version 1.1, 2012/02/21 22:57:48
|
version 1.1.1.3, 2021/03/17 13:38:46
|
Line 1
|
Line 1
|
/* intprops.h -- properties of integer types |
/* intprops.h -- properties of integer types |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | Copyright (C) 2001-2019 Free Software Foundation, Inc. |
|
|
This program is free software: you can redistribute it and/or modify | This program is free software: you can redistribute it and/or modify it |
it under the terms of the GNU General Public License as published by | under the terms of the GNU General Public License as published |
the Free Software Foundation; either version 3 of the License, or | by the Free Software Foundation; either version 3 of the License, or |
(at your option) any later version. |
(at your option) any later version. |
|
|
This program is distributed in the hope that it will be useful, |
This program is distributed in the hope that it will be useful, |
Line 13
|
Line 13
|
GNU General Public License for more details. |
GNU General Public License for more details. |
|
|
You should have received a copy of the GNU General Public License |
You should have received a copy of the GNU General Public License |
along with this program. If not, see <http://www.gnu.org/licenses/>. */ | along with this program. If not, see <https://www.gnu.org/licenses/>. */ |
|
|
/* Written by Paul Eggert. */ |
/* Written by Paul Eggert. */ |
|
|
|
#ifndef _GL_INTPROPS_H |
|
#define _GL_INTPROPS_H |
|
|
#include <limits.h> |
#include <limits.h> |
|
|
|
/* Return a value with the common real type of E and V and the value of V. |
|
Do not evaluate E. */ |
|
#define _GL_INT_CONVERT(e, v) ((1 ? 0 : (e)) + (v)) |
|
|
|
/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see |
|
<https://lists.gnu.org/r/bug-gnulib/2011-05/msg00406.html>. */ |
|
#define _GL_INT_NEGATE_CONVERT(e, v) ((1 ? 0 : (e)) - (v)) |
|
|
/* The extra casts in the following macros work around compiler bugs, |
/* The extra casts in the following macros work around compiler bugs, |
e.g., in Cray C 5.0.3.0. */ |
e.g., in Cray C 5.0.3.0. */ |
|
|
Line 26
|
Line 37
|
an integer. */ |
an integer. */ |
#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) |
#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) |
|
|
/* True if negative values of the signed integer type T use two's | /* True if the real type T is signed. */ |
complement, ones' complement, or signed magnitude representation, | |
respectively. Much GNU code assumes two's complement, but some | |
people like to be portable to all possible C hosts. */ | |
#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1) | |
#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0) | |
#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1) | |
| |
/* True if the arithmetic type T is signed. */ | |
#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) |
#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) |
|
|
/* The maximum and minimum values for the integer type T. These | /* Return 1 if the real expression E, after promotion, has a |
macros have undefined behavior if T is signed and has padding bits. | signed or floating type. Do not evaluate E. */ |
If this is a problem for you, please let us know how to fix it for | #define EXPR_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0) |
your host. */ | |
#define TYPE_MINIMUM(t) \ | |
((t) (! TYPE_SIGNED (t) \ | |
? (t) 0 \ | |
: TYPE_SIGNED_MAGNITUDE (t) \ | |
? ~ (t) 0 \ | |
: ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))) | |
#define TYPE_MAXIMUM(t) \ | |
((t) (! TYPE_SIGNED (t) \ | |
? (t) -1 \ | |
: ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))) | |
|
|
/* Return zero if T can be determined to be an unsigned type. | |
