Annotation of embedaddon/lighttpd/src/lemon.c, revision 1.1.1.3

1.1.1.3 ! misho       1: #include "first.h"
        !             2: 
1.1       misho       3: /*
                      4: ** This file contains all sources (including headers) to the LEMON
                      5: ** LALR(1) parser generator.  The sources have been combined into a
                      6: ** single file to make it easy to include LEMON in the source tree
                      7: ** and Makefile of another program.
                      8: **
                      9: ** The author of this program disclaims copyright.
                     10: */
                     11: #include <stdio.h>
                     12: #include <stdarg.h>
                     13: #include <string.h>
                     14: #include <ctype.h>
                     15: #include <stdlib.h>
                     16: 
                     17: #ifdef HAVE_STDINT_H
                     18: # include <stdint.h>
                     19: #endif
                     20: #ifdef HAVE_INTTYPES_H
                     21: # include <inttypes.h>
                     22: #endif
                     23: 
                     24: #define UNUSED(x) ( (void)(x) )
                     25: 
                     26: extern void qsort();
                     27: extern double strtod();
                     28: extern long strtol();
                     29: extern void free();
                     30: extern int access();
                     31: extern int atoi();
                     32: extern char *getenv();
                     33: 
                     34: #ifndef __WIN32__
                     35: #   if defined(_WIN32) || defined(WIN32)
                     36: #      define __WIN32__
                     37: #   endif
                     38: #endif
                     39: 
                     40: #if __GNUC__ > 2
                     41: #define NORETURN __attribute__ ((__noreturn__))
                     42: #else
                     43: #define NORETURN
                     44: #endif
                     45: 
                     46: /* #define PRIVATE static */
                     47: #define PRIVATE static
                     48: 
                     49: #ifdef TEST
                     50: #define MAXRHS 5       /* Set low to exercise exception code */
                     51: #else
                     52: #define MAXRHS 1000
                     53: #endif
                     54: 
                     55: char *msort();
                     56: extern void *malloc();
                     57: 
                     58: extern void memory_error() NORETURN;
                     59: 
                     60: /******** From the file "action.h" *************************************/
                     61: struct action *Action_new();
                     62: struct action *Action_sort();
                     63: void Action_add();
                     64: 
                     65: /********* From the file "assert.h" ************************************/
                     66: void myassert() NORETURN;
                     67: #ifndef NDEBUG
                     68: #  define assert(X) if(!(X))myassert(__FILE__,__LINE__)
                     69: #else
                     70: #  define assert(X)
                     71: #endif
                     72: 
                     73: /********** From the file "build.h" ************************************/
                     74: void FindRulePrecedences();
                     75: void FindFirstSets();
                     76: void FindStates();
                     77: void FindLinks();
                     78: void FindFollowSets();
                     79: void FindActions();
                     80: 
                     81: /********* From the file "configlist.h" *********************************/
                     82: void Configlist_init(/* void */);
                     83: struct config *Configlist_add(/* struct rule *, int */);
                     84: struct config *Configlist_addbasis(/* struct rule *, int */);
                     85: void Configlist_closure(/* void */);
                     86: void Configlist_sort(/* void */);
                     87: void Configlist_sortbasis(/* void */);
                     88: struct config *Configlist_return(/* void */);
                     89: struct config *Configlist_basis(/* void */);
                     90: void Configlist_eat(/* struct config * */);
                     91: void Configlist_reset(/* void */);
                     92: 
                     93: /********* From the file "error.h" ***************************************/
                     94: void ErrorMsg(const char *, int,const char *, ...);
                     95: 
                     96: /****** From the file "option.h" ******************************************/
                     97: struct s_options {
                     98:   enum { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
                     99:          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
                    100:   char *label;
                    101:   char *arg;
                    102:   char *message;
                    103: };
                    104: int    OptInit(/* char**,struct s_options*,FILE* */);
                    105: int    OptNArgs(/* void */);
                    106: char  *OptArg(/* int */);
                    107: void   OptErr(/* int */);
                    108: void   OptPrint(/* void */);
                    109: 
                    110: /******** From the file "parse.h" *****************************************/
                    111: void Parse(/* struct lemon *lemp */);
                    112: 
                    113: /********* From the file "plink.h" ***************************************/
                    114: struct plink *Plink_new(/* void */);
                    115: void Plink_add(/* struct plink **, struct config * */);
                    116: void Plink_copy(/* struct plink **, struct plink * */);
                    117: void Plink_delete(/* struct plink * */);
                    118: 
                    119: /********** From the file "report.h" *************************************/
                    120: void Reprint(/* struct lemon * */);
                    121: void ReportOutput(/* struct lemon * */);
                    122: void ReportTable(/* struct lemon * */);
                    123: void ReportHeader(/* struct lemon * */);
                    124: void CompressTables(/* struct lemon * */);
                    125: 
                    126: /********** From the file "set.h" ****************************************/
                    127: void  SetSize(/* int N */);             /* All sets will be of size N */
                    128: char *SetNew(/* void */);               /* A new set for element 0..N */
                    129: void  SetFree(/* char* */);             /* Deallocate a set */
                    130: 
                    131: int SetAdd(/* char*,int */);            /* Add element to a set */
                    132: int SetUnion(/* char *A,char *B */);    /* A <- A U B, thru element N */
                    133: 
                    134: #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
                    135: 
                    136: /********** From the file "struct.h" *************************************/
                    137: /*
                    138: ** Principal data structures for the LEMON parser generator.
                    139: */
                    140: 
                    141: typedef enum {Bo_FALSE=0, Bo_TRUE} Boolean;
                    142: 
                    143: /* Symbols (terminals and nonterminals) of the grammar are stored
                    144: ** in the following: */
                    145: struct symbol {
                    146:   char *name;              /* Name of the symbol */
                    147:   int index;               /* Index number for this symbol */
                    148:   enum {
                    149:     TERMINAL,
                    150:     NONTERMINAL
                    151:   } type;                  /* Symbols are all either TERMINALS or NTs */
                    152:   struct rule *rule;       /* Linked list of rules of this (if an NT) */
                    153:   struct symbol *fallback; /* fallback token in case this token doesn't parse */
                    154:   int prec;                /* Precedence if defined (-1 otherwise) */
                    155:   enum e_assoc {
                    156:     LEFT,
                    157:     RIGHT,
                    158:     NONE,
                    159:     UNK
                    160:   } assoc;                 /* Associativity if predecence is defined */
                    161:   char *firstset;          /* First-set for all rules of this symbol */
                    162:   Boolean lambda;          /* True if NT and can generate an empty string */
                    163:   char *destructor;        /* Code which executes whenever this symbol is
                    164:                            ** popped from the stack during error processing */
                    165:   int destructorln;        /* Line number of destructor code */
                    166:   char *datatype;          /* The data type of information held by this
                    167:                            ** object. Only used if type==NONTERMINAL */
                    168:   int dtnum;               /* The data type number.  In the parser, the value
                    169:                            ** stack is a union.  The .yy%d element of this
                    170:                            ** union is the correct data type for this object */
                    171: };
                    172: 
                    173: /* Each production rule in the grammar is stored in the following
                    174: ** structure.  */
                    175: struct rule {
                    176:   struct symbol *lhs;      /* Left-hand side of the rule */
                    177:   char *lhsalias;          /* Alias for the LHS (NULL if none) */
                    178:   int ruleline;            /* Line number for the rule */
                    179:   int nrhs;                /* Number of RHS symbols */
                    180:   struct symbol **rhs;     /* The RHS symbols */
                    181:   char **rhsalias;         /* An alias for each RHS symbol (NULL if none) */
                    182:   int line;                /* Line number at which code begins */
                    183:   char *code;              /* The code executed when this rule is reduced */
                    184:   struct symbol *precsym;  /* Precedence symbol for this rule */
                    185:   int index;               /* An index number for this rule */
                    186:   Boolean canReduce;       /* True if this rule is ever reduced */
                    187:   struct rule *nextlhs;    /* Next rule with the same LHS */
                    188:   struct rule *next;       /* Next rule in the global list */
                    189: };
                    190: 
                    191: /* A configuration is a production rule of the grammar together with
                    192: ** a mark (dot) showing how much of that rule has been processed so far.
                    193: ** Configurations also contain a follow-set which is a list of terminal
                    194: ** symbols which are allowed to immediately follow the end of the rule.
                    195: ** Every configuration is recorded as an instance of the following: */
                    196: struct config {
                    197:   struct rule *rp;         /* The rule upon which the configuration is based */
                    198:   int dot;                 /* The parse point */
                    199:   char *fws;               /* Follow-set for this configuration only */
                    200:   struct plink *fplp;      /* Follow-set forward propagation links */
                    201:   struct plink *bplp;      /* Follow-set backwards propagation links */
                    202:   struct state *stp;       /* Pointer to state which contains this */
                    203:   enum {
                    204:     COMPLETE,              /* The status is used during followset and */
                    205:     INCOMPLETE             /*    shift computations */
                    206:   } status;
                    207:   struct config *next;     /* Next configuration in the state */
                    208:   struct config *bp;       /* The next basis configuration */
                    209: };
                    210: 
                    211: /* Every shift or reduce operation is stored as one of the following */
                    212: struct action {
                    213:   struct symbol *sp;       /* The look-ahead symbol */
                    214:   enum e_action {
                    215:     SHIFT,
                    216:     ACCEPT,
                    217:     REDUCE,
                    218:     ERROR,
                    219:     CONFLICT,                /* Was a reduce, but part of a conflict */
                    220:     SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
                    221:     RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
                    222:     NOT_USED                 /* Deleted by compression */
                    223:   } type;
                    224:   union {
                    225:     struct state *stp;     /* The new state, if a shift */
                    226:     struct rule *rp;       /* The rule, if a reduce */
                    227:   } x;
                    228:   struct action *next;     /* Next action for this state */
                    229:   struct action *collide;  /* Next action with the same hash */
                    230: };
                    231: 
                    232: /* Each state of the generated parser's finite state machine
                    233: ** is encoded as an instance of the following structure. */
                    234: struct state {
                    235:   struct config *bp;       /* The basis configurations for this state */
                    236:   struct config *cfp;      /* All configurations in this set */
                    237:   int index;               /* Sequencial number for this state */
                    238:   struct action *ap;       /* Array of actions for this state */
                    239:   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
                    240:   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
                    241:   int iDflt;               /* Default action */
                    242: };
                    243: #define NO_OFFSET (-2147483647)
                    244: 
                    245: /* A followset propagation link indicates that the contents of one
                    246: ** configuration followset should be propagated to another whenever
                    247: ** the first changes. */
                    248: struct plink {
                    249:   struct config *cfp;      /* The configuration to which linked */
                    250:   struct plink *next;      /* The next propagate link */
                    251: };
                    252: 
                    253: /* The state vector for the entire parser generator is recorded as
                    254: ** follows.  (LEMON uses no global variables and makes little use of
                    255: ** static variables.  Fields in the following structure can be thought
                    256: ** of as begin global variables in the program.) */
                    257: struct lemon {
                    258:   struct state **sorted;   /* Table of states sorted by state number */
                    259:   struct rule *rule;       /* List of all rules */
                    260:   int nstate;              /* Number of states */
                    261:   int nrule;               /* Number of rules */
                    262:   int nsymbol;             /* Number of terminal and nonterminal symbols */
                    263:   int nterminal;           /* Number of terminal symbols */
                    264:   struct symbol **symbols; /* Sorted array of pointers to symbols */
                    265:   int errorcnt;            /* Number of errors */
                    266:   struct symbol *errsym;   /* The error symbol */
                    267:   char *name;              /* Name of the generated parser */
                    268:   char *arg;               /* Declaration of the 3th argument to parser */
                    269:   char *tokentype;         /* Type of terminal symbols in the parser stack */
                    270:   char *vartype;           /* The default type of non-terminal symbols */
                    271:   char *start;             /* Name of the start symbol for the grammar */
                    272:   char *stacksize;         /* Size of the parser stack */
                    273:   char *include;           /* Code to put at the start of the C file */
                    274:   int  includeln;          /* Line number for start of include code */
                    275:   char *error;             /* Code to execute when an error is seen */
                    276:   int  errorln;            /* Line number for start of error code */
                    277:   char *overflow;          /* Code to execute on a stack overflow */
                    278:   int  overflowln;         /* Line number for start of overflow code */
                    279:   char *failure;           /* Code to execute on parser failure */
                    280:   int  failureln;          /* Line number for start of failure code */
                    281:   char *accept;            /* Code to execute when the parser excepts */
                    282:   int  acceptln;           /* Line number for the start of accept code */
                    283:   char *extracode;         /* Code appended to the generated file */
                    284:   int  extracodeln;        /* Line number for the start of the extra code */
                    285:   char *tokendest;         /* Code to execute to destroy token data */
                    286:   int  tokendestln;        /* Line number for token destroyer code */
                    287:   char *vardest;           /* Code for the default non-terminal destructor */
                    288:   int  vardestln;          /* Line number for default non-term destructor code*/
                    289:   char *filename;          /* Name of the input file */
                    290:   char *tmplname;          /* Name of the template file */
                    291:   char *outname;           /* Name of the current output file */
                    292:   char *tokenprefix;       /* A prefix added to token names in the .h file */
                    293:   int nconflict;           /* Number of parsing conflicts */
                    294:   int tablesize;           /* Size of the parse tables */
                    295:   int basisflag;           /* Print only basis configurations */
                    296:   int has_fallback;        /* True if any %fallback is seen in the grammer */
                    297:   char *argv0;             /* Name of the program */
                    298: };
                    299: 
                    300: #define MemoryCheck(X) if((X)==0){ \
                    301:   memory_error(); \
                    302: }
                    303: 
                    304: /**************** From the file "table.h" *********************************/
                    305: /*
                    306: ** All code in this file has been automatically generated
                    307: ** from a specification in the file
                    308: **              "table.q"
                    309: ** by the associative array code building program "aagen".
                    310: ** Do not edit this file!  Instead, edit the specification
                    311: ** file, then rerun aagen.
                    312: */
                    313: /*
                    314: ** Code for processing tables in the LEMON parser generator.
