Annotation of embedaddon/ipsec-tools/src/racoon/missing/crypto/sha2/sha2.c, revision 1.1.1.1

1.1       misho       1: /*     $NetBSD: sha2.c,v 1.4 2006/09/09 16:22:36 manu Exp $    */
                      2: 
                      3: /* Id: sha2.c,v 1.6 2004/09/21 14:35:25 ludvigm Exp */
                      4: 
                      5: /*
                      6:  * sha2.c
                      7:  *
                      8:  * Version 1.0.0beta1
                      9:  *
                     10:  * Written by Aaron D. Gifford <me@aarongifford.com>
                     11:  *
                     12:  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
                     13:  *
                     14:  * Redistribution and use in source and binary forms, with or without
                     15:  * modification, are permitted provided that the following conditions
                     16:  * are met:
                     17:  * 1. Redistributions of source code must retain the above copyright
                     18:  *    notice, this list of conditions and the following disclaimer.
                     19:  * 2. Redistributions in binary form must reproduce the above copyright
                     20:  *    notice, this list of conditions and the following disclaimer in the
                     21:  *    documentation and/or other materials provided with the distribution.
                     22:  * 3. Neither the name of the copyright holder nor the names of contributors
                     23:  *    may be used to endorse or promote products derived from this software
                     24:  *    without specific prior written permission.
                     25:  * 
                     26:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
                     27:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     28:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     29:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
                     30:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     31:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     32:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     33:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     34:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     35:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     36:  * SUCH DAMAGE.
                     37:  *
                     38:  */
                     39: 
                     40: #include "config.h"
                     41: 
                     42: #include <sys/types.h>
                     43: #include <sys/time.h>
                     44: #ifndef __linux__
                     45: #include <machine/endian.h>
                     46: #endif
                     47: #include <crypto/sha2/sha2.h>
                     48: #include <openssl/evp.h>
                     49: 
                     50: /* get openssl/ssleay version number */
                     51: #include <openssl/opensslv.h>
                     52: 
                     53: #include <err.h>
                     54: #include <string.h>
                     55: #define bcopy(a, b, c) memcpy((b), (a), (c))
                     56: #define bzero(a, b) memset((a), 0, (b))
                     57: #define panic(a) err(1, (a))
                     58: 
                     59: #if OPENSSL_VERSION_NUMBER >= 0x00907000L
                     60: #define HAVE_EVP_097
                     61: #endif
                     62: 
                     63: /*
                     64:  * ASSERT NOTE:
                     65:  * Some sanity checking code is included using assert().  On my FreeBSD
                     66:  * system, this additional code can be removed by compiling with NDEBUG
                     67:  * defined.  Check your own systems manpage on assert() to see how to
                     68:  * compile WITHOUT the sanity checking code on your system.
                     69:  *
                     70:  * UNROLLED TRANSFORM LOOP NOTE:
                     71:  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
                     72:  * loop version for the hash transform rounds (defined using macros
                     73:  * later in this file).  Either define on the command line, for example:
                     74:  *
                     75:  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
                     76:  *
                     77:  * or define below:
                     78:  *
                     79:  *   #define SHA2_UNROLL_TRANSFORM
                     80:  *
                     81:  */
                     82: 
                     83: #define assert(x)
                     84: 
                     85: 
                     86: /*** SHA-256/384/512 Machine Architecture Definitions *****************/
                     87: /*
                     88:  * BYTE_ORDER NOTE:
                     89:  *
                     90:  * Please make sure that your system defines BYTE_ORDER.  If your
                     91:  * architecture is little-endian, make sure it also defines
                     92:  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
                     93:  * equivilent.
                     94:  *
                     95:  * If your system does not define the above, then you can do so by
                     96:  * hand like this:
                     97:  *
                     98:  *   #define LITTLE_ENDIAN 1234
                     99:  *   #define BIG_ENDIAN    4321
                    100:  *
                    101:  * And for little-endian machines, add:
                    102:  *
                    103:  *   #define BYTE_ORDER LITTLE_ENDIAN 
                    104:  *
                    105:  * Or for big-endian machines:
                    106:  *
                    107:  *   #define BYTE_ORDER BIG_ENDIAN
                    108:  *
                    109:  * The FreeBSD machine this was written on defines BYTE_ORDER
                    110:  * appropriately by including <sys/types.h> (which in turn includes
                    111:  * <machine/endian.h> where the appropriate definitions are actually
                    112:  * made).
                    113:  */
                    114: #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
                    115: #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
                    116: #endif
                    117: 
                    118: /*
                    119:  * Define the followingsha2_* types to types of the correct length on
                    120:  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
                    121:  * types.  Machines with very recent ANSI C headers, can use the
                    122:  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
                    123:  * during compile or in the sha.h header file.
                    124:  *
                    125:  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
                    126:  * will need to define these three typedefs below (and the appropriate
                    127:  * ones in sha.h too) by hand according to their system architecture.
