/* * iperf, Copyright (c) 2014-2020, The Regents of the University of * California, through Lawrence Berkeley National Laboratory (subject * to receipt of any required approvals from the U.S. Dept. of * Energy). All rights reserved. * * If you have questions about your rights to use or distribute this * software, please contact Berkeley Lab's Technology Transfer * Department at TTD@lbl.gov. * * NOTICE. This software is owned by the U.S. Department of Energy. * As such, the U.S. Government has been granted for itself and others * acting on its behalf a paid-up, nonexclusive, irrevocable, * worldwide license in the Software to reproduce, prepare derivative * works, and perform publicly and display publicly. Beginning five * (5) years after the date permission to assert copyright is obtained * from the U.S. Department of Energy, and subject to any subsequent * five (5) year renewals, the U.S. Government is granted for itself * and others acting on its behalf a paid-up, nonexclusive, * irrevocable, worldwide license in the Software to reproduce, * prepare derivative works, distribute copies to the public, perform * publicly and display publicly, and to permit others to do so. * * This code is distributed under a BSD style license, see the LICENSE * file for complete information. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "iperf.h" #include "iperf_api.h" #include "iperf_util.h" #include "iperf_locale.h" #include "iperf_time.h" #include "net.h" #include "timer.h" #if defined(HAVE_TCP_CONGESTION) #if !defined(TCP_CA_NAME_MAX) #define TCP_CA_NAME_MAX 16 #endif /* TCP_CA_NAME_MAX */ #endif /* HAVE_TCP_CONGESTION */ int iperf_create_streams(struct iperf_test *test, int sender) { int i, s; #if defined(HAVE_TCP_CONGESTION) int saved_errno; #endif /* HAVE_TCP_CONGESTION */ struct iperf_stream *sp; int orig_bind_port = test->bind_port; for (i = 0; i < test->num_streams; ++i) { test->bind_port = orig_bind_port; if (orig_bind_port) test->bind_port += i; if ((s = test->protocol->connect(test)) < 0) return -1; #if defined(HAVE_TCP_CONGESTION) if (test->protocol->id == Ptcp) { if (test->congestion) { if (setsockopt(s, IPPROTO_TCP, TCP_CONGESTION, test->congestion, strlen(test->congestion)) < 0) { saved_errno = errno; close(s); errno = saved_errno; i_errno = IESETCONGESTION; return -1; } } { socklen_t len = TCP_CA_NAME_MAX; char ca[TCP_CA_NAME_MAX + 1]; if (getsockopt(s, IPPROTO_TCP, TCP_CONGESTION, ca, &len) < 0) { saved_errno = errno; close(s); errno = saved_errno; i_errno = IESETCONGESTION; return -1; } test->congestion_used = strdup(ca); if (test->debug) { printf("Congestion algorithm is %s\n", test->congestion_used); } } } #endif /* HAVE_TCP_CONGESTION */ if (sender) FD_SET(s, &test->write_set); else FD_SET(s, &test->read_set); if (s > test->max_fd) test->max_fd = s; sp = iperf_new_stream(test, s, sender); if (!sp) return -1; /* Perform the new stream callback */ if (test->on_new_stream) test->on_new_stream(sp); } return 0; } static void test_timer_proc(TimerClientData client_data, struct iperf_time *nowP) { struct iperf_test *test = client_data.p; test->timer = NULL; test->done = 1; } static void client_stats_timer_proc(TimerClientData client_data, struct iperf_time *nowP) { struct iperf_test *test = client_data.p; if (test->done) return; if (test->stats_callback) test->stats_callback(test); } static void client_reporter_timer_proc(TimerClientData client_data, struct iperf_time *nowP) { struct iperf_test *test = client_data.p; if (test->done) return; if (test->reporter_callback) test->reporter_callback(test); } static int create_client_timers(struct iperf_test * test) { struct iperf_time now; TimerClientData cd; if (iperf_time_now(&now) < 0) { i_errno = IEINITTEST; return -1; } cd.p = test; test->timer = test->stats_timer = test->reporter_timer = NULL; if (test->duration != 0) { test->done = 0; test->timer = tmr_create(&now, test_timer_proc, cd, ( test->duration + test->omit ) * SEC_TO_US, 0); if (test->timer == NULL) { i_errno = IEINITTEST; return -1; } } if (test->stats_interval != 0) { test->stats_timer = tmr_create(&now, client_stats_timer_proc, cd, test->stats_interval * SEC_TO_US, 1); if (test->stats_timer == NULL) { i_errno = IEINITTEST; return -1; } } if (test->reporter_interval != 0) { test->reporter_timer = tmr_create(&now, client_reporter_timer_proc, cd, test->reporter_interval * SEC_TO_US, 1); if (test->reporter_timer == NULL) { i_errno = IEINITTEST; return -1; } } return 0; } static void client_omit_timer_proc(TimerClientData client_data, struct