                    315: */
                    316: 
                    317: /* Routines for handling a strings */
                    318: 
                    319: char *Strsafe();
                    320: 
                    321: void Strsafe_init(/* void */);
                    322: int Strsafe_insert(/* char * */);
                    323: char *Strsafe_find(/* char * */);
                    324: 
                    325: /* Routines for handling symbols of the grammar */
                    326: 
                    327: struct symbol *Symbol_new();
                    328: int Symbolcmpp(/* struct symbol **, struct symbol ** */);
                    329: void Symbol_init(/* void */);
                    330: int Symbol_insert(/* struct symbol *, char * */);
                    331: struct symbol *Symbol_find(/* char * */);
                    332: struct symbol *Symbol_Nth(/* int */);
                    333: int Symbol_count(/*  */);
                    334: struct symbol **Symbol_arrayof(/*  */);
                    335: 
                    336: /* Routines to manage the state table */
                    337: 
                    338: int Configcmp(/* struct config *, struct config * */);
                    339: struct state *State_new();
                    340: void State_init(/* void */);
                    341: int State_insert(/* struct state *, struct config * */);
                    342: struct state *State_find(/* struct config * */);
                    343: struct state **State_arrayof(/*  */);
                    344: 
                    345: /* Routines used for efficiency in Configlist_add */
                    346: 
                    347: void Configtable_init(/* void */);
                    348: int Configtable_insert(/* struct config * */);
                    349: struct config *Configtable_find(/* struct config * */);
                    350: void Configtable_clear(/* int(*)(struct config *) */);
                    351: /****************** From the file "action.c" *******************************/
                    352: /*
                    353: ** Routines processing parser actions in the LEMON parser generator.
                    354: */
                    355: 
                    356: /* Allocate a new parser action */
                    357: struct action *Action_new(){
                    358:   static struct action *freelist = NULL;
                    359:   struct action *new;
                    360: 
                    361:   if( freelist==NULL ){
                    362:     int i;
                    363:     int amt = 100;
                    364:     freelist = (struct action *)malloc( sizeof(struct action)*amt );
                    365:     if( freelist==0 ){
                    366:       fprintf(stderr,"Unable to allocate memory for a new parser action.");
                    367:       exit(1);
                    368:     }
                    369:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
                    370:     freelist[amt-1].next = 0;
                    371:   }
                    372:   new = freelist;
                    373:   freelist = freelist->next;
                    374:   return new;
                    375: }
                    376: 
                    377: /* Compare two actions */
                    378: static int actioncmp(ap1,ap2)
                    379: struct action *ap1;
                    380: struct action *ap2;
                    381: {
                    382:   int rc;
                    383:   rc = ap1->sp->index - ap2->sp->index;
                    384:   if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
                    385:   if( rc==0 ){
                    386:     assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
                    387:     assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
                    388:     rc = ap1->x.rp->index - ap2->x.rp->index;
                    389:   }
                    390:   return rc;
                    391: }
                    392: 
                    393: /* Sort parser actions */
                    394: struct action *Action_sort(ap)
                    395: struct action *ap;
                    396: {
                    397:   ap = (struct action *)msort(ap,&ap->next,actioncmp);
                    398:   return ap;
                    399: }
                    400: 
                    401: void Action_add(app,type,sp,arg)
                    402: struct action **app;
                    403: enum e_action type;
                    404: struct symbol *sp;
                    405: void *arg;
                    406: {
                    407:   struct action *new;
                    408:   new = Action_new();
                    409:   new->next = *app;
                    410:   *app = new;
                    411:   new->type = type;
                    412:   new->sp = sp;
                    413:   if( type==SHIFT ){
                    414:     new->x.stp = (struct state *)arg;
                    415:   }else{
                    416:     new->x.rp = (struct rule *)arg;
                    417:   }
                    418: }
                    419: /********************** New code to implement the "acttab" module ***********/
                    420: /*
                    421: ** This module implements routines use to construct the yy_action[] table.
                    422: */
                    423: 
                    424: /*
                    425: ** The state of the yy_action table under construction is an instance of
                    426: ** the following structure
                    427: */
                    428: typedef struct acttab acttab;
                    429: struct acttab {
                    430:   int nAction;                 /* Number of used slots in aAction[] */
                    431:   int nActionAlloc;            /* Slots allocated for aAction[] */
                    432:   struct {
                    433:     int lookahead;             /* Value of the lookahead token */
                    434:     int action;                /* Action to take on the given lookahead */
                    435:   } *aAction,                  /* The yy_action[] table under construction */
                    436:     *aLookahead;               /* A single new transaction set */
                    437:   int mnLookahead;             /* Minimum aLookahead[].lookahead */
                    438:   int mnAction;                /* Action associated with mnLookahead */
                    439:   int mxLookahead;             /* Maximum aLookahead[].lookahead */
                    440:   int nLookahead;              /* Used slots in aLookahead[] */
                    441:   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
                    442: };
                    443: 
                    444: /* Return the number of entries in the yy_action table */
                    445: #define acttab_size(X) ((X)->nAction)
                    446: 
                    447: /* The value for the N-th entry in yy_action */
                    448: #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
                    449: 
                    450: /* The value for the N-th entry in yy_lookahead */
                    451: #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
                    452: 
                    453: /* Free all memory associated with the given acttab */
                    454: /*
                    455: PRIVATE void acttab_free(acttab *p){
                    456:   free( p->aAction );
                    457:   free( p->aLookahead );
                    458:   free( p );
                    459: }
                    460: */
                    461: 
                    462: /* Allocate a new acttab structure */
                    463: PRIVATE acttab *acttab_alloc(void){
                    464:   acttab *p = malloc( sizeof(*p) );
                    465:   if( p==0 ){
                    466:     fprintf(stderr,"Unable to allocate memory for a new acttab.");
                    467:     exit(1);
                    468:   }
                    469:   memset(p, 0, sizeof(*p));
                    470:   return p;
                    471: }
                    472: 
                    473: /* Add a new action to the current transaction set
                    474: */
                    475: PRIVATE void acttab_action(acttab *p, int lookahead, int action){
                    476:   if( p->nLookahead>=p->nLookaheadAlloc ){
                    477:     p->nLookaheadAlloc += 25;
                    478:     p->aLookahead = realloc( p->aLookahead,
                    479:                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
                    480:     if( p->aLookahead==0 ){
                    481:       fprintf(stderr,"malloc failed\n");
                    482:       exit(1);
                    483:     }
                    484:   }
                    485:   if( p->nLookahead==0 ){
                    486:     p->mxLookahead = lookahead;
                    487:     p->mnLookahead = lookahead;
                    488:     p->mnAction = action;
                    489:   }else{
                    490:     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
                    491:     if( p->mnLookahead>lookahead ){
                    492:       p->mnLookahead = lookahead;
                    493:       p->mnAction = action;
                    494:     }
                    495:   }
                    496:   p->aLookahead[p->nLookahead].lookahead = lookahead;
                    497:   p->aLookahead[p->nLookahead].action = action;
                    498:   p->nLookahead++;
                    499: }
                    500: 
                    501: /*
                    502: ** Add the transaction set built up with prior calls to acttab_action()
                    503: ** into the current action table.  Then reset the transaction set back
                    504: ** to an empty set in preparation for a new round of acttab_action() calls.
                    505: **
                    506: ** Return the offset into the action table of the new transaction.
                    507: */
                    508: PRIVATE int acttab_insert(acttab *p){
                    509:   int i, j, k, n;
                    510:   assert( p->nLookahead>0 );
                    511: 
                    512:   /* Make sure we have enough space to hold the expanded action table
                    513:   ** in the worst case.  The worst case occurs if the transaction set
                    514:   ** must be appended to the current action table
                    515:   */
                    516:   n = p->mxLookahead + 1;
                    517:   if( p->nAction + n >= p->nActionAlloc ){
                    518:     int oldAlloc = p->nActionAlloc;
                    519:     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
                    520:     p->aAction = realloc( p->aAction,
                    521:                           sizeof(p->aAction[0])*p->nActionAlloc);
                    522:     if( p->aAction==0 ){
                    523:       fprintf(stderr,"malloc failed\n");
                    524:       exit(1);
                    525:     }
                    526:     for(i=oldAlloc; i<p->nActionAlloc; i++){
                    527:       p->aAction[i].lookahead = -1;
                    528:       p->aAction[i].action = -1;
                    529:     }
                    530:   }
                    531: 
                    532:   /* Scan the existing action table looking for an offset where we can
                    533:   ** insert the current transaction set.  Fall out of the loop when that
                    534:   ** offset is found.  In the worst case, we fall out of the loop when
                    535:   ** i reaches p->nAction, which means we append the new transaction set.
                    536:   **
                    537:   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
                    538:   */
                    539:   for(i=0; i<p->nAction+p->mnLookahead; i++){
                    540:     if( p->aAction[i].lookahead<0 ){
                    541:       for(j=0; j<p->nLookahead; j++){
                    542:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
                    543:         if( k<0 ) break;
                    544:         if( p->aAction[k].lookahead>=0 ) break;
                    545:       }
                    546:       if( j<p->nLookahead ) continue;
                    547:       for(j=0; j<p->nAction; j++){
                    548:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
                    549:       }
                    550:       if( j==p->nAction ){
                    551:         break;  /* Fits in empty slots */
                    552:       }
                    553:     }else if( p->aAction[i].lookahead==p->mnLookahead ){
                    554:       if( p->aAction[i].action!=p->mnAction ) continue;
                    555:       for(j=0; j<p->nLookahead; j++){
                    556:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
                    557:         if( k<0 || k>=p->nAction ) break;
                    558:         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
                    559:         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
                    560:       }
                    561:       if( j<p->nLookahead ) continue;
                    562:       n = 0;
                    563:       for(j=0; j<p->nAction; j++){
                    564:         if( p->aAction[j].lookahead<0 ) continue;
                    565:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
                    566:       }
                    567:       if( n==p->nLookahead ){
                    568:         break;  /* Same as a prior transaction set */
                    569:       }
                    570:     }
                    571:   }
                    572:   /* Insert transaction set at index i. */
                    573:   for(j=0; j<p->nLookahead; j++){
                    574:     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
                    575:     p->aAction[k] = p->aLookahead[j];
                    576:     if( k>=p->nAction ) p->nAction = k+1;
                    577:   }
                    578:   p->nLookahead = 0;
                    579: 
                    580:   /* Return the offset that is added to the lookahead in order to get the
                    581:   ** index into yy_action of the action */
                    582:   return i - p->mnLookahead;
                    583: }
                    584: 
                    585: /********************** From the file "assert.c" ****************************/
                    586: /*
                    587: ** A more efficient way of handling assertions.
                    588: */
                    589: void myassert(file,line)
                    590: char *file;
                    591: int line;
                    592: {
                    593:   fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
                    594:   exit(1);
                    595: }
                    596: /********************** From the file "build.c" *****************************/
                    597: /*
                    598: ** Routines to construction the finite state machine for the LEMON
                    599: ** parser generator.
                    600: */
                    601: 
                    602: /* Find a precedence symbol of every rule in the grammar.
                    603: **
                    604: ** Those rules which have a precedence symbol coded in the input
                    605: ** grammar using the "[symbol]" construct will already have the
                    606: ** rp->precsym field filled.  Other rules take as their precedence
                    607: ** symbol the first RHS symbol with a defined precedence.  If there
                    608: ** are not RHS symbols with a defined precedence, the precedence
                    609: ** symbol field is left blank.
                    610: */
                    611: void FindRulePrecedences(xp)
                    612: struct lemon *xp;
                    613: {
                    614:   struct rule *rp;
                    615:   for(rp=xp->rule; rp; rp=rp->next){
                    616:     if( rp->precsym==0 ){
                    617:       int i;
                    618:       for(i=0; i<rp->nrhs; i++){
                    619:         if( rp->rhs[i]->prec>=0 ){
                    620:           rp->precsym = rp->rhs[i];
                    621:           break;
                    622:        }
                    623:       }
                    624:     }
                    625:   }
                    626:   return;
                    627: }
                    628: 
                    629: /* Find all nonterminals which will generate the empty string.
                    630: ** Then go back and compute the first sets of every nonterminal.
                    631: ** The first set is the set of all terminal symbols which can begin
                    632: ** a string generated by that nonterminal.
                    633: */
                    634: void FindFirstSets(lemp)
                    635: struct lemon *lemp;
                    636: {
                    637:   int i;
                    638:   struct rule *rp;
                    639:   int progress;
                    640: 
                    641:   for(i=0; i<lemp->nsymbol; i++){
                    642:     lemp->symbols[i]->lambda = Bo_FALSE;
                    643:   }
                    644:   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
                    645:     lemp->symbols[i]->firstset = SetNew();
                    646:   }
                    647: 
                    648:   /* First compute all lambdas */
                    649:   do{
                    650:     progress = 0;
                    651:     for(rp=lemp->rule; rp; rp=rp->next){
                    652:       if( rp->lhs->lambda ) continue;
                    653:       for(i=0; i<rp->nrhs; i++){
                    654:          if( rp->rhs[i]->lambda==Bo_FALSE ) break;
                    655:       }
                    656:       if( i==rp->nrhs ){
                    657:         rp->lhs->lambda = Bo_TRUE;
                    658:         progress = 1;
                    659:       }
                    660:     }
                    661:   }while( progress );
                    662: 
                    663:   /* Now compute all first sets */
                    664:   do{
                    665:     struct symbol *s1, *s2;
                    666:     progress = 0;
                    667:     for(rp=lemp->rule; rp; rp=rp->next){
                    668:       s1 = rp->lhs;
                    669:       for(i=0; i<rp->nrhs; i++){
                    670:         s2 = rp->rhs[i];
                    671:         if( s2->type==TERMINAL ){
                    672:           progress += SetAdd(s1->firstset,s2->index);
                    673:           break;
                    674:        }else if( s1==s2 ){
                    675:           if( s1->lambda==Bo_FALSE ) break;
                    676:        }else{
                    677:           progress += SetUnion(s1->firstset,s2->firstset);
                    678:           if( s2->lambda==Bo_FALSE ) break;
                    679:        }
                    680:       }
                    681:     }
                    682:   }while( progress );
                    683:   return;
                    684: }
                    685: 
                    686: /* Compute all LR(0) states for the grammar.  Links
                    687: ** are added to between some states so that the LR(1) follow sets
                    688: ** can be computed later.
