/*
* iperf, Copyright (c) 2014-2020, The Regents of the University of
* California, through Lawrence Berkeley National Laboratory (subject
* to receipt of any required approvals from the U.S. Dept. of
* Energy). All rights reserved.
*
* If you have questions about your rights to use or distribute this
* software, please contact Berkeley Lab's Technology Transfer
* Department at TTD@lbl.gov.
*
* NOTICE. This software is owned by the U.S. Department of Energy.
* As such, the U.S. Government has been granted for itself and others
* acting on its behalf a paid-up, nonexclusive, irrevocable,
* worldwide license in the Software to reproduce, prepare derivative
* works, and perform publicly and display publicly. Beginning five
* (5) years after the date permission to assert copyright is obtained
* from the U.S. Department of Energy, and subject to any subsequent
* five (5) year renewals, the U.S. Government is granted for itself
* and others acting on its behalf a paid-up, nonexclusive,
* irrevocable, worldwide license in the Software to reproduce,
* prepare derivative works, distribute copies to the public, perform
* publicly and display publicly, and to permit others to do so.
*
* This code is distributed under a BSD style license, see the LICENSE
* file for complete information.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <assert.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#include <sys/time.h>
#include <sys/select.h>
#include "iperf.h"
#include "iperf_api.h"
#include "iperf_util.h"
#include "iperf_udp.h"
#include "timer.h"
#include "net.h"
#include "cjson.h"
#include "portable_endian.h"
#if defined(HAVE_INTTYPES_H)
# include <inttypes.h>
#else
# ifndef PRIu64
# if sizeof(long) == 8
# define PRIu64 "lu"
# else
# define PRIu64 "llu"
# endif
# endif
#endif
/* iperf_udp_recv
*
* receives the data for UDP
*/
int
iperf_udp_recv(struct iperf_stream *sp)
{
uint32_t sec, usec;
uint64_t pcount;
int r;
int size = sp->settings->blksize;
int first_packet = 0;
double transit = 0, d = 0;
struct iperf_time sent_time, arrival_time, temp_time;
r = Nread(sp->socket, sp->buffer, size, Pudp);
/*
* If we got an error in the read, or if we didn't read anything
* because the underlying read(2) got a EAGAIN, then skip packet
* processing.
*/
if (r <= 0)
return r;
/* Only count bytes received while we're in the correct state. */
if (sp->test->state == TEST_RUNNING) {
/*
* For jitter computation below, it's important to know if this
* packet is the first packet received.
*/
if (sp->result->bytes_received == 0) {
first_packet = 1;
}
sp->result->bytes_received += r;
sp->result->bytes_received_this_interval += r;
/* Dig the various counters out of the incoming UDP packet */
if (sp->test->udp_counters_64bit) {
memcpy(&sec, sp->buffer, sizeof(sec));
memcpy(&usec, sp->buffer+4, sizeof(usec));
memcpy(&pcount, sp->buffer+8, sizeof(pcount));
sec = ntohl(sec);
usec = ntohl(usec);
pcount = be64toh(pcount);
sent_time.secs = sec;
sent_time.usecs = usec;
}
else {
uint32_t pc;
memcpy(&sec, sp->buffer, sizeof(sec));
memcpy(&usec, sp->buffer+4, sizeof(usec));
memcpy(&pc, sp->buffer+8, sizeof(pc));
sec = ntohl(sec);
usec = ntohl(usec);
pcount = ntohl(pc);
sent_time.secs = sec;
sent_time.usecs = usec;
}
if (sp->test->debug)
fprintf(stderr, "pcount %" PRIu64 " packet_count %d\n", pcount, sp->packet_count);
/*
* Try to handle out of order packets. The way we do this
* uses a constant amount of storage but might not be
* correct in all cases. In particular we seem to have the
* assumption that packets can't be duplicated in the network,
* because duplicate packets will possibly cause some problems here.
*
* First figure out if the sequence numbers are going forward.
* Note that pcount is the sequence number read from the packet,
* and sp->packet_count is the highest sequence number seen so
* far (so we're expecting to see the packet with sequence number
* sp->packet_count + 1 arrive next).
