Annotation of embedaddon/libxml2/trionan.c, revision 1.1
1.1 ! misho 1: /*************************************************************************
! 2: *
! 3: * $Id$
! 4: *
! 5: * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
! 6: *
! 7: * Permission to use, copy, modify, and distribute this software for any
! 8: * purpose with or without fee is hereby granted, provided that the above
! 9: * copyright notice and this permission notice appear in all copies.
! 10: *
! 11: * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
! 12: * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
! 13: * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
! 14: * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
! 15: *
! 16: ************************************************************************
! 17: *
! 18: * Functions to handle special quantities in floating-point numbers
! 19: * (that is, NaNs and infinity). They provide the capability to detect
! 20: * and fabricate special quantities.
! 21: *
! 22: * Although written to be as portable as possible, it can never be
! 23: * guaranteed to work on all platforms, as not all hardware supports
! 24: * special quantities.
! 25: *
! 26: * The approach used here (approximately) is to:
! 27: *
! 28: * 1. Use C99 functionality when available.
! 29: * 2. Use IEEE 754 bit-patterns if possible.
! 30: * 3. Use platform-specific techniques.
! 31: *
! 32: ************************************************************************/
! 33:
! 34: /*
! 35: * TODO:
! 36: * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
! 37: * trio_isnan() etc.
! 38: */
! 39:
! 40: /*************************************************************************
! 41: * Include files
! 42: */
! 43: #include "triodef.h"
! 44: #include "trionan.h"
! 45:
! 46: #include <math.h>
! 47: #include <string.h>
! 48: #include <limits.h>
! 49: #include <float.h>
! 50: #if defined(TRIO_PLATFORM_UNIX)
! 51: # include <signal.h>
! 52: #endif
! 53: #if defined(TRIO_COMPILER_DECC)
! 54: # if defined(__linux__)
! 55: # include <cpml.h>
! 56: # else
! 57: # include <fp_class.h>
! 58: # endif
! 59: #endif
! 60: #include <assert.h>
! 61:
! 62: #if defined(TRIO_DOCUMENTATION)
! 63: # include "doc/doc_nan.h"
! 64: #endif
! 65: /** @addtogroup SpecialQuantities
! 66: @{
! 67: */
! 68:
! 69: /*************************************************************************
! 70: * Definitions
! 71: */
! 72:
! 73: #define TRIO_TRUE (1 == 1)
! 74: #define TRIO_FALSE (0 == 1)
! 75:
! 76: /*
! 77: * We must enable IEEE floating-point on Alpha
! 78: */
! 79: #if defined(__alpha) && !defined(_IEEE_FP)
! 80: # if defined(TRIO_COMPILER_DECC)
! 81: # if defined(TRIO_PLATFORM_VMS)
! 82: # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
! 83: # else
! 84: # if !defined(_CFE)
! 85: # error "Must be compiled with option -ieee"
! 86: # endif
! 87: # endif
! 88: # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
! 89: # error "Must be compiled with option -mieee"
! 90: # endif
! 91: #endif /* __alpha && ! _IEEE_FP */
! 92:
! 93: /*
! 94: * In ANSI/IEEE 754-1985 64-bits double format numbers have the
! 95: * following properties (amoungst others)
! 96: *
! 97: * o FLT_RADIX == 2: binary encoding
! 98: * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
! 99: * to indicate special numbers (e.g. NaN and Infinity), so the
! 100: * maximum exponent is 10 bits wide (2^10 == 1024).
! 101: * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
! 102: * numbers are normalized the initial binary 1 is represented
! 103: * implicitly (the so-called "hidden bit"), which leaves us with
! 104: * the ability to represent 53 bits wide mantissa.
! 105: */
! 106: #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
! 107: # define USE_IEEE_754
! 108: #endif
! 109:
! 110:
! 111: /*************************************************************************
! 112: * Constants
! 113: */
! 114:
! 115: static TRIO_CONST char rcsid[] = "@(#)$Id$";
! 116:
! 117: #if defined(USE_IEEE_754)
! 118:
! 119: /*
! 120: * Endian-agnostic indexing macro.