                    689: */
                    690: PRIVATE struct state *getstate(/* struct lemon * */);  /* forward reference */
                    691: void FindStates(lemp)
                    692: struct lemon *lemp;
                    693: {
                    694:   struct symbol *sp;
                    695:   struct rule *rp;
                    696: 
                    697:   Configlist_init();
                    698: 
                    699:   /* Find the start symbol */
                    700:   if( lemp->start ){
                    701:     sp = Symbol_find(lemp->start);
                    702:     if( sp==0 ){
                    703:       ErrorMsg(lemp->filename,0,
                    704: "The specified start symbol \"%s\" is not \
                    705: in a nonterminal of the grammar.  \"%s\" will be used as the start \
                    706: symbol instead.",lemp->start,lemp->rule->lhs->name);
                    707:       lemp->errorcnt++;
                    708:       sp = lemp->rule->lhs;
                    709:     }
                    710:   }else{
                    711:     sp = lemp->rule->lhs;
                    712:   }
                    713: 
                    714:   /* Make sure the start symbol doesn't occur on the right-hand side of
                    715:   ** any rule.  Report an error if it does.  (YACC would generate a new
                    716:   ** start symbol in this case.) */
                    717:   for(rp=lemp->rule; rp; rp=rp->next){
                    718:     int i;
                    719:     for(i=0; i<rp->nrhs; i++){
                    720:       if( rp->rhs[i]==sp ){
                    721:         ErrorMsg(lemp->filename,0,
                    722: "The start symbol \"%s\" occurs on the \
                    723: right-hand side of a rule. This will result in a parser which \
                    724: does not work properly.",sp->name);
                    725:         lemp->errorcnt++;
                    726:       }
                    727:     }
                    728:   }
                    729: 
                    730:   /* The basis configuration set for the first state
                    731:   ** is all rules which have the start symbol as their
                    732:   ** left-hand side */
                    733:   for(rp=sp->rule; rp; rp=rp->nextlhs){
                    734:     struct config *newcfp;
                    735:     newcfp = Configlist_addbasis(rp,0);
                    736:     SetAdd(newcfp->fws,0);
                    737:   }
                    738: 
                    739:   /* Compute the first state.  All other states will be
                    740:   ** computed automatically during the computation of the first one.
                    741:   ** The returned pointer to the first state is not used. */
                    742:   (void)getstate(lemp);
                    743:   return;
                    744: }
                    745: 
                    746: /* Return a pointer to a state which is described by the configuration
                    747: ** list which has been built from calls to Configlist_add.
                    748: */
                    749: PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
                    750: PRIVATE struct state *getstate(lemp)
                    751: struct lemon *lemp;
                    752: {
                    753:   struct config *cfp, *bp;
                    754:   struct state *stp;
                    755: 
                    756:   /* Extract the sorted basis of the new state.  The basis was constructed
                    757:   ** by prior calls to "Configlist_addbasis()". */
                    758:   Configlist_sortbasis();
                    759:   bp = Configlist_basis();
                    760: 
                    761:   /* Get a state with the same basis */
                    762:   stp = State_find(bp);
                    763:   if( stp ){
                    764:     /* A state with the same basis already exists!  Copy all the follow-set
                    765:     ** propagation links from the state under construction into the
                    766:     ** preexisting state, then return a pointer to the preexisting state */
                    767:     struct config *x, *y;
                    768:     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
                    769:       Plink_copy(&y->bplp,x->bplp);
                    770:       Plink_delete(x->fplp);
                    771:       x->fplp = x->bplp = 0;
                    772:     }
                    773:     cfp = Configlist_return();
                    774:     Configlist_eat(cfp);
                    775:   }else{
                    776:     /* This really is a new state.  Construct all the details */
                    777:     Configlist_closure(lemp);    /* Compute the configuration closure */
                    778:     Configlist_sort();           /* Sort the configuration closure */
                    779:     cfp = Configlist_return();   /* Get a pointer to the config list */
                    780:     stp = State_new();           /* A new state structure */
                    781:     MemoryCheck(stp);
                    782:     stp->bp = bp;                /* Remember the configuration basis */
                    783:     stp->cfp = cfp;              /* Remember the configuration closure */
                    784:     stp->index = lemp->nstate++; /* Every state gets a sequence number */
                    785:     stp->ap = 0;                 /* No actions, yet. */
                    786:     State_insert(stp,stp->bp);   /* Add to the state table */
                    787:     buildshifts(lemp,stp);       /* Recursively compute successor states */
                    788:   }
                    789:   return stp;
                    790: }
                    791: 
                    792: /* Construct all successor states to the given state.  A "successor"
                    793: ** state is any state which can be reached by a shift action.
                    794: */
                    795: PRIVATE void buildshifts(lemp,stp)
                    796: struct lemon *lemp;
                    797: struct state *stp;     /* The state from which successors are computed */
                    798: {
                    799:   struct config *cfp;  /* For looping thru the config closure of "stp" */
                    800:   struct config *bcfp; /* For the inner loop on config closure of "stp" */
                    801:   struct config *new;  /* */
                    802:   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
                    803:   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
                    804:   struct state *newstp; /* A pointer to a successor state */
                    805: 
                    806:   /* Each configuration becomes complete after it contibutes to a successor
                    807:   ** state.  Initially, all configurations are incomplete */
                    808:   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
                    809: 
                    810:   /* Loop through all configurations of the state "stp" */
                    811:   for(cfp=stp->cfp; cfp; cfp=cfp->next){
                    812:     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
                    813:     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
                    814:     Configlist_reset();                      /* Reset the new config set */
                    815:     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
                    816: 
                    817:     /* For every configuration in the state "stp" which has the symbol "sp"
                    818:     ** following its dot, add the same configuration to the basis set under
                    819:     ** construction but with the dot shifted one symbol to the right. */
                    820:     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
                    821:       if( bcfp->status==COMPLETE ) continue;    /* Already used */
                    822:       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
                    823:       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
                    824:       if( bsp!=sp ) continue;                   /* Must be same as for "cfp" */
                    825:       bcfp->status = COMPLETE;                  /* Mark this config as used */
                    826:       new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
                    827:       Plink_add(&new->bplp,bcfp);
                    828:     }
                    829: 
                    830:     /* Get a pointer to the state described by the basis configuration set
                    831:     ** constructed in the preceding loop */
                    832:     newstp = getstate(lemp);
                    833: 
                    834:     /* The state "newstp" is reached from the state "stp" by a shift action
                    835:     ** on the symbol "sp" */
                    836:     Action_add(&stp->ap,SHIFT,sp,newstp);
                    837:   }
                    838: }
                    839: 
                    840: /*
                    841: ** Construct the propagation links
                    842: */
                    843: void FindLinks(lemp)
                    844: struct lemon *lemp;
                    845: {
                    846:   int i;
                    847:   struct config *cfp, *other;
                    848:   struct state *stp;
                    849:   struct plink *plp;
                    850: 
                    851:   /* Housekeeping detail:
                    852:   ** Add to every propagate link a pointer back to the state to
                    853:   ** which the link is attached. */
                    854:   for(i=0; i<lemp->nstate; i++){
                    855:     stp = lemp->sorted[i];
                    856:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
                    857:       cfp->stp = stp;
                    858:     }
                    859:   }
                    860: 
                    861:   /* Convert all backlinks into forward links.  Only the forward
                    862:   ** links are used in the follow-set computation. */
                    863:   for(i=0; i<lemp->nstate; i++){
                    864:     stp = lemp->sorted[i];
                    865:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
                    866:       for(plp=cfp->bplp; plp; plp=plp->next){
                    867:         other = plp->cfp;
                    868:         Plink_add(&other->fplp,cfp);
                    869:       }
                    870:     }
                    871:   }
                    872: }
                    873: 
                    874: /* Compute all followsets.
                    875: **
                    876: ** A followset is the set of all symbols which can come immediately
                    877: ** after a configuration.
                    878: */
                    879: void FindFollowSets(lemp)
                    880: struct lemon *lemp;
                    881: {
                    882:   int i;
                    883:   struct config *cfp;
                    884:   struct plink *plp;
                    885:   int progress;
                    886:   int change;
                    887: 
                    888:   for(i=0; i<lemp->nstate; i++){
                    889:     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
                    890:       cfp->status = INCOMPLETE;
                    891:     }
                    892:   }
                    893: 
                    894:   do{
                    895:     progress = 0;
                    896:     for(i=0; i<lemp->nstate; i++){
                    897:       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
                    898:         if( cfp->status==COMPLETE ) continue;
                    899:         for(plp=cfp->fplp; plp; plp=plp->next){
                    900:           change = SetUnion(plp->cfp->fws,cfp->fws);
                    901:           if( change ){
                    902:             plp->cfp->status = INCOMPLETE;
                    903:             progress = 1;
                    904:          }
                    905:        }
                    906:         cfp->status = COMPLETE;
                    907:       }
                    908:     }
                    909:   }while( progress );
                    910: }
                    911: 
                    912: static int resolve_conflict();
                    913: 
                    914: /* Compute the reduce actions, and resolve conflicts.
                    915: */
                    916: void FindActions(lemp)
                    917: struct lemon *lemp;
                    918: {
                    919:   int i,j;
                    920:   struct config *cfp;
                    921:   struct symbol *sp;
                    922:   struct rule *rp;
                    923: 
                    924:   /* Add all of the reduce actions
                    925:   ** A reduce action is added for each element of the followset of
                    926:   ** a configuration which has its dot at the extreme right.
                    927:   */
                    928:   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
                    929:     struct state *stp;
                    930:     stp = lemp->sorted[i];
                    931:     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
                    932:       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
                    933:         for(j=0; j<lemp->nterminal; j++){
                    934:           if( SetFind(cfp->fws,j) ){
                    935:             /* Add a reduce action to the state "stp" which will reduce by the
                    936:             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
                    937:             Action_add(&stp->ap,REDUCE,lemp->symbols[j],cfp->rp);
                    938:           }
                    939:        }
                    940:       }
                    941:     }
                    942:   }
                    943: 
                    944:   /* Add the accepting token */
                    945:   if( lemp->start ){
                    946:     sp = Symbol_find(lemp->start);
                    947:     if( sp==0 ) sp = lemp->rule->lhs;
                    948:   }else{
                    949:     sp = lemp->rule->lhs;
                    950:   }
                    951:   /* Add to the first state (which is always the starting state of the
                    952:   ** finite state machine) an action to ACCEPT if the lookahead is the
                    953:   ** start nonterminal.  */
                    954:   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
                    955: 
                    956:   /* Resolve conflicts */
                    957:   for(i=0; i<lemp->nstate; i++){
                    958:     struct action *ap, *nap;
                    959:     struct state *stp;
                    960:     stp = lemp->sorted[i];
                    961:     assert( stp->ap );
                    962:     stp->ap = Action_sort(stp->ap);
                    963:     for(ap=stp->ap; ap && ap->next; ap=ap->next){
                    964:       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
                    965:          /* The two actions "ap" and "nap" have the same lookahead.
                    966:          ** Figure out which one should be used */
                    967:          lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
                    968:       }
                    969:     }
                    970:   }
                    971: 
                    972:   /* Report an error for each rule that can never be reduced. */
                    973:   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = Bo_FALSE;
                    974:   for(i=0; i<lemp->nstate; i++){
                    975:     struct action *ap;
                    976:     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
                    977:       if( ap->type==REDUCE ) ap->x.rp->canReduce = Bo_TRUE;
                    978:     }
                    979:   }
                    980:   for(rp=lemp->rule; rp; rp=rp->next){
                    981:     if( rp->canReduce ) continue;
                    982:     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
                    983:     lemp->errorcnt++;
                    984:   }
                    985: }
                    986: 
                    987: /* Resolve a conflict between the two given actions.  If the
                    988: ** conflict can't be resolve, return non-zero.
                    989: **
                    990: ** NO LONGER TRUE:
                    991: **   To resolve a conflict, first look to see if either action
                    992: **   is on an error rule.  In that case, take the action which
                    993: **   is not associated with the error rule.  If neither or both
                    994: **   actions are associated with an error rule, then try to
                    995: **   use precedence to resolve the conflict.
                    996: **
                    997: ** If either action is a SHIFT, then it must be apx.  This
                    998: ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
                    999: */
                   1000: static int resolve_conflict(apx,apy,errsym)
                   1001: struct action *apx;
                   1002: struct action *apy;
                   1003: struct symbol *errsym;   /* The error symbol (if defined.  NULL otherwise) */
                   1004: {
                   1005:   struct symbol *spx, *spy;
                   1006:   int errcnt = 0;
                   1007:   UNUSED(errsym);
                   1008:   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
                   1009:   if( apx->type==SHIFT && apy->type==REDUCE ){
                   1010:     spx = apx->sp;
                   1011:     spy = apy->x.rp->precsym;
                   1012:     if( spy==0 || spx->prec<0 || spy->prec<0 ){
                   1013:       /* Not enough precedence information. */
                   1014:       apy->type = CONFLICT;
                   1015:       errcnt++;
                   1016:     }else if( spx->prec>spy->prec ){    /* Lower precedence wins */
                   1017:       apy->type = RD_RESOLVED;
                   1018:     }else if( spx->prec<spy->prec ){
                   1019:       apx->type = SH_RESOLVED;
                   1020:     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
                   1021:       apy->type = RD_RESOLVED;                             /* associativity */
                   1022:     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
                   1023:       apx->type = SH_RESOLVED;
                   1024:     }else{
                   1025:       assert( spx->prec==spy->prec && spx->assoc==NONE );
                   1026:       apy->type = CONFLICT;
                   1027:       errcnt++;
                   1028:     }
                   1029:   }else if( apx->type==REDUCE && apy->type==REDUCE ){
                   1030:     spx = apx->x.rp->precsym;
                   1031:     spy = apy->x.rp->precsym;
                   1032:     if( spx==0 || spy==0 || spx->prec<0 ||
                   1033:     spy->prec<0 || spx->prec==spy->prec ){
                   1034:       apy->type = CONFLICT;
                   1035:       errcnt++;
                   1036:     }else if( spx->prec>spy->prec ){
                   1037:       apy->type = RD_RESOLVED;
                   1038:     }else if( spx->prec<spy->prec ){
                   1039:       apx->type = RD_RESOLVED;
                   1040:     }
                   1041:   }else{
                   1042:     assert(
                   1043:       apx->type==SH_RESOLVED ||
                   1044:       apx->type==RD_RESOLVED ||
                   1045:       apx->type==CONFLICT ||
                   1046:       apy->type==SH_RESOLVED ||
                   1047:       apy->type==RD_RESOLVED ||
                   1048:       apy->type==CONFLICT
                   1049:     );
                   1050:     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
                   1051:     ** REDUCEs on the list.  If we reach this point it must be because
                   1052:     ** the parser conflict had already been resolved. */
                   1053:   }
                   1054:   return errcnt;
                   1055: }
                   1056: /********************* From the file "configlist.c" *************************/
                   1057: /*
                   1058: ** Routines to processing a configuration list and building a state
                   1059: ** in the LEMON parser generator.
