag;
 1016: 	      unsigned char *psave = p;
 1017: 	      struct blockdata *key;
 1018: 	   
 1019: 	      if (rdlen < 4)
 1020: 		return STAT_BOGUS; /* bad packet */
 1021: 	      
 1022: 	      GETSHORT(keytag, p);
 1023: 	      algo = *p++;
 1024: 	      digest = *p++;
 1025: 	      
 1026: 	      if ((key = blockdata_alloc((char*)p, rdlen - 4)))
 1027: 		{
 1028: 		  a.ds.digest = digest;
 1029: 		  a.ds.keydata = key;
 1030: 		  a.ds.algo = algo;
 1031: 		  a.ds.keytag = keytag;
 1032: 		  a.ds.keylen = rdlen - 4;
 1033: 
 1034: 		  if (!cache_insert(name, &a, class, now, ttl, F_FORWARD | F_DS | F_DNSSECOK))
 1035: 		    {
 1036: 		      blockdata_free(key);
 1037: 		      return STAT_BOGUS;
 1038: 		    }
 1039: 		  else
 1040: 		    {
 1041: 		      a.log.keytag = keytag;
 1042: 		      a.log.algo = algo;
 1043: 		      a.log.digest = digest;
 1044: 		      if (ds_digest_name(digest) && algo_digest_name(algo))
 1045: 			log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu");
 1046: 		      else
 1047: 			log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu (not supported)");
 1048: 		    } 
 1049: 		}
 1050: 	      
 1051: 	      p = psave;
 1052: 	    }
 1053: 	  if (!ADD_RDLEN(header, p, plen, rdlen))
 1054: 	    return STAT_BOGUS; /* bad packet */
 1055: 	}
 1056: 
 1057:       cache_end_insert();
 1058: 
 1059:     }
 1060:   else
 1061:     {
 1062:       int flags = F_FORWARD | F_DS | F_NEG | F_DNSSECOK;
 1063:             
 1064:       if (RCODE(header) == NXDOMAIN)
 1065: 	flags |= F_NXDOMAIN;
 1066:       
 1067:       /* We only cache validated DS records, DNSSECOK flag hijacked 
 1068: 	 to store presence/absence of NS. */
 1069:       if (nons)
 1070: 	flags &= ~F_DNSSECOK;
 1071:       
 1072:       cache_start_insert();
 1073: 	  
 1074:       /* Use TTL from NSEC for negative cache entries */
 1075:       if (!cache_insert(name, NULL, class, now, neg_ttl, flags))
 1076: 	return STAT_BOGUS;
 1077:       
 1078:       cache_end_insert();  
 1079:       
 1080:       log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, nons ? "no DS/cut" : "no DS");
 1081:     }
 1082:       
 1083:   return STAT_OK;
 1084: }
 1085: 
 1086: 
 1087: /* 4034 6.1 */
 1088: static int hostname_cmp(const char *a, const char *b)
 1089: {
 1090:   char *sa, *ea, *ca, *sb, *eb, *cb;
 1091:   unsigned char ac, bc;
 1092:   
 1093:   sa = ea = (char *)a + strlen(a);
 1094:   sb = eb = (char *)b + strlen(b);
 1095:  
 1096:   while (1)
 1097:     {
 1098:       while (sa != a && *(sa-1) != '.')
 1099: 	sa--;
 1100:       
 1101:       while (sb != b && *(sb-1) != '.')
 1102: 	sb--;
 1103: 
 1104:       ca = sa;
 1105:       cb = sb;
 1106: 
 1107:       while (1) 
 1108: 	{
 1109: 	  if (ca == ea)
 1110: 	    {
 1111: 	      if (cb == eb)
 1112: 		break;
 1113: 	      
 1114: 	      return -1;
 1115: 	    }
 1116: 	  
 1117: 	  if (cb == eb)
 1118: 	    return 1;
 1119: 	  
 1120: 	  ac = (unsigned char) *ca++;
 1121: 	  bc = (unsigned char) *cb++;
 1122: 	  
 1123: 	  if (ac >= 'A' && ac <= 'Z')
 1124: 	    ac += 'a' - 'A';
 1125: 	  if (bc >= 'A' && bc <= 'Z')
 1126: 	    bc += 'a' - 'A';
 1127: 	  
 1128: 	  if (ac < bc)
 1129: 	    return -1;
 1130: 	  else if (ac != bc)
 1131: 	    return 1;
 1132: 	}
 1133: 
 1134:      
 1135:       if (sa == a)
 1136: 	{
 1137: 	  if (sb == b)
 1138: 	    return 0;
 1139: 	  
 1140: 	  return -1;
 1141: 	}
 1142:       
 1143:       if (sb == b)
 1144: 	return 1;
 1145:       
 1146:       ea = --sa;
 1147:       eb = --sb;
 1148:     }
 1149: }
 1150: 
 1151: static int prove_non_existence_nsec(struct dns_header *header, size_t plen, unsigned char **nsecs, unsigned char **labels, int nsec_count,
 1152: 				    char *workspace1_in, char *workspace2, char *name, int type, int *nons)
 1153: {
 1154:   int i, rc, rdlen;
 1155:   unsigned char *p, *psave;
 1156:   int offset = (type & 0xff) >> 3;
 1157:   int mask = 0x80 >> (type & 0x07);
 1158: 
 1159:   if (nons)
 1160:     *nons = 1;
 1161:   
 1162:   /* Find NSEC record that proves name doesn't exist */
 1163:   for (i = 0; i < nsec_count; i++)
 1164:     {
 1165:       char *workspace1 = workspace1_in;
 1166:       int sig_labels, name_labels;
 1167: 
 1168:       p = nsecs[i];
 1169:       if (!extract_name(header, plen, &p, workspace1, 1, 10))
 1170: 	return 0;
 1171:       p += 8; /* class, type, TTL */
 1172:       GETSHORT(rdlen, p);
 1173:       psave = p;
 1174:       if (!extract_name(header, plen, &p, workspace2, 1, 10))
 1175: 	return 0;
 1176: 
 1177:       /* If NSEC comes from wildcard expansion, use original wildcard
 1178: 	 as name for computation. */
 1179:       sig_labels = *labels[i];
 1180:       name_labels = count_labels(workspace1);
 1181: 
 1182:       if (sig_labels < name_labels)
 1183: 	{
 1184: 	  int k;
 1185: 	  for (k = name_labels - sig_labels; k != 0; k--)
 1186: 	    {
 1187: 	      while (*workspace1 != '.' && *workspace1 != 0)
 1188: 		workspace1++;
 1189: 	      if (k != 1 && *workspace1 == '.')