Otherwise, return 1. | /* Minimum and maximum values for integer types and expressions. */ |
When compiling with GCC, INT_STRLEN_BOUND uses this macro to obtain a | |
tighter bound. Otherwise, it overestimates the true bound by one byte | /* The width in bits of the integer type or expression T. |
when applied to unsigned types of size 2, 4, 16, ... bytes. | Do not evaluate T. |
The symbol signed_type_or_expr__ is private to this header file. */ | Padding bits are not supported; this is checked at compile-time below. */ |
#if __GNUC__ >= 2 | #define TYPE_WIDTH(t) (sizeof (t) * CHAR_BIT) |
# define signed_type_or_expr__(t) TYPE_SIGNED (__typeof__ (t)) | |
| /* The maximum and minimum values for the integer type T. */ |
| #define TYPE_MINIMUM(t) ((t) ~ TYPE_MAXIMUM (t)) |
| #define TYPE_MAXIMUM(t) \ |
| ((t) (! TYPE_SIGNED (t) \ |
| ? (t) -1 \ |
| : ((((t) 1 << (TYPE_WIDTH (t) - 2)) - 1) * 2 + 1))) |
| |
| /* The maximum and minimum values for the type of the expression E, |
| after integer promotion. E is not evaluated. */ |
| #define _GL_INT_MINIMUM(e) \ |
| (EXPR_SIGNED (e) \ |
| ? ~ _GL_SIGNED_INT_MAXIMUM (e) \ |
| : _GL_INT_CONVERT (e, 0)) |
| #define _GL_INT_MAXIMUM(e) \ |
| (EXPR_SIGNED (e) \ |
| ? _GL_SIGNED_INT_MAXIMUM (e) \ |
| : _GL_INT_NEGATE_CONVERT (e, 1)) |
| #define _GL_SIGNED_INT_MAXIMUM(e) \ |
| (((_GL_INT_CONVERT (e, 1) << (TYPE_WIDTH ((e) + 0) - 2)) - 1) * 2 + 1) |
| |
| /* Work around OpenVMS incompatibility with C99. */ |
| #if !defined LLONG_MAX && defined __INT64_MAX |
| # define LLONG_MAX __INT64_MAX |
| # define LLONG_MIN __INT64_MIN |
| #endif |
| |
| /* This include file assumes that signed types are two's complement without |
| padding bits; the above macros have undefined behavior otherwise. |
| If this is a problem for you, please let us know how to fix it for your host. |
| This assumption is tested by the intprops-tests module. */ |
| |
| /* Does the __typeof__ keyword work? This could be done by |
| 'configure', but for now it's easier to do it by hand. */ |
| #if (2 <= __GNUC__ \ |
| || (1210 <= __IBMC__ && defined __IBM__TYPEOF__) \ |
| || (0x5110 <= __SUNPRO_C && !__STDC__)) |
| # define _GL_HAVE___TYPEOF__ 1 |
#else |
#else |
# define signed_type_or_expr__(t) 1 | # define _GL_HAVE___TYPEOF__ 0 |
#endif |
#endif |
|
|
|
/* Return 1 if the integer type or expression T might be signed. Return 0 |
|
if it is definitely unsigned. This macro does not evaluate its argument, |
|
and expands to an integer constant expression. */ |
|
#if _GL_HAVE___TYPEOF__ |
|
# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t)) |
|
#else |
|
# define _GL_SIGNED_TYPE_OR_EXPR(t) 1 |
|
#endif |
|
|
|
/* Bound on length of the string representing an unsigned integer |
|
value representable in B bits. log10 (2.0) < 146/485. The |
|
smallest value of B where this bound is not tight is 2621. */ |
|
#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485) |
|
|
/* Bound on length of the string representing an integer type or expression T. |
/* Bound on length of the string representing an integer type or expression T. |
Subtract 1 for the sign bit if T is signed; log10 (2.0) < 146/485; | Subtract 1 for the sign bit if T is signed, and then add 1 more for |
add 1 for integer division truncation; add 1 more for a minus sign | a minus sign if needed. |
if needed. */ | |
#define INT_STRLEN_BOUND(t) \ | |
((sizeof (t) * CHAR_BIT - signed_type_or_expr__ (t)) * 146 / 485 \ | |
+ signed_type_or_expr__ (t) + 1) | |
|
|
|
Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is |
|
signed, this macro may overestimate the true bound by one byte when |
|
applied to unsigned types of size 2, 4, 16, ... bytes. */ |
|
#define INT_STRLEN_BOUND(t) \ |