                   1060: */
                   1061: 
                   1062: static struct config *freelist = 0;      /* List of free configurations */
                   1063: static struct config *current = 0;       /* Top of list of configurations */
                   1064: static struct config **currentend = 0;   /* Last on list of configs */
                   1065: static struct config *basis = 0;         /* Top of list of basis configs */
                   1066: static struct config **basisend = 0;     /* End of list of basis configs */
                   1067: 
                   1068: /* Return a pointer to a new configuration */
                   1069: PRIVATE struct config *newconfig(){
                   1070:   struct config *new;
                   1071:   if( freelist==0 ){
                   1072:     int i;
                   1073:     int amt = 3;
                   1074:     freelist = (struct config *)malloc( sizeof(struct config)*amt );
                   1075:     if( freelist==0 ){
                   1076:       fprintf(stderr,"Unable to allocate memory for a new configuration.");
                   1077:       exit(1);
                   1078:     }
                   1079:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
                   1080:     freelist[amt-1].next = 0;
                   1081:   }
                   1082:   new = freelist;
                   1083:   freelist = freelist->next;
                   1084:   return new;
                   1085: }
                   1086: 
                   1087: /* The configuration "old" is no longer used */
                   1088: PRIVATE void deleteconfig(old)
                   1089: struct config *old;
                   1090: {
                   1091:   old->next = freelist;
                   1092:   freelist = old;
                   1093: }
                   1094: 
                   1095: /* Initialized the configuration list builder */
                   1096: void Configlist_init(){
                   1097:   current = 0;
                   1098:   currentend = &current;
                   1099:   basis = 0;
                   1100:   basisend = &basis;
                   1101:   Configtable_init();
                   1102:   return;
                   1103: }
                   1104: 
                   1105: /* Initialized the configuration list builder */
                   1106: void Configlist_reset(){
                   1107:   current = 0;
                   1108:   currentend = &current;
                   1109:   basis = 0;
                   1110:   basisend = &basis;
                   1111:   Configtable_clear(0);
                   1112:   return;
                   1113: }
                   1114: 
                   1115: /* Add another configuration to the configuration list */
                   1116: struct config *Configlist_add(rp,dot)
                   1117: struct rule *rp;    /* The rule */
                   1118: int dot;            /* Index into the RHS of the rule where the dot goes */
                   1119: {
                   1120:   struct config *cfp, model;
                   1121: 
                   1122:   assert( currentend!=0 );
                   1123:   model.rp = rp;
                   1124:   model.dot = dot;
                   1125:   cfp = Configtable_find(&model);
                   1126:   if( cfp==0 ){
                   1127:     cfp = newconfig();
                   1128:     cfp->rp = rp;
                   1129:     cfp->dot = dot;
                   1130:     cfp->fws = SetNew();
                   1131:     cfp->stp = 0;
                   1132:     cfp->fplp = cfp->bplp = 0;
                   1133:     cfp->next = 0;
                   1134:     cfp->bp = 0;
                   1135:     *currentend = cfp;
                   1136:     currentend = &cfp->next;
                   1137:     Configtable_insert(cfp);
                   1138:   }
                   1139:   return cfp;
                   1140: }
                   1141: 
                   1142: /* Add a basis configuration to the configuration list */
                   1143: struct config *Configlist_addbasis(rp,dot)
                   1144: struct rule *rp;
                   1145: int dot;
                   1146: {
                   1147:   struct config *cfp, model;
                   1148: 
                   1149:   assert( basisend!=0 );
                   1150:   assert( currentend!=0 );
                   1151:   model.rp = rp;
                   1152:   model.dot = dot;
                   1153:   cfp = Configtable_find(&model);
                   1154:   if( cfp==0 ){
                   1155:     cfp = newconfig();
                   1156:     cfp->rp = rp;
                   1157:     cfp->dot = dot;
                   1158:     cfp->fws = SetNew();
                   1159:     cfp->stp = 0;
                   1160:     cfp->fplp = cfp->bplp = 0;
                   1161:     cfp->next = 0;
                   1162:     cfp->bp = 0;
                   1163:     *currentend = cfp;
                   1164:     currentend = &cfp->next;
                   1165:     *basisend = cfp;
                   1166:     basisend = &cfp->bp;
                   1167:     Configtable_insert(cfp);
                   1168:   }
                   1169:   return cfp;
                   1170: }
                   1171: 
                   1172: /* Compute the closure of the configuration list */
                   1173: void Configlist_closure(lemp)
                   1174: struct lemon *lemp;
                   1175: {
                   1176:   struct config *cfp, *newcfp;
                   1177:   struct rule *rp, *newrp;
                   1178:   struct symbol *sp, *xsp;
                   1179:   int i, dot;
                   1180: 
                   1181:   assert( currentend!=0 );
                   1182:   for(cfp=current; cfp; cfp=cfp->next){
                   1183:     rp = cfp->rp;
                   1184:     dot = cfp->dot;
                   1185:     if( dot>=rp->nrhs ) continue;
                   1186:     sp = rp->rhs[dot];
                   1187:     if( sp->type==NONTERMINAL ){
                   1188:       if( sp->rule==0 && sp!=lemp->errsym ){
                   1189:         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
                   1190:           sp->name);
                   1191:         lemp->errorcnt++;
                   1192:       }
                   1193:       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
                   1194:         newcfp = Configlist_add(newrp,0);
                   1195:         for(i=dot+1; i<rp->nrhs; i++){
                   1196:           xsp = rp->rhs[i];
                   1197:           if( xsp->type==TERMINAL ){
                   1198:             SetAdd(newcfp->fws,xsp->index);
                   1199:             break;
                   1200:          }else{
                   1201:             SetUnion(newcfp->fws,xsp->firstset);
                   1202:             if( xsp->lambda==Bo_FALSE ) break;
                   1203:          }
                   1204:        }
                   1205:         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
                   1206:       }
                   1207:     }
                   1208:   }
                   1209:   return;
                   1210: }
                   1211: 
                   1212: /* Sort the configuration list */
                   1213: void Configlist_sort(){
                   1214:   current = (struct config *)msort(current,&(current->next),Configcmp);
                   1215:   currentend = 0;
                   1216:   return;
                   1217: }
                   1218: 
                   1219: /* Sort the basis configuration list */
                   1220: void Configlist_sortbasis(){
                   1221:   basis = (struct config *)msort(current,&(current->bp),Configcmp);
                   1222:   basisend = 0;
                   1223:   return;
                   1224: }
                   1225: 
                   1226: /* Return a pointer to the head of the configuration list and
                   1227: ** reset the list */
                   1228: struct config *Configlist_return(){
                   1229:   struct config *old;
                   1230:   old = current;
                   1231:   current = 0;
                   1232:   currentend = 0;
                   1233:   return old;
                   1234: }
                   1235: 
                   1236: /* Return a pointer to the head of the configuration list and
                   1237: ** reset the list */
                   1238: struct config *Configlist_basis(){
                   1239:   struct config *old;
                   1240:   old = basis;
                   1241:   basis = 0;
                   1242:   basisend = 0;
                   1243:   return old;
                   1244: }
                   1245: 
                   1246: /* Free all elements of the given configuration list */
                   1247: void Configlist_eat(cfp)
                   1248: struct config *cfp;
                   1249: {
                   1250:   struct config *nextcfp;
                   1251:   for(; cfp; cfp=nextcfp){
                   1252:     nextcfp = cfp->next;
                   1253:     assert( cfp->fplp==0 );
                   1254:     assert( cfp->bplp==0 );
                   1255:     if( cfp->fws ) SetFree(cfp->fws);
                   1256:     deleteconfig(cfp);
                   1257:   }
                   1258:   return;
                   1259: }
                   1260: /***************** From the file "error.c" *********************************/
                   1261: /*
                   1262: ** Code for printing error message.
                   1263: */
                   1264: 
                   1265: /* Find a good place to break "msg" so that its length is at least "min"
                   1266: ** but no more than "max".  Make the point as close to max as possible.
                   1267: */
                   1268: static int findbreak(msg,min,max)
                   1269: char *msg;
                   1270: int min;
                   1271: int max;
                   1272: {
                   1273:   int i,spot;
                   1274:   char c;
                   1275:   for(i=spot=min; i<=max; i++){
                   1276:     c = msg[i];
                   1277:     if( c=='\t' ) msg[i] = ' ';
                   1278:     if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
                   1279:     if( c==0 ){ spot = i; break; }
                   1280:     if( c=='-' && i<max-1 ) spot = i+1;
                   1281:     if( c==' ' ) spot = i;
                   1282:   }
                   1283:   return spot;
                   1284: }
                   1285: 
                   1286: /*
                   1287: ** The error message is split across multiple lines if necessary.  The
                   1288: ** splits occur at a space, if there is a space available near the end
                   1289: ** of the line.
                   1290: */
                   1291: #define ERRMSGSIZE  10000 /* Hope this is big enough.  No way to error check */
                   1292: #define LINEWIDTH      79 /* Max width of any output line */
                   1293: #define PREFIXLIMIT    30 /* Max width of the prefix on each line */
                   1294: void ErrorMsg(const char *filename, int lineno, const char *format, ...){
                   1295:   char errmsg[ERRMSGSIZE];
                   1296:   char prefix[PREFIXLIMIT+10];
                   1297:   int errmsgsize;
                   1298:   int prefixsize;
                   1299:   int availablewidth;
                   1300:   va_list ap;
                   1301:   int end, restart, base;
                   1302: 
                   1303:   va_start(ap, format);
                   1304:   /* Prepare a prefix to be prepended to every output line */
                   1305:   if( lineno>0 ){
                   1306:     sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
                   1307:   }else{
                   1308:     sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
                   1309:   }
                   1310:   prefixsize = strlen(prefix);
                   1311:   availablewidth = LINEWIDTH - prefixsize;
                   1312: 
                   1313:   /* Generate the error message */
                   1314:   vsprintf(errmsg,format,ap);
                   1315:   va_end(ap);
                   1316:   errmsgsize = strlen(errmsg);
                   1317:   /* Remove trailing '\n's from the error message. */
                   1318:   while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
                   1319:      errmsg[--errmsgsize] = 0;
                   1320:   }
                   1321: 
                   1322:   /* Print the error message */
                   1323:   base = 0;
                   1324:   while( errmsg[base]!=0 ){
                   1325:     end = restart = findbreak(&errmsg[base],0,availablewidth);
                   1326:     restart += base;
                   1327:     while( errmsg[restart]==' ' ) restart++;
                   1328:     fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
                   1329:     base = restart;
                   1330:   }
                   1331: }
                   1332: /**************** From the file "main.c" ************************************/
                   1333: /*
                   1334: ** Main program file for the LEMON parser generator.
                   1335: */
                   1336: 
                   1337: /* Report an out-of-memory condition and abort.  This function
                   1338: ** is used mostly by the "MemoryCheck" macro in struct.h
                   1339: */
                   1340: void memory_error() {
                   1341:   fprintf(stderr,"Out of memory.  Aborting...\n");
                   1342:   exit(1);
                   1343: }
                   1344: 
                   1345: 
                   1346: /* The main program.  Parse the command line and do it... */
                   1347: int main(argc,argv)
                   1348: int argc;
                   1349: char **argv;
                   1350: {
                   1351:   static int version = 0;
                   1352:   static int rpflag = 0;
                   1353:   static int basisflag = 0;
                   1354:   static int compress = 0;
                   1355:   static int quiet = 0;
                   1356:   static int statistics = 0;
                   1357:   static int mhflag = 0;
                   1358:   static struct s_options options[] = {
                   1359:     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
                   1360:     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
                   1361:     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
                   1362:     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
                   1363:     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
                   1364:     {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
                   1365:     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
                   1366:     {OPT_FLAG,0,0,0}
                   1367:   };
                   1368:   int i;
                   1369:   struct lemon lem;
                   1370:   char *def_tmpl_name = "lempar.c";
                   1371: 
                   1372:   UNUSED(argc);
                   1373:   OptInit(argv,options,stderr);
                   1374:   if( version ){
                   1375:      printf("Lemon version 1.0\n");
                   1376:      exit(0);
                   1377:   }
                   1378:   if( OptNArgs() < 1 ){
                   1379:     fprintf(stderr,"Exactly one filename argument is required.\n");
                   1380:     exit(1);
                   1381:   }
                   1382:   lem.errorcnt = 0;
                   1383: 
                   1384:   /* Initialize the machine */
                   1385:   Strsafe_init();
                   1386:   Symbol_init();
                   1387:   State_init();
                   1388:   lem.argv0 = argv[0];
                   1389:   lem.filename = OptArg(0);
                   1390:   lem.tmplname = (OptNArgs() == 2) ? OptArg(1) : def_tmpl_name;
                   1391:   lem.basisflag = basisflag;
                   1392:   lem.has_fallback = 0;
                   1393:   lem.nconflict = 0;
                   1394:   lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
                   1395:   lem.vartype = 0;
                   1396:   lem.stacksize = 0;
                   1397:   lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
                   1398:   lem.tokenprefix = lem.outname = lem.extracode = 0;
                   1399:   lem.vardest = 0;
                   1400:   lem.tablesize = 0;
                   1401:   Symbol_new("$");
                   1402:   lem.errsym = Symbol_new("error");
                   1403: 
                   1404:   /* Parse the input file */
                   1405:   Parse(&lem);
                   1406:   if( lem.errorcnt ) exit(lem.errorcnt);
                   1407:   if( lem.rule==0 ){
                   1408:     fprintf(stderr,"Empty grammar.\n");
                   1409:     exit(1);
                   1410:   }
                   1411: 
                   1412:   /* Count and index the symbols of the grammar */
                   1413:   lem.nsymbol = Symbol_count();
                   1414:   Symbol_new("{default}");
                   1415:   lem.symbols = Symbol_arrayof();
                   1416:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
                   1417:   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
                   1418:         (int(*)())Symbolcmpp);
                   1419:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
                   1420:   for(i=1; isupper(lem.symbols[i]->name[0]); i++);
                   1421:   lem.nterminal = i;
                   1422: 
                   1423:   /* Generate a reprint of the grammar, if requested on the command line */
                   1424:   if( rpflag ){
                   1425:     Reprint(&lem);
                   1426:   }else{
                   1427:     /* Initialize the size for all follow and first sets */
                   1428:     SetSize(lem.nterminal);
                   1429: 
                   1430:     /* Find the precedence for every production rule (that has one) */
                   1431:     FindRulePrecedences(&lem);
                   1432: 
                   1433:     /* Compute the lambda-nonterminals and the first-sets for every
                   1434:     ** nonterminal */
                   1435:     FindFirstSets(&lem);
                   1436: 
                   1437:     /* Compute all LR(0) states.  Also record follow-set propagation
                   1438:     ** links so that the follow-set can be computed later */
                   1439:     lem.nstate = 0;
                   1440:     FindStates(&lem);
                   1441:     lem.sorted = State_arrayof();
                   1442: 
                   1443:     /* Tie up loose ends on the propagation links */
                   1444:     FindLinks(&lem);
                   1445: 
                   1446:     /* Compute the follow set of every reducible configuration */
                   1447:     FindFollowSets(&lem);
                   1448: 
                   1449:     /* Compute the action tables */
                   1450:     FindActions(&lem);
                   1451: 
                   1452:     /* Compress the action tables */
                   1453:     if( compress==0 ) CompressTables(&lem);
                   1454: 
                   1455:     /* Generate a report of the parser generated.  (the "y.output" file) */
                   1456:     if( !quiet ) ReportOutput(&lem);
                   1457: 
                   1458:     /* Generate the source code for the parser */
                   1459:     ReportTable(&lem, mhflag);
                   1460: 
                   1461:     /* Produce a header file for use by the scanner.  (This step is
                   1462:     ** omitted if the "-m" option is used because makeheaders will
                   1463:     ** generate the file for us.) */
                   1464:     if( !mhflag ) ReportHeader(&lem);
                   1465:   }
                   1466:   if( statistics ){
                   1467:     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
                   1468:       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
                   1469:     printf("                   %d states, %d parser table entries, %d conflicts\n",
                   1470:       lem.nstate, lem.tablesize, lem.nconflict);
                   1471:   }
                   1472:   if( lem.nconflict ){
                   1473:     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
                   1474:   }
                   1475:   exit(lem.errorcnt + lem.nconflict);
                   1476: }
                   1477: /******************** From the file "msort.c" *******************************/
                   1478: /*
                   1479: ** A generic merge-sort program.