                    128:  *
                    129:  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
                    130:  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
                    131:  */
                    132: #if 0 /*def SHA2_USE_INTTYPES_H*/
                    133: 
                    134: typedef uint8_t  sha2_byte;    /* Exactly 1 byte */
                    135: typedef uint32_t sha2_word32;  /* Exactly 4 bytes */
                    136: typedef uint64_t sha2_word64;  /* Exactly 8 bytes */
                    137: 
                    138: #else /* SHA2_USE_INTTYPES_H */
                    139: 
                    140: typedef u_int8_t  sha2_byte;   /* Exactly 1 byte */
                    141: typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
                    142: typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
                    143: 
                    144: #endif /* SHA2_USE_INTTYPES_H */
                    145: 
                    146: 
                    147: /*** SHA-256/384/512 Various Length Definitions ***********************/
                    148: /* NOTE: Most of these are in sha2.h */
                    149: #define SHA256_SHORT_BLOCK_LENGTH      (SHA256_BLOCK_LENGTH - 8)
                    150: #define SHA384_SHORT_BLOCK_LENGTH      (SHA384_BLOCK_LENGTH - 16)
                    151: #define SHA512_SHORT_BLOCK_LENGTH      (SHA512_BLOCK_LENGTH - 16)
                    152: 
                    153: 
                    154: /*** ENDIAN REVERSAL MACROS *******************************************/
                    155: #if BYTE_ORDER == LITTLE_ENDIAN
                    156: #define REVERSE32(w,x) { \
                    157:        sha2_word32 tmp = (w); \
                    158:        tmp = (tmp >> 16) | (tmp << 16); \
                    159:        (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
                    160: }
                    161: #define REVERSE64(w,x) { \
                    162:        sha2_word64 tmp = (w); \
                    163:        tmp = (tmp >> 32) | (tmp << 32); \
                    164:        tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
                    165:              ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
                    166:        (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
                    167:              ((tmp & 0x0000ffff0000ffffULL) << 16); \
                    168: }
                    169: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
                    170: 
                    171: /*
                    172:  * Macro for incrementally adding the unsigned 64-bit integer n to the
                    173:  * unsigned 128-bit integer (represented using a two-element array of
                    174:  * 64-bit words):
                    175:  */
                    176: #define ADDINC128(w,n) { \
                    177:        (w)[0] += (sha2_word64)(n); \
                    178:        if ((w)[0] < (n)) { \
                    179:                (w)[1]++; \
                    180:        } \
                    181: }
                    182: 
                    183: /*** THE SIX LOGICAL FUNCTIONS ****************************************/
                    184: /*
                    185:  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
                    186:  *
                    187:  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
                    188:  *   S is a ROTATION) because the SHA-256/384/512 description document
                    189:  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
                    190:  *   same "backwards" definition.
                    191:  */
                    192: /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
                    193: #define R(b,x)                 ((x) >> (b))
                    194: /* 32-bit Rotate-right (used in SHA-256): */
                    195: #define S32(b,x)       (((x) >> (b)) | ((x) << (32 - (b))))
                    196: /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
                    197: #define S64(b,x)       (((x) >> (b)) | ((x) << (64 - (b))))
                    198: 
                    199: /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
                    200: #define Ch(x,y,z)      (((x) & (y)) ^ ((~(x)) & (z)))
                    201: #define Maj(x,y,z)     (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
                    202: 
                    203: /* Four of six logical functions used in SHA-256: */
                    204: #define Sigma0_256(x)  (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
                    205: #define Sigma1_256(x)  (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
                    206: #define sigma0_256(x)  (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
                    207: #define sigma1_256(x)  (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
                    208: 
                    209: /* Four of six logical functions used in SHA-384 and SHA-512: */
                    210: #define Sigma0_512(x)  (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
                    211: #define Sigma1_512(x)  (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
                    212: #define sigma0_512(x)  (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
                    213: #define sigma1_512(x)  (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
                    214: 
                    215: /*** INTERNAL FUNCTION PROTOTYPES *************************************/
                    216: /* NOTE: These should not be accessed directly from outside this
                    217:  * library -- they are intended for private internal visibility/use
                    218:  * only.
                    219:  */
                    220: void SHA512_Last(SHA512_CTX*);
                    221: void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
                    222: void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
                    223: 
                    224: 
                    225: /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
                    226: /* Hash constant words K for SHA-256: */
                    227: const static sha2_word32 K256[64] = {
                    228:        0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
                    229:        0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
                    230:        0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
                    231:        0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
                    232:        0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
                    233:        0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
                    234:        0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
                    235:        0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
                    236:        0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
                    237:        0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
                    238:        0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
                    239:        0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
                    240:        0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
                    241:        0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
                    242:        0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
                    243:        0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
                    244: };
                    245: 
                    246: /* Initial hash value H for SHA-256: */
                    247: const static sha2_word32 sha256_initial_hash_value[8] = {
                    248:        0x6a09e667UL,
                    249:        0xbb67ae85UL,
                    250:        0x3c6ef372UL,
                    251:        0xa54ff53aUL,
                    252:        0x510e527fUL,
                    253:        0x9b05688cUL,
                    254:        0x1f83d9abUL,
                    255:        0x5be0cd19UL
                    256: };
                    257: 
                    258: /* Hash constant words K for SHA-384 and SHA-512: */
                    259: const static sha2_word64 K512[80] = {
                    260:        0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
                    261:        0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
                    262:        0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
                    263:        0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
                    264:        0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
                    265:        0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