|
(INT_BITS_STRLEN_BOUND (TYPE_WIDTH (t) - _GL_SIGNED_TYPE_OR_EXPR (t)) \ |
|
+ _GL_SIGNED_TYPE_OR_EXPR (t)) |
|
|
/* Bound on buffer size needed to represent an integer type or expression T, |
/* Bound on buffer size needed to represent an integer type or expression T, |
including the terminating null. */ |
including the terminating null. */ |
#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1) |
#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1) |
|
|
|
|
|
/* Range overflow checks. |
|
|
|
The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C |
|
operators might not yield numerically correct answers due to |
|
arithmetic overflow. They do not rely on undefined or |
|
implementation-defined behavior. Their implementations are simple |
|
and straightforward, but they are a bit harder to use than the |
|
INT_<op>_OVERFLOW macros described below. |
|
|
|
Example usage: |
|
|
|
long int i = ...; |
|
long int j = ...; |
|
if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX)) |
|
printf ("multiply would overflow"); |
|
else |
|
printf ("product is %ld", i * j); |
|
|
|
Restrictions on *_RANGE_OVERFLOW macros: |
|
|
|
These macros do not check for all possible numerical problems or |
|
undefined or unspecified behavior: they do not check for division |
|
by zero, for bad shift counts, or for shifting negative numbers. |
|
|
|
These macros may evaluate their arguments zero or multiple times, |
|
so the arguments should not have side effects. The arithmetic |
|
arguments (including the MIN and MAX arguments) must be of the same |
|
integer type after the usual arithmetic conversions, and the type |
|
must have minimum value MIN and maximum MAX. Unsigned types should |
|
use a zero MIN of the proper type. |
|
|
|
These macros are tuned for constant MIN and MAX. For commutative |
|
operations such as A + B, they are also tuned for constant B. */ |
|
|
|
/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. */ |
|
#define INT_ADD_RANGE_OVERFLOW(a, b, min, max) \ |
|
((b) < 0 \ |
|
? (a) < (min) - (b) \ |
|
: (max) - (b) < (a)) |
|
|
|
/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. */ |
|
#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max) \ |
|
((b) < 0 \ |
|
? (max) + (b) < (a) \ |
|
: (a) < (min) + (b)) |
|
|
|
/* Return 1 if - A would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. */ |
|
#define INT_NEGATE_RANGE_OVERFLOW(a, min, max) \ |
|
((min) < 0 \ |
|
? (a) < - (max) \ |
|
: 0 < (a)) |
|
|
|
/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. Avoid && and || as they tickle |
|
bugs in Sun C 5.11 2010/08/13 and other compilers; see |
|
<https://lists.gnu.org/r/bug-gnulib/2011-05/msg00401.html>. */ |
|
#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max) \ |
|
((b) < 0 \ |
|
? ((a) < 0 \ |
|
? (a) < (max) / (b) \ |
|
: (b) == -1 \ |
|
? 0 \ |
|
: (min) / (b) < (a)) \ |
|
: (b) == 0 \ |
|
? 0 \ |
|
: ((a) < 0 \ |
|
? (a) < (min) / (b) \ |
|
: (max) / (b) < (a))) |
|
|
|
/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. Do not check for division by zero. */ |
|
#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max) \ |
|
((min) < 0 && (b) == -1 && (a) < - (max)) |
|
|
|
/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. Do not check for division by zero. |
|
Mathematically, % should never overflow, but on x86-like hosts |
|
INT_MIN % -1 traps, and the C standard permits this, so treat this |
|
as an overflow too. */ |
|
#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max) \ |
|
INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max) |
|
|
|
/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic. |
|
See above for restrictions. Here, MIN and MAX are for A only, and B need |