                   1480: **
                   1481: ** USAGE:
                   1482: ** Let "ptr" be a pointer to some structure which is at the head of
                   1483: ** a null-terminated list.  Then to sort the list call:
                   1484: **
                   1485: **     ptr = msort(ptr,&(ptr->next),cmpfnc);
                   1486: **
                   1487: ** In the above, "cmpfnc" is a pointer to a function which compares
                   1488: ** two instances of the structure and returns an integer, as in
                   1489: ** strcmp.  The second argument is a pointer to the pointer to the
                   1490: ** second element of the linked list.  This address is used to compute
                   1491: ** the offset to the "next" field within the structure.  The offset to
                   1492: ** the "next" field must be constant for all structures in the list.
                   1493: **
                   1494: ** The function returns a new pointer which is the head of the list
                   1495: ** after sorting.
                   1496: **
                   1497: ** ALGORITHM:
                   1498: ** Merge-sort.
                   1499: */
                   1500: 
                   1501: /*
                   1502: ** Return a pointer to the next structure in the linked list.
                   1503: */
                   1504: #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
                   1505: 
                   1506: /*
                   1507: ** Inputs:
                   1508: **   a:       A sorted, null-terminated linked list.  (May be null).
                   1509: **   b:       A sorted, null-terminated linked list.  (May be null).
                   1510: **   cmp:     A pointer to the comparison function.
                   1511: **   offset:  Offset in the structure to the "next" field.
                   1512: **
                   1513: ** Return Value:
                   1514: **   A pointer to the head of a sorted list containing the elements
                   1515: **   of both a and b.
                   1516: **
                   1517: ** Side effects:
                   1518: **   The "next" pointers for elements in the lists a and b are
                   1519: **   changed.
                   1520: */
                   1521: static char *merge(a,b,cmp,offset)
                   1522: char *a;
                   1523: char *b;
                   1524: int (*cmp)();
                   1525: int offset;
                   1526: {
                   1527:   char *ptr, *head;
                   1528: 
                   1529:   if( a==0 ){
                   1530:     head = b;
                   1531:   }else if( b==0 ){
                   1532:     head = a;
                   1533:   }else{
                   1534:     if( (*cmp)(a,b)<0 ){
                   1535:       ptr = a;
                   1536:       a = NEXT(a);
                   1537:     }else{
                   1538:       ptr = b;
                   1539:       b = NEXT(b);
                   1540:     }
                   1541:     head = ptr;
                   1542:     while( a && b ){
                   1543:       if( (*cmp)(a,b)<0 ){
                   1544:         NEXT(ptr) = a;
                   1545:         ptr = a;
                   1546:         a = NEXT(a);
                   1547:       }else{
                   1548:         NEXT(ptr) = b;
                   1549:         ptr = b;
                   1550:         b = NEXT(b);
                   1551:       }
                   1552:     }
                   1553:     if( a ) NEXT(ptr) = a;
                   1554:     else    NEXT(ptr) = b;
                   1555:   }
                   1556:   return head;
                   1557: }
                   1558: 
                   1559: /*
                   1560: ** Inputs:
                   1561: **   list:      Pointer to a singly-linked list of structures.
                   1562: **   next:      Pointer to pointer to the second element of the list.
                   1563: **   cmp:       A comparison function.
                   1564: **
                   1565: ** Return Value:
                   1566: **   A pointer to the head of a sorted list containing the elements
                   1567: **   orginally in list.
                   1568: **
                   1569: ** Side effects:
                   1570: **   The "next" pointers for elements in list are changed.
                   1571: */
                   1572: #define LISTSIZE 30
                   1573: char *msort(list,next,cmp)
                   1574: char *list;
                   1575: char **next;
                   1576: int (*cmp)();
                   1577: {
                   1578:   unsigned long offset;
                   1579:   char *ep;
                   1580:   char *set[LISTSIZE];
                   1581:   int i;
                   1582:   offset = (unsigned long)next - (unsigned long)list;
                   1583:   for(i=0; i<LISTSIZE; i++) set[i] = 0;
                   1584:   while( list ){
                   1585:     ep = list;
                   1586:     list = NEXT(list);
                   1587:     NEXT(ep) = 0;
                   1588:     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
                   1589:       ep = merge(ep,set[i],cmp,offset);
                   1590:       set[i] = 0;
                   1591:     }
                   1592:     set[i] = ep;
                   1593:   }
                   1594:   ep = 0;
                   1595:   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
                   1596:   return ep;
                   1597: }
                   1598: /************************ From the file "option.c" **************************/
                   1599: static char **argv;
                   1600: static struct s_options *op;
                   1601: static FILE *errstream;
                   1602: 
                   1603: #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
                   1604: 
                   1605: /*
                   1606: ** Print the command line with a carrot pointing to the k-th character
                   1607: ** of the n-th field.
                   1608: */
                   1609: static void errline(n,k,err)
                   1610: int n;
                   1611: int k;
                   1612: FILE *err;
                   1613: {
1.1.1.2   misho    1614:   int spcnt = 0, i;
                   1615:   if( argv[0] ) {
                   1616:     fprintf(err,"%s",argv[0]);
                   1617:     spcnt += strlen(argv[0]) + 1;
                   1618:   }
1.1       misho    1619:   for(i=1; i<n && argv[i]; i++){
                   1620:     fprintf(err," %s",argv[i]);
1.1.1.2   misho    1621:     spcnt += strlen(argv[i]) + 1;
1.1       misho    1622:   }
                   1623:   spcnt += k;
                   1624:   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
                   1625:   if( spcnt<20 ){
                   1626:     fprintf(err,"\n%*s^-- here\n",spcnt,"");
                   1627:   }else{
                   1628:     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
                   1629:   }
                   1630: }
                   1631: 
                   1632: /*
                   1633: ** Return the index of the N-th non-switch argument.  Return -1
                   1634: ** if N is out of range.
                   1635: */
                   1636: static int argindex(n)
                   1637: int n;
                   1638: {
                   1639:   int i;
                   1640:   int dashdash = 0;
                   1641:   if( argv!=0 && *argv!=0 ){
                   1642:     for(i=1; argv[i]; i++){
                   1643:       if( dashdash || !ISOPT(argv[i]) ){
                   1644:         if( n==0 ) return i;
                   1645:         n--;
                   1646:       }
                   1647:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
                   1648:     }
                   1649:   }
                   1650:   return -1;
                   1651: }
                   1652: 
                   1653: static char emsg[] = "Command line syntax error: ";
                   1654: 
                   1655: /*
                   1656: ** Process a flag command line argument.
                   1657: */
                   1658: static int handleflags(i,err)
                   1659: int i;
                   1660: FILE *err;
                   1661: {
                   1662:   int v;
                   1663:   int errcnt = 0;
                   1664:   int j;
                   1665:   for(j=0; op[j].label; j++){
                   1666:     if( strcmp(&argv[i][1],op[j].label)==0 ) break;
                   1667:   }
                   1668:   v = argv[i][0]=='-' ? 1 : 0;
                   1669:   if( op[j].label==0 ){
                   1670:     if( err ){
                   1671:       fprintf(err,"%sundefined option.\n",emsg);
                   1672:       errline(i,1,err);
                   1673:     }
                   1674:     errcnt++;
                   1675:   }else if( op[j].type==OPT_FLAG ){
                   1676:     *((int*)op[j].arg) = v;
                   1677:   }else if( op[j].type==OPT_FFLAG ){
                   1678:     (*(void(*)())(intptr_t)(op[j].arg))(v);
                   1679:   }else{
                   1680:     if( err ){
                   1681:       fprintf(err,"%smissing argument on switch.\n",emsg);
                   1682:       errline(i,1,err);
                   1683:     }
                   1684:     errcnt++;
                   1685:   }
                   1686:   return errcnt;
                   1687: }
                   1688: 
                   1689: /*
                   1690: ** Process a command line switch which has an argument.
                   1691: */
                   1692: static int handleswitch(i,err)
                   1693: int i;
                   1694: FILE *err;
                   1695: {
                   1696:   int lv = 0;
                   1697:   double dv = 0.0;
                   1698:   char *sv = 0, *end;
                   1699:   char *cp;
                   1700:   int j;
                   1701:   int errcnt = 0;
                   1702:   cp = strchr(argv[i],'=');
                   1703:   *cp = 0;
                   1704:   for(j=0; op[j].label; j++){
                   1705:     if( strcmp(argv[i],op[j].label)==0 ) break;
                   1706:   }
                   1707:   *cp = '=';
                   1708:   if( op[j].label==0 ){
                   1709:     if( err ){
                   1710:       fprintf(err,"%sundefined option.\n",emsg);
                   1711:       errline(i,0,err);
                   1712:     }
                   1713:     errcnt++;
                   1714:   }else{
                   1715:     cp++;
                   1716:     switch( op[j].type ){
                   1717:       case OPT_FLAG:
                   1718:       case OPT_FFLAG:
                   1719:         if( err ){
                   1720:           fprintf(err,"%soption requires an argument.\n",emsg);
                   1721:           errline(i,0,err);
                   1722:         }
                   1723:         errcnt++;
                   1724:         break;
                   1725:       case OPT_DBL:
                   1726:       case OPT_FDBL:
                   1727:         dv = strtod(cp,&end);
                   1728:         if( *end ){
                   1729:           if( err ){
                   1730:             fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
                   1731:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
                   1732:           }
                   1733:           errcnt++;
                   1734:         }
                   1735:         break;
                   1736:       case OPT_INT:
                   1737:       case OPT_FINT:
                   1738:         lv = strtol(cp,&end,0);
                   1739:         if( *end ){
                   1740:           if( err ){
                   1741:             fprintf(err,"%sillegal character in integer argument.\n",emsg);
                   1742:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
                   1743:           }
                   1744:           errcnt++;
                   1745:         }
                   1746:         break;
                   1747:       case OPT_STR:
                   1748:       case OPT_FSTR:
                   1749:         sv = cp;
                   1750:         break;
                   1751:     }
                   1752:     switch( op[j].type ){
                   1753:       case OPT_FLAG:
                   1754:       case OPT_FFLAG:
                   1755:         break;
                   1756:       case OPT_DBL:
                   1757:         *(double*)(op[j].arg) = dv;
                   1758:         break;
                   1759:       case OPT_FDBL:
                   1760:         (*(void(*)())(intptr_t)(op[j].arg))(dv);
                   1761:         break;
                   1762:       case OPT_INT:
                   1763:         *(int*)(op[j].arg) = lv;
                   1764:         break;
                   1765:       case OPT_FINT:
                   1766:         (*(void(*)())(intptr_t)(op[j].arg))((int)lv);
                   1767:         break;
                   1768:       case OPT_STR:
                   1769:         *(char**)(op[j].arg) = sv;
                   1770:         break;
                   1771:       case OPT_FSTR:
                   1772:         (*(void(*)())(intptr_t)(op[j].arg))(sv);
                   1773:         break;
                   1774:     }
                   1775:   }
                   1776:   return errcnt;
                   1777: }
                   1778: 
                   1779: int OptInit(a,o,err)
                   1780: char **a;
                   1781: struct s_options *o;
                   1782: FILE *err;
                   1783: {
                   1784:   int errcnt = 0;
                   1785:   argv = a;
                   1786:   op = o;
                   1787:   errstream = err;
                   1788:   if( argv && *argv && op ){
                   1789:     int i;
                   1790:     for(i=1; argv[i]; i++){
                   1791:       if( argv[i][0]=='+' || argv[i][0]=='-' ){
                   1792:         errcnt += handleflags(i,err);
                   1793:       }else if( strchr(argv[i],'=') ){
                   1794:         errcnt += handleswitch(i,err);
                   1795:       }
                   1796:     }
                   1797:   }
                   1798:   if( errcnt>0 ){
                   1799:     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
                   1800:     OptPrint();
                   1801:     exit(1);
                   1802:   }
                   1803:   return 0;
                   1804: }
                   1805: 
                   1806: int OptNArgs(){
                   1807:   int cnt = 0;
                   1808:   int dashdash = 0;
                   1809:   int i;
                   1810:   if( argv!=0 && argv[0]!=0 ){
                   1811:     for(i=1; argv[i]; i++){
                   1812:       if( dashdash || !ISOPT(argv[i]) ) cnt++;
                   1813:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
                   1814:     }
                   1815:   }
                   1816:   return cnt;
                   1817: }
                   1818: 
                   1819: char *OptArg(n)
                   1820: int n;
                   1821: {
                   1822:   int i;
                   1823:   i = argindex(n);
                   1824:   return i>=0 ? argv[i] : 0;
                   1825: }
                   1826: 
                   1827: void OptErr(n)
                   1828: int n;
                   1829: {
                   1830:   int i;
                   1831:   i = argindex(n);
                   1832:   if( i>=0 ) errline(i,0,errstream);
                   1833: }
                   1834: 
                   1835: void OptPrint(){
                   1836:   int i;
                   1837:   int max, len;
                   1838:   max = 0;
                   1839:   for(i=0; op[i].label; i++){
                   1840:     len = strlen(op[i].label) + 1;
                   1841:     switch( op[i].type ){
                   1842:       case OPT_FLAG:
                   1843:       case OPT_FFLAG:
                   1844:         break;
                   1845:       case OPT_INT:
                   1846:       case OPT_FINT:
                   1847:         len += 9;       /* length of "<integer>" */
                   1848:         break;
                   1849:       case OPT_DBL:
                   1850:       case OPT_FDBL:
                   1851:         len += 6;       /* length of "<real>" */
                   1852:         break;
                   1853:       case OPT_STR:
                   1854:       case OPT_FSTR:
                   1855:         len += 8;       /* length of "<string>" */
                   1856:         break;
                   1857:     }
                   1858:     if( len>max ) max = len;
                   1859:   }
                   1860:   for(i=0; op[i].label; i++){
                   1861:     switch( op[i].type ){
                   1862:       case OPT_FLAG:
                   1863:       case OPT_FFLAG:
                   1864:         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
                   1865:         break;
                   1866:       case OPT_INT:
                   1867:       case OPT_FINT:
                   1868:         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
                   1869:           (int)(max-strlen(op[i].label)-9),"",op[i].message);
                   1870:         break;
                   1871:       case OPT_DBL:
                   1872:       case OPT_FDBL:
                   1873:         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
                   1874:           (int)(max-strlen(op[i].label)-6),"",op[i].message);
                   1875:         break;
                   1876:       case OPT_STR:
                   1877:       case OPT_FSTR:
                   1878:         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
                   1879:           (int)(max-strlen(op[i].label)-8),"",op[i].message);
                   1880:         break;
                   1881:     }
                   1882:   }
                   1883: }
                   1884: /*********************** From the file "parse.c" ****************************/
                   1885: /*
                   1886: ** Input file parser for the LEMON parser generator.