! 121: *
! 122: * The value of internalEndianMagic, when converted into a 64-bit
! 123: * integer, becomes 0x0706050403020100 (we could have used a 64-bit
! 124: * integer value instead of a double, but not all platforms supports
! 125: * that type). The value is automatically encoded with the correct
! 126: * endianess by the compiler, which means that we can support any
! 127: * kind of endianess. The individual bytes are then used as an index
! 128: * for the IEEE 754 bit-patterns and masks.
! 129: */
! 130: #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
! 131:
! 132: #if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
! 133: static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
! 134: #else
! 135: static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
! 136: #endif
! 137:
! 138: /* Mask for the exponent */
! 139: static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
! 140: 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
! 141: };
! 142:
! 143: /* Mask for the mantissa */
! 144: static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
! 145: 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
! 146: };
! 147:
! 148: /* Mask for the sign bit */
! 149: static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
! 150: 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
! 151: };
! 152:
! 153: /* Bit-pattern for negative zero */
! 154: static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
! 155: 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
! 156: };
! 157:
! 158: /* Bit-pattern for infinity */
! 159: static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
! 160: 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
! 161: };
! 162:
! 163: /* Bit-pattern for quiet NaN */
! 164: static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
! 165: 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
! 166: };
! 167:
! 168:
! 169: /*************************************************************************
! 170: * Functions
! 171: */
! 172:
! 173: /*
! 174: * trio_make_double
! 175: */
! 176: TRIO_PRIVATE double
! 177: trio_make_double
! 178: TRIO_ARGS1((values),
! 179: TRIO_CONST unsigned char *values)
! 180: {
! 181: TRIO_VOLATILE double result;
! 182: int i;
! 183:
! 184: for (i = 0; i < (int)sizeof(double); i++) {
! 185: ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
! 186: }
! 187: return result;
! 188: }
! 189:
! 190: /*
! 191: * trio_is_special_quantity
! 192: */
! 193: TRIO_PRIVATE int
! 194: trio_is_special_quantity
! 195: TRIO_ARGS2((number, has_mantissa),
! 196: double number,
! 197: int *has_mantissa)
! 198: {
! 199: unsigned int i;
! 200: unsigned char current;
! 201: int is_special_quantity = TRIO_TRUE;
! 202:
! 203: *has_mantissa = 0;
! 204:
! 205: for (i = 0; i < (unsigned int)sizeof(double); i++) {
! 206: current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
! 207: is_special_quantity
! 208: &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
! 209: *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
! 210: }
! 211: return is_special_quantity;
! 212: }
! 213:
! 214: /*
! 215: * trio_is_negative
! 216: */
! 217: TRIO_PRIVATE int
! 218: trio_is_negative
! 219: TRIO_ARGS1((number),
! 220: double number)
! 221: {
! 222: unsigned int i;
! 223: int is_negative = TRIO_FALSE;
! 224:
! 225: for (i = 0; i < (unsigned int)sizeof(double); i++) {
! 226: is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
! 227: & ieee_754_sign_mask[i]);
! 228: }
! 229: return is_negative;
! 230: }
! 231:
! 232: #endif /* USE_IEEE_754 */
! 233:
! 234:
! 235: /**
! 236: Generate negative zero.
! 237:
! 238: @return Floating-point representation of negative zero.
! 239: */
! 240: TRIO_PUBLIC double
! 241: trio_nzero(TRIO_NOARGS)
! 242: {
! 243: #if defined(USE_IEEE_754)
! 244: return trio_make_double(ieee_754_negzero_array);
! 245: #else
! 246: TRIO_VOLATILE double zero = 0.0;
! 247:
! 248: return -zero;
! 249: #endif
! 250: }
! 251:
! 252: /**
! 253: Generate positive infinity.
! 254:
! 255: @return Floating-point representation of positive infinity.