|
not be of the same type as the other arguments. The C standard says that |
|
behavior is undefined for shifts unless 0 <= B < wordwidth, and that when |
|
A is negative then A << B has undefined behavior and A >> B has |
|
implementation-defined behavior, but do not check these other |
|
restrictions. */ |
|
#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max) \ |
|
((a) < 0 \ |
|
? (a) < (min) >> (b) \ |
|
: (max) >> (b) < (a)) |
|
|
|
/* True if __builtin_add_overflow (A, B, P) works when P is non-null. */ |
|
#if 5 <= __GNUC__ && !defined __ICC |
|
# define _GL_HAS_BUILTIN_OVERFLOW 1 |
|
#else |
|
# define _GL_HAS_BUILTIN_OVERFLOW 0 |
|
#endif |
|
|
|
/* True if __builtin_add_overflow_p (A, B, C) works. */ |
|
#define _GL_HAS_BUILTIN_OVERFLOW_P (7 <= __GNUC__) |
|
|
|
/* The _GL*_OVERFLOW macros have the same restrictions as the |
|
*_RANGE_OVERFLOW macros, except that they do not assume that operands |
|
(e.g., A and B) have the same type as MIN and MAX. Instead, they assume |
|
that the result (e.g., A + B) has that type. */ |
|
#if _GL_HAS_BUILTIN_OVERFLOW_P |
|
# define _GL_ADD_OVERFLOW(a, b, min, max) \ |
|
__builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0) |
|
# define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \ |
|
__builtin_sub_overflow_p (a, b, (__typeof__ ((a) - (b))) 0) |
|
# define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \ |
|
__builtin_mul_overflow_p (a, b, (__typeof__ ((a) * (b))) 0) |
|
#else |
|
# define _GL_ADD_OVERFLOW(a, b, min, max) \ |
|
((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max) \ |
|
: (a) < 0 ? (b) <= (a) + (b) \ |
|
: (b) < 0 ? (a) <= (a) + (b) \ |
|
: (a) + (b) < (b)) |
|
# define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \ |
|
((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max) \ |
|
: (a) < 0 ? 1 \ |
|
: (b) < 0 ? (a) - (b) <= (a) \ |
|
: (a) < (b)) |
|
# define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \ |
|
(((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a)))) \ |
|
|| INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max)) |
|
#endif |
|
#define _GL_DIVIDE_OVERFLOW(a, b, min, max) \ |
|
((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \ |
|
: (a) < 0 ? (b) <= (a) + (b) - 1 \ |
|
: (b) < 0 && (a) + (b) <= (a)) |
|
#define _GL_REMAINDER_OVERFLOW(a, b, min, max) \ |
|
((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \ |
|
: (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b) \ |
|
: (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max)) |
|
|
|
/* Return a nonzero value if A is a mathematical multiple of B, where |
|
A is unsigned, B is negative, and MAX is the maximum value of A's |
|
type. A's type must be the same as (A % B)'s type. Normally (A % |
|
-B == 0) suffices, but things get tricky if -B would overflow. */ |
|
#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max) \ |
|
(((b) < -_GL_SIGNED_INT_MAXIMUM (b) \ |
|
? (_GL_SIGNED_INT_MAXIMUM (b) == (max) \ |
|
? (a) \ |
|
: (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1)) \ |
|
: (a) % - (b)) \ |
|
== 0) |
|
|
|
/* Check for integer overflow, and report low order bits of answer. |
|
|
|
The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators |
|
might not yield numerically correct answers due to arithmetic overflow. |
|
The INT_<op>_WRAPV macros also store the low-order bits of the answer. |
|
These macros work correctly on all known practical hosts, and do not rely |
|
on undefined behavior due to signed arithmetic overflow. |
|
|
|
Example usage, assuming A and B are long int: |
|
|
|
if (INT_MULTIPLY_OVERFLOW (a, b)) |
|
printf ("result would overflow\n"); |
|
else |
|
printf ("result is %ld (no overflow)\n", a * b); |