                   1887: */
                   1888: 
                   1889: /* The state of the parser */
                   1890: struct pstate {
                   1891:   char *filename;       /* Name of the input file */
                   1892:   int tokenlineno;      /* Linenumber at which current token starts */
                   1893:   int errorcnt;         /* Number of errors so far */
                   1894:   char *tokenstart;     /* Text of current token */
                   1895:   struct lemon *gp;     /* Global state vector */
                   1896:   enum e_state {
                   1897:     INITIALIZE,
                   1898:     WAITING_FOR_DECL_OR_RULE,
                   1899:     WAITING_FOR_DECL_KEYWORD,
                   1900:     WAITING_FOR_DECL_ARG,
                   1901:     WAITING_FOR_PRECEDENCE_SYMBOL,
                   1902:     WAITING_FOR_ARROW,
                   1903:     IN_RHS,
                   1904:     LHS_ALIAS_1,
                   1905:     LHS_ALIAS_2,
                   1906:     LHS_ALIAS_3,
                   1907:     RHS_ALIAS_1,
                   1908:     RHS_ALIAS_2,
                   1909:     PRECEDENCE_MARK_1,
                   1910:     PRECEDENCE_MARK_2,
                   1911:     RESYNC_AFTER_RULE_ERROR,
                   1912:     RESYNC_AFTER_DECL_ERROR,
                   1913:     WAITING_FOR_DESTRUCTOR_SYMBOL,
                   1914:     WAITING_FOR_DATATYPE_SYMBOL,
                   1915:     WAITING_FOR_FALLBACK_ID
                   1916:   } state;                   /* The state of the parser */
                   1917:   struct symbol *fallback;   /* The fallback token */
                   1918:   struct symbol *lhs;        /* Left-hand side of current rule */
                   1919:   char *lhsalias;            /* Alias for the LHS */
                   1920:   int nrhs;                  /* Number of right-hand side symbols seen */
                   1921:   struct symbol *rhs[MAXRHS];  /* RHS symbols */
                   1922:   char *alias[MAXRHS];       /* Aliases for each RHS symbol (or NULL) */
                   1923:   struct rule *prevrule;     /* Previous rule parsed */
                   1924:   char *declkeyword;         /* Keyword of a declaration */
                   1925:   char **declargslot;        /* Where the declaration argument should be put */
                   1926:   int *decllnslot;           /* Where the declaration linenumber is put */
                   1927:   enum e_assoc declassoc;    /* Assign this association to decl arguments */
                   1928:   int preccounter;           /* Assign this precedence to decl arguments */
                   1929:   struct rule *firstrule;    /* Pointer to first rule in the grammar */
                   1930:   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
                   1931: };
                   1932: 
                   1933: /* Parse a single token */
                   1934: static void parseonetoken(psp)
                   1935: struct pstate *psp;
                   1936: {
                   1937:   char *x;
                   1938:   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
                   1939: #if 0
                   1940:   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
                   1941:     x,psp->state);
                   1942: #endif
                   1943:   switch( psp->state ){
                   1944:     case INITIALIZE:
                   1945:       psp->prevrule = 0;
                   1946:       psp->preccounter = 0;
                   1947:       psp->firstrule = psp->lastrule = 0;
                   1948:       psp->gp->nrule = 0;
                   1949:       /* Fall thru to next case */
                   1950:     case WAITING_FOR_DECL_OR_RULE:
                   1951:       if( x[0]=='%' ){
                   1952:         psp->state = WAITING_FOR_DECL_KEYWORD;
                   1953:       }else if( islower(x[0]) ){
                   1954:         psp->lhs = Symbol_new(x);
                   1955:         psp->nrhs = 0;
                   1956:         psp->lhsalias = 0;
                   1957:         psp->state = WAITING_FOR_ARROW;
                   1958:       }else if( x[0]=='{' ){
                   1959:         if( psp->prevrule==0 ){
                   1960:           ErrorMsg(psp->filename,psp->tokenlineno,
                   1961: "There is not prior rule opon which to attach the code \
                   1962: fragment which begins on this line.");
                   1963:           psp->errorcnt++;
                   1964:        }else if( psp->prevrule->code!=0 ){
                   1965:           ErrorMsg(psp->filename,psp->tokenlineno,
                   1966: "Code fragment beginning on this line is not the first \
                   1967: to follow the previous rule.");
                   1968:           psp->errorcnt++;
                   1969:         }else{
                   1970:           psp->prevrule->line = psp->tokenlineno;
                   1971:           psp->prevrule->code = &x[1];
                   1972:        }
                   1973:       }else if( x[0]=='[' ){
                   1974:         psp->state = PRECEDENCE_MARK_1;
                   1975:       }else{
                   1976:         ErrorMsg(psp->filename,psp->tokenlineno,
                   1977:           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
                   1978:           x);
                   1979:         psp->errorcnt++;
                   1980:       }
                   1981:       break;
                   1982:     case PRECEDENCE_MARK_1:
                   1983:       if( !isupper(x[0]) ){
                   1984:         ErrorMsg(psp->filename,psp->tokenlineno,
                   1985:           "The precedence symbol must be a terminal.");
                   1986:         psp->errorcnt++;
                   1987:       }else if( psp->prevrule==0 ){
                   1988:         ErrorMsg(psp->filename,psp->tokenlineno,
                   1989:           "There is no prior rule to assign precedence \"[%s]\".",x);
                   1990:         psp->errorcnt++;
                   1991:       }else if( psp->prevrule->precsym!=0 ){
                   1992:         ErrorMsg(psp->filename,psp->tokenlineno,
                   1993: "Precedence mark on this line is not the first \
                   1994: to follow the previous rule.");
                   1995:         psp->errorcnt++;
                   1996:       }else{
                   1997:         psp->prevrule->precsym = Symbol_new(x);
                   1998:       }
                   1999:       psp->state = PRECEDENCE_MARK_2;
                   2000:       break;
                   2001:     case PRECEDENCE_MARK_2:
                   2002:       if( x[0]!=']' ){
                   2003:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2004:           "Missing \"]\" on precedence mark.");
                   2005:         psp->errorcnt++;
                   2006:       }
                   2007:       psp->state = WAITING_FOR_DECL_OR_RULE;
                   2008:       break;
                   2009:     case WAITING_FOR_ARROW:
                   2010:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
                   2011:         psp->state = IN_RHS;
                   2012:       }else if( x[0]=='(' ){
                   2013:         psp->state = LHS_ALIAS_1;
                   2014:       }else{
                   2015:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2016:           "Expected to see a \":\" following the LHS symbol \"%s\".",
                   2017:           psp->lhs->name);
                   2018:         psp->errorcnt++;
                   2019:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2020:       }
                   2021:       break;
                   2022:     case LHS_ALIAS_1:
                   2023:       if( isalpha(x[0]) ){
                   2024:         psp->lhsalias = x;
                   2025:         psp->state = LHS_ALIAS_2;
                   2026:       }else{
                   2027:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2028:           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
                   2029:           x,psp->lhs->name);
                   2030:         psp->errorcnt++;
                   2031:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2032:       }
                   2033:       break;
                   2034:     case LHS_ALIAS_2:
                   2035:       if( x[0]==')' ){
                   2036:         psp->state = LHS_ALIAS_3;
                   2037:       }else{
                   2038:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2039:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
                   2040:         psp->errorcnt++;
                   2041:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2042:       }
                   2043:       break;
                   2044:     case LHS_ALIAS_3:
                   2045:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
                   2046:         psp->state = IN_RHS;
                   2047:       }else{
                   2048:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2049:           "Missing \"->\" following: \"%s(%s)\".",
                   2050:            psp->lhs->name,psp->lhsalias);
                   2051:         psp->errorcnt++;
                   2052:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2053:       }
                   2054:       break;
                   2055:     case IN_RHS:
                   2056:       if( x[0]=='.' ){
                   2057:         struct rule *rp;
                   2058:         rp = (struct rule *)malloc( sizeof(struct rule) +
                   2059:              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
                   2060:         if( rp==0 ){
                   2061:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2062:             "Can't allocate enough memory for this rule.");
                   2063:           psp->errorcnt++;
                   2064:           psp->prevrule = 0;
                   2065:        }else{
                   2066:           int i;
                   2067:           rp->ruleline = psp->tokenlineno;
                   2068:           rp->rhs = (struct symbol**)&rp[1];
                   2069:           rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
                   2070:           for(i=0; i<psp->nrhs; i++){
                   2071:             rp->rhs[i] = psp->rhs[i];
                   2072:             rp->rhsalias[i] = psp->alias[i];
                   2073:          }
                   2074:           rp->lhs = psp->lhs;
                   2075:           rp->lhsalias = psp->lhsalias;
                   2076:           rp->nrhs = psp->nrhs;
                   2077:           rp->code = 0;
                   2078:           rp->precsym = 0;
                   2079:           rp->index = psp->gp->nrule++;
                   2080:           rp->nextlhs = rp->lhs->rule;
                   2081:           rp->lhs->rule = rp;
                   2082:           rp->next = 0;
                   2083:           if( psp->firstrule==0 ){
                   2084:             psp->firstrule = psp->lastrule = rp;
                   2085:          }else{
                   2086:             psp->lastrule->next = rp;
                   2087:             psp->lastrule = rp;
                   2088:          }
                   2089:           psp->prevrule = rp;
                   2090:        }
                   2091:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2092:       }else if( isalpha(x[0]) ){
                   2093:         if( psp->nrhs>=MAXRHS ){
                   2094:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2095:             "Too many symbol on RHS or rule beginning at \"%s\".",
                   2096:             x);
                   2097:           psp->errorcnt++;
                   2098:           psp->state = RESYNC_AFTER_RULE_ERROR;
                   2099:        }else{
                   2100:           psp->rhs[psp->nrhs] = Symbol_new(x);
                   2101:           psp->alias[psp->nrhs] = 0;
                   2102:           psp->nrhs++;
                   2103:        }
                   2104:       }else if( x[0]=='(' && psp->nrhs>0 ){
                   2105:         psp->state = RHS_ALIAS_1;
                   2106:       }else{
                   2107:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2108:           "Illegal character on RHS of rule: \"%s\".",x);
                   2109:         psp->errorcnt++;
                   2110:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2111:       }
                   2112:       break;
                   2113:     case RHS_ALIAS_1:
                   2114:       if( isalpha(x[0]) ){
                   2115:         psp->alias[psp->nrhs-1] = x;
                   2116:         psp->state = RHS_ALIAS_2;
                   2117:       }else{
                   2118:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2119:           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
                   2120:           x,psp->rhs[psp->nrhs-1]->name);
                   2121:         psp->errorcnt++;
                   2122:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2123:       }
                   2124:       break;
                   2125:     case RHS_ALIAS_2:
                   2126:       if( x[0]==')' ){
                   2127:         psp->state = IN_RHS;
                   2128:       }else{
                   2129:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2130:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
                   2131:         psp->errorcnt++;
                   2132:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2133:       }
                   2134:       break;
                   2135:     case WAITING_FOR_DECL_KEYWORD:
                   2136:       if( isalpha(x[0]) ){
                   2137:         psp->declkeyword = x;
                   2138:         psp->declargslot = 0;
                   2139:         psp->decllnslot = 0;
                   2140:         psp->state = WAITING_FOR_DECL_ARG;
                   2141:         if( strcmp(x,"name")==0 ){
                   2142:           psp->declargslot = &(psp->gp->name);
                   2143:        }else if( strcmp(x,"include")==0 ){
                   2144:           psp->declargslot = &(psp->gp->include);
                   2145:           psp->decllnslot = &psp->gp->includeln;
                   2146:        }else if( strcmp(x,"code")==0 ){
                   2147:           psp->declargslot = &(psp->gp->extracode);
                   2148:           psp->decllnslot = &psp->gp->extracodeln;
                   2149:        }else if( strcmp(x,"token_destructor")==0 ){
                   2150:           psp->declargslot = &psp->gp->tokendest;
                   2151:           psp->decllnslot = &psp->gp->tokendestln;
                   2152:        }else if( strcmp(x,"default_destructor")==0 ){
                   2153:           psp->declargslot = &psp->gp->vardest;
                   2154:           psp->decllnslot = &psp->gp->vardestln;
                   2155:        }else if( strcmp(x,"token_prefix")==0 ){
                   2156:           psp->declargslot = &psp->gp->tokenprefix;
                   2157:        }else if( strcmp(x,"syntax_error")==0 ){
                   2158:           psp->declargslot = &(psp->gp->error);
                   2159:           psp->decllnslot = &psp->gp->errorln;
                   2160:        }else if( strcmp(x,"parse_accept")==0 ){
                   2161:           psp->declargslot = &(psp->gp->accept);
                   2162:           psp->decllnslot = &psp->gp->acceptln;
                   2163:        }else if( strcmp(x,"parse_failure")==0 ){
                   2164:           psp->declargslot = &(psp->gp->failure);
                   2165:           psp->decllnslot = &psp->gp->failureln;
                   2166:        }else if( strcmp(x,"stack_overflow")==0 ){
                   2167:           psp->declargslot = &(psp->gp->overflow);
                   2168:           psp->decllnslot = &psp->gp->overflowln;
                   2169:         }else if( strcmp(x,"extra_argument")==0 ){
                   2170:           psp->declargslot = &(psp->gp->arg);
                   2171:         }else if( strcmp(x,"token_type")==0 ){
                   2172:           psp->declargslot = &(psp->gp->tokentype);
                   2173:         }else if( strcmp(x,"default_type")==0 ){
                   2174:           psp->declargslot = &(psp->gp->vartype);
                   2175:         }else if( strcmp(x,"stack_size")==0 ){
                   2176:           psp->declargslot = &(psp->gp->stacksize);
                   2177:         }else if( strcmp(x,"start_symbol")==0 ){
                   2178:           psp->declargslot = &(psp->gp->start);
                   2179:         }else if( strcmp(x,"left")==0 ){
                   2180:           psp->preccounter++;
                   2181:           psp->declassoc = LEFT;
                   2182:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
                   2183:         }else if( strcmp(x,"right")==0 ){
                   2184:           psp->preccounter++;
                   2185:           psp->declassoc = RIGHT;
                   2186:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
                   2187:         }else if( strcmp(x,"nonassoc")==0 ){
                   2188:           psp->preccounter++;
                   2189:           psp->declassoc = NONE;
                   2190:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