                    266:        0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
                    267:        0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
                    268:        0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
                    269:        0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
                    270:        0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
                    271:        0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
                    272:        0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
                    273:        0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
                    274:        0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
                    275:        0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
                    276:        0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
                    277:        0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
                    278:        0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
                    279:        0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
                    280:        0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
                    281:        0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
                    282:        0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
                    283:        0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
                    284:        0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
                    285:        0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
                    286:        0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
                    287:        0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
                    288:        0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
                    289:        0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
                    290:        0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
                    291:        0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
                    292:        0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
                    293:        0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
                    294:        0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
                    295:        0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
                    296:        0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
                    297:        0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
                    298:        0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
                    299:        0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
                    300: };
                    301: 
                    302: /* Initial hash value H for SHA-384 */
                    303: const static sha2_word64 sha384_initial_hash_value[8] = {
                    304:        0xcbbb9d5dc1059ed8ULL,
                    305:        0x629a292a367cd507ULL,
                    306:        0x9159015a3070dd17ULL,
                    307:        0x152fecd8f70e5939ULL,
                    308:        0x67332667ffc00b31ULL,
                    309:        0x8eb44a8768581511ULL,
                    310:        0xdb0c2e0d64f98fa7ULL,
                    311:        0x47b5481dbefa4fa4ULL
                    312: };
                    313: 
                    314: /* Initial hash value H for SHA-512 */
                    315: const static sha2_word64 sha512_initial_hash_value[8] = {
                    316:        0x6a09e667f3bcc908ULL,
                    317:        0xbb67ae8584caa73bULL,
                    318:        0x3c6ef372fe94f82bULL,
                    319:        0xa54ff53a5f1d36f1ULL,
                    320:        0x510e527fade682d1ULL,
                    321:        0x9b05688c2b3e6c1fULL,
                    322:        0x1f83d9abfb41bd6bULL,
                    323:        0x5be0cd19137e2179ULL
                    324: };
                    325: 
                    326: /*
                    327:  * Constant used by SHA256/384/512_End() functions for converting the
                    328:  * digest to a readable hexadecimal character string:
                    329:  */
                    330: static const char *sha2_hex_digits = "0123456789abcdef";
                    331: 
                    332: 
                    333: /*** SHA-256: *********************************************************/
                    334: void SHA256_Init(SHA256_CTX* context) {
                    335:        if (context == (SHA256_CTX*)0) {
                    336:                return;
                    337:        }
                    338:        bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
                    339:        bzero(context->buffer, SHA256_BLOCK_LENGTH);
                    340:        context->bitcount = 0;
                    341: }
                    342: 
                    343: #ifdef SHA2_UNROLL_TRANSFORM
                    344: 
                    345: /* Unrolled SHA-256 round macros: */
                    346: 
                    347: #if BYTE_ORDER == LITTLE_ENDIAN
                    348: 
                    349: #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)      \
                    350:        REVERSE32(*data++, W256[j]); \
                    351:        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
                    352:              K256[j] + W256[j]; \
                    353:        (d) += T1; \
                    354:        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
                    355:        j++
                    356: 
                    357: 
                    358: #else /* BYTE_ORDER == LITTLE_ENDIAN */
                    359: 
                    360: #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)      \
                    361:        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
                    362:             K256[j] + (W256[j] = *data++); \
                    363:        (d) += T1; \
                    364:        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
                    365:        j++
                    366: 
                    367: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
                    368: 
                    369: #define ROUND256(a,b,c,d,e,f,g,h)      \
                    370:        s0 = W256[(j+1)&0x0f]; \
                    371:        s0 = sigma0_256(s0); \
                    372:        s1 = W256[(j+14)&0x0f]; \
                    373:        s1 = sigma1_256(s1); \
                    374:        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
                    375:             (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
                    376:        (d) += T1; \
                    377:        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
                    378:        j++
                    379: 
                    380: void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
                    381:        sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
                    382:        sha2_word32     T1, *W256;
                    383:        int             j;
                    384: 
                    385:        W256 = (sha2_word32*)context->buffer;
                    386: 
                    387:        /* Initialize registers with the prev. intermediate value */
                    388:        a = context->state[0];
                    389:        b = context->state[1];
                    390:        c = context->state[2];
                    391:        d = context->state[3];
                    392:        e = context->state[4];
                    393:        f = context->state[5];
                    394:        g = context->state[6];
                    395:        h = context->state[7];
                    396: 
                    397:        j = 0;
                    398:        do {
                    399:                /* Rounds 0 to 15 (unrolled): */
                    400:                ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
                    401:                ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
                    402:                ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
                    403:                ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
                    404:                ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
                    405:                ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
                    406:                ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