 1190: 		workspace1++;
 1191: 	    }
 1192: 	  
 1193: 	  workspace1--;
 1194: 	  *workspace1 = '*';
 1195: 	}
 1196: 	  
 1197:       rc = hostname_cmp(workspace1, name);
 1198:       
 1199:       if (rc == 0)
 1200: 	{
 1201: 	  /* 4035 para 5.4. Last sentence */
 1202: 	  if (type == T_NSEC || type == T_RRSIG)
 1203: 	    return 1;
 1204: 
 1205: 	  /* NSEC with the same name as the RR we're testing, check
 1206: 	     that the type in question doesn't appear in the type map */
 1207: 	  rdlen -= p - psave;
 1208: 	  /* rdlen is now length of type map, and p points to it */
 1209: 	  
 1210: 	  /* If we can prove that there's no NS record, return that information. */
 1211: 	  if (nons && rdlen >= 2 && p[0] == 0 && (p[2] & (0x80 >> T_NS)) != 0)
 1212: 	    *nons = 0;
 1213: 	  
 1214: 	  if (rdlen >= 2 && p[0] == 0)
 1215: 	    {
 1216: 	      /* A CNAME answer would also be valid, so if there's a CNAME is should 
 1217: 		 have been returned. */
 1218: 	      if ((p[2] & (0x80 >> T_CNAME)) != 0)
 1219: 		return 0;
 1220: 	      
 1221: 	      /* If the SOA bit is set for a DS record, then we have the
 1222: 		 DS from the wrong side of the delegation. For the root DS, 
 1223: 		 this is expected. */
 1224: 	      if (name_labels != 0 && type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0)
 1225: 		return 0;
 1226: 	    }
 1227: 
 1228: 	  while (rdlen >= 2)
 1229: 	    {
 1230: 	      if (!CHECK_LEN(header, p, plen, rdlen))
 1231: 		return 0;
 1232: 	      
 1233: 	      if (p[0] == type >> 8)
 1234: 		{
 1235: 		  /* Does the NSEC say our type exists? */
 1236: 		  if (offset < p[1] && (p[offset+2] & mask) != 0)
 1237: 		    return 0;
 1238: 		  
 1239: 		  break; /* finished checking */
 1240: 		}
 1241: 	      
 1242: 	      rdlen -= p[1];
 1243: 	      p +=  p[1];
 1244: 	    }
 1245: 	  
 1246: 	  return 1;
 1247: 	}
 1248:       else if (rc == -1)
 1249: 	{
 1250: 	  /* Normal case, name falls between NSEC name and next domain name,
 1251: 	     wrap around case, name falls between NSEC name (rc == -1) and end */
 1252: 	  if (hostname_cmp(workspace2, name) >= 0 || hostname_cmp(workspace1, workspace2) >= 0)
 1253: 	    return 1;
 1254: 	}
 1255:       else 
 1256: 	{
 1257: 	  /* wrap around case, name falls between start and next domain name */
 1258: 	  if (hostname_cmp(workspace1, workspace2) >= 0 && hostname_cmp(workspace2, name) >=0 )
 1259: 	    return 1;
 1260: 	}
 1261:     }
 1262:   
 1263:   return 0;
 1264: }
 1265: 
 1266: /* return digest length, or zero on error */
 1267: static int hash_name(char *in, unsigned char **out, struct nettle_hash const *hash, 
 1268: 		     unsigned char *salt, int salt_len, int iterations)
 1269: {
 1270:   void *ctx;
 1271:   unsigned char *digest;
 1272:   int i;
 1273: 
 1274:   if (!hash_init(hash, &ctx, &digest))
 1275:     return 0;
 1276:  
 1277:   hash->update(ctx, to_wire(in), (unsigned char *)in);
 1278:   hash->update(ctx, salt_len, salt);
 1279:   hash->digest(ctx, hash->digest_size, digest);
 1280: 
 1281:   for(i = 0; i < iterations; i++)
 1282:     {
 1283:       hash->update(ctx, hash->digest_size, digest);
 1284:       hash->update(ctx, salt_len, salt);
 1285:       hash->digest(ctx, hash->digest_size, digest);
 1286:     }
 1287:    
 1288:   from_wire(in);
 1289: 
 1290:   *out = digest;
 1291:   return hash->digest_size;
 1292: }
 1293: 
 1294: /* Decode base32 to first "." or end of string */
 1295: static int base32_decode(char *in, unsigned char *out)
 1296: {
 1297:   int oc, on, c, mask, i;
 1298:   unsigned char *p = out;
 1299:  
 1300:   for (c = *in, oc = 0, on = 0; c != 0 && c != '.'; c = *++in) 
 1301:     {
 1302:       if (c >= '0' && c <= '9')
 1303: 	c -= '0';
 1304:       else if (c >= 'a' && c <= 'v')
 1305: 	c -= 'a', c += 10;
 1306:       else if (c >= 'A' && c <= 'V')
 1307: 	c -= 'A', c += 10;
 1308:       else
 1309: 	return 0;
 1310:       
 1311:       for (mask = 0x10, i = 0; i < 5; i++)
 1312:         {
 1313: 	  if (c & mask)
 1314: 	    oc |= 1;
 1315: 	  mask = mask >> 1;
 1316: 	  if (((++on) & 7) == 0)
 1317: 	    *p++ = oc;
 1318: 	  oc = oc << 1;
 1319: 	}
 1320:     }
 1321:   
 1322:   if ((on & 7) != 0)
 1323:     return 0;
 1324: 
 1325:   return p - out;
 1326: }
 1327: 
 1328: static int check_nsec3_coverage(struct dns_header *header, size_t plen, int digest_len, unsigned char *digest, int type,
 1329: 				char *workspace1, char *workspace2, unsigned char **nsecs, int nsec_count, int *nons, int name_labels)
 1330: {
 1331:   int i, hash_len, salt_len, base32_len, rdlen, flags;
 1332:   unsigned char *p, *psave;
 1333: 
 1334:   for (i = 0; i < nsec_count; i++)