|
|
|
Example usage with WRAPV flavor: |
|
|
|
long int result; |
|
bool overflow = INT_MULTIPLY_WRAPV (a, b, &result); |
|
printf ("result is %ld (%s)\n", result, |
|
overflow ? "after overflow" : "no overflow"); |
|
|
|
Restrictions on these macros: |
|
|
|
These macros do not check for all possible numerical problems or |
|
undefined or unspecified behavior: they do not check for division |
|
by zero, for bad shift counts, or for shifting negative numbers. |
|
|
|
These macros may evaluate their arguments zero or multiple times, so the |
|
arguments should not have side effects. |
|
|
|
The WRAPV macros are not constant expressions. They support only |
|
+, binary -, and *. The result type must be signed. |
|
|
|
These macros are tuned for their last argument being a constant. |
|
|
|
Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B, |
|
A % B, and A << B would overflow, respectively. */ |
|
|
|
#define INT_ADD_OVERFLOW(a, b) \ |
|
_GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW) |
|
#define INT_SUBTRACT_OVERFLOW(a, b) \ |
|
_GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW) |
|
#if _GL_HAS_BUILTIN_OVERFLOW_P |
|
# define INT_NEGATE_OVERFLOW(a) INT_SUBTRACT_OVERFLOW (0, a) |
|
#else |
|
# define INT_NEGATE_OVERFLOW(a) \ |
|
INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a)) |
|
#endif |
|
#define INT_MULTIPLY_OVERFLOW(a, b) \ |
|
_GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW) |
|
#define INT_DIVIDE_OVERFLOW(a, b) \ |
|
_GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW) |
|
#define INT_REMAINDER_OVERFLOW(a, b) \ |
|
_GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW) |
|
#define INT_LEFT_SHIFT_OVERFLOW(a, b) \ |
|
INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \ |
|
_GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a)) |
|
|
|
/* Return 1 if the expression A <op> B would overflow, |
|
where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test, |
|
assuming MIN and MAX are the minimum and maximum for the result type. |
|
Arguments should be free of side effects. */ |
|
#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow) \ |
|
op_result_overflow (a, b, \ |
|
_GL_INT_MINIMUM (_GL_INT_CONVERT (a, b)), \ |
|
_GL_INT_MAXIMUM (_GL_INT_CONVERT (a, b))) |
|
|
|
/* Store the low-order bits of A + B, A - B, A * B, respectively, into *R. |
|
Return 1 if the result overflows. See above for restrictions. */ |
|
#define INT_ADD_WRAPV(a, b, r) \ |
|
_GL_INT_OP_WRAPV (a, b, r, +, __builtin_add_overflow, INT_ADD_OVERFLOW) |
|
#define INT_SUBTRACT_WRAPV(a, b, r) \ |
|
_GL_INT_OP_WRAPV (a, b, r, -, __builtin_sub_overflow, INT_SUBTRACT_OVERFLOW) |
|
#define INT_MULTIPLY_WRAPV(a, b, r) \ |
|
_GL_INT_OP_WRAPV (a, b, r, *, __builtin_mul_overflow, INT_MULTIPLY_OVERFLOW) |
|
|
|
/* Nonzero if this compiler has GCC bug 68193 or Clang bug 25390. See: |
|
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68193 |
|
https://llvm.org/bugs/show_bug.cgi?id=25390 |
|
For now, assume all versions of GCC-like compilers generate bogus |
|
warnings for _Generic. This matters only for older compilers that |
|
lack __builtin_add_overflow. */ |
|
#if __GNUC__ |
|
# define _GL__GENERIC_BOGUS 1 |
|
#else |
|
# define _GL__GENERIC_BOGUS 0 |
|
#endif |
|
|
|
/* Store the low-order bits of A <op> B into *R, where OP specifies |
|
the operation. BUILTIN is the builtin operation, and OVERFLOW the |
|
overflow predicate. Return 1 if the result overflows. See above |
|
for restrictions. */ |
|
#if _GL_HAS_BUILTIN_OVERFLOW |
|
# define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) builtin (a, b, r) |
|
#elif 201112 <= __STDC_VERSION__ && !_GL__GENERIC_BOGUS |
|
