File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / libxml2 / timsort.h
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Sun Jun 15 19:53:30 2014 UTC (10 years ago) by misho
Branches: libxml2, MAIN
CVS tags: v2_9_1p0, v2_9_1, HEAD
libxml2 2.9.1

    1: /*
    2:  * taken from https://github.com/swenson/sort
    3:  * Kept as is for the moment to be able to apply upstream patches for that
    4:  * code, currently used only to speed up XPath node sorting, see xpath.c
    5:  */
    6: 
    7: /*
    8:  * All code in this header, unless otherwise specified, is hereby licensed under the MIT Public License:
    9: 
   10: Copyright (c) 2010 Christopher Swenson
   11: 
   12: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
   13: 
   14: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
   15: 
   16: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
   17: */
   18: 
   19: #include <stdlib.h>
   20: #include <stdio.h>
   21: #include <string.h>
   22: #ifdef HAVE_STDINT_H
   23: #include <stdint.h>
   24: #else
   25: #ifdef HAVE_INTTYPES_H
   26: #include <inttypes.h>
   27: #elif defined(WIN32)
   28: typedef __int64 int64_t;
   29: typedef unsigned __int64 uint64_t;
   30: #endif
   31: #endif
   32: 
   33: #ifndef MK_UINT64
   34: #if defined(WIN32) && defined(_MSC_VER) && _MSC_VER < 1300
   35: #define MK_UINT64(x) ((uint64_t)(x))
   36: #else
   37: #define MK_UINT64(x) x##ULL
   38: #endif
   39: #endif
   40: 
   41: #ifndef MAX
   42: #define MAX(x,y) (((x) > (y) ? (x) : (y)))
   43: #endif
   44: #ifndef MIN
   45: #define MIN(x,y) (((x) < (y) ? (x) : (y)))
   46: #endif
   47: 
   48: int compute_minrun(uint64_t);
   49: 
   50: #ifndef CLZ
   51: #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
   52: #define CLZ __builtin_clzll
   53: #else
   54: 
   55: int clzll(uint64_t);
   56: 
   57: /* adapted from Hacker's Delight */
   58: int clzll(uint64_t x) /* {{{ */
   59: {
   60:   int n;
   61: 
   62:   if (x == 0) return(64);
   63:   n = 0;
   64:   if (x <= 0x00000000FFFFFFFFL) {n = n + 32; x = x << 32;}
   65:   if (x <= 0x0000FFFFFFFFFFFFL) {n = n + 16; x = x << 16;}
   66:   if (x <= 0x00FFFFFFFFFFFFFFL) {n = n + 8; x = x << 8;}
   67:   if (x <= 0x0FFFFFFFFFFFFFFFL) {n = n + 4; x = x << 4;}
   68:   if (x <= 0x3FFFFFFFFFFFFFFFL) {n = n + 2; x = x << 2;}
   69:   if (x <= 0x7FFFFFFFFFFFFFFFL) {n = n + 1;}
   70:   return n;
   71: }
   72: /* }}} */
   73: 
   74: #define CLZ clzll
   75: #endif
   76: #endif
   77: 
   78: int compute_minrun(uint64_t size) /* {{{ */
   79: {
   80:   const int top_bit = 64 - CLZ(size);
   81:   const int shift = MAX(top_bit, 6) - 6;
   82:   const int minrun = size >> shift;
   83:   const uint64_t mask = (MK_UINT64(1) << shift) - 1;
   84:   if (mask & size) return minrun + 1;
   85:   return minrun;
   86: }
   87: /* }}} */
   88: 
   89: #ifndef SORT_NAME
   90: #error "Must declare SORT_NAME"
   91: #endif
   92: 
   93: #ifndef SORT_TYPE
   94: #error "Must declare SORT_TYPE"
   95: #endif
   96: 
   97: #ifndef SORT_CMP
   98: #define SORT_CMP(x, y)  ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
   99: #endif
  100: 
  101: 
  102: #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
  103: 
  104: #define SORT_CONCAT(x, y) x ## _ ## y
  105: #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
  106: #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
  107: 
  108: #define BINARY_INSERTION_FIND  SORT_MAKE_STR(binary_insertion_find)
  109: #define BINARY_INSERTION_SORT_START SORT_MAKE_STR(binary_insertion_sort_start)
  110: #define BINARY_INSERTION_SORT  SORT_MAKE_STR(binary_insertion_sort)
  111: #define REVERSE_ELEMENTS       SORT_MAKE_STR(reverse_elements)
  112: #define COUNT_RUN              SORT_MAKE_STR(count_run)
  113: #define CHECK_INVARIANT        SORT_MAKE_STR(check_invariant)
  114: #define TIM_SORT               SORT_MAKE_STR(tim_sort)
  115: #define TIM_SORT_RESIZE        SORT_MAKE_STR(tim_sort_resize)