! 256: */
! 257: TRIO_PUBLIC double
! 258: trio_pinf(TRIO_NOARGS)
! 259: {
! 260: /* Cache the result */
! 261: static double result = 0.0;
! 262:
! 263: if (result == 0.0) {
! 264:
! 265: #if defined(INFINITY) && defined(__STDC_IEC_559__)
! 266: result = (double)INFINITY;
! 267:
! 268: #elif defined(USE_IEEE_754)
! 269: result = trio_make_double(ieee_754_infinity_array);
! 270:
! 271: #else
! 272: /*
! 273: * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
! 274: * as infinity. Otherwise we have to resort to an overflow
! 275: * operation to generate infinity.
! 276: */
! 277: # if defined(TRIO_PLATFORM_UNIX)
! 278: void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
! 279: # endif
! 280:
! 281: result = HUGE_VAL;
! 282: if (HUGE_VAL == DBL_MAX) {
! 283: /* Force overflow */
! 284: result += HUGE_VAL;
! 285: }
! 286:
! 287: # if defined(TRIO_PLATFORM_UNIX)
! 288: signal(SIGFPE, signal_handler);
! 289: # endif
! 290:
! 291: #endif
! 292: }
! 293: return result;
! 294: }
! 295:
! 296: /**
! 297: Generate negative infinity.
! 298:
! 299: @return Floating-point value of negative infinity.
! 300: */
! 301: TRIO_PUBLIC double
! 302: trio_ninf(TRIO_NOARGS)
! 303: {
! 304: static double result = 0.0;
! 305:
! 306: if (result == 0.0) {
! 307: /*
! 308: * Negative infinity is calculated by negating positive infinity,
! 309: * which can be done because it is legal to do calculations on
! 310: * infinity (for example, 1 / infinity == 0).
! 311: */
! 312: result = -trio_pinf();
! 313: }
! 314: return result;
! 315: }
! 316:
! 317: /**
! 318: Generate NaN.
! 319:
! 320: @return Floating-point representation of NaN.
! 321: */
! 322: TRIO_PUBLIC double
! 323: trio_nan(TRIO_NOARGS)
! 324: {
! 325: /* Cache the result */
! 326: static double result = 0.0;
! 327:
! 328: if (result == 0.0) {
! 329:
! 330: #if defined(TRIO_COMPILER_SUPPORTS_C99)
! 331: result = nan("");
! 332:
! 333: #elif defined(NAN) && defined(__STDC_IEC_559__)
! 334: result = (double)NAN;
! 335:
! 336: #elif defined(USE_IEEE_754)
! 337: result = trio_make_double(ieee_754_qnan_array);
! 338:
! 339: #else
! 340: /*
! 341: * There are several ways to generate NaN. The one used here is
! 342: * to divide infinity by infinity. I would have preferred to add
! 343: * negative infinity to positive infinity, but that yields wrong
! 344: * result (infinity) on FreeBSD.
! 345: *
! 346: * This may fail if the hardware does not support NaN, or if
! 347: * the Invalid Operation floating-point exception is unmasked.
! 348: */
! 349: # if defined(TRIO_PLATFORM_UNIX)
! 350: void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
! 351: # endif
! 352:
! 353: result = trio_pinf() / trio_pinf();
! 354:
! 355: # if defined(TRIO_PLATFORM_UNIX)
! 356: signal(SIGFPE, signal_handler);
! 357: # endif
! 358:
! 359: #endif
! 360: }
! 361: return result;
! 362: }
! 363:
! 364: /**
! 365: Check for NaN.
! 366:
! 367: @param number An arbitrary floating-point number.
! 368: @return Boolean value indicating whether or not the number is a NaN.
! 369: */
! 370: TRIO_PUBLIC int
! 371: trio_isnan
! 372: TRIO_ARGS1((number),
! 373: double number)
! 374: {
! 375: #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
! 376: || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
! 377: /*
! 378: * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
! 379: * function. This function was already present in XPG4, but this
! 380: * is a bit tricky to detect with compiler defines, so we choose
! 381: * the conservative approach and only use it for UNIX95.