 1335:     if ((p = nsecs[i]))
 1336:       {
 1337:        	if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
 1338: 	    !(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
 1339: 	  return 0;
 1340: 	
 1341: 	p += 8; /* class, type, TTL */
 1342: 	GETSHORT(rdlen, p);
 1343: 	psave = p;
 1344: 	p++; /* algo */
 1345: 	flags = *p++; /* flags */
 1346: 	p += 2; /* iterations */
 1347: 	salt_len = *p++; /* salt_len */
 1348: 	p += salt_len; /* salt */
 1349: 	hash_len = *p++; /* p now points to next hashed name */
 1350: 	
 1351: 	if (!CHECK_LEN(header, p, plen, hash_len))
 1352: 	  return 0;
 1353: 	
 1354: 	if (digest_len == base32_len && hash_len == base32_len)
 1355: 	  {
 1356: 	    int rc = memcmp(workspace2, digest, digest_len);
 1357: 
 1358: 	    if (rc == 0)
 1359: 	      {
 1360: 		/* We found an NSEC3 whose hashed name exactly matches the query, so
 1361: 		   we just need to check the type map. p points to the RR data for the record. */
 1362: 		
 1363: 		int offset = (type & 0xff) >> 3;
 1364: 		int mask = 0x80 >> (type & 0x07);
 1365: 		
 1366: 		p += hash_len; /* skip next-domain hash */
 1367: 		rdlen -= p - psave;
 1368: 
 1369: 		if (!CHECK_LEN(header, p, plen, rdlen))
 1370: 		  return 0;
 1371: 		
 1372: 		if (rdlen >= 2 && p[0] == 0)
 1373: 		  {
 1374: 		    /* If we can prove that there's no NS record, return that information. */
 1375: 		    if (nons && (p[2] & (0x80 >> T_NS)) != 0)
 1376: 		      *nons = 0;
 1377: 		
 1378: 		    /* A CNAME answer would also be valid, so if there's a CNAME is should 
 1379: 		       have been returned. */
 1380: 		    if ((p[2] & (0x80 >> T_CNAME)) != 0)
 1381: 		      return 0;
 1382: 		    
 1383: 		    /* If the SOA bit is set for a DS record, then we have the
 1384: 		       DS from the wrong side of the delegation. For the root DS, 
 1385: 		       this is expected.  */
 1386: 		    if (name_labels != 0 && type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0)
 1387: 		      return 0;
 1388: 		  }
 1389: 
 1390: 		while (rdlen >= 2)
 1391: 		  {
 1392: 		    if (p[0] == type >> 8)
 1393: 		      {
 1394: 			/* Does the NSEC3 say our type exists? */
 1395: 			if (offset < p[1] && (p[offset+2] & mask) != 0)
 1396: 			  return 0;
 1397: 			
 1398: 			break; /* finished checking */
 1399: 		      }
 1400: 		    
 1401: 		    rdlen -= p[1];
 1402: 		    p +=  p[1];
 1403: 		  }
 1404: 		
 1405: 		return 1;
 1406: 	      }
 1407: 	    else if (rc < 0)
 1408: 	      {
 1409: 		/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash,
 1410: 		   wrap around case, name-hash falls between NSEC3 name-hash and end */
 1411: 		if (memcmp(p, digest, digest_len) >= 0 || memcmp(workspace2, p, digest_len) >= 0)
 1412: 		  {
 1413: 		    if ((flags & 0x01) && nons) /* opt out */
 1414: 		      *nons = 0;
 1415: 
 1416: 		    return 1;
 1417: 		  }
 1418: 	      }
 1419: 	    else 
 1420: 	      {
 1421: 		/* wrap around case, name falls between start and next domain name */
 1422: 		if (memcmp(workspace2, p, digest_len) >= 0 && memcmp(p, digest, digest_len) >= 0)
 1423: 		  {
 1424: 		    if ((flags & 0x01) && nons) /* opt out */
 1425: 		      *nons = 0;
 1426: 
 1427: 		    return 1;
 1428: 		  }
 1429: 	      }
 1430: 	  }
 1431:       }
 1432: 
 1433:   return 0;
 1434: }
 1435: 
 1436: static int prove_non_existence_nsec3(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count,
 1437: 				     char *workspace1, char *workspace2, char *name, int type, char *wildname, int *nons)
 1438: {
 1439:   unsigned char *salt, *p, *digest;
 1440:   int digest_len, i, iterations, salt_len, base32_len, algo = 0;
 1441:   struct nettle_hash const *hash;
 1442:   char *closest_encloser, *next_closest, *wildcard;
 1443:   
 1444:   if (nons)
 1445:     *nons = 1;
 1446:   
 1447:   /* Look though the NSEC3 records to find the first one with 
 1448:      an algorithm we support.
 1449: 
 1450:      Take the algo, iterations, and salt of that record
 1451:      as the ones we're going to use, and prune any 
 1452:      that don't match. */
 1453:   
 1454:   for (i = 0; i < nsec_count; i++)
 1455:     {
 1456:       if (!(p = skip_name(nsecs[i], header, plen, 15)))
 1457: 	return 0; /* bad packet */
 1458:       
 1459:       p += 10; /* type, class, TTL, rdlen */
 1460:       algo = *p++;
 1461:       
 1462:       if ((hash = hash_find(nsec3_digest_name(algo))))
 1463: 	break; /* known algo */
 1464:     }
 1465: 
 1466:   /* No usable NSEC3s */
 1467:   if (i == nsec_count)
 1468:     return 0;
 1469: 
 1470:   p++; /* flags */
 1471: 
 1472:   GETSHORT (iterations, p);
 1473:   /* Upper-bound iterations, to avoid DoS.