  116: #define TIM_SORT_MERGE         SORT_MAKE_STR(tim_sort_merge)
  117: #define TIM_SORT_COLLAPSE      SORT_MAKE_STR(tim_sort_collapse)
  118: 
  119: #define TIM_SORT_RUN_T         SORT_MAKE_STR(tim_sort_run_t)
  120: #define TEMP_STORAGE_T         SORT_MAKE_STR(temp_storage_t)
  121: 
  122: typedef struct {
  123:   int64_t start;
  124:   int64_t length;
  125: } TIM_SORT_RUN_T;
  126: 
  127: void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
  128: void TIM_SORT(SORT_TYPE *dst, const size_t size);
  129: 
  130: /* Function used to do a binary search for binary insertion sort */
  131: static int64_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x, const size_t size)
  132: {
  133:   int64_t l, c, r;
  134:   SORT_TYPE lx;
  135:   SORT_TYPE cx;
  136:   l = 0;
  137:   r = size - 1;
  138:   c = r >> 1;
  139:   lx = dst[l];
  140: 
  141:   /* check for beginning conditions */
  142:   if (SORT_CMP(x, lx) < 0)
  143:     return 0;
  144:   else if (SORT_CMP(x, lx) == 0)
  145:   {
  146:     int64_t i = 1;
  147:     while (SORT_CMP(x, dst[i]) == 0) i++;
  148:     return i;
  149:   }
  150: 
  151:   cx = dst[c];
  152:   while (1)
  153:   {
  154:     const int val = SORT_CMP(x, cx);
  155:     if (val < 0)
  156:     {
  157:       if (c - l <= 1) return c;
  158:       r = c;
  159:     }
  160:     else if (val > 0)
  161:     {
  162:       if (r - c <= 1) return c + 1;
  163:       l = c;
  164:       lx = cx;
  165:     }
  166:     else
  167:     {
  168:       do
  169:       {
  170:         cx = dst[++c];
  171:       } while (SORT_CMP(x, cx) == 0);
  172:       return c;
  173:     }
  174:     c = l + ((r - l) >> 1);
  175:     cx = dst[c];
  176:   }
  177: }
  178: 
  179: /* Binary insertion sort, but knowing that the first "start" entries are sorted.  Used in timsort. */
  180: static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size)
  181: {
  182:   int64_t i;
  183:   for (i = start; i < (int64_t) size; i++)
  184:   {
  185:     int64_t j;
  186:     SORT_TYPE x;
  187:     int64_t location;
  188:     /* If this entry is already correct, just move along */
  189:     if (SORT_CMP(dst[i - 1], dst[i]) <= 0) continue;
  190: 
  191:     /* Else we need to find the right place, shift everything over, and squeeze in */
  192:     x = dst[i];
  193:     location = BINARY_INSERTION_FIND(dst, x, i);
  194:     for (j = i - 1; j >= location; j--)
  195:     {
  196:       dst[j + 1] = dst[j];
  197:     }
  198:     dst[location] = x;
  199:   }
  200: }
  201: 
  202: /* Binary insertion sort */
  203: void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size)
  204: {
  205:   BINARY_INSERTION_SORT_START(dst, 1, size);
  206: }
  207: 
  208: /* timsort implementation, based on timsort.txt */
  209: 
  210: static void REVERSE_ELEMENTS(SORT_TYPE *dst, int64_t start, int64_t end)
  211: {
  212:   while (1)
  213:   {
  214:     if (start >= end) return;
  215:     SORT_SWAP(dst[start], dst[end]);
  216:     start++;
  217:     end--;
  218:   }
  219: }
  220: 
  221: static int64_t COUNT_RUN(SORT_TYPE *dst, const int64_t start, const size_t size)
  222: {
  223:   int64_t curr;
  224:   if (size - start == 1) return 1;
  225:   if (start >= (int64_t) size - 2)
  226:   {
  227:     if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0)
  228:       SORT_SWAP(dst[size - 2], dst[size - 1]);
  229:     return 2;
  230:   }
  231: 
  232:   curr = start + 2;
  233: 
  234:   if (SORT_CMP(dst[start], dst[start + 1]) <= 0)
  235:   {
  236:     /* increasing run */
  237:     while (1)
  238:     {
  239:       if (curr == (int64_t) size - 1) break;
  240:       if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) break;
  241:       curr++;
  242:     }
  243:     return curr - start;
  244:   }
  245:   else
  246:   {
  247:     /* decreasing run */
  248:     while (1)
  249:     {