! 382: */
! 383: return isnan(number);
! 384:
! 385: #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
! 386: /*
! 387: * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
! 388: * function.
! 389: */
! 390: return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
! 391:
! 392: #elif defined(USE_IEEE_754)
! 393: /*
! 394: * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
! 395: * pattern, and a non-empty mantissa.
! 396: */
! 397: int has_mantissa;
! 398: int is_special_quantity;
! 399:
! 400: is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
! 401:
! 402: return (is_special_quantity && has_mantissa);
! 403:
! 404: #else
! 405: /*
! 406: * Fallback solution
! 407: */
! 408: int status;
! 409: double integral, fraction;
! 410:
! 411: # if defined(TRIO_PLATFORM_UNIX)
! 412: void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
! 413: # endif
! 414:
! 415: status = (/*
! 416: * NaN is the only number which does not compare to itself
! 417: */
! 418: ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
! 419: /*
! 420: * Fallback solution if NaN compares to NaN
! 421: */
! 422: ((number != 0.0) &&
! 423: (fraction = modf(number, &integral),
! 424: integral == fraction)));
! 425:
! 426: # if defined(TRIO_PLATFORM_UNIX)
! 427: signal(SIGFPE, signal_handler);
! 428: # endif
! 429:
! 430: return status;
! 431:
! 432: #endif
! 433: }
! 434:
! 435: /**
! 436: Check for infinity.
! 437:
! 438: @param number An arbitrary floating-point number.
! 439: @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
! 440: */
! 441: TRIO_PUBLIC int
! 442: trio_isinf
! 443: TRIO_ARGS1((number),
! 444: double number)
! 445: {
! 446: #if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
! 447: /*
! 448: * DECC has an isinf() macro, but it works differently than that
! 449: * of C99, so we use the fp_class() function instead.
! 450: */
! 451: return ((fp_class(number) == FP_POS_INF)
! 452: ? 1
! 453: : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
! 454:
! 455: #elif defined(isinf)
! 456: /*
! 457: * C99 defines isinf() as a macro.
! 458: */
! 459: return isinf(number)
! 460: ? ((number > 0.0) ? 1 : -1)
! 461: : 0;
! 462:
! 463: #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
! 464: /*
! 465: * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
! 466: * function that can be used to detect infinity.
! 467: */
! 468: return ((_fpclass(number) == _FPCLASS_PINF)
! 469: ? 1
! 470: : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
! 471:
! 472: #elif defined(USE_IEEE_754)
! 473: /*
! 474: * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
! 475: * pattern, and an empty mantissa.
! 476: */
! 477: int has_mantissa;
! 478: int is_special_quantity;
! 479:
! 480: is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
! 481:
! 482: return (is_special_quantity && !has_mantissa)
! 483: ? ((number < 0.0) ? -1 : 1)
! 484: : 0;
! 485:
! 486: #else
! 487: /*
! 488: * Fallback solution.
! 489: */
! 490: int status;
! 491:
! 492: # if defined(TRIO_PLATFORM_UNIX)
! 493: void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
! 494: # endif
! 495:
! 496: double infinity = trio_pinf();
! 497:
! 498: status = ((number == infinity)
! 499: ? 1
! 500: : ((number == -infinity) ? -1 : 0));
! 501:
! 502: # if defined(TRIO_PLATFORM_UNIX)
! 503: signal(SIGFPE, signal_handler);
! 504: # endif
! 505:
! 506: return status;
! 507:
! 508: #endif
! 509: }
! 510:
! 511: #if 0
! 512: /* Temporary fix - this routine is not used anywhere */
! 513: /**
! 514: Check for finity.
! 515:
! 516: @param number An arbitrary floating-point number.
! 517: @return Boolean value indicating whether or not the number is a finite.