 1474:      Strictly, there are lower bounds for small keys, but
 1475:      since we don't have key size info here, at least limit
 1476:      to the largest bound, for 4096-bit keys. RFC 5155 10.3 */
 1477:   if (iterations > 2500)
 1478:     return 0;
 1479:   
 1480:   salt_len = *p++;
 1481:   salt = p;
 1482:   if (!CHECK_LEN(header, salt, plen, salt_len))
 1483:     return 0; /* bad packet */
 1484:     
 1485:   /* Now prune so we only have NSEC3 records with same iterations, salt and algo */
 1486:   for (i = 0; i < nsec_count; i++)
 1487:     {
 1488:       unsigned char *nsec3p = nsecs[i];
 1489:       int this_iter, flags;
 1490: 
 1491:       nsecs[i] = NULL; /* Speculative, will be restored if OK. */
 1492:       
 1493:       if (!(p = skip_name(nsec3p, header, plen, 15)))
 1494: 	return 0; /* bad packet */
 1495:       
 1496:       p += 10; /* type, class, TTL, rdlen */
 1497:       
 1498:       if (*p++ != algo)
 1499: 	continue;
 1500:  
 1501:       flags = *p++; /* flags */
 1502:       
 1503:       /* 5155 8.2 */
 1504:       if (flags != 0 && flags != 1)
 1505: 	continue;
 1506: 
 1507:       GETSHORT(this_iter, p);
 1508:       if (this_iter != iterations)
 1509: 	continue;
 1510: 
 1511:       if (salt_len != *p++)
 1512: 	continue;
 1513:       
 1514:       if (!CHECK_LEN(header, p, plen, salt_len))
 1515: 	return 0; /* bad packet */
 1516: 
 1517:       if (memcmp(p, salt, salt_len) != 0)
 1518: 	continue;
 1519: 
 1520:       /* All match, put the pointer back */
 1521:       nsecs[i] = nsec3p;
 1522:     }
 1523: 
 1524:   if ((digest_len = hash_name(name, &digest, hash, salt, salt_len, iterations)) == 0)
 1525:     return 0;
 1526:   
 1527:   if (check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, nons, count_labels(name)))
 1528:     return 1;
 1529: 
 1530:   /* Can't find an NSEC3 which covers the name directly, we need the "closest encloser NSEC3" 
 1531:      or an answer inferred from a wildcard record. */
 1532:   closest_encloser = name;
 1533:   next_closest = NULL;
 1534: 
 1535:   do
 1536:     {
 1537:       if (*closest_encloser == '.')
 1538: 	closest_encloser++;
 1539: 
 1540:       if (wildname && hostname_isequal(closest_encloser, wildname))
 1541: 	break;
 1542: 
 1543:       if ((digest_len = hash_name(closest_encloser, &digest, hash, salt, salt_len, iterations)) == 0)
 1544: 	return 0;
 1545:       
 1546:       for (i = 0; i < nsec_count; i++)
 1547: 	if ((p = nsecs[i]))
 1548: 	  {
 1549: 	    if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
 1550: 		!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
 1551: 	      return 0;
 1552: 	  
 1553: 	    if (digest_len == base32_len &&
 1554: 		memcmp(digest, workspace2, digest_len) == 0)
 1555: 	      break; /* Gotit */
 1556: 	  }
 1557:       
 1558:       if (i != nsec_count)
 1559: 	break;
 1560:       
 1561:       next_closest = closest_encloser;
 1562:     }
 1563:   while ((closest_encloser = strchr(closest_encloser, '.')));
 1564:   
 1565:   if (!closest_encloser || !next_closest)
 1566:     return 0;
 1567:   
 1568:   /* Look for NSEC3 that proves the non-existence of the next-closest encloser */
 1569:   if ((digest_len = hash_name(next_closest, &digest, hash, salt, salt_len, iterations)) == 0)
 1570:     return 0;
 1571: 
 1572:   if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL, 1))
 1573:     return 0;
 1574:   
 1575:   /* Finally, check that there's no seat of wildcard synthesis */
 1576:   if (!wildname)
 1577:     {
 1578:       if (!(wildcard = strchr(next_closest, '.')) || wildcard == next_closest)
 1579: 	return 0;
 1580:       
 1581:       wildcard--;
 1582:       *wildcard = '*';
 1583:       
 1584:       if ((digest_len = hash_name(wildcard, &digest, hash, salt, salt_len, iterations)) == 0)
 1585: 	return 0;
 1586:       
 1587:       if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL, 1))
 1588: 	return 0;
 1589:     }
 1590:   
 1591:   return 1;
 1592: }
 1593: 
 1594: static int prove_non_existence(struct dns_header *header, size_t plen, char *keyname, char *name, int qtype, int qclass, char *wildname, int *nons, int *nsec_ttl)
 1595: {
 1596:   static unsigned char **nsecset = NULL, **rrsig_labels = NULL;
 1597:   static int nsecset_sz = 0, rrsig_labels_sz = 0;
 1598:   
 1599:   int type_found = 0;
 1600:   unsigned char *auth_start, *p = skip_questions(header, plen);
 1601:   int type, class, rdlen, i, nsecs_found;
 1602:   unsigned long ttl;
 1603:   
 1604:   /* Move to NS section */
 1605:   if (!p || !(p = skip_section(p, ntohs(header->ancount), header, plen)))
 1606:     return 0;
 1607: 
 1608:   auth_start = p;
 1609:   
 1610:   for (nsecs_found = 0, i = 0; i < ntohs(header->nscount); i++)
 1611:     {
 1612:       unsigned char *pstart = p;
 1613:       
 1614:       if (!extract_name(header, plen, &p, daemon->workspacename, 1, 10))
 1615: 	return 0;
 1616: 	  
 1617:       GETSHORT(type, p); 
 1618:       GETSHORT(class, p);
 1619:       GETLONG(ttl, p);
 1620:       GETSHORT(rdlen, p);
 1621: 
 1622:       if (class == qclass && (type == T_NSEC || type == T_NSEC3))
 1623: 	{
 1624: 	  if (nsec_ttl)
 1625: 	    {
 1626: 	      /* Limit TTL with sig TTL */
 1627: 	      if (daemon->rr_status[ntohs(header->ancount) + i] < ttl)
 1628: 		ttl = daemon->rr_status[ntohs(header->ancount) + i];
 1629: 	      *nsec_ttl = ttl;
 1630: 	    }
 1631: 	  
 1632: 	  /* No mixed NSECing 'round here, thankyouverymuch */
 1633: 	  if (type_found != 0 && type_found != type)
 1634: 	    return 0;
 1635: 
 1636: 	  type_found = type;
 1637: 
 1638: 	  if (!expand_workspace(&nsecset, &nsecset_sz, nsecs_found))
 1639: 	    return 0; 
 1640: 	  
 1641: 	  if (type == T_NSEC)
 1642: 	    {
 1643: 	      /* If we're looking for NSECs, find the corresponding SIGs, to 
 1644: 		 extract the labels value, which we need in case the NSECs
 1645: 		 are the result of wildcard expansion.
