File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / dnsmasq / src / hash-questions.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Wed Sep 27 11:02:07 2023 UTC (9 months, 1 week ago) by misho
Branches: dnsmasq, MAIN
CVS tags: v8_2p1, HEAD
Version 8.2p1

    1: /* Copyright (c) 2012-2020 Simon Kelley
    2: 
    3:    This program is free software; you can redistribute it and/or modify
    4:    it under the terms of the GNU General Public License as published by
    5:    the Free Software Foundation; version 2 dated June, 1991, or
    6:    (at your option) version 3 dated 29 June, 2007.
    7: 
    8:    This program is distributed in the hope that it will be useful,
    9:    but WITHOUT ANY WARRANTY; without even the implied warranty of
   10:    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   11:    GNU General Public License for more details.
   12: 
   13:    You should have received a copy of the GNU General Public License
   14:    along with this program.  If not, see <http://www.gnu.org/licenses/>.
   15: */
   16: 
   17: 
   18: /* Hash the question section. This is used to safely detect query 
   19:    retransmission and to detect answers to questions we didn't ask, which 
   20:    might be poisoning attacks. Note that we decode the name rather 
   21:    than CRC the raw bytes, since replies might be compressed differently. 
   22:    We ignore case in the names for the same reason. 
   23: 
   24:    The hash used is SHA-256. If we're building with DNSSEC support,
   25:    we use the Nettle cypto library. If not, we prefer not to
   26:    add a dependency on Nettle, and use a stand-alone implementation. 
   27: */
   28: 
   29: #include "dnsmasq.h"
   30: 
   31: #if defined(HAVE_DNSSEC) || defined(HAVE_CRYPTOHASH)
   32: 
   33: static const struct nettle_hash *hash;
   34: static void *ctx;
   35: static unsigned char *digest;
   36: 
   37: void hash_questions_init(void)
   38: {
   39:   if (!(hash = hash_find("sha256")))
   40:     die(_("Failed to create SHA-256 hash object"), NULL, EC_MISC);
   41: 
   42:   ctx = safe_malloc(hash->context_size);
   43:   digest = safe_malloc(hash->digest_size);
   44: }
   45: 
   46: unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name)
   47: {
   48:   int q;
   49:   unsigned char *p = (unsigned char *)(header+1);
   50: 
   51:   hash->init(ctx);
   52: 
   53:   for (q = ntohs(header->qdcount); q != 0; q--) 
   54:     {
   55:       char *cp, c;
   56: 
   57:       if (!extract_name(header, plen, &p, name, 1, 4))
   58: 	return NULL; /* bad packet */
   59: 
   60:       for (cp = name; (c = *cp); cp++)
   61: 	 if (c >= 'A' && c <= 'Z')
   62: 	   *cp += 'a' - 'A';
   63: 
   64:       hash->update(ctx, cp - name, (unsigned char *)name);
   65:       /* CRC the class and type as well */
   66:       hash->update(ctx, 4, p);
   67: 
   68:       p += 4;
   69:       if (!CHECK_LEN(header, p, plen, 0))
   70: 	return NULL; /* bad packet */
   71:     }
   72:   
   73:   hash->digest(ctx, hash->digest_size, digest);
   74:   return digest;
   75: }
   76: 
   77: #else /* HAVE_DNSSEC  || HAVE_CRYPTOHASH */
   78: 
   79: #define SHA256_BLOCK_SIZE 32            /* SHA256 outputs a 32 byte digest */
   80: typedef unsigned char BYTE;             /* 8-bit byte */
   81: typedef unsigned int  WORD;             /* 32-bit word, change to "long" for 16-bit machines */
   82: 
   83: typedef struct {
   84:   BYTE data[64];
   85:   WORD datalen;
   86:   unsigned long long bitlen;
   87:   WORD state[8];
   88: } SHA256_CTX;
   89: 
   90: static void sha256_init(SHA256_CTX *ctx);
   91: static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
   92: static void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
   93: 
   94: void hash_questions_init(void)
   95: {
   96: }
   97: 
   98: unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name)
   99: {
  100:   int q;
  101:   unsigned char *p = (unsigned char *)(header+1);
  102:   SHA256_CTX ctx;
  103:   static BYTE digest[SHA256_BLOCK_SIZE];
  104:   
  105:   sha256_init(&ctx);
  106:     
  107:   for (q = ntohs(header->qdcount); q != 0; q--) 
  108:     {
  109:       char *cp, c;
  110: 
  111:       if (!extract_name(header, plen, &p, name, 1, 4))
  112: 	return NULL; /* bad packet */
  113: 
  114:       for (cp = name; (c = *cp); cp++)
  115: 	 if (c >= 'A' && c <= 'Z')
  116: 	   *cp += 'a' - 'A';
  117: 
  118:       sha256_update(&ctx, (BYTE *)name, cp - name);
  119:       /* CRC the class and type as well */
  120:       sha256_update(&ctx, (BYTE *)p, 4);
  121: 
  122:       p += 4;
  123:       if (!CHECK_LEN(header, p, plen, 0))
  124: 	return NULL; /* bad packet */
  125:     }
  126:   
  127:   sha256_final(&ctx, digest);
  128:   return (unsigned char *)digest;
  129: }
  130: 
  131: /* Code from here onwards comes from https://github.com/B-Con/crypto-algorithms
  132:    and was written by Brad Conte (brad@bradconte.com), to whom all credit is given.