                    407:                ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
                    408:        } while (j < 16);
                    409: 
                    410:        /* Now for the remaining rounds to 64: */
                    411:        do {
                    412:                ROUND256(a,b,c,d,e,f,g,h);
                    413:                ROUND256(h,a,b,c,d,e,f,g);
                    414:                ROUND256(g,h,a,b,c,d,e,f);
                    415:                ROUND256(f,g,h,a,b,c,d,e);
                    416:                ROUND256(e,f,g,h,a,b,c,d);
                    417:                ROUND256(d,e,f,g,h,a,b,c);
                    418:                ROUND256(c,d,e,f,g,h,a,b);
                    419:                ROUND256(b,c,d,e,f,g,h,a);
                    420:        } while (j < 64);
                    421: 
                    422:        /* Compute the current intermediate hash value */
                    423:        context->state[0] += a;
                    424:        context->state[1] += b;
                    425:        context->state[2] += c;
                    426:        context->state[3] += d;
                    427:        context->state[4] += e;
                    428:        context->state[5] += f;
                    429:        context->state[6] += g;
                    430:        context->state[7] += h;
                    431: 
                    432:        /* Clean up */
                    433:        a = b = c = d = e = f = g = h = T1 = 0;
                    434: }
                    435: 
                    436: #else /* SHA2_UNROLL_TRANSFORM */
                    437: 
                    438: void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
                    439:        sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
                    440:        sha2_word32     T1, T2, *W256;
                    441:        int             j;
                    442: 
                    443:        W256 = (sha2_word32*)context->buffer;
                    444: 
                    445:        /* Initialize registers with the prev. intermediate value */
                    446:        a = context->state[0];
                    447:        b = context->state[1];
                    448:        c = context->state[2];
                    449:        d = context->state[3];
                    450:        e = context->state[4];
                    451:        f = context->state[5];
                    452:        g = context->state[6];
                    453:        h = context->state[7];
                    454: 
                    455:        j = 0;
                    456:        do {
                    457: #if BYTE_ORDER == LITTLE_ENDIAN
                    458:                /* Copy data while converting to host byte order */
                    459:                REVERSE32(*data++,W256[j]);
                    460:                /* Apply the SHA-256 compression function to update a..h */
                    461:                T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
                    462: #else /* BYTE_ORDER == LITTLE_ENDIAN */
                    463:                /* Apply the SHA-256 compression function to update a..h with copy */
                    464:                T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
                    465: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
                    466:                T2 = Sigma0_256(a) + Maj(a, b, c);
                    467:                h = g;
                    468:                g = f;
                    469:                f = e;
                    470:                e = d + T1;
                    471:                d = c;
                    472:                c = b;
                    473:                b = a;
                    474:                a = T1 + T2;
                    475: 
                    476:                j++;
                    477:        } while (j < 16);
                    478: 
                    479:        do {
                    480:                /* Part of the message block expansion: */
                    481:                s0 = W256[(j+1)&0x0f];
                    482:                s0 = sigma0_256(s0);
                    483:                s1 = W256[(j+14)&0x0f]; 
                    484:                s1 = sigma1_256(s1);
                    485: 
                    486:                /* Apply the SHA-256 compression function to update a..h */
                    487:                T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
                    488:                     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
                    489:                T2 = Sigma0_256(a) + Maj(a, b, c);
                    490:                h = g;
                    491:                g = f;
                    492:                f = e;
                    493:                e = d + T1;
                    494:                d = c;
                    495:                c = b;
                    496:                b = a;
                    497:                a = T1 + T2;
                    498: 
                    499:                j++;
                    500:        } while (j < 64);
                    501: 
                    502:        /* Compute the current intermediate hash value */
                    503:        context->state[0] += a;
                    504:        context->state[1] += b;
                    505:        context->state[2] += c;
                    506:        context->state[3] += d;
                    507:        context->state[4] += e;
                    508:        context->state[5] += f;
                    509:        context->state[6] += g;
                    510:        context->state[7] += h;
                    511: 
                    512:        /* Clean up */
                    513:        a = b = c = d = e = f = g = h = T1 = T2 = 0;
                    514: }
                    515: 
                    516: #endif /* SHA2_UNROLL_TRANSFORM */
                    517: 
                    518: void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
                    519:        unsigned int    freespace, usedspace;
                    520: 
                    521:        if (len == 0) {
                    522:                /* Calling with no data is valid - we do nothing */
                    523:                return;
                    524:        }
                    525: 
                    526:        /* Sanity check: */
                    527:        assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
                    528: 
                    529:        usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
                    530:        if (usedspace > 0) {
                    531:                /* Calculate how much free space is available in the buffer */
                    532:                freespace = SHA256_BLOCK_LENGTH - usedspace;
                    533: 
                    534:                if (len >= freespace) {
                    535:                        /* Fill the buffer completely and process it */
                    536:                        bcopy(data, &context->buffer[usedspace], freespace);
                    537:                        context->bitcount += freespace << 3;
                    538:                        len -= freespace;
                    539:                        data += freespace;
                    540:                        SHA256_Transform(context, (sha2_word32*)context->buffer);
                    541:                } else {
                    542:                        /* The buffer is not yet full */
                    543:                        bcopy(data, &context->buffer[usedspace], len);
                    544:                        context->bitcount += len << 3;
                    545:                        /* Clean up: */
                    546:                        usedspace = freespace = 0;
                    547:                        return;
                    548:                }
                    549:        }
                    550:        while (len >= SHA256_BLOCK_LENGTH) {
                    551:                /* Process as many complete blocks as we can */
                    552:                SHA256_Transform(context, (const sha2_word32*)data);
                    553:                context->bitcount += SHA256_BLOCK_LENGTH << 3;
                    554:                len -= SHA256_BLOCK_LENGTH;
                    555:                data += SHA256_BLOCK_LENGTH;
                    556:        }
                    557:        if (len > 0) {
                    558:                /* There's left-overs, so save 'em */
                    559:                bcopy(data, context->buffer, len);
                    560:                context->bitcount += len << 3;
                    561:        }