! 518: */
! 519: TRIO_PUBLIC int
! 520: trio_isfinite
! 521: TRIO_ARGS1((number),
! 522: double number)
! 523: {
! 524: #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
! 525: /*
! 526: * C99 defines isfinite() as a macro.
! 527: */
! 528: return isfinite(number);
! 529:
! 530: #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
! 531: /*
! 532: * Microsoft Visual C++ and Borland C++ Builder use _finite().
! 533: */
! 534: return _finite(number);
! 535:
! 536: #elif defined(USE_IEEE_754)
! 537: /*
! 538: * Examine IEEE 754 bit-pattern. For finity we do not care about the
! 539: * mantissa.
! 540: */
! 541: int dummy;
! 542:
! 543: return (! trio_is_special_quantity(number, &dummy));
! 544:
! 545: #else
! 546: /*
! 547: * Fallback solution.
! 548: */
! 549: return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
! 550:
! 551: #endif
! 552: }
! 553:
! 554: #endif
! 555:
! 556: /*
! 557: * The sign of NaN is always false
! 558: */
! 559: TRIO_PUBLIC int
! 560: trio_fpclassify_and_signbit
! 561: TRIO_ARGS2((number, is_negative),
! 562: double number,
! 563: int *is_negative)
! 564: {
! 565: #if defined(fpclassify) && defined(signbit)
! 566: /*
! 567: * C99 defines fpclassify() and signbit() as a macros
! 568: */
! 569: *is_negative = signbit(number);
! 570: switch (fpclassify(number)) {
! 571: case FP_NAN:
! 572: return TRIO_FP_NAN;
! 573: case FP_INFINITE:
! 574: return TRIO_FP_INFINITE;
! 575: case FP_SUBNORMAL:
! 576: return TRIO_FP_SUBNORMAL;
! 577: case FP_ZERO:
! 578: return TRIO_FP_ZERO;
! 579: default:
! 580: return TRIO_FP_NORMAL;
! 581: }
! 582:
! 583: #else
! 584: # if defined(TRIO_COMPILER_DECC)
! 585: /*
! 586: * DECC has an fp_class() function.
! 587: */
! 588: # define TRIO_FPCLASSIFY(n) fp_class(n)
! 589: # define TRIO_QUIET_NAN FP_QNAN
! 590: # define TRIO_SIGNALLING_NAN FP_SNAN
! 591: # define TRIO_POSITIVE_INFINITY FP_POS_INF
! 592: # define TRIO_NEGATIVE_INFINITY FP_NEG_INF
! 593: # define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
! 594: # define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
! 595: # define TRIO_POSITIVE_ZERO FP_POS_ZERO
! 596: # define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
! 597: # define TRIO_POSITIVE_NORMAL FP_POS_NORM
! 598: # define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
! 599:
! 600: # elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
! 601: /*
! 602: * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
! 603: * function.
! 604: */
! 605: # define TRIO_FPCLASSIFY(n) _fpclass(n)
! 606: # define TRIO_QUIET_NAN _FPCLASS_QNAN
! 607: # define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
! 608: # define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
! 609: # define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
! 610: # define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
! 611: # define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
! 612: # define TRIO_POSITIVE_ZERO _FPCLASS_PZ
! 613: # define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
! 614: # define TRIO_POSITIVE_NORMAL _FPCLASS_PN
! 615: # define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
! 616:
! 617: # elif defined(FP_PLUS_NORM)
! 618: /*
! 619: * HP-UX 9.x and 10.x have an fpclassify() function, that is different
! 620: * from the C99 fpclassify() macro supported on HP-UX 11.x.
! 621: *
! 622: * AIX has class() for C, and _class() for C++, which returns the
! 623: * same values as the HP-UX fpclassify() function.