                   2191:        }else if( strcmp(x,"destructor")==0 ){
                   2192:           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
                   2193:        }else if( strcmp(x,"type")==0 ){
                   2194:           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
                   2195:         }else if( strcmp(x,"fallback")==0 ){
                   2196:           psp->fallback = 0;
                   2197:           psp->state = WAITING_FOR_FALLBACK_ID;
                   2198:         }else{
                   2199:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2200:             "Unknown declaration keyword: \"%%%s\".",x);
                   2201:           psp->errorcnt++;
                   2202:           psp->state = RESYNC_AFTER_DECL_ERROR;
                   2203:        }
                   2204:       }else{
                   2205:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2206:           "Illegal declaration keyword: \"%s\".",x);
                   2207:         psp->errorcnt++;
                   2208:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2209:       }
                   2210:       break;
                   2211:     case WAITING_FOR_DESTRUCTOR_SYMBOL:
                   2212:       if( !isalpha(x[0]) ){
                   2213:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2214:           "Symbol name missing after %destructor keyword");
                   2215:         psp->errorcnt++;
                   2216:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2217:       }else{
                   2218:         struct symbol *sp = Symbol_new(x);
                   2219:         psp->declargslot = &sp->destructor;
                   2220:         psp->decllnslot = &sp->destructorln;
                   2221:         psp->state = WAITING_FOR_DECL_ARG;
                   2222:       }
                   2223:       break;
                   2224:     case WAITING_FOR_DATATYPE_SYMBOL:
                   2225:       if( !isalpha(x[0]) ){
                   2226:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2227:           "Symbol name missing after %destructor keyword");
                   2228:         psp->errorcnt++;
                   2229:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2230:       }else{
                   2231:         struct symbol *sp = Symbol_new(x);
                   2232:         psp->declargslot = &sp->datatype;
                   2233:         psp->decllnslot = 0;
                   2234:         psp->state = WAITING_FOR_DECL_ARG;
                   2235:       }
                   2236:       break;
                   2237:     case WAITING_FOR_PRECEDENCE_SYMBOL:
                   2238:       if( x[0]=='.' ){
                   2239:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2240:       }else if( isupper(x[0]) ){
                   2241:         struct symbol *sp;
                   2242:         sp = Symbol_new(x);
                   2243:         if( sp->prec>=0 ){
                   2244:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2245:             "Symbol \"%s\" has already be given a precedence.",x);
                   2246:           psp->errorcnt++;
                   2247:        }else{
                   2248:           sp->prec = psp->preccounter;
                   2249:           sp->assoc = psp->declassoc;
                   2250:        }
                   2251:       }else{
                   2252:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2253:           "Can't assign a precedence to \"%s\".",x);
                   2254:         psp->errorcnt++;
                   2255:       }
                   2256:       break;
                   2257:     case WAITING_FOR_DECL_ARG:
                   2258:       if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
                   2259:         if( *(psp->declargslot)!=0 ){
                   2260:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2261:             "The argument \"%s\" to declaration \"%%%s\" is not the first.",
                   2262:             x[0]=='\"' ? &x[1] : x,psp->declkeyword);
                   2263:           psp->errorcnt++;
                   2264:           psp->state = RESYNC_AFTER_DECL_ERROR;
                   2265:        }else{
                   2266:           *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
                   2267:           if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
                   2268:           psp->state = WAITING_FOR_DECL_OR_RULE;
                   2269:        }
                   2270:       }else{
                   2271:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2272:           "Illegal argument to %%%s: %s",psp->declkeyword,x);
                   2273:         psp->errorcnt++;
                   2274:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2275:       }
                   2276:       break;
                   2277:     case WAITING_FOR_FALLBACK_ID:
                   2278:       if( x[0]=='.' ){
                   2279:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2280:       }else if( !isupper(x[0]) ){
                   2281:         ErrorMsg(psp->filename, psp->tokenlineno,
                   2282:           "%%fallback argument \"%s\" should be a token", x);
                   2283:         psp->errorcnt++;
                   2284:       }else{
                   2285:         struct symbol *sp = Symbol_new(x);
                   2286:         if( psp->fallback==0 ){
                   2287:           psp->fallback = sp;
                   2288:         }else if( sp->fallback ){
                   2289:           ErrorMsg(psp->filename, psp->tokenlineno,
                   2290:             "More than one fallback assigned to token %s", x);
                   2291:           psp->errorcnt++;
                   2292:         }else{
                   2293:           sp->fallback = psp->fallback;
                   2294:           psp->gp->has_fallback = 1;
                   2295:         }
                   2296:       }
                   2297:       break;
                   2298:     case RESYNC_AFTER_RULE_ERROR:
                   2299: /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
                   2300: **      break; */
                   2301:     case RESYNC_AFTER_DECL_ERROR:
                   2302:       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
                   2303:       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
                   2304:       break;
                   2305:   }
                   2306: }
                   2307: 
                   2308: /* In spite of its name, this function is really a scanner.  It read
                   2309: ** in the entire input file (all at once) then tokenizes it.  Each
                   2310: ** token is passed to the function "parseonetoken" which builds all
                   2311: ** the appropriate data structures in the global state vector "gp".
                   2312: */
                   2313: struct pstate ps;
                   2314: void Parse(gp)
                   2315: struct lemon *gp;
                   2316: {
                   2317:   FILE *fp;
                   2318:   char *filebuf;
                   2319:   size_t filesize;
                   2320:   int lineno;
                   2321:   int c;
                   2322:   char *cp, *nextcp;
                   2323:   int startline = 0;
                   2324: 
                   2325:   ps.gp = gp;
                   2326:   ps.filename = gp->filename;
                   2327:   ps.errorcnt = 0;
                   2328:   ps.state = INITIALIZE;
                   2329: 
                   2330:   /* Begin by reading the input file */
                   2331:   fp = fopen(ps.filename,"rb");
                   2332:   if( fp==0 ){
                   2333:     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
                   2334:     gp->errorcnt++;
                   2335:     return;
                   2336:   }
                   2337:   fseek(fp,0,2);
                   2338:   filesize = ftell(fp);
                   2339:   rewind(fp);
                   2340:   filebuf = (char *)malloc( filesize+1 );
                   2341:   if( filebuf==0 ){
                   2342:     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
                   2343:       filesize+1);
                   2344:     fclose(fp);
                   2345:     gp->errorcnt++;
                   2346:     return;
                   2347:   }
                   2348:   if( fread(filebuf,1,filesize,fp)!=filesize ){
                   2349:     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
                   2350:       filesize);
                   2351:     free(filebuf);
                   2352:     fclose(fp);
                   2353:     gp->errorcnt++;
                   2354:     return;
                   2355:   }
                   2356:   fclose(fp);
                   2357:   filebuf[filesize] = 0;
                   2358: 
                   2359:   /* Now scan the text of the input file */
                   2360:   lineno = 1;
                   2361:   for(cp=filebuf; (c= *cp)!=0; ){
                   2362:     if( c=='\n' ) lineno++;              /* Keep track of the line number */
                   2363:     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
                   2364:     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
                   2365:       cp+=2;
                   2366:       while( (c= *cp)!=0 && c!='\n' ) cp++;
                   2367:       continue;
                   2368:     }
                   2369:     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
                   2370:       cp+=2;
                   2371:       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
                   2372:         if( c=='\n' ) lineno++;
                   2373:         cp++;
                   2374:       }
                   2375:       if( c ) cp++;
                   2376:       continue;
                   2377:     }
                   2378:     ps.tokenstart = cp;                /* Mark the beginning of the token */
                   2379:     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
                   2380:     if( c=='\"' ){                     /* String literals */
                   2381:       cp++;
                   2382:       while( (c= *cp)!=0 && c!='\"' ){
                   2383:         if( c=='\n' ) lineno++;
                   2384:         cp++;
                   2385:       }
                   2386:       if( c==0 ){
                   2387:         ErrorMsg(ps.filename,startline,
                   2388: "String starting on this line is not terminated before the end of the file.");
                   2389:         ps.errorcnt++;
                   2390:         nextcp = cp;
                   2391:       }else{
                   2392:         nextcp = cp+1;
                   2393:       }
                   2394:     }else if( c=='{' ){               /* A block of C code */
                   2395:       int level;
                   2396:       cp++;
                   2397:       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
                   2398:         if( c=='\n' ) lineno++;
                   2399:         else if( c=='{' ) level++;
                   2400:         else if( c=='}' ) level--;
                   2401:         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
                   2402:           int prevc;
                   2403:           cp = &cp[2];
                   2404:           prevc = 0;
                   2405:           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
                   2406:             if( c=='\n' ) lineno++;
                   2407:             prevc = c;
                   2408:             cp++;
                   2409:          }
                   2410:        }else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
                   2411:           cp = &cp[2];
                   2412:           while( (c= *cp)!=0 && c!='\n' ) cp++;
                   2413:           if( c ) lineno++;
                   2414:        }else if( c=='\'' || c=='\"' ){    /* String a character literals */
                   2415:           int startchar, prevc;
                   2416:           startchar = c;
                   2417:           prevc = 0;
                   2418:           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
                   2419:             if( c=='\n' ) lineno++;
                   2420:             if( prevc=='\\' ) prevc = 0;
                   2421:             else              prevc = c;
                   2422:          }
                   2423:        }
                   2424:       }
                   2425:       if( c==0 ){
                   2426:         ErrorMsg(ps.filename,ps.tokenlineno,
                   2427: "C code starting on this line is not terminated before the end of the file.");
                   2428:         ps.errorcnt++;
                   2429:         nextcp = cp;
                   2430:       }else{
                   2431:         nextcp = cp+1;
                   2432:       }
                   2433:     }else if( isalnum(c) ){          /* Identifiers */
                   2434:       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
                   2435:       nextcp = cp;
                   2436:     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
                   2437:       cp += 3;
                   2438:       nextcp = cp;
                   2439:     }else{                          /* All other (one character) operators */
                   2440:       cp++;
                   2441:       nextcp = cp;
                   2442:     }
                   2443:     c = *cp;
                   2444:     *cp = 0;                        /* Null terminate the token */
                   2445:     parseonetoken(&ps);             /* Parse the token */
                   2446:     *cp = c;                        /* Restore the buffer */
                   2447:     cp = nextcp;
                   2448:   }
                   2449:   free(filebuf);                    /* Release the buffer after parsing */
                   2450:   gp->rule = ps.firstrule;
                   2451:   gp->errorcnt = ps.errorcnt;
                   2452: }
                   2453: /*************************** From the file "plink.c" *********************/
                   2454: /*
                   2455: ** Routines processing configuration follow-set propagation links
                   2456: ** in the LEMON parser generator.
                   2457: */
                   2458: static struct plink *plink_freelist = 0;
                   2459: 
                   2460: /* Allocate a new plink */
                   2461: struct plink *Plink_new(){
                   2462:   struct plink *new;
                   2463: 
                   2464:   if( plink_freelist==0 ){
                   2465:     int i;
                   2466:     int amt = 100;
                   2467:     plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
                   2468:     if( plink_freelist==0 ){
                   2469:       fprintf(stderr,
                   2470:       "Unable to allocate memory for a new follow-set propagation link.\n");
                   2471:       exit(1);
                   2472:     }
                   2473:     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
                   2474:     plink_freelist[amt-1].next = 0;
                   2475:   }
                   2476:   new = plink_freelist;
                   2477:   plink_freelist = plink_freelist->next;
                   2478:   return new;
                   2479: }
                   2480: 
                   2481: /* Add a plink to a plink list */
                   2482: void Plink_add(plpp,cfp)
                   2483: struct plink **plpp;
                   2484: struct config *cfp;
                   2485: {
                   2486:   struct plink *new;
                   2487:   new = Plink_new();
                   2488:   new->next = *plpp;
                   2489:   *plpp = new;
                   2490:   new->cfp = cfp;
                   2491: }
                   2492: 
                   2493: /* Transfer every plink on the list "from" to the list "to" */
                   2494: void Plink_copy(to,from)
                   2495: struct plink **to;
                   2496: struct plink *from;
                   2497: {
                   2498:   struct plink *nextpl;
                   2499:   while( from ){
                   2500:     nextpl = from->next;
                   2501:     from->next = *to;
                   2502:     *to = from;
                   2503:     from = nextpl;
                   2504:   }
                   2505: }
                   2506: 
                   2507: /* Delete every plink on the list */
                   2508: void Plink_delete(plp)
                   2509: struct plink *plp;
                   2510: {
                   2511:   struct plink *nextpl;
                   2512: 
                   2513:   while( plp ){
                   2514:     nextpl = plp->next;
                   2515:     plp->next = plink_freelist;
                   2516:     plink_freelist = plp;
                   2517:     plp = nextpl;
                   2518:   }
                   2519: }
                   2520: /*********************** From the file "report.c" **************************/
                   2521: /*
                   2522: ** Procedures for generating reports and tables in the LEMON parser generator.