                    562:        /* Clean up: */
                    563:        usedspace = freespace = 0;
                    564: }
                    565: 
                    566: void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
                    567:        sha2_word32     *d = (sha2_word32*)digest;
                    568:        unsigned int    usedspace;
                    569: 
                    570:        /* Sanity check: */
                    571:        assert(context != (SHA256_CTX*)0);
                    572: 
                    573:        /* If no digest buffer is passed, we don't bother doing this: */
                    574:        if (digest != (sha2_byte*)0) {
                    575:                usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
                    576: #if BYTE_ORDER == LITTLE_ENDIAN
                    577:                /* Convert FROM host byte order */
                    578:                REVERSE64(context->bitcount,context->bitcount);
                    579: #endif
                    580:                if (usedspace > 0) {
                    581:                        /* Begin padding with a 1 bit: */
                    582:                        context->buffer[usedspace++] = 0x80;
                    583: 
                    584:                        if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
                    585:                                /* Set-up for the last transform: */
                    586:                                bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
                    587:                        } else {
                    588:                                if (usedspace < SHA256_BLOCK_LENGTH) {
                    589:                                        bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
                    590:                                }
                    591:                                /* Do second-to-last transform: */
                    592:                                SHA256_Transform(context, (sha2_word32*)context->buffer);
                    593: 
                    594:                                /* And set-up for the last transform: */
                    595:                                bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
                    596:                        }
                    597:                } else {
                    598:                        /* Set-up for the last transform: */
                    599:                        bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
                    600: 
                    601:                        /* Begin padding with a 1 bit: */
                    602:                        *context->buffer = 0x80;
                    603:                }
                    604:                /* Set the bit count: */
                    605:                *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
                    606: 
                    607:                /* Final transform: */
                    608:                SHA256_Transform(context, (sha2_word32*)context->buffer);
                    609: 
                    610: #if BYTE_ORDER == LITTLE_ENDIAN
                    611:                {
                    612:                        /* Convert TO host byte order */
                    613:                        int     j;
                    614:                        for (j = 0; j < 8; j++) {
                    615:                                REVERSE32(context->state[j],context->state[j]);
                    616:                                *d++ = context->state[j];
                    617:                        }
                    618:                }
                    619: #else
                    620:                bcopy(context->state, d, SHA256_DIGEST_LENGTH);
                    621: #endif
                    622:        }
                    623: 
                    624:        /* Clean up state data: */
                    625:        bzero(context, sizeof(*context));
                    626:        usedspace = 0;
                    627: }
                    628: 
                    629: char *SHA256_End(SHA256_CTX* context, char buffer[]) {
                    630:        sha2_byte       digest[SHA256_DIGEST_LENGTH], *d = digest;
                    631:        int             i;
                    632: 
                    633:        /* Sanity check: */
                    634:        assert(context != (SHA256_CTX*)0);
                    635: 
                    636:        if (buffer != (char*)0) {
                    637:                SHA256_Final(digest, context);
                    638: 
                    639:                for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
                    640:                        *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                    641:                        *buffer++ = sha2_hex_digits[*d & 0x0f];
                    642:                        d++;
                    643:                }
                    644:                *buffer = (char)0;
                    645:        } else {
                    646:                bzero(context, sizeof(*context));
                    647:        }
                    648:        bzero(digest, SHA256_DIGEST_LENGTH);
                    649:        return buffer;
                    650: }
                    651: 
                    652: char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
                    653:        SHA256_CTX      context;
                    654: 
                    655:        SHA256_Init(&context);
                    656:        SHA256_Update(&context, data, len);
                    657:        return SHA256_End(&context, digest);
                    658: }
                    659: 
                    660: 
                    661: /*** SHA-512: *********************************************************/
                    662: void SHA512_Init(SHA512_CTX* context) {
                    663:        if (context == (SHA512_CTX*)0) {
                    664:                return;
                    665:        }
                    666:        bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
                    667:        bzero(context->buffer, SHA512_BLOCK_LENGTH);
                    668:        context->bitcount[0] = context->bitcount[1] =  0;
                    669: }
                    670: 
                    671: #ifdef SHA2_UNROLL_TRANSFORM
                    672: 
                    673: /* Unrolled SHA-512 round macros: */
                    674: #if BYTE_ORDER == LITTLE_ENDIAN
                    675: 
                    676: #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)      \
                    677:        REVERSE64(*data++, W512[j]); \
                    678:        T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
                    679:              K512[j] + W512[j]; \
                    680:        (d) += T1, \
                    681:        (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
                    682:        j++
                    683: 
                    684: 
                    685: #else /* BYTE_ORDER == LITTLE_ENDIAN */
                    686: 
                    687: #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)      \
                    688:        T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
                    689:              K512[j] + (W512[j] = *data++); \
                    690:        (d) += T1; \
                    691:        (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
                    692:        j++
                    693: 
                    694: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
                    695: 
                    696: #define ROUND512(a,b,c,d,e,f,g,h)      \
                    697:        s0 = W512[(j+1)&0x0f]; \
                    698:        s0 = sigma0_512(s0); \
                    699:        s1 = W512[(j+14)&0x0f]; \
                    700:        s1 = sigma1_512(s1); \
                    701:        T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
                    702:              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
                    703:        (d) += T1; \
                    704:        (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
                    705:        j++
                    706: 
                    707: void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
                    708:        sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
                    709:        sha2_word64     T1, *W512 = (sha2_word64*)context->buffer;
                    710:        int             j;
                    711: 
                    712:        /* Initialize registers with the prev. intermediate value */