! 624: */
! 625: # if defined(TRIO_PLATFORM_AIX)
! 626: # if defined(__cplusplus)
! 627: # define TRIO_FPCLASSIFY(n) _class(n)
! 628: # else
! 629: # define TRIO_FPCLASSIFY(n) class(n)
! 630: # endif
! 631: # else
! 632: # define TRIO_FPCLASSIFY(n) fpclassify(n)
! 633: # endif
! 634: # define TRIO_QUIET_NAN FP_QNAN
! 635: # define TRIO_SIGNALLING_NAN FP_SNAN
! 636: # define TRIO_POSITIVE_INFINITY FP_PLUS_INF
! 637: # define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
! 638: # define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
! 639: # define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
! 640: # define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
! 641: # define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
! 642: # define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
! 643: # define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
! 644: # endif
! 645:
! 646: # if defined(TRIO_FPCLASSIFY)
! 647: switch (TRIO_FPCLASSIFY(number)) {
! 648: case TRIO_QUIET_NAN:
! 649: case TRIO_SIGNALLING_NAN:
! 650: *is_negative = TRIO_FALSE; /* NaN has no sign */
! 651: return TRIO_FP_NAN;
! 652: case TRIO_POSITIVE_INFINITY:
! 653: *is_negative = TRIO_FALSE;
! 654: return TRIO_FP_INFINITE;
! 655: case TRIO_NEGATIVE_INFINITY:
! 656: *is_negative = TRIO_TRUE;
! 657: return TRIO_FP_INFINITE;
! 658: case TRIO_POSITIVE_SUBNORMAL:
! 659: *is_negative = TRIO_FALSE;
! 660: return TRIO_FP_SUBNORMAL;
! 661: case TRIO_NEGATIVE_SUBNORMAL:
! 662: *is_negative = TRIO_TRUE;
! 663: return TRIO_FP_SUBNORMAL;
! 664: case TRIO_POSITIVE_ZERO:
! 665: *is_negative = TRIO_FALSE;
! 666: return TRIO_FP_ZERO;
! 667: case TRIO_NEGATIVE_ZERO:
! 668: *is_negative = TRIO_TRUE;
! 669: return TRIO_FP_ZERO;
! 670: case TRIO_POSITIVE_NORMAL:
! 671: *is_negative = TRIO_FALSE;
! 672: return TRIO_FP_NORMAL;
! 673: case TRIO_NEGATIVE_NORMAL:
! 674: *is_negative = TRIO_TRUE;
! 675: return TRIO_FP_NORMAL;
! 676: default:
! 677: /* Just in case... */
! 678: *is_negative = (number < 0.0);
! 679: return TRIO_FP_NORMAL;
! 680: }
! 681:
! 682: # else
! 683: /*
! 684: * Fallback solution.
! 685: */
! 686: int rc;
! 687:
! 688: if (number == 0.0) {
! 689: /*
! 690: * In IEEE 754 the sign of zero is ignored in comparisons, so we
! 691: * have to handle this as a special case by examining the sign bit
! 692: * directly.
! 693: */
! 694: # if defined(USE_IEEE_754)
! 695: *is_negative = trio_is_negative(number);
! 696: # else
! 697: *is_negative = TRIO_FALSE; /* FIXME */
! 698: # endif
! 699: return TRIO_FP_ZERO;
! 700: }
! 701: if (trio_isnan(number)) {
! 702: *is_negative = TRIO_FALSE;
! 703: return TRIO_FP_NAN;
! 704: }
! 705: if ((rc = trio_isinf(number))) {
! 706: *is_negative = (rc == -1);
! 707: return TRIO_FP_INFINITE;
! 708: }
! 709: if ((number > 0.0) && (number < DBL_MIN)) {
! 710: *is_negative = TRIO_FALSE;
! 711: return TRIO_FP_SUBNORMAL;
! 712: }
! 713: if ((number < 0.0) && (number > -DBL_MIN)) {
! 714: *is_negative = TRIO_TRUE;
! 715: return TRIO_FP_SUBNORMAL;
! 716: }
! 717: *is_negative = (number < 0.0);
! 718: return TRIO_FP_NORMAL;
! 719:
! 720: # endif
! 721: #endif
! 722: }
! 723:
! 724: /**
! 725: Examine the sign of a number.