 1646: 		 Note that the NSEC may not have been validated yet
 1647: 		 so if there are multiple SIGs, make sure the label value
 1648: 		 is the same in all, to avoid be duped by a rogue one.
 1649: 		 If there are no SIGs, that's an error */
 1650: 	      unsigned char *p1 = auth_start;
 1651: 	      int res, j, rdlen1, type1, class1;
 1652: 	      
 1653: 	      if (!expand_workspace(&rrsig_labels, &rrsig_labels_sz, nsecs_found))
 1654: 		return 0;
 1655: 	      
 1656: 	      rrsig_labels[nsecs_found] = NULL;
 1657: 	      
 1658: 	      for (j = ntohs(header->nscount); j != 0; j--)
 1659: 		{
 1660: 		  if (!(res = extract_name(header, plen, &p1, daemon->workspacename, 0, 10)))
 1661: 		    return 0;
 1662: 
 1663: 		   GETSHORT(type1, p1); 
 1664: 		   GETSHORT(class1, p1);
 1665: 		   p1 += 4; /* TTL */
 1666: 		   GETSHORT(rdlen1, p1);
 1667: 
 1668: 		   if (!CHECK_LEN(header, p1, plen, rdlen1))
 1669: 		     return 0;
 1670: 		   
 1671: 		   if (res == 1 && class1 == qclass && type1 == T_RRSIG)
 1672: 		     {
 1673: 		       int type_covered;
 1674: 		       unsigned char *psav = p1;
 1675: 		       
 1676: 		       if (rdlen1 < 18)
 1677: 			 return 0; /* bad packet */
 1678: 
 1679: 		       GETSHORT(type_covered, p1);
 1680: 
 1681: 		       if (type_covered == T_NSEC)
 1682: 			 {
 1683: 			   p1++; /* algo */
 1684: 			   
 1685: 			   /* labels field must be the same in every SIG we find. */
 1686: 			   if (!rrsig_labels[nsecs_found])
 1687: 			     rrsig_labels[nsecs_found] = p1;
 1688: 			   else if (*rrsig_labels[nsecs_found] != *p1) /* algo */
 1689: 			     return 0;
 1690: 			   }
 1691: 		       p1 = psav;
 1692: 		     }
 1693: 		   
 1694: 		   if (!ADD_RDLEN(header, p1, plen, rdlen1))
 1695: 		     return 0;
 1696: 		}
 1697: 
 1698: 	      /* Must have found at least one sig. */
 1699: 	      if (!rrsig_labels[nsecs_found])
 1700: 		return 0;
 1701: 	    }
 1702: 
 1703: 	  nsecset[nsecs_found++] = pstart;   
 1704: 	}
 1705:       
 1706:       if (!ADD_RDLEN(header, p, plen, rdlen))
 1707: 	return 0;
 1708:     }
 1709:   
 1710:   if (type_found == T_NSEC)
 1711:     return prove_non_existence_nsec(header, plen, nsecset, rrsig_labels, nsecs_found, daemon->workspacename, keyname, name, qtype, nons);
 1712:   else if (type_found == T_NSEC3)
 1713:     return prove_non_existence_nsec3(header, plen, nsecset, nsecs_found, daemon->workspacename, keyname, name, qtype, wildname, nons);
 1714:   else
 1715:     return 0;
 1716: }
 1717: 
 1718: /* Check signing status of name.
 1719:    returns:
 1720:    STAT_SECURE   zone is signed.
 1721:    STAT_INSECURE zone proved unsigned.
 1722:    STAT_NEED_DS  require DS record of name returned in keyname.
 1723:    STAT_NEED_KEY require DNSKEY record of name returned in keyname.
 1724:    name returned unaltered.
 1725: */
 1726: static int zone_status(char *name, int class, char *keyname, time_t now)
 1727: {
 1728:   int name_start = strlen(name); /* for when TA is root */
 1729:   struct crec *crecp;
 1730:   char *p;
 1731: 
 1732:   /* First, work towards the root, looking for a trust anchor.
 1733:      This can either be one configured, or one previously cached.
 1734:      We can assume, if we don't find one first, that there is
 1735:      a trust anchor at the root. */
 1736:   for (p = name; p; p = strchr(p, '.'))
 1737:     {
 1738:       if (*p == '.')
 1739: 	p++;
 1740: 
 1741:       if (cache_find_by_name(NULL, p, now, F_DS))
 1742: 	{
 1743: 	  name_start = p - name;
 1744: 	  break;
 1745: 	}
 1746:     }
 1747: 
 1748:   /* Now work away from the trust anchor */
 1749:   while (1)
 1750:     {
 1751:       strcpy(keyname, &name[name_start]);
 1752:       
 1753:       if (!(crecp = cache_find_by_name(NULL, keyname, now, F_DS)))
 1754: 	return STAT_NEED_DS;
 1755:       
 1756:        /* F_DNSSECOK misused in DS cache records to non-existence of NS record.