                    713:        a = context->state[0];
                    714:        b = context->state[1];
                    715:        c = context->state[2];
                    716:        d = context->state[3];
                    717:        e = context->state[4];
                    718:        f = context->state[5];
                    719:        g = context->state[6];
                    720:        h = context->state[7];
                    721: 
                    722:        j = 0;
                    723:        do {
                    724:                ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
                    725:                ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
                    726:                ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
                    727:                ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
                    728:                ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
                    729:                ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
                    730:                ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
                    731:                ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
                    732:        } while (j < 16);
                    733: 
                    734:        /* Now for the remaining rounds up to 79: */
                    735:        do {
                    736:                ROUND512(a,b,c,d,e,f,g,h);
                    737:                ROUND512(h,a,b,c,d,e,f,g);
                    738:                ROUND512(g,h,a,b,c,d,e,f);
                    739:                ROUND512(f,g,h,a,b,c,d,e);
                    740:                ROUND512(e,f,g,h,a,b,c,d);
                    741:                ROUND512(d,e,f,g,h,a,b,c);
                    742:                ROUND512(c,d,e,f,g,h,a,b);
                    743:                ROUND512(b,c,d,e,f,g,h,a);
                    744:        } while (j < 80);
                    745: 
                    746:        /* Compute the current intermediate hash value */
                    747:        context->state[0] += a;
                    748:        context->state[1] += b;
                    749:        context->state[2] += c;
                    750:        context->state[3] += d;
                    751:        context->state[4] += e;
                    752:        context->state[5] += f;
                    753:        context->state[6] += g;
                    754:        context->state[7] += h;
                    755: 
                    756:        /* Clean up */
                    757:        a = b = c = d = e = f = g = h = T1 = 0;
                    758: }
                    759: 
                    760: #else /* SHA2_UNROLL_TRANSFORM */
                    761: 
                    762: void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
                    763:        sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
                    764:        sha2_word64     T1, T2, *W512 = (sha2_word64*)context->buffer;
                    765:        int             j;
                    766: 
                    767:        /* Initialize registers with the prev. intermediate value */
                    768:        a = context->state[0];
                    769:        b = context->state[1];
                    770:        c = context->state[2];
                    771:        d = context->state[3];
                    772:        e = context->state[4];
                    773:        f = context->state[5];
                    774:        g = context->state[6];
                    775:        h = context->state[7];
                    776: 
                    777:        j = 0;
                    778:        do {
                    779: #if BYTE_ORDER == LITTLE_ENDIAN
                    780:                /* Convert TO host byte order */
                    781:                REVERSE64(*data++, W512[j]);
                    782:                /* Apply the SHA-512 compression function to update a..h */
                    783:                T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
                    784: #else /* BYTE_ORDER == LITTLE_ENDIAN */
                    785:                /* Apply the SHA-512 compression function to update a..h with copy */
                    786:                T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
                    787: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
                    788:                T2 = Sigma0_512(a) + Maj(a, b, c);
                    789:                h = g;
                    790:                g = f;
                    791:                f = e;
                    792:                e = d + T1;
                    793:                d = c;
                    794:                c = b;
                    795:                b = a;
                    796:                a = T1 + T2;
                    797: 
                    798:                j++;
                    799:        } while (j < 16);
                    800: 
                    801:        do {
                    802:                /* Part of the message block expansion: */
                    803:                s0 = W512[(j+1)&0x0f];
                    804:                s0 = sigma0_512(s0);
                    805:                s1 = W512[(j+14)&0x0f];
                    806:                s1 =  sigma1_512(s1);
                    807: 
                    808:                /* Apply the SHA-512 compression function to update a..h */
                    809:                T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
                    810:                     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
                    811:                T2 = Sigma0_512(a) + Maj(a, b, c);
                    812:                h = g;
                    813:                g = f;
                    814:                f = e;
                    815:                e = d + T1;
                    816:                d = c;
                    817:                c = b;
                    818:                b = a;
                    819:                a = T1 + T2;
                    820: 
                    821:                j++;
                    822:        } while (j < 80);
                    823: 
                    824:        /* Compute the current intermediate hash value */
                    825:        context->state[0] += a;
                    826:        context->state[1] += b;
                    827:        context->state[2] += c;
                    828:        context->state[3] += d;
                    829:        context->state[4] += e;
                    830:        context->state[5] += f;
                    831:        context->state[6] += g;
                    832:        context->state[7] += h;
                    833: 
                    834:        /* Clean up */
                    835:        a = b = c = d = e = f = g = h = T1 = T2 = 0;
                    836: }
                    837: 
                    838: #endif /* SHA2_UNROLL_TRANSFORM */
                    839: 
                    840: void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
                    841:        unsigned int    freespace, usedspace;
                    842: 
                    843:        if (len == 0) {
                    844:                /* Calling with no data is valid - we do nothing */
                    845:                return;
                    846:        }
                    847: 
                    848:        /* Sanity check: */
                    849:        assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
                    850: 
                    851:        usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
                    852:        if (usedspace > 0) {
                    853:                /* Calculate how much free space is available in the buffer */
                    854:                freespace = SHA512_BLOCK_LENGTH - usedspace;
                    855: 
                    856:                if (len >= freespace) {
                    857:                        /* Fill the buffer completely and process it */
                    858:                        bcopy(data, &context->buffer[usedspace], freespace);
                    859:                        ADDINC128(context->bitcount, freespace << 3);
                    860:                        len -= freespace;
                    861:                        data += freespace;
                    862:                        SHA512_Transform(context, (sha2_word64*)context->buffer);
                    863:                } else {
                    864:                        /* The buffer is not yet full */
                    865:                        bcopy(data, &context->buffer[usedspace], len);