! 726:
! 727: @param number An arbitrary floating-point number.
! 728: @return Boolean value indicating whether or not the number has the
! 729: sign bit set (i.e. is negative).
! 730: */
! 731: TRIO_PUBLIC int
! 732: trio_signbit
! 733: TRIO_ARGS1((number),
! 734: double number)
! 735: {
! 736: int is_negative;
! 737:
! 738: (void)trio_fpclassify_and_signbit(number, &is_negative);
! 739: return is_negative;
! 740: }
! 741:
! 742: #if 0
! 743: /* Temporary fix - this routine is not used in libxml */
! 744: /**
! 745: Examine the class of a number.
! 746:
! 747: @param number An arbitrary floating-point number.
! 748: @return Enumerable value indicating the class of @p number
! 749: */
! 750: TRIO_PUBLIC int
! 751: trio_fpclassify
! 752: TRIO_ARGS1((number),
! 753: double number)
! 754: {
! 755: int dummy;
! 756:
! 757: return trio_fpclassify_and_signbit(number, &dummy);
! 758: }
! 759:
! 760: #endif
! 761:
! 762: /** @} SpecialQuantities */
! 763:
! 764: /*************************************************************************
! 765: * For test purposes.
! 766: *
! 767: * Add the following compiler option to include this test code.
! 768: *
! 769: * Unix : -DSTANDALONE
! 770: * VMS : /DEFINE=(STANDALONE)
! 771: */
! 772: #if defined(STANDALONE)
! 773: # include <stdio.h>
! 774:
! 775: static TRIO_CONST char *
! 776: getClassification
! 777: TRIO_ARGS1((type),
! 778: int type)
! 779: {
! 780: switch (type) {
! 781: case TRIO_FP_INFINITE:
! 782: return "FP_INFINITE";
! 783: case TRIO_FP_NAN:
! 784: return "FP_NAN";
! 785: case TRIO_FP_NORMAL:
! 786: return "FP_NORMAL";
! 787: case TRIO_FP_SUBNORMAL:
! 788: return "FP_SUBNORMAL";
! 789: case TRIO_FP_ZERO:
! 790: return "FP_ZERO";
! 791: default:
! 792: return "FP_UNKNOWN";
! 793: }
! 794: }
! 795:
! 796: static void
! 797: print_class
! 798: TRIO_ARGS2((prefix, number),
! 799: TRIO_CONST char *prefix,
! 800: double number)
! 801: {
! 802: printf("%-6s: %s %-15s %g\n",
! 803: prefix,
! 804: trio_signbit(number) ? "-" : "+",
! 805: getClassification(TRIO_FPCLASSIFY(number)),
! 806: number);
! 807: }
! 808:
! 809: int main(TRIO_NOARGS)
! 810: {
! 811: double my_nan;
! 812: double my_pinf;
! 813: double my_ninf;
! 814: # if defined(TRIO_PLATFORM_UNIX)
! 815: void (*signal_handler) TRIO_PROTO((int));
! 816: # endif
! 817:
! 818: my_nan = trio_nan();
! 819: my_pinf = trio_pinf();
! 820: my_ninf = trio_ninf();
! 821:
! 822: print_class("Nan", my_nan);
! 823: print_class("PInf", my_pinf);
! 824: print_class("NInf", my_ninf);
! 825: print_class("PZero", 0.0);
! 826: print_class("NZero", -0.0);
! 827: print_class("PNorm", 1.0);
! 828: print_class("NNorm", -1.0);
! 829: print_class("PSub", 1.01e-307 - 1.00e-307);
! 830: print_class("NSub", 1.00e-307 - 1.01e-307);
! 831:
! 832: printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
! 833: my_nan,
! 834: ((unsigned char *)&my_nan)[0],
! 835: ((unsigned char *)&my_nan)[1],