 1757: 	  F_NEG && !F_DNSSECOK implies that we've proved there's no DS record here,
 1758: 	  but that's because there's no NS record either, ie this isn't the start
 1759: 	  of a zone. We only prove that the DNS tree below a node is unsigned when
 1760: 	  we prove that we're at a zone cut AND there's no DS record. */
 1761:       if (crecp->flags & F_NEG)
 1762: 	{
 1763: 	  if (crecp->flags & F_DNSSECOK)
 1764: 	    return STAT_INSECURE; /* proved no DS here */
 1765: 	}
 1766:       else
 1767: 	{
 1768: 	  /* If all the DS records have digest and/or sig algos we don't support,
 1769: 	     then the zone is insecure. Note that if an algo
 1770: 	     appears in the DS, then RRSIGs for that algo MUST
 1771: 	     exist for each RRset: 4035 para 2.2  So if we find
 1772: 	     a DS here with digest and sig we can do, we're entitled
 1773: 	     to assume we can validate the zone and if we can't later,
 1774: 	     because an RRSIG is missing we return BOGUS.
 1775: 	  */
 1776: 	  do 
 1777: 	    {
 1778: 	      if (crecp->uid == (unsigned int)class &&
 1779: 		  ds_digest_name(crecp->addr.ds.digest) &&
 1780: 		  algo_digest_name(crecp->addr.ds.algo))
 1781: 		break;
 1782: 	    }
 1783: 	  while ((crecp = cache_find_by_name(crecp, keyname, now, F_DS)));
 1784: 
 1785: 	  if (!crecp)
 1786: 	    return STAT_INSECURE;
 1787: 	}
 1788: 
 1789:       if (name_start == 0)
 1790: 	break;
 1791: 
 1792:       for (p = &name[name_start-2]; (*p != '.') && (p != name); p--);
 1793:       
 1794:       if (p != name)
 1795:         p++;
 1796:       
 1797:       name_start = p - name;
 1798:     } 
 1799: 
 1800:   return STAT_SECURE;
 1801: }
 1802:        
 1803: /* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) 
 1804:    Return code:
 1805:    STAT_SECURE   if it validates.
 1806:    STAT_INSECURE at least one RRset not validated, because in unsigned zone.
 1807:    STAT_BOGUS    signature is wrong, bad packet, no validation where there should be.
 1808:    STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname, class in *class)
 1809:    STAT_NEED_DS  need DS to complete validation (name is returned in keyname)
 1810: 
 1811:    daemon->rr_status points to a char array which corressponds to the RRs in the 
 1812:    answer and auth sections. This is set to 1 for each RR which is validated, and 0 for any which aren't.
 1813: 
 1814:    When validating replies to DS records, we're only interested in the NSEC{3} RRs in the auth section.
 1815:    Other RRs in that section missing sigs will not cause am INSECURE reply. We determine this mode
 1816:    is the nons argument is non-NULL.
 1817: */
 1818: int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, 
 1819: 			  int *class, int check_unsigned, int *neganswer, int *nons, int *nsec_ttl)
 1820: {
 1821:   static unsigned char **targets = NULL;
 1822:   static int target_sz = 0;
 1823: 
 1824:   unsigned char *ans_start, *p1, *p2;
 1825:   int type1, class1, rdlen1 = 0, type2, class2, rdlen2, qclass, qtype, targetidx;
 1826:   int i, j, rc = STAT_INSECURE;
 1827:   int secure = STAT_SECURE;
 1828: 
 1829:   /* extend rr_status if necessary */
 1830:   if (daemon->rr_status_sz < ntohs(header->ancount) + ntohs(header->nscount))
 1831:     {
 1832:       unsigned long *new = whine_malloc(sizeof(*daemon->rr_status) * (ntohs(header->ancount) + ntohs(header->nscount) + 64));
 1833: 
 1834:       if (!new)
 1835: 	return STAT_BOGUS;
 1836: 
 1837:       free(daemon->rr_status);
 1838:       daemon->rr_status = new;
 1839:       daemon->rr_status_sz = ntohs(header->ancount) + ntohs(header->nscount) + 64;
 1840:     }
 1841:   
 1842:   memset(daemon->rr_status, 0, sizeof(*daemon->rr_status) * daemon->rr_status_sz);
 1843:   
 1844:   if (neganswer)
 1845:     *neganswer = 0;
 1846:   
 1847:   if (RCODE(header) == SERVFAIL || ntohs(header->qdcount) != 1)
 1848:     return STAT_BOGUS;
 1849:   
 1850:   if (RCODE(header) != NXDOMAIN && RCODE(header) != NOERROR)
 1851:     return STAT_INSECURE;
 1852: 
 1853:   p1 = (unsigned char *)(header+1);
 1854:   
 1855:    /* Find all the targets we're looking for answers to.