  133: 
  134:    This code is in the public domain, and the copyright notice at the head of this 
  135:    file does not apply to it.
  136: */
  137: 
  138: 
  139: /****************************** MACROS ******************************/
  140: #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
  141: #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
  142: 
  143: #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
  144: #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  145: #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
  146: #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
  147: #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
  148: #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
  149: 
  150: /**************************** VARIABLES *****************************/
  151: static const WORD k[64] = {
  152: 			   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
  153: 			   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
  154: 			   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
  155: 			   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
  156: 			   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
  157: 			   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
  158: 			   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
  159: 			   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
  160: };
  161: 
  162: /*********************** FUNCTION DEFINITIONS ***********************/
  163: static void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
  164: {
  165:   WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
  166:   
  167:   for (i = 0, j = 0; i < 16; ++i, j += 4)
  168:     m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
  169:   for ( ; i < 64; ++i)
  170:     m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
  171: 
  172:   a = ctx->state[0];
  173:   b = ctx->state[1];
  174:   c = ctx->state[2];
  175:   d = ctx->state[3];
  176:   e = ctx->state[4];
  177:   f = ctx->state[5];
  178:   g = ctx->state[6];
  179:   h = ctx->state[7];
  180: 
  181:   for (i = 0; i < 64; ++i)
  182:     {
  183:       t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
  184:       t2 = EP0(a) + MAJ(a,b,c);
  185:       h = g;
  186:       g = f;
  187:       f = e;
  188:       e = d + t1;
  189:       d = c;
  190:       c = b;
  191:       b = a;
  192:       a = t1 + t2;
  193:     }
  194:   
  195:   ctx->state[0] += a;
  196:   ctx->state[1] += b;
  197:   ctx->state[2] += c;
  198:   ctx->state[3] += d;
  199:   ctx->state[4] += e;
  200:   ctx->state[5] += f;
  201:   ctx->state[6] += g;
  202:   ctx->state[7] += h;
  203: }
  204: 
  205: static void sha256_init(SHA256_CTX *ctx)
  206: {
  207:   ctx->datalen = 0;
  208:   ctx->bitlen = 0;
  209:   ctx->state[0] = 0x6a09e667;
  210:   ctx->state[1] = 0xbb67ae85;
  211:   ctx->state[2] = 0x3c6ef372;
  212:   ctx->state[3] = 0xa54ff53a;
  213:   ctx->state[4] = 0x510e527f;
  214:   ctx->state[5] = 0x9b05688c;
  215:   ctx->state[6] = 0x1f83d9ab;
  216:   ctx->state[7] = 0x5be0cd19;
  217: }
  218: 
  219: static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
  220: {
  221:   WORD i;
  222:   
  223:   for (i = 0; i < len; ++i)
  224:     {
  225:       ctx->data[ctx->datalen] = data[i];
  226:       ctx->datalen++;
  227:       if (ctx->datalen == 64) {
  228: 	sha256_transform(ctx, ctx->data);
  229: 	ctx->bitlen += 512;
  230: 	ctx->datalen = 0;
  231:       }
  232:     }
  233: }
  234: 
  235: static void sha256_final(SHA256_CTX *ctx, BYTE hash[])
  236: {
  237:   WORD i;
  238:   
  239:   i = ctx->datalen;
  240: 
  241:   /* Pad whatever data is left in the buffer. */
  242:   if (ctx->datalen < 56)
  243:     {
  244:       ctx->data[i++] = 0x80;
  245:       while (i < 56)
  246: 	ctx->data[i++] = 0x00;
  247:     }
  248:   else
  249:     {
  250:       ctx->data[i++] = 0x80;
  251:       while (i < 64)
  252: 	ctx->data[i++] = 0x00;
  253:       sha256_transform(ctx, ctx->data);
  254:       memset(ctx->data, 0, 56);
  255:     }
  256:   
  257:   /* Append to the padding the total message's length in bits and transform. */
  258:   ctx->bitlen += ctx->datalen * 8;
  259:   ctx->data[63] = ctx->bitlen;
  260:   ctx->data[62] = ctx->bitlen >> 8;
  261:   ctx->data[61] = ctx->bitlen >> 16;
  262:   ctx->data[60] = ctx->bitlen >> 24;
  263:   ctx->data[59] = ctx->bitlen >> 32;
  264:   ctx->data[58] = ctx->bitlen >> 40;
  265:   ctx->data[57] = ctx->bitlen >> 48;
  266:   ctx->data[56] = ctx->bitlen >> 56;
  267:   sha256_transform(ctx, ctx->data);
  268:   
  269:   /* Since this implementation uses little endian byte ordering and SHA uses big endian,
  270:      reverse all the bytes when copying the final state to the output hash. */
  271:   for (i = 0; i < 4; ++i)
  272:     {
  273:       hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
  274:       hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
  275:       hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
  276:       hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
  277:       hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
  278:       hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
  279:       hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
  280:       hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
  281:     }
  282: }
  283: 
  284: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>