# define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) \ |
|
(_Generic \ |
|
(*(r), \ |
|
signed char: \ |
|
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
|
signed char, SCHAR_MIN, SCHAR_MAX), \ |
|
short int: \ |
|
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
|
short int, SHRT_MIN, SHRT_MAX), \ |
|
int: \ |
|
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
|
int, INT_MIN, INT_MAX), \ |
|
long int: \ |
|
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \ |
|
long int, LONG_MIN, LONG_MAX), \ |
|
long long int: \ |
|
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long long int, \ |
|
long long int, LLONG_MIN, LLONG_MAX))) |
|
#else |
|
# define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) \ |
|
(sizeof *(r) == sizeof (signed char) \ |
|
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
|
signed char, SCHAR_MIN, SCHAR_MAX) \ |
|
: sizeof *(r) == sizeof (short int) \ |
|
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
|
short int, SHRT_MIN, SHRT_MAX) \ |
|
: sizeof *(r) == sizeof (int) \ |
|
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
|
int, INT_MIN, INT_MAX) \ |
|
: _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow)) |
|
# ifdef LLONG_MAX |
|
# define _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow) \ |
|
(sizeof *(r) == sizeof (long int) \ |
|
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \ |
|
long int, LONG_MIN, LONG_MAX) \ |
|
: _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long long int, \ |
|
long long int, LLONG_MIN, LLONG_MAX)) |
|
# else |
|
# define _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow) \ |
|
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \ |
|
long int, LONG_MIN, LONG_MAX) |
|
# endif |
|
#endif |
|
|
|
/* Store the low-order bits of A <op> B into *R, where the operation |
|
is given by OP. Use the unsigned type UT for calculation to avoid |
|
overflow problems. *R's type is T, with extrema TMIN and TMAX. |
|
T must be a signed integer type. Return 1 if the result overflows. */ |
|
#define _GL_INT_OP_CALC(a, b, r, op, overflow, ut, t, tmin, tmax) \ |
|
(sizeof ((a) op (b)) < sizeof (t) \ |
|
? _GL_INT_OP_CALC1 ((t) (a), (t) (b), r, op, overflow, ut, t, tmin, tmax) \ |
|
: _GL_INT_OP_CALC1 (a, b, r, op, overflow, ut, t, tmin, tmax)) |
|
#define _GL_INT_OP_CALC1(a, b, r, op, overflow, ut, t, tmin, tmax) \ |
|
((overflow (a, b) \ |
|
|| (EXPR_SIGNED ((a) op (b)) && ((a) op (b)) < (tmin)) \ |
|
|| (tmax) < ((a) op (b))) \ |
|
? (*(r) = _GL_INT_OP_WRAPV_VIA_UNSIGNED (a, b, op, ut, t), 1) \ |
|
: (*(r) = _GL_INT_OP_WRAPV_VIA_UNSIGNED (a, b, op, ut, t), 0)) |
|
|
|
/* Return the low-order bits of A <op> B, where the operation is given |
|
by OP. Use the unsigned type UT for calculation to avoid undefined |
|
behavior on signed integer overflow, and convert the result to type T. |
|
UT is at least as wide as T and is no narrower than unsigned int, |
|
T is two's complement, and there is no padding or trap representations. |
|
Assume that converting UT to T yields the low-order bits, as is |
|
done in all known two's-complement C compilers. E.g., see: |
|
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html |
|
|
|
According to the C standard, converting UT to T yields an |
|
implementation-defined result or signal for values outside T's |
|
range. However, code that works around this theoretical problem |
|
runs afoul of a compiler bug in Oracle Studio 12.3 x86. See: |
|
https://lists.gnu.org/r/bug-gnulib/2017-04/msg00049.html |
|
As the compiler bug is real, don't try to work around the |
|
theoretical problem. */ |
|
|
|
#define _GL_INT_OP_WRAPV_VIA_UNSIGNED(a, b, op, ut, t) \ |
|
((t) ((ut) (a) op (ut) (b))) |
|
|
|
#endif /* _GL_INTPROPS_H */ |