                    866:                        ADDINC128(context->bitcount, len << 3);
                    867:                        /* Clean up: */
                    868:                        usedspace = freespace = 0;
                    869:                        return;
                    870:                }
                    871:        }
                    872:        while (len >= SHA512_BLOCK_LENGTH) {
                    873:                /* Process as many complete blocks as we can */
                    874:                SHA512_Transform(context, (const sha2_word64*)data);
                    875:                ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
                    876:                len -= SHA512_BLOCK_LENGTH;
                    877:                data += SHA512_BLOCK_LENGTH;
                    878:        }
                    879:        if (len > 0) {
                    880:                /* There's left-overs, so save 'em */
                    881:                bcopy(data, context->buffer, len);
                    882:                ADDINC128(context->bitcount, len << 3);
                    883:        }
                    884:        /* Clean up: */
                    885:        usedspace = freespace = 0;
                    886: }
                    887: 
                    888: void SHA512_Last(SHA512_CTX* context) {
                    889:        unsigned int    usedspace;
                    890: 
                    891:        usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
                    892: #if BYTE_ORDER == LITTLE_ENDIAN
                    893:        /* Convert FROM host byte order */
                    894:        REVERSE64(context->bitcount[0],context->bitcount[0]);
                    895:        REVERSE64(context->bitcount[1],context->bitcount[1]);
                    896: #endif
                    897:        if (usedspace > 0) {
                    898:                /* Begin padding with a 1 bit: */
                    899:                context->buffer[usedspace++] = 0x80;
                    900: 
                    901:                if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
                    902:                        /* Set-up for the last transform: */
                    903:                        bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
                    904:                } else {
                    905:                        if (usedspace < SHA512_BLOCK_LENGTH) {
                    906:                                bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
                    907:                        }
                    908:                        /* Do second-to-last transform: */
                    909:                        SHA512_Transform(context, (sha2_word64*)context->buffer);
                    910: 
                    911:                        /* And set-up for the last transform: */
                    912:                        bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
                    913:                }
                    914:        } else {
                    915:                /* Prepare for final transform: */
                    916:                bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
                    917: 
                    918:                /* Begin padding with a 1 bit: */
                    919:                *context->buffer = 0x80;
                    920:        }
                    921:        /* Store the length of input data (in bits): */
                    922:        *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
                    923:        *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
                    924: 
                    925:        /* Final transform: */
                    926:        SHA512_Transform(context, (sha2_word64*)context->buffer);
                    927: }
                    928: 
                    929: void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
                    930:        sha2_word64     *d = (sha2_word64*)digest;
                    931: 
                    932:        /* Sanity check: */
                    933:        assert(context != (SHA512_CTX*)0);
                    934: 
                    935:        /* If no digest buffer is passed, we don't bother doing this: */
                    936:        if (digest != (sha2_byte*)0) {
                    937:                SHA512_Last(context);
                    938: 
                    939:                /* Save the hash data for output: */
                    940: #if BYTE_ORDER == LITTLE_ENDIAN
                    941:                {
                    942:                        /* Convert TO host byte order */
                    943:                        int     j;
                    944:                        for (j = 0; j < 8; j++) {
                    945:                                REVERSE64(context->state[j],context->state[j]);
                    946:                                *d++ = context->state[j];
                    947:                        }
                    948:                }
                    949: #else
                    950:                bcopy(context->state, d, SHA512_DIGEST_LENGTH);
                    951: #endif
                    952:        }
                    953: 
                    954:        /* Zero out state data */
                    955:        bzero(context, sizeof(*context));
                    956: }
                    957: 
                    958: char *SHA512_End(SHA512_CTX* context, char buffer[]) {
                    959:        sha2_byte       digest[SHA512_DIGEST_LENGTH], *d = digest;
                    960:        int             i;
                    961: 
                    962:        /* Sanity check: */
                    963:        assert(context != (SHA512_CTX*)0);
                    964: 
                    965:        if (buffer != (char*)0) {
                    966:                SHA512_Final(digest, context);
                    967: 
                    968:                for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
                    969:                        *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                    970:                        *buffer++ = sha2_hex_digits[*d & 0x0f];
                    971:                        d++;
                    972:                }
                    973:                *buffer = (char)0;
                    974:        } else {
                    975:                bzero(context, sizeof(*context));
                    976:        }
                    977:        bzero(digest, SHA512_DIGEST_LENGTH);
                    978:        return buffer;
                    979: }
                    980: 
                    981: char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
                    982:        SHA512_CTX      context;
                    983: 
                    984:        SHA512_Init(&context);
                    985:        SHA512_Update(&context, data, len);
                    986:        return SHA512_End(&context, digest);
                    987: }
                    988: 
                    989: 
                    990: /*** SHA-384: *********************************************************/
                    991: void SHA384_Init(SHA384_CTX* context) {
                    992:        if (context == (SHA384_CTX*)0) {
                    993:                return;
                    994:        }
                    995:        bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
                    996:        bzero(context->buffer, SHA384_BLOCK_LENGTH);
                    997:        context->bitcount[0] = context->bitcount[1] = 0;
                    998: }
                    999: 
                   1000: void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
                   1001:        SHA512_Update((SHA512_CTX*)context, data, len);
                   1002: }
                   1003: 
                   1004: void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
                   1005:        sha2_word64     *d = (sha2_word64*)digest;
                   1006: 
                   1007:        /* Sanity check: */
                   1008:        assert(context != (SHA384_CTX*)0);
                   1009: 
                   1010:        /* If no digest buffer is passed, we don't bother doing this: */
                   1011:        if (digest != (sha2_byte*)0) {
                   1012:                SHA512_Last((SHA512_CTX*)context);
                   1013: 
                   1014:                /* Save the hash data for output: */
                   1015: #if BYTE_ORDER == LITTLE_ENDIAN
                   1016:                {
                   1017:                        /* Convert TO host byte order */