*/
if (pcount >= sp->packet_count + 1) {
/* Forward, but is there a gap in sequence numbers? */
if (pcount > sp->packet_count + 1) {
/* There's a gap so count that as a loss. */
sp->cnt_error += (pcount - 1) - sp->packet_count;
}
/* Update the highest sequence number seen so far. */
sp->packet_count = pcount;
} else {
/*
* Sequence number went backward (or was stationary?!?).
* This counts as an out-of-order packet.
*/
sp->outoforder_packets++;
/*
* If we have lost packets, then the fact that we are now
* seeing an out-of-order packet offsets a prior sequence
* number gap that was counted as a loss. So we can take
* away a loss.
*/
if (sp->cnt_error > 0)
sp->cnt_error--;
/* Log the out-of-order packet */
if (sp->test->debug)
fprintf(stderr, "OUT OF ORDER - incoming packet sequence %" PRIu64 " but expected sequence %d on stream %d", pcount, sp->packet_count + 1, sp->socket);
}
/*
* jitter measurement
*
* This computation is based on RFC 1889 (specifically
* sections 6.3.1 and A.8).
*
* Note that synchronized clocks are not required since
* the source packet delta times are known. Also this
* computation does not require knowing the round-trip
* time.
*/
iperf_time_now(&arrival_time);
iperf_time_diff(&arrival_time, &sent_time, &temp_time);
transit = iperf_time_in_secs(&temp_time);
/* Hack to handle the first packet by initializing prev_transit. */
if (first_packet)
sp->prev_transit = transit;
d = transit - sp->prev_transit;
if (d < 0)
d = -d;
sp->prev_transit = transit;
sp->jitter += (d - sp->jitter) / 16.0;
}
else {
if (sp->test->debug)
printf("Late receive, state = %d\n", sp->test->state);
}
return r;
}
/* iperf_udp_send
*
* sends the data for UDP
*/
int
iperf_udp_send(struct iperf_stream *sp)
{
int r;
int size = sp->settings->blksize;
struct iperf_time before;
iperf_time_now(&before);
++sp->packet_count;
if (sp->test->udp_counters_64bit) {
uint32_t sec, usec;
uint64_t pcount;
sec = htonl(before.secs);
usec = htonl(before.usecs);
pcount = htobe64(sp->packet_count);
memcpy(sp->buffer, &sec, sizeof(sec));
memcpy(sp->buffer+4, &usec, sizeof(usec));
memcpy(sp->buffer+8, &pcount, sizeof(pcount));
}
else {
uint32_t sec, usec, pcount;
sec = htonl(before.secs);
usec = htonl(before.usecs);
pcount = htonl(sp->packet_count);
memcpy(sp->buffer, &sec, sizeof(sec));
memcpy(sp->buffer+4, &usec, sizeof(usec));
memcpy(sp->buffer+8, &pcount, sizeof(pcount));
}
r = Nwrite(sp->socket, sp->buffer, size, Pudp);
if (r < 0)
return r;
sp->result->bytes_sent += r;
sp->result->bytes_sent_this_interval += r;
if (sp->test->debug)
printf("sent %d bytes of %d, total %" PRIu64 "\n", r, sp->settings->blksize, sp->result->bytes_sent);
return r;
}
/**************************************************************************/
/*
* The following functions all have to do with managing UDP data sockets.
* UDP of course is connectionless, so there isn't really a concept of
* setting up a connection, although connect(2) can (and is) used to
* bind the remote end of sockets. We need to simulate some of the
* connection management that is built-in to TCP so that each side of the
* connection knows about each other before the real data transfers begin.
*/
/*
* Set and verify socket buffer sizes.
* Return 0 if no error, -1 if an error, +1 if socket buffers are
* potentially too small to hold a message.
*/
int
iperf_udp_buffercheck(struct iperf_test *test, int s)
{
int rc = 0;
int sndbuf_actual, rcvbuf_actual;
/*
* Set socket buffer size if requested. Do this for both sending and
* receiving so that we can cover both normal and --reverse operation.