! 836: ((unsigned char *)&my_nan)[2],
! 837: ((unsigned char *)&my_nan)[3],
! 838: ((unsigned char *)&my_nan)[4],
! 839: ((unsigned char *)&my_nan)[5],
! 840: ((unsigned char *)&my_nan)[6],
! 841: ((unsigned char *)&my_nan)[7],
! 842: trio_isnan(my_nan), trio_isinf(my_nan));
! 843: printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
! 844: my_pinf,
! 845: ((unsigned char *)&my_pinf)[0],
! 846: ((unsigned char *)&my_pinf)[1],
! 847: ((unsigned char *)&my_pinf)[2],
! 848: ((unsigned char *)&my_pinf)[3],
! 849: ((unsigned char *)&my_pinf)[4],
! 850: ((unsigned char *)&my_pinf)[5],
! 851: ((unsigned char *)&my_pinf)[6],
! 852: ((unsigned char *)&my_pinf)[7],
! 853: trio_isnan(my_pinf), trio_isinf(my_pinf));
! 854: printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
! 855: my_ninf,
! 856: ((unsigned char *)&my_ninf)[0],
! 857: ((unsigned char *)&my_ninf)[1],
! 858: ((unsigned char *)&my_ninf)[2],
! 859: ((unsigned char *)&my_ninf)[3],
! 860: ((unsigned char *)&my_ninf)[4],
! 861: ((unsigned char *)&my_ninf)[5],
! 862: ((unsigned char *)&my_ninf)[6],
! 863: ((unsigned char *)&my_ninf)[7],
! 864: trio_isnan(my_ninf), trio_isinf(my_ninf));
! 865:
! 866: # if defined(TRIO_PLATFORM_UNIX)
! 867: signal_handler = signal(SIGFPE, SIG_IGN);
! 868: # endif
! 869:
! 870: my_pinf = DBL_MAX + DBL_MAX;
! 871: my_ninf = -my_pinf;
! 872: my_nan = my_pinf / my_pinf;
! 873:
! 874: # if defined(TRIO_PLATFORM_UNIX)
! 875: signal(SIGFPE, signal_handler);
! 876: # endif
! 877:
! 878: printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
! 879: my_nan,
! 880: ((unsigned char *)&my_nan)[0],
! 881: ((unsigned char *)&my_nan)[1],
! 882: ((unsigned char *)&my_nan)[2],
! 883: ((unsigned char *)&my_nan)[3],
! 884: ((unsigned char *)&my_nan)[4],
! 885: ((unsigned char *)&my_nan)[5],
! 886: ((unsigned char *)&my_nan)[6],
! 887: ((unsigned char *)&my_nan)[7],
! 888: trio_isnan(my_nan), trio_isinf(my_nan));
! 889: printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
! 890: my_pinf,
! 891: ((unsigned char *)&my_pinf)[0],
! 892: ((unsigned char *)&my_pinf)[1],
! 893: ((unsigned char *)&my_pinf)[2],
! 894: ((unsigned char *)&my_pinf)[3],
! 895: ((unsigned char *)&my_pinf)[4],
! 896: ((unsigned char *)&my_pinf)[5],
! 897: ((unsigned char *)&my_pinf)[6],
! 898: ((unsigned char *)&my_pinf)[7],
! 899: trio_isnan(my_pinf), trio_isinf(my_pinf));
! 900: printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
! 901: my_ninf,
! 902: ((unsigned char *)&my_ninf)[0],
! 903: ((unsigned char *)&my_ninf)[1],
! 904: ((unsigned char *)&my_ninf)[2],
! 905: ((unsigned char *)&my_ninf)[3],
! 906: ((unsigned char *)&my_ninf)[4],
! 907: ((unsigned char *)&my_ninf)[5],
! 908: ((unsigned char *)&my_ninf)[6],
! 909: ((unsigned char *)&my_ninf)[7],
! 910: trio_isnan(my_ninf), trio_isinf(my_ninf));
! 911:
! 912: return 0;
! 913: }
! 914: #endif
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>