 1856:      The zeroth array element is for the query, subsequent ones
 1857:      for CNAME targets, unless the query is for a CNAME. */
 1858: 
 1859:   if (!expand_workspace(&targets, &target_sz, 0))
 1860:     return STAT_BOGUS;
 1861:   
 1862:   targets[0] = p1;
 1863:   targetidx = 1;
 1864:    
 1865:   if (!extract_name(header, plen, &p1, name, 1, 4))
 1866:     return STAT_BOGUS;
 1867:   
 1868:   GETSHORT(qtype, p1);
 1869:   GETSHORT(qclass, p1);
 1870:   ans_start = p1;
 1871:  
 1872:   /* Can't validate an RRSIG query */
 1873:   if (qtype == T_RRSIG)
 1874:     return STAT_INSECURE;
 1875:   
 1876:   if (qtype != T_CNAME)
 1877:     for (j = ntohs(header->ancount); j != 0; j--) 
 1878:       {
 1879: 	if (!(p1 = skip_name(p1, header, plen, 10)))
 1880: 	  return STAT_BOGUS; /* bad packet */
 1881: 	
 1882: 	GETSHORT(type2, p1); 
 1883: 	p1 += 6; /* class, TTL */
 1884: 	GETSHORT(rdlen2, p1);  
 1885: 	
 1886: 	if (type2 == T_CNAME)
 1887: 	  {
 1888: 	    if (!expand_workspace(&targets, &target_sz, targetidx))
 1889: 	      return STAT_BOGUS;
 1890: 	    
 1891: 	    targets[targetidx++] = p1; /* pointer to target name */
 1892: 	  }
 1893: 	
 1894: 	if (!ADD_RDLEN(header, p1, plen, rdlen2))
 1895: 	  return STAT_BOGUS;
 1896:       }
 1897:   
 1898:   for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++)
 1899:     {
 1900:       if (i != 0 && !ADD_RDLEN(header, p1, plen, rdlen1))
 1901: 	return STAT_BOGUS;
 1902:       
 1903:       if (!extract_name(header, plen, &p1, name, 1, 10))
 1904: 	return STAT_BOGUS; /* bad packet */
 1905:       
 1906:       GETSHORT(type1, p1);
 1907:       GETSHORT(class1, p1);
 1908:       p1 += 4; /* TTL */
 1909:       GETSHORT(rdlen1, p1);
 1910:       
 1911:       /* Don't try and validate RRSIGs! */
 1912:       if (type1 == T_RRSIG)
 1913: 	continue;
 1914:       
 1915:       /* Check if we've done this RRset already */
 1916:       for (p2 = ans_start, j = 0; j < i; j++)
 1917: 	{
 1918: 	  if (!(rc = extract_name(header, plen, &p2, name, 0, 10)))
 1919: 	    return STAT_BOGUS; /* bad packet */
 1920: 	  
 1921: 	  GETSHORT(type2, p2);
 1922: 	  GETSHORT(class2, p2);
 1923: 	  p2 += 4; /* TTL */
 1924: 	  GETSHORT(rdlen2, p2);
 1925: 	  
 1926: 	  if (type2 == type1 && class2 == class1 && rc == 1)
 1927: 	    break; /* Done it before: name, type, class all match. */
 1928: 	  
 1929: 	  if (!ADD_RDLEN(header, p2, plen, rdlen2))
 1930: 	    return STAT_BOGUS;
 1931: 	}
 1932:       
 1933:       /* Done already: copy the validation status */
 1934:       if (j != i)
 1935: 	daemon->rr_status[i] = daemon->rr_status[j];
 1936:       else
 1937: 	{
 1938: 	  /* Not done, validate now */
 1939: 	  int sigcnt, rrcnt;
 1940: 	  char *wildname;
 1941: 	  
 1942: 	  if (!explore_rrset(header, plen, class1, type1, name, keyname, &sigcnt, &rrcnt))
 1943: 	    return STAT_BOGUS;
 1944: 	  
 1945: 	  /* No signatures for RRset. We can be configured to assume this is OK and return an INSECURE result. */
 1946: 	  if (sigcnt == 0)
 1947: 	    {
 1948: 	      /* NSEC and NSEC3 records must be signed. We make this assumption elsewhere. */
 1949: 	      if (type1 == T_NSEC || type1 == T_NSEC3)
 1950: 		rc = STAT_INSECURE;
 1951: 	      else if (nons && i >= ntohs(header->ancount))
 1952: 		/* If we're validating a DS reply, rather than looking for the value of AD bit,
 1953: 		   we only care that NSEC and NSEC3 RRs in the auth section are signed. 
 1954: 		   Return SECURE even if others (SOA....) are not. */
 1955: 		rc = STAT_SECURE;
 1956: 	      else
 1957: 		{
 1958: 		  /* unsigned RRsets in auth section are not BOGUS, but do make reply insecure. */
 1959: 		  if (check_unsigned && i < ntohs(header->ancount))
 1960: 		    {
 1961: 		      rc = zone_status(name, class1, keyname, now);
 1962: 		      if (rc == STAT_SECURE)
 1963: 			rc = STAT_BOGUS;
 1964: 		      if (class)
 1965: 			*class = class1; /* Class for NEED_DS or NEED_KEY */
 1966: 		    }
 1967: 		  else 
 1968: 		    rc = STAT_INSECURE; 
 1969: 		  
 1970: 		  if (rc != STAT_INSECURE)
 1971: 		    return rc;
 1972: 		}
 1973: 	    }
 1974: 	  else
 1975: 	    {
 1976: 	      /* explore_rrset() gives us key name from sigs in keyname.
 1977: 		 Can't overwrite name here. */
 1978: 	      strcpy(daemon->workspacename, keyname);
 1979: 	      rc = zone_status(daemon->workspacename, class1, keyname, now);
 1980: 	      
 1981: 	      if (rc == STAT_BOGUS || rc == STAT_NEED_KEY || rc == STAT_NEED_DS)
 1982: 		{
 1983: 		  if (class)
 1984: 		    *class = class1; /* Class for NEED_DS or NEED_KEY */
 1985: 		  return rc;
 1986: 		}
 1987: 	      
 1988: 	      /* Zone is insecure, don't need to validate RRset */
 1989: 	      if (rc == STAT_SECURE)
 1990: 		{
 1991: 		  unsigned long sig_ttl;
 1992: 		  rc = validate_rrset(now, header, plen, class1, type1, sigcnt,
 1993: 				      rrcnt, name, keyname, &wildname, NULL, 0, 0, 0, &sig_ttl);
 1994: 		  
 1995: 		  if (rc == STAT_BOGUS || rc == STAT_NEED_KEY || rc == STAT_NEED_DS)
 1996: 		    {
 1997: 		      if (class)
 1998: 			*class = class1; /* Class for DS or DNSKEY */
 1999: 		      return rc;
 2000: 		    } 
 2001: 		  
 2002: 		  /* rc is now STAT_SECURE or STAT_SECURE_WILDCARD */
 2003: 		  
 2004: 		  /* Note that RR is validated */
 2005: 		  daemon->rr_status[i] = sig_ttl;
 2006: 		   
 2007: 		  /* Note if we've validated either the answer to the question
 2008: 		     or the target of a CNAME. Any not noted will need NSEC or
 2009: 		     to be in unsigned space. */
 2010: 		  for (j = 0; j <targetidx; j++)
 2011: 		    if ((p2 = targets[j]))
 2012: 		      {
 2013: 			int rc1;
 2014: 			if (!(rc1 = extract_name(header, plen, &p2, name, 0, 10)))
 2015: 			  return STAT_BOGUS; /* bad packet */
 2016: 			
 2017: 			if (class1 == qclass && rc1 == 1 && (type1 == T_CNAME || type1 == qtype || qtype == T_ANY ))
 2018: 			  targets[j] = NULL;
 2019: 		      }
 2020: 		  
 2021: 		  /* An attacker replay a wildcard answer with a different
 2022: 		     answer and overlay a genuine RR. To prove this
 2023: 		     hasn't happened, the answer must prove that
 2024: 		     the genuine record doesn't exist. Check that here. 