*/
int opt;
socklen_t optlen;
if ((opt = test->settings->socket_bufsize)) {
if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, &opt, sizeof(opt)) < 0) {
i_errno = IESETBUF;
return -1;
}
if (setsockopt(s, SOL_SOCKET, SO_SNDBUF, &opt, sizeof(opt)) < 0) {
i_errno = IESETBUF;
return -1;
}
}
/* Read back and verify the sender socket buffer size */
optlen = sizeof(sndbuf_actual);
if (getsockopt(s, SOL_SOCKET, SO_SNDBUF, &sndbuf_actual, &optlen) < 0) {
i_errno = IESETBUF;
return -1;
}
if (test->debug) {
printf("SNDBUF is %u, expecting %u\n", sndbuf_actual, test->settings->socket_bufsize);
}
if (test->settings->socket_bufsize && test->settings->socket_bufsize > sndbuf_actual) {
i_errno = IESETBUF2;
return -1;
}
if (test->settings->blksize > sndbuf_actual) {
char str[80];
snprintf(str, sizeof(str),
"Block size %d > sending socket buffer size %d",
test->settings->blksize, sndbuf_actual);
warning(str);
rc = 1;
}
/* Read back and verify the receiver socket buffer size */
optlen = sizeof(rcvbuf_actual);
if (getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcvbuf_actual, &optlen) < 0) {
i_errno = IESETBUF;
return -1;
}
if (test->debug) {
printf("RCVBUF is %u, expecting %u\n", rcvbuf_actual, test->settings->socket_bufsize);
}
if (test->settings->socket_bufsize && test->settings->socket_bufsize > rcvbuf_actual) {
i_errno = IESETBUF2;
return -1;
}
if (test->settings->blksize > rcvbuf_actual) {
char str[80];
snprintf(str, sizeof(str),
"Block size %d > receiving socket buffer size %d",
test->settings->blksize, rcvbuf_actual);
warning(str);
rc = 1;
}
if (test->json_output) {
cJSON_AddNumberToObject(test->json_start, "sock_bufsize", test->settings->socket_bufsize);
cJSON_AddNumberToObject(test->json_start, "sndbuf_actual", sndbuf_actual);
cJSON_AddNumberToObject(test->json_start, "rcvbuf_actual", rcvbuf_actual);
}
return rc;
}
/*
* iperf_udp_accept
*
* Accepts a new UDP "connection"
*/
int
iperf_udp_accept(struct iperf_test *test)
{
struct sockaddr_storage sa_peer;
int buf;
socklen_t len;
int sz, s;
int rc;
/*
* Get the current outstanding socket. This socket will be used to handle
* data transfers and a new "listening" socket will be created.
*/
s = test->prot_listener;
/*
* Grab the UDP packet sent by the client. From that we can extract the
* client's address, and then use that information to bind the remote side
* of the socket to the client.
*/
len = sizeof(sa_peer);
if ((sz = recvfrom(test->prot_listener, &buf, sizeof(buf), 0, (struct sockaddr *) &sa_peer, &len)) < 0) {
i_errno = IESTREAMACCEPT;
return -1;
}
if (connect(s, (struct sockaddr *) &sa_peer, len) < 0) {
i_errno = IESTREAMACCEPT;
return -1;
}
/* Check and set socket buffer sizes */
rc = iperf_udp_buffercheck(test, s);
if (rc < 0)
/* error */
return rc;
/*
* If the socket buffer was too small, but it was the default
* size, then try explicitly setting it to something larger.
*/
if (rc > 0) {
if (test->settings->socket_bufsize == 0) {
int bufsize = test->settings->blksize + UDP_BUFFER_EXTRA;
printf("Increasing socket buffer size to %d\n",
bufsize);
test->settings->socket_bufsize = bufsize;
rc = iperf_udp_buffercheck(test, s);
if (rc < 0)
return rc;
}
}
#if defined(HAVE_SO_MAX_PACING_RATE)
/* If socket pacing is specified, try it. */
if (test->settings->fqrate) {
/* Convert bits per second to bytes per second */
unsigned int fqrate = test->settings->fqrate / 8;
if (fqrate > 0) {
if (test->debug) {
printf("Setting fair-queue socket pacing to %u\n", fqrate);
}
if (setsockopt(s, SOL_SOCKET, SO_MAX_PACING_RATE, &fqrate, sizeof(fqrate)) < 0) {
warning("Unable to set socket pacing");
}
}
}
#endif /* HAVE_SO_MAX_PACING_RATE */
{
unsigned int rate = test->settings->rate / 8;
if (rate > 0) {
if (test->debug) {
printf("Setting application pacing to %u\n", rate);
}
}
}
/*
* Create a new "listening" socket to replace the one we were using before.