iperf_time *nowP) { struct iperf_test *test = client_data.p; test->omit_timer = NULL; test->omitting = 0; iperf_reset_stats(test); if (test->verbose && !test->json_output && test->reporter_interval == 0) iperf_printf(test, "%s", report_omit_done); /* Reset the timers. */ if (test->stats_timer != NULL) tmr_reset(nowP, test->stats_timer); if (test->reporter_timer != NULL) tmr_reset(nowP, test->reporter_timer); } static int create_client_omit_timer(struct iperf_test * test) { struct iperf_time now; TimerClientData cd; if (test->omit == 0) { test->omit_timer = NULL; test->omitting = 0; } else { if (iperf_time_now(&now) < 0) { i_errno = IEINITTEST; return -1; } test->omitting = 1; cd.p = test; test->omit_timer = tmr_create(&now, client_omit_timer_proc, cd, test->omit * SEC_TO_US, 0); if (test->omit_timer == NULL) { i_errno = IEINITTEST; return -1; } } return 0; } int iperf_handle_message_client(struct iperf_test *test) { int rval; int32_t err; /*!!! Why is this read() and not Nread()? */ if ((rval = read(test->ctrl_sck, (char*) &test->state, sizeof(signed char))) <= 0) { if (rval == 0) { i_errno = IECTRLCLOSE; return -1; } else { i_errno = IERECVMESSAGE; return -1; } } switch (test->state) { case PARAM_EXCHANGE: if (iperf_exchange_parameters(test) < 0) return -1; if (test->on_connect) test->on_connect(test); break; case CREATE_STREAMS: if (test->mode == BIDIRECTIONAL) { if (iperf_create_streams(test, 1) < 0) return -1; if (iperf_create_streams(test, 0) < 0) return -1; } else if (iperf_create_streams(test, test->mode) < 0) return -1; break; case TEST_START: if (iperf_init_test(test) < 0) return -1; if (create_client_timers(test) < 0) return -1; if (create_client_omit_timer(test) < 0) return -1; if (test->mode) if (iperf_create_send_timers(test) < 0) return -1; break; case TEST_RUNNING: break; case EXCHANGE_RESULTS: if (iperf_exchange_results(test) < 0) return -1; break; case DISPLAY_RESULTS: if (test->on_test_finish) test->on_test_finish(test); iperf_client_end(test); break; case IPERF_DONE: break; case SERVER_TERMINATE: i_errno = IESERVERTERM; /* * Temporarily be in DISPLAY_RESULTS phase so we can get * ending summary statistics. */ signed char oldstate = test->state; cpu_util(test->cpu_util); test->state = DISPLAY_RESULTS; test->reporter_callback(test); test->state = oldstate; return -1; case ACCESS_DENIED: i_errno = IEACCESSDENIED; return -1; case SERVER_ERROR: if (Nread(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) { i_errno = IECTRLREAD; return -1; } i_errno = ntohl(err); if (Nread(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) { i_errno = IECTRLREAD; return -1; } errno = ntohl(err); return -1; default: i_errno = IEMESSAGE; return -1; } return 0; } /* iperf_connect -- client to server connection function */ int iperf_connect(struct iperf_test *test) { FD_ZERO(&test->read_set); FD_ZERO(&test->write_set); make_cookie(test->cookie); /* Create and connect the control channel */ if (test->ctrl_sck < 0) // Create the control channel using an ephemeral port test->ctrl_sck = netdial(test->settings->domain, Ptcp, test->bind_address, 0, test->server_hostname, test->server_port, test->settings->connect_timeout); if (test->ctrl_sck < 0) { i_errno = IECONNECT; return -1; } if (Nwrite(test->ctrl_sck, test->cookie, COOKIE_SIZE, Ptcp) < 0) { i_errno = IESENDCOOKIE; return -1; } FD_SET(test->ctrl_sck, &test->read_set); if (test->ctrl_sck > test->max_fd) test->max_fd = test->ctrl_sck; int opt; socklen_t len; len = sizeof(opt); if (getsockopt(test->ctrl_sck, IPPROTO_TCP, TCP_MAXSEG, &opt, &len) < 0) { test->ctrl_sck_mss = 0; } else { if (opt > 0 && opt <= MAX_UDP_BLOCKSIZE) { test->ctrl_sck_mss = opt; } else { char str[128]; snprintf(str, sizeof(str), "Ignoring nonsense TCP MSS %d", opt); warning(str); test->ctrl_sck_mss = 0; } } if (test->verbose) { printf("Control connection MSS %d\n", test->ctrl_sck_mss); } /* * If we're doing a UDP test and the block size wasn't explicitly * set, then use the known MSS of the control connection to pick * an appropriate default. If we weren't able to get the * MSS for some reason, then default to something that should * work on non-jumbo-frame Ethernet networks. The goal is to * pick a reasonable default that is large but should get from * sender to receiver without any IP fragmentation. * * We assume that the control connection is routed the same as the * data packets (thus has the same PMTU). Also in the case of * --reverse tests, we assume that the MTU is the same in both * directions. Note that even