 2025: 		     Note that we may not yet have validated the NSEC/NSEC3 RRsets. 
 2026: 		     That's not a problem since if the RRsets later fail
 2027: 		     we'll return BOGUS then. */
 2028: 		  if (rc == STAT_SECURE_WILDCARD &&
 2029: 		      !prove_non_existence(header, plen, keyname, name, type1, class1, wildname, NULL, NULL))
 2030: 		    return STAT_BOGUS;
 2031: 
 2032: 		  rc = STAT_SECURE;
 2033: 		}
 2034: 	    }
 2035: 	}
 2036: 
 2037:       if (rc == STAT_INSECURE)
 2038: 	secure = STAT_INSECURE;
 2039:     }
 2040: 
 2041:   /* OK, all the RRsets validate, now see if we have a missing answer or CNAME target. */
 2042:   if (secure == STAT_SECURE)
 2043:     for (j = 0; j <targetidx; j++)
 2044:       if ((p2 = targets[j]))
 2045: 	{
 2046: 	  if (neganswer)
 2047: 	    *neganswer = 1;
 2048: 	  
 2049: 	  if (!extract_name(header, plen, &p2, name, 1, 10))
 2050: 	    return STAT_BOGUS; /* bad packet */
 2051: 	  
 2052: 	  /* NXDOMAIN or NODATA reply, unanswered question is (name, qclass, qtype) */
 2053: 	  
 2054: 	  /* For anything other than a DS record, this situation is OK if either
 2055: 	     the answer is in an unsigned zone, or there's a NSEC records. */
 2056: 	  if (!prove_non_existence(header, plen, keyname, name, qtype, qclass, NULL, nons, nsec_ttl))
 2057: 	    {
 2058: 	      /* Empty DS without NSECS */
 2059: 	      if (qtype == T_DS)
 2060: 		return STAT_BOGUS;
 2061: 	      
 2062: 	      if ((rc = zone_status(name, qclass, keyname, now)) != STAT_SECURE)
 2063: 		{
 2064: 		  if (class)
 2065: 		    *class = qclass; /* Class for NEED_DS or NEED_KEY */
 2066: 		  return rc;
 2067: 		} 
 2068: 	      
 2069: 	      return STAT_BOGUS; /* signed zone, no NSECs */
 2070: 	    }
 2071: 	}
 2072:   
 2073:   return secure;
 2074: }
 2075: 
 2076: 
 2077: /* Compute keytag (checksum to quickly index a key). See RFC4034 */
 2078: int dnskey_keytag(int alg, int flags, unsigned char *key, int keylen)
 2079: {
 2080:   if (alg == 1)
 2081:     {
 2082:       /* Algorithm 1 (RSAMD5) has a different (older) keytag calculation algorithm.
 2083:          See RFC4034, Appendix B.1 */
 2084:       return key[keylen-4] * 256 + key[keylen-3];
 2085:     }
 2086:   else
 2087:     {
 2088:       unsigned long ac = flags + 0x300 + alg;
 2089:       int i;
 2090: 
 2091:       for (i = 0; i < keylen; ++i)
 2092:         ac += (i & 1) ? key[i] : key[i] << 8;
 2093: 
 2094:       ac += (ac >> 16) & 0xffff;
 2095:       return ac & 0xffff;
 2096:     }
 2097: }
 2098: 
 2099: size_t dnssec_generate_query(struct dns_header *header, unsigned char *end, char *name, int class, 
 2100: 			     int type, int edns_pktsz)
 2101: {
 2102:   unsigned char *p;
 2103:   size_t ret;
 2104: 
 2105:   header->qdcount = htons(1);
 2106:   header->ancount = htons(0);
 2107:   header->nscount = htons(0);
 2108:   header->arcount = htons(0);
 2109: 
 2110:   header->hb3 = HB3_RD; 
 2111:   SET_OPCODE(header, QUERY);
 2112:   /* For debugging, set Checking Disabled, otherwise, have the upstream check too,
 2113:      this allows it to select auth servers when one is returning bad data. */
 2114:   header->hb4 = option_bool(OPT_DNSSEC_DEBUG) ? HB4_CD : 0;
 2115: 
 2116:   /* ID filled in later */
 2117: 
 2118:   p = (unsigned char *)(header+1);
 2119: 	
 2120:   p = do_rfc1035_name(p, name, NULL);
 2121:   *p++ = 0;
 2122:   PUTSHORT(type, p);
 2123:   PUTSHORT(class, p);
 2124: 
 2125:   ret = add_do_bit(header, p - (unsigned char *)header, end);
 2126: 
 2127:   if (find_pseudoheader(header, ret, NULL, &p, NULL, NULL))
 2128:     PUTSHORT(edns_pktsz, p);
 2129: 
 2130:   return ret;
 2131: }
 2132: 
 2133: #endif /* HAVE_DNSSEC */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>