  250:       if (curr == (int64_t) size - 1) break;
  251:       if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) break;
  252:       curr++;
  253:     }
  254:     /* reverse in-place */
  255:     REVERSE_ELEMENTS(dst, start, curr - 1);
  256:     return curr - start;
  257:   }
  258: }
  259: 
  260: #define PUSH_NEXT() do {\
  261: len = COUNT_RUN(dst, curr, size);\
  262: run = minrun;\
  263: if (run < minrun) run = minrun;\
  264: if (run > (int64_t) size - curr) run = size - curr;\
  265: if (run > len)\
  266: {\
  267:   BINARY_INSERTION_SORT_START(&dst[curr], len, run);\
  268:   len = run;\
  269: }\
  270: {\
  271: run_stack[stack_curr].start = curr;\
  272: run_stack[stack_curr].length = len;\
  273: stack_curr++;\
  274: }\
  275: curr += len;\
  276: if (curr == (int64_t) size)\
  277: {\
  278:   /* finish up */ \
  279:   while (stack_curr > 1) \
  280:   { \
  281:     TIM_SORT_MERGE(dst, run_stack, stack_curr, store); \
  282:     run_stack[stack_curr - 2].length += run_stack[stack_curr - 1].length; \
  283:     stack_curr--; \
  284:   } \
  285:   if (store->storage != NULL)\
  286:   {\
  287:     free(store->storage);\
  288:     store->storage = NULL;\
  289:   }\
  290:   return;\
  291: }\
  292: }\
  293: while (0)
  294: 
  295: static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr)
  296: {
  297:   int64_t A, B, C;
  298:   if (stack_curr < 2) return 1;
  299:   if (stack_curr == 2)
  300:   {
  301:     const int64_t A1 = stack[stack_curr - 2].length;
  302:     const int64_t B1 = stack[stack_curr - 1].length;
  303:     if (A1 <= B1) return 0;
  304:     return 1;
  305:   }
  306:   A = stack[stack_curr - 3].length;
  307:   B = stack[stack_curr - 2].length;
  308:   C = stack[stack_curr - 1].length;
  309:   if ((A <= B + C) || (B <= C)) return 0;
  310:   return 1;
  311: }
  312: 
  313: typedef struct {
  314:   size_t alloc;
  315:   SORT_TYPE *storage;
  316: } TEMP_STORAGE_T;
  317: 
  318: 
  319: static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size)
  320: {
  321:   if (store->alloc < new_size)
  322:   {
  323:     SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
  324:     if (tempstore == NULL)
  325:     {
  326:       fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes", sizeof(SORT_TYPE) * new_size);
  327:       exit(1);
  328:     }
  329:     store->storage = tempstore;
  330:     store->alloc = new_size;
  331:   }
  332: }
  333: 
  334: static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr, TEMP_STORAGE_T *store)
  335: {
  336:   const int64_t A = stack[stack_curr - 2].length;
  337:   const int64_t B = stack[stack_curr - 1].length;
  338:   const int64_t curr = stack[stack_curr - 2].start;
  339:   SORT_TYPE *storage;
  340:   int64_t i, j, k;
  341: 
  342:   TIM_SORT_RESIZE(store, MIN(A, B));
  343:   storage = store->storage;
  344: 
  345:   /* left merge */
  346:   if (A < B)
  347:   {
  348:     memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
  349:     i = 0;
  350:     j = curr + A;
  351: 
  352:     for (k = curr; k < curr + A + B; k++)
  353:     {
  354:       if ((i < A) && (j < curr + A + B))
  355:       {
  356:         if (SORT_CMP(storage[i], dst[j]) <= 0)
  357:           dst[k] = storage[i++];
  358:         else
  359:           dst[k] = dst[j++];
  360:       }
  361:       else if (i < A)
  362:       {
  363:         dst[k] = storage[i++];
  364:       }
  365:       else
  366:         dst[k] = dst[j++];
  367:     }
  368:   }
  369:   /* right merge */
  370:   else
  371:   {
  372:     memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
  373:     i = B - 1;
  374:     j = curr + A - 1;
  375: 
  376:     for (k = curr + A + B - 1; k >= curr; k--)
  377:     {
  378:       if ((i >= 0) && (j >= curr))
  379:       {
  380:           if (SORT_CMP(dst[j], storage[i]) > 0)
  381:             dst[k] = dst[j--];
  382:           else
  383:             dst[k] = storage[i--];