*/
test->prot_listener = netannounce(test->settings->domain, Pudp, test->bind_address, test->server_port);
if (test->prot_listener < 0) {
i_errno = IESTREAMLISTEN;
return -1;
}
FD_SET(test->prot_listener, &test->read_set);
test->max_fd = (test->max_fd < test->prot_listener) ? test->prot_listener : test->max_fd;
/* Let the client know we're ready "accept" another UDP "stream" */
buf = 987654321; /* any content will work here */
if (write(s, &buf, sizeof(buf)) < 0) {
i_errno = IESTREAMWRITE;
return -1;
}
return s;
}
/*
* iperf_udp_listen
*
* Start up a listener for UDP stream connections. Unlike for TCP,
* there is no listen(2) for UDP. This socket will however accept
* a UDP datagram from a client (indicating the client's presence).
*/
int
iperf_udp_listen(struct iperf_test *test)
{
int s;
if ((s = netannounce(test->settings->domain, Pudp, test->bind_address, test->server_port)) < 0) {
i_errno = IESTREAMLISTEN;
return -1;
}
/*
* The caller will put this value into test->prot_listener.
*/
return s;
}
/*
* iperf_udp_connect
*
* "Connect" to a UDP stream listener.
*/
int
iperf_udp_connect(struct iperf_test *test)
{
int s, buf, sz;
#ifdef SO_RCVTIMEO
struct timeval tv;
#endif
int rc;
/* Create and bind our local socket. */
if ((s = netdial(test->settings->domain, Pudp, test->bind_address, test->bind_port, test->server_hostname, test->server_port, -1)) < 0) {
i_errno = IESTREAMCONNECT;
return -1;
}
/* Check and set socket buffer sizes */
rc = iperf_udp_buffercheck(test, s);
if (rc < 0)
/* error */
return rc;
/*
* If the socket buffer was too small, but it was the default
* size, then try explicitly setting it to something larger.
*/
if (rc > 0) {
if (test->settings->socket_bufsize == 0) {
int bufsize = test->settings->blksize + UDP_BUFFER_EXTRA;
printf("Increasing socket buffer size to %d\n",
bufsize);
test->settings->socket_bufsize = bufsize;
rc = iperf_udp_buffercheck(test, s);
if (rc < 0)
return rc;
}
}
#if defined(HAVE_SO_MAX_PACING_RATE)
/* If socket pacing is available and not disabled, try it. */
if (test->settings->fqrate) {
/* Convert bits per second to bytes per second */
unsigned int fqrate = test->settings->fqrate / 8;
if (fqrate > 0) {
if (test->debug) {
printf("Setting fair-queue socket pacing to %u\n", fqrate);
}
if (setsockopt(s, SOL_SOCKET, SO_MAX_PACING_RATE, &fqrate, sizeof(fqrate)) < 0) {
warning("Unable to set socket pacing");
}
}
}
#endif /* HAVE_SO_MAX_PACING_RATE */
{
unsigned int rate = test->settings->rate / 8;
if (rate > 0) {
if (test->debug) {
printf("Setting application pacing to %u\n", rate);
}
}
}
#ifdef SO_RCVTIMEO
/* 30 sec timeout for a case when there is a network problem. */
tv.tv_sec = 30;
tv.tv_usec = 0;
setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, (struct timeval *)&tv, sizeof(struct timeval));
#endif
/*
* Write a datagram to the UDP stream to let the server know we're here.
* The server learns our address by obtaining its peer's address.
*/
buf = 123456789; /* this can be pretty much anything */
if (write(s, &buf, sizeof(buf)) < 0) {
// XXX: Should this be changed to IESTREAMCONNECT?
i_errno = IESTREAMWRITE;
return -1;
}
/*
* Wait until the server replies back to us.
*/
if ((sz = recv(s, &buf, sizeof(buf), 0)) < 0) {
i_errno = IESTREAMREAD;
return -1;
}
return s;
}
/* iperf_udp_init
*
* initializer for UDP streams in TEST_START
*/
int
iperf_udp_init(struct iperf_test *test)
{
return 0;
}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>