if the algorithm guesses wrong, * the user always has the option to override. */ if (test->protocol->id == Pudp) { if (test->settings->blksize == 0) { if (test->ctrl_sck_mss) { test->settings->blksize = test->ctrl_sck_mss; } else { test->settings->blksize = DEFAULT_UDP_BLKSIZE; } if (test->verbose) { printf("Setting UDP block size to %d\n", test->settings->blksize); } } /* * Regardless of whether explicitly or implicitly set, if the * block size is larger than the MSS, print a warning. */ if (test->ctrl_sck_mss > 0 && test->settings->blksize > test->ctrl_sck_mss) { char str[128]; snprintf(str, sizeof(str), "UDP block size %d exceeds TCP MSS %d, may result in fragmentation / drops", test->settings->blksize, test->ctrl_sck_mss); warning(str); } } return 0; } int iperf_client_end(struct iperf_test *test) { struct iperf_stream *sp; /* Close all stream sockets */ SLIST_FOREACH(sp, &test->streams, streams) { close(sp->socket); } /* show final summary */ test->reporter_callback(test); if (iperf_set_send_state(test, IPERF_DONE) != 0) return -1; /* Close control socket */ if (test->ctrl_sck) close(test->ctrl_sck); return 0; } int iperf_run_client(struct iperf_test * test) { int startup; int result = 0; fd_set read_set, write_set; struct iperf_time now; struct timeval* timeout = NULL; struct iperf_stream *sp; if (test->logfile) if (iperf_open_logfile(test) < 0) return -1; if (test->affinity != -1) if (iperf_setaffinity(test, test->affinity) != 0) return -1; if (test->json_output) if (iperf_json_start(test) < 0) return -1; if (test->json_output) { cJSON_AddItemToObject(test->json_start, "version", cJSON_CreateString(version)); cJSON_AddItemToObject(test->json_start, "system_info", cJSON_CreateString(get_system_info())); } else if (test->verbose) { iperf_printf(test, "%s\n", version); iperf_printf(test, "%s", ""); iperf_printf(test, "%s\n", get_system_info()); iflush(test); } /* Start the client and connect to the server */ if (iperf_connect(test) < 0) goto cleanup_and_fail; /* Begin calculating CPU utilization */ cpu_util(NULL); startup = 1; while (test->state != IPERF_DONE) { memcpy(&read_set, &test->read_set, sizeof(fd_set)); memcpy(&write_set, &test->write_set, sizeof(fd_set)); iperf_time_now(&now); timeout = tmr_timeout(&now); result = select(test->max_fd + 1, &read_set, &write_set, NULL, timeout); if (result < 0 && errno != EINTR) { i_errno = IESELECT; goto cleanup_and_fail; } if (result > 0) { if (FD_ISSET(test->ctrl_sck, &read_set)) { if (iperf_handle_message_client(test) < 0) { goto cleanup_and_fail; } FD_CLR(test->ctrl_sck, &read_set); } } if (test->state == TEST_RUNNING) { /* Is this our first time really running? */ if (startup) { startup = 0; // Set non-blocking for non-UDP tests if (test->protocol->id != Pudp) { SLIST_FOREACH(sp, &test->streams, streams) { setnonblocking(sp->socket, 1); } } } if (test->mode == BIDIRECTIONAL) { if (iperf_send(test, &write_set) < 0) goto cleanup_and_fail; if (iperf_recv(test, &read_set) < 0) goto cleanup_and_fail; } else if (test->mode == SENDER) { // Regular mode. Client sends. if (iperf_send(test, &write_set) < 0) goto cleanup_and_fail; } else { // Reverse mode. Client receives. if (iperf_recv(test, &read_set) < 0) goto cleanup_and_fail; } /* Run the timers. */ iperf_time_now(&now); tmr_run(&now); /* Is the test done yet? */ if ((!test->omitting) && ((test->duration != 0 && test->done) || (test->settings->bytes != 0 && test->bytes_sent >= test->settings->bytes) || (test->settings->blocks != 0 && test->blocks_sent >= test->settings->blocks))) { // Unset non-blocking for non-UDP tests if (test->protocol->id != Pudp) { SLIST_FOREACH(sp, &test->streams, streams) { setnonblocking(sp->socket, 0); } } /* Yes, done! Send TEST_END. */ test->done = 1; cpu_util(test->cpu_util); test->stats_callback(test); if (iperf_set_send_state(test, TEST_END) != 0) goto cleanup_and_fail; } } // If we're in reverse mode, continue draining the data // connection(s) even if test is over. This prevents a // deadlock where the server side fills up its pipe(s) // and gets blocked, so it can't receive state changes // from the client side. else if (test->mode == RECEIVER && test->state == TEST_END) { if (iperf_recv(test, &read_set) < 0) goto cleanup_and_fail; } } if (test->json_output) { if (iperf_json_finish(test) < 0) return -1; } else { iperf_printf(test, "\n"); iperf_printf(test, "%s", report_done); } iflush(test); return 0; cleanup_and_fail: iperf_client_end(test); if (test->json_output) iperf_json_finish(test); iflush(test); return -1; }