  384:       }
  385:       else if (i >= 0)
  386:         dst[k] = storage[i--];
  387:       else
  388:         dst[k] = dst[j--];
  389:     }
  390:   }
  391: }
  392: 
  393: static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr, TEMP_STORAGE_T *store, const size_t size)
  394: {
  395:   while (1)
  396:   {
  397:     int64_t A, B, C;
  398:     /* if the stack only has one thing on it, we are done with the collapse */
  399:     if (stack_curr <= 1) break;
  400:     /* if this is the last merge, just do it */
  401:     if ((stack_curr == 2) &&
  402:         (stack[0].length + stack[1].length == (int64_t) size))
  403:     {
  404:       TIM_SORT_MERGE(dst, stack, stack_curr, store);
  405:       stack[0].length += stack[1].length;
  406:       stack_curr--;
  407:       break;
  408:     }
  409:     /* check if the invariant is off for a stack of 2 elements */
  410:     else if ((stack_curr == 2) && (stack[0].length <= stack[1].length))
  411:     {
  412:       TIM_SORT_MERGE(dst, stack, stack_curr, store);
  413:       stack[0].length += stack[1].length;
  414:       stack_curr--;
  415:       break;
  416:     }
  417:     else if (stack_curr == 2)
  418:       break;
  419: 
  420:     A = stack[stack_curr - 3].length;
  421:     B = stack[stack_curr - 2].length;
  422:     C = stack[stack_curr - 1].length;
  423: 
  424:     /* check first invariant */
  425:     if (A <= B + C)
  426:     {
  427:       if (A < C)
  428:       {
  429:         TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
  430:         stack[stack_curr - 3].length += stack[stack_curr - 2].length;
  431:         stack[stack_curr - 2] = stack[stack_curr - 1];
  432:         stack_curr--;
  433:       }
  434:       else
  435:       {
  436:         TIM_SORT_MERGE(dst, stack, stack_curr, store);
  437:         stack[stack_curr - 2].length += stack[stack_curr - 1].length;
  438:         stack_curr--;
  439:       }
  440:     }
  441:     /* check second invariant */
  442:     else if (B <= C)
  443:     {
  444:       TIM_SORT_MERGE(dst, stack, stack_curr, store);
  445:       stack[stack_curr - 2].length += stack[stack_curr - 1].length;
  446:       stack_curr--;
  447:     }
  448:     else
  449:       break;
  450:   }
  451:   return stack_curr;
  452: }
  453: 
  454: void TIM_SORT(SORT_TYPE *dst, const size_t size)
  455: {
  456:   int minrun;
  457:   TEMP_STORAGE_T _store, *store;
  458:   TIM_SORT_RUN_T run_stack[128];
  459:   int stack_curr = 0;
  460:   int64_t len, run;
  461:   int64_t curr = 0;
  462: 
  463:   if (size < 64)
  464:   {
  465:     BINARY_INSERTION_SORT(dst, size);
  466:     return;
  467:   }
  468: 
  469:   /* compute the minimum run length */
  470:   minrun = compute_minrun(size);
  471: 
  472:   /* temporary storage for merges */
  473:   store = &_store;
  474:   store->alloc = 0;
  475:   store->storage = NULL;
  476: 
  477:   PUSH_NEXT();
  478:   PUSH_NEXT();
  479:   PUSH_NEXT();
  480: 
  481:   while (1)
  482:   {
  483:     if (!CHECK_INVARIANT(run_stack, stack_curr))
  484:     {
  485:       stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
  486:       continue;
  487:     }
  488:     PUSH_NEXT();
  489:   }
  490: }
  491: 
  492: #undef SORT_CONCAT
  493: #undef SORT_MAKE_STR1
  494: #undef SORT_MAKE_STR
  495: #undef SORT_NAME
  496: #undef SORT_TYPE
  497: #undef SORT_CMP
  498: #undef TEMP_STORAGE_T
  499: #undef TIM_SORT_RUN_T
  500: #undef PUSH_NEXT
  501: #undef SORT_SWAP
  502: #undef SORT_CONCAT
  503: #undef SORT_MAKE_STR1
  504: #undef SORT_MAKE_STR
  505: #undef BINARY_INSERTION_FIND
  506: #undef BINARY_INSERTION_SORT_START
  507: #undef BINARY_INSERTION_SORT
  508: #undef REVERSE_ELEMENTS
  509: #undef COUNT_RUN
  510: #undef TIM_SORT
  511: #undef TIM_SORT_RESIZE
  512: #undef TIM_SORT_COLLAPSE
  513: #undef TIM_SORT_RUN_T
  514: #undef TEMP_STORAGE_T

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>