                   1018:                        int     j;
                   1019:                        for (j = 0; j < 6; j++) {
                   1020:                                REVERSE64(context->state[j],context->state[j]);
                   1021:                                *d++ = context->state[j];
                   1022:                        }
                   1023:                }
                   1024: #else
                   1025:                bcopy(context->state, d, SHA384_DIGEST_LENGTH);
                   1026: #endif
                   1027:        }
                   1028: 
                   1029:        /* Zero out state data */
                   1030:        bzero(context, sizeof(*context));
                   1031: }
                   1032: 
                   1033: char *SHA384_End(SHA384_CTX* context, char buffer[]) {
                   1034:        sha2_byte       digest[SHA384_DIGEST_LENGTH], *d = digest;
                   1035:        int             i;
                   1036: 
                   1037:        /* Sanity check: */
                   1038:        assert(context != (SHA384_CTX*)0);
                   1039: 
                   1040:        if (buffer != (char*)0) {
                   1041:                SHA384_Final(digest, context);
                   1042: 
                   1043:                for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
                   1044:                        *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                   1045:                        *buffer++ = sha2_hex_digits[*d & 0x0f];
                   1046:                        d++;
                   1047:                }
                   1048:                *buffer = (char)0;
                   1049:        } else {
                   1050:                bzero(context, sizeof(*context));
                   1051:        }
                   1052:        bzero(digest, SHA384_DIGEST_LENGTH);
                   1053:        return buffer;
                   1054: }
                   1055: 
                   1056: char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
                   1057:        SHA384_CTX      context;
                   1058: 
                   1059:        SHA384_Init(&context);
                   1060:        SHA384_Update(&context, data, len);
                   1061:        return SHA384_End(&context, digest);
                   1062: }
                   1063: 
                   1064: /*glue*/
                   1065: #ifdef HAVE_EVP_097
                   1066: 
                   1067: /* SHA256 */
                   1068: #define data(ctx) ((SHA256_CTX *)(ctx)->md_data)
                   1069: static int sha256_init(EVP_MD_CTX *ctx)
                   1070: {
                   1071:   SHA256_Init(data(ctx));
                   1072:   return 1;
                   1073: }
                   1074: static int sha256_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
                   1075: {
                   1076:   SHA256_Update(data(ctx), data, count);
                   1077:   return 1;
                   1078: }
                   1079: static int sha256_final(EVP_MD_CTX *ctx, unsigned char *md)
                   1080: {
                   1081:   SHA256_Final(md, data(ctx));
                   1082:   return 1;
                   1083: }
                   1084: #undef data
                   1085: 
                   1086: /* SHA384 */
                   1087: #define data(ctx) ((SHA384_CTX *)(ctx)->md_data)
                   1088: static int sha384_init(EVP_MD_CTX *ctx)
                   1089: {
                   1090:   SHA384_Init(data(ctx));
                   1091:   return 1;
                   1092: }
                   1093: static int sha384_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
                   1094: {
                   1095:   SHA384_Update(data(ctx), data, count);
                   1096:   return 1;
                   1097: }
                   1098: static int sha384_final(EVP_MD_CTX *ctx, unsigned char *md)
                   1099: {
                   1100:   SHA384_Final(md, data(ctx));
                   1101:   return 1;
                   1102: }
                   1103: #undef data
                   1104: 
                   1105: /* SHA512 */
                   1106: #define data(ctx) ((SHA512_CTX *)(ctx)->md_data)
                   1107: static int sha512_init(EVP_MD_CTX *ctx)
                   1108: {
                   1109:   SHA512_Init(data(ctx));
                   1110:   return 1;
                   1111: }
                   1112: static int sha512_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
                   1113: {
                   1114:   SHA512_Update(data(ctx), data, count);
                   1115:   return 1;
                   1116: }
                   1117: static int sha512_final(EVP_MD_CTX *ctx, unsigned char *md)
                   1118: {
                   1119:   SHA512_Final(md, data(ctx));
                   1120:   return 1;
                   1121: }
                   1122: #undef data
                   1123: #endif
                   1124: 
                   1125: static struct env_md_st sha2_256_md = {
                   1126:        0, /*NID_sha1*/
                   1127:        0, /*NID_sha1WithRSAEncryption*/
                   1128:        SHA256_DIGEST_LENGTH,
                   1129: #ifdef HAVE_EVP_097
                   1130:        0,                      /* flags */
                   1131:        sha256_init,
                   1132:        sha256_update,
                   1133:        sha256_final,
                   1134:        NULL,                   /* copy */
                   1135:        NULL,                   /* cleanup */
                   1136: #else
                   1137:        SHA256_Init,
                   1138:        SHA256_Update,
                   1139:        SHA256_Final,
                   1140: #endif
                   1141:        NULL, NULL, {0, 0, 0, 0},
                   1142:        SHA256_BLOCK_LENGTH,
                   1143:        sizeof(struct env_md_st *) + sizeof(SHA256_CTX),
                   1144: };
                   1145: 
                   1146: struct env_md_st *EVP_sha2_256(void)
                   1147: {
                   1148:        return(&sha2_256_md);
                   1149: }
                   1150: 
                   1151: static struct env_md_st sha2_384_md = {
                   1152:        0, /*NID_sha1*/
                   1153:        0, /*NID_sha1WithRSAEncryption*/
                   1154:        SHA384_DIGEST_LENGTH,
                   1155: #ifdef HAVE_EVP_097
                   1156:        0,                      /* flags */
                   1157:        sha384_init,
                   1158:        sha384_update,
                   1159:        sha384_final,
                   1160:        NULL,                   /* copy */
                   1161:        NULL,                   /* cleanup */
                   1162: #else
                   1163:        SHA384_Init,
                   1164:        SHA384_Update,
                   1165:        SHA384_Final,
                   1166: #endif
                   1167:        NULL, NULL, {0, 0, 0, 0},
                   1168:        SHA384_BLOCK_LENGTH,
                   1169:        sizeof(struct env_md_st *) + sizeof(SHA384_CTX),
                   1170: };
                   1171: 
                   1172: struct env_md_st *EVP_sha2_384(void)
                   1173: {
                   1174:        return(&sha2_384_md);
                   1175: }
                   1176: 
                   1177: static struct env_md_st sha2_512_md = {
                   1178:        0, /*NID_sha1*/
                   1179:        0, /*NID_sha1WithRSAEncryption*/
                   1180:        SHA512_DIGEST_LENGTH,
                   1181: #ifdef HAVE_EVP_097
                   1182:        0,                      /* flags */
                   1183:        sha512_init,
                   1184:        sha512_update,
                   1185:        sha512_final,
                   1186:        NULL,                   /* copy */
                   1187:        NULL,                   /* cleanup */
                   1188: #else
                   1189:        SHA512_Init,
                   1190:        SHA512_Update,
                   1191:        SHA512_Final,
                   1192: #endif
                   1193:        NULL, NULL, {0, 0, 0, 0}, /*EVP_PKEY_RSA_method*/
                   1194:        SHA512_BLOCK_LENGTH,
                   1195:        sizeof(struct env_md_st *) + sizeof(SHA512_CTX),
                   1196: };
                   1197: 
                   1198: struct env_md_st *EVP_sha2_512(void)
                   1199: {
                   1200:        return(&sha2_512_md);
                   1201: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>