                   2523: */
                   2524: 
                   2525: /* Generate a filename with the given suffix.  Space to hold the
                   2526: ** name comes from malloc() and must be freed by the calling
                   2527: ** function.
                   2528: */
                   2529: PRIVATE char *file_makename(lemp,suffix)
                   2530: struct lemon *lemp;
                   2531: char *suffix;
                   2532: {
                   2533:   char *name;
                   2534:   char *cp;
                   2535: 
                   2536:   name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
                   2537:   if( name==0 ){
                   2538:     fprintf(stderr,"Can't allocate space for a filename.\n");
                   2539:     exit(1);
                   2540:   }
                   2541:        /* skip directory, JK */
                   2542:        if (NULL == (cp = strrchr(lemp->filename, '/'))) {
                   2543:                cp = lemp->filename;
                   2544:        } else {
                   2545:                cp++;
                   2546:        }
                   2547:   strcpy(name,cp);
                   2548:   cp = strrchr(name,'.');
                   2549:   if( cp ) *cp = 0;
                   2550:   strcat(name,suffix);
                   2551:   return name;
                   2552: }
                   2553: 
                   2554: /* Open a file with a name based on the name of the input file,
                   2555: ** but with a different (specified) suffix, and return a pointer
                   2556: ** to the stream */
                   2557: PRIVATE FILE *file_open(lemp,suffix,mode)
                   2558: struct lemon *lemp;
                   2559: char *suffix;
                   2560: char *mode;
                   2561: {
                   2562:   FILE *fp;
                   2563: 
                   2564:   if( lemp->outname ) free(lemp->outname);
                   2565:   lemp->outname = file_makename(lemp, suffix);
                   2566:   fp = fopen(lemp->outname,mode);
                   2567:   if( fp==0 && *mode=='w' ){
                   2568:     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
                   2569:     lemp->errorcnt++;
                   2570:     return 0;
                   2571:   }
                   2572:   return fp;
                   2573: }
                   2574: 
                   2575: /* Duplicate the input file without comments and without actions
                   2576: ** on rules */
                   2577: void Reprint(lemp)
                   2578: struct lemon *lemp;
                   2579: {
                   2580:   struct rule *rp;
                   2581:   struct symbol *sp;
                   2582:   int i, j, maxlen, len, ncolumns, skip;
                   2583:   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
                   2584:   maxlen = 10;
                   2585:   for(i=0; i<lemp->nsymbol; i++){
                   2586:     sp = lemp->symbols[i];
                   2587:     len = strlen(sp->name);
                   2588:     if( len>maxlen ) maxlen = len;
                   2589:   }
                   2590:   ncolumns = 76/(maxlen+5);
                   2591:   if( ncolumns<1 ) ncolumns = 1;
                   2592:   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
                   2593:   for(i=0; i<skip; i++){
                   2594:     printf("//");
                   2595:     for(j=i; j<lemp->nsymbol; j+=skip){
                   2596:       sp = lemp->symbols[j];
                   2597:       assert( sp->index==j );
                   2598:       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
                   2599:     }
                   2600:     printf("\n");
                   2601:   }
                   2602:   for(rp=lemp->rule; rp; rp=rp->next){
                   2603:     printf("%s",rp->lhs->name);
                   2604: /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
                   2605:     printf(" ::=");
                   2606:     for(i=0; i<rp->nrhs; i++){
                   2607:       printf(" %s",rp->rhs[i]->name);
                   2608: /*      if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
                   2609:     }
                   2610:     printf(".");
                   2611:     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
                   2612: /*    if( rp->code ) printf("\n    %s",rp->code); */
                   2613:     printf("\n");
                   2614:   }
                   2615: }
                   2616: 
                   2617: PRIVATE void ConfigPrint(fp,cfp)
                   2618: FILE *fp;
                   2619: struct config *cfp;
                   2620: {
                   2621:   struct rule *rp;
                   2622:   int i;
                   2623:   rp = cfp->rp;
                   2624:   fprintf(fp,"%s ::=",rp->lhs->name);
                   2625:   for(i=0; i<=rp->nrhs; i++){
                   2626:     if( i==cfp->dot ) fprintf(fp," *");
                   2627:     if( i==rp->nrhs ) break;
                   2628:     fprintf(fp," %s",rp->rhs[i]->name);
                   2629:   }
                   2630: }
                   2631: 
                   2632: /* #define TEST */
                   2633: #ifdef TEST
                   2634: /* Print a set */
                   2635: PRIVATE void SetPrint(out,set,lemp)
                   2636: FILE *out;
                   2637: char *set;
                   2638: struct lemon *lemp;
                   2639: {
                   2640:   int i;
                   2641:   char *spacer;
                   2642:   spacer = "";
                   2643:   fprintf(out,"%12s[","");
                   2644:   for(i=0; i<lemp->nterminal; i++){
                   2645:     if( SetFind(set,i) ){
                   2646:       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
                   2647:       spacer = " ";
                   2648:     }
                   2649:   }
                   2650:   fprintf(out,"]\n");
                   2651: }
                   2652: 
                   2653: /* Print a plink chain */
                   2654: void PlinkPrint(out,plp,tag)
                   2655: FILE *out;
                   2656: struct plink *plp;
                   2657: char *tag;
                   2658: {
                   2659:   while( plp ){
                   2660:     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
                   2661:     ConfigPrint(out,plp->cfp);
                   2662:     fprintf(out,"\n");
                   2663:     plp = plp->next;
                   2664:   }
                   2665: }
                   2666: #endif
                   2667: 
                   2668: /* Print an action to the given file descriptor.  Return FALSE if
                   2669: ** nothing was actually printed.
                   2670: */
                   2671: PRIVATE int PrintAction(struct action *ap, FILE *fp, int indent){
                   2672:   int result = 1;
                   2673:   switch( ap->type ){
                   2674:     case SHIFT:
                   2675:       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->index);
                   2676:       break;
                   2677:     case REDUCE:
                   2678:       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
                   2679:       break;
                   2680:     case ACCEPT:
                   2681:       fprintf(fp,"%*s accept",indent,ap->sp->name);
                   2682:       break;
                   2683:     case ERROR:
                   2684:       fprintf(fp,"%*s error",indent,ap->sp->name);
                   2685:       break;
                   2686:     case CONFLICT:
                   2687:       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
                   2688:         indent,ap->sp->name,ap->x.rp->index);
                   2689:       break;
                   2690:     case SH_RESOLVED:
                   2691:     case RD_RESOLVED:
                   2692:     case NOT_USED:
                   2693:       result = 0;
                   2694:       break;
                   2695:   }
                   2696:   return result;
                   2697: }
                   2698: 
                   2699: /* Generate the "y.output" log file */
                   2700: void ReportOutput(lemp)
                   2701: struct lemon *lemp;
                   2702: {
                   2703:   int i;
                   2704:   struct state *stp;
                   2705:   struct config *cfp;
                   2706:   struct action *ap;
                   2707:   FILE *fp;
                   2708: 
                   2709:   fp = file_open(lemp,".out","w");
                   2710:   if( fp==0 ) return;
                   2711:   fprintf(fp," \b");
                   2712:   for(i=0; i<lemp->nstate; i++){
                   2713:     stp = lemp->sorted[i];
                   2714:     fprintf(fp,"State %d:\n",stp->index);
                   2715:     if( lemp->basisflag ) cfp=stp->bp;
                   2716:     else                  cfp=stp->cfp;
                   2717:     while( cfp ){
                   2718:       char buf[20];
                   2719:       if( cfp->dot==cfp->rp->nrhs ){
                   2720:         sprintf(buf,"(%d)",cfp->rp->index);
                   2721:         fprintf(fp,"    %5s ",buf);
                   2722:       }else{
                   2723:         fprintf(fp,"          ");
                   2724:       }
                   2725:       ConfigPrint(fp,cfp);
                   2726:       fprintf(fp,"\n");
                   2727: #ifdef TEST
                   2728:       SetPrint(fp,cfp->fws,lemp);
                   2729:       PlinkPrint(fp,cfp->fplp,"To  ");
                   2730:       PlinkPrint(fp,cfp->bplp,"From");
                   2731: #endif
                   2732:       if( lemp->basisflag ) cfp=cfp->bp;
                   2733:       else                  cfp=cfp->next;
                   2734:     }
                   2735:     fprintf(fp,"\n");
                   2736:     for(ap=stp->ap; ap; ap=ap->next){
                   2737:       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
                   2738:     }
                   2739:     fprintf(fp,"\n");
                   2740:   }
                   2741:   fclose(fp);
                   2742:   return;
                   2743: }
                   2744: 
                   2745:   extern int access();
                   2746: /* Search for the file "name" which is in the same directory as
                   2747: ** the exacutable */
                   2748: PRIVATE char *pathsearch(argv0,name,modemask)
                   2749: char *argv0;
                   2750: char *name;
                   2751: int modemask;
                   2752: {
                   2753:   char *pathlist;
                   2754:   char *path,*cp;
                   2755:   char c;
                   2756: 
                   2757: #ifdef __WIN32__
                   2758:   cp = strrchr(argv0,'\\');
                   2759: #else
                   2760:   cp = strrchr(argv0,'/');
                   2761: #endif
                   2762:   if( cp ){
                   2763:     c = *cp;
                   2764:     *cp = 0;
                   2765:     path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
                   2766:     if( path ) sprintf(path,"%s/%s",argv0,name);
                   2767:     *cp = c;
                   2768:   }else{
                   2769:     pathlist = getenv("PATH");
                   2770:     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
                   2771:     path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
                   2772:     if( path!=0 ){
                   2773:       while( *pathlist ){
                   2774:         cp = strchr(pathlist,':');
                   2775:         if( cp==0 ) cp = &pathlist[strlen(pathlist)];
                   2776:         c = *cp;
                   2777:         *cp = 0;
                   2778:         sprintf(path,"%s/%s",pathlist,name);
                   2779:         *cp = c;
                   2780:         if( c==0 ) pathlist = "";
                   2781:         else pathlist = &cp[1];
                   2782:         if( access(path,modemask)==0 ) break;
                   2783:       }
                   2784:     }
                   2785:   }
                   2786:   return path;
                   2787: }
                   2788: 
                   2789: /* Given an action, compute the integer value for that action
                   2790: ** which is to be put in the action table of the generated machine.
                   2791: ** Return negative if no action should be generated.
                   2792: */
                   2793: PRIVATE int compute_action(lemp,ap)
                   2794: struct lemon *lemp;
                   2795: struct action *ap;
                   2796: {
                   2797:   int act;
                   2798:   switch( ap->type ){
                   2799:     case SHIFT:  act = ap->x.stp->index;               break;
                   2800:     case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
                   2801:     case ERROR:  act = lemp->nstate + lemp->nrule;     break;
                   2802:     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
                   2803:     default:     act = -1; break;
                   2804:   }
                   2805:   return act;
                   2806: }
                   2807: 
                   2808: #define LINESIZE 1000
                   2809: /* The next cluster of routines are for reading the template file
                   2810: ** and writing the results to the generated parser */
                   2811: /* The first function transfers data from "in" to "out" until
                   2812: ** a line is seen which begins with "%%".  The line number is
                   2813: ** tracked.
                   2814: **
                   2815: ** if name!=0, then any word that begin with "Parse" is changed to
                   2816: ** begin with *name instead.
                   2817: */
                   2818: PRIVATE void tplt_xfer(name,in,out,lineno)
                   2819: char *name;
                   2820: FILE *in;
                   2821: FILE *out;
                   2822: int *lineno;
                   2823: {
                   2824:   int i, iStart;
                   2825:   char line[LINESIZE];
                   2826:   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
                   2827:     (*lineno)++;
                   2828:     iStart = 0;
                   2829:     if( name ){
                   2830:       for(i=0; line[i]; i++){
                   2831:         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
                   2832:           && (i==0 || !isalpha(line[i-1]))
                   2833:         ){
                   2834:           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
                   2835:           fprintf(out,"%s",name);
                   2836:           i += 4;
                   2837:           iStart = i+1;
                   2838:         }
                   2839:       }
                   2840:     }
                   2841:     fprintf(out,"%s",&line[iStart]);
                   2842:   }
                   2843: }
                   2844: 
                   2845: /* The next function finds the template file and opens it, returning
                   2846: ** a pointer to the opened file. */
                   2847: PRIVATE FILE *tplt_open(lemp)
                   2848: struct lemon *lemp;
                   2849: {
                   2850: 
                   2851:   char buf[1000];
                   2852:   FILE *in;
                   2853:   char *tpltname;
                   2854:   char *cp;
                   2855: 
                   2856:   cp = strrchr(lemp->filename,'.');
                   2857:   if( cp ){
                   2858:     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
                   2859:   }else{
                   2860:     sprintf(buf,"%s.lt",lemp->filename);
                   2861:   }
                   2862:   if( access(buf,004)==0 ){
                   2863:     tpltname = buf;
                   2864:   }else if( access(lemp->tmplname,004)==0 ){
                   2865:     tpltname = lemp->tmplname;
                   2866:   }else{
                   2867:     tpltname = pathsearch(lemp->argv0,lemp->tmplname,0);
                   2868:   }
                   2869:   if( tpltname==0 ){
                   2870:     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
                   2871:     lemp->tmplname);
                   2872:     lemp->errorcnt++;
                   2873:     return 0;
                   2874:   }
                   2875:   in = fopen(tpltname,"r");
                   2876:   if( in==0 ){
                   2877:     fprintf(stderr,"Can't open the template file \"%s\".\n",lemp->tmplname);
                   2878:     lemp->errorcnt++;
                   2879:     return 0;
                   2880:   }
                   2881:   return in;
                   2882: }
                   2883: 
                   2884: /* Print a string to the file and keep the linenumber up to date */
                   2885: PRIVATE void tplt_print(out,lemp,str,strln,lineno)
                   2886: FILE *out;
                   2887: struct lemon *lemp;
                   2888: char *str;
                   2889: int strln;
                   2890: int *lineno;
                   2891: {
                   2892:   if( str==0 ) return;
                   2893:   fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
                   2894:   while( *str ){
                   2895:     if( *str=='\n' ) (*lineno)++;
                   2896:     putc(*str,out);
                   2897:     str++;
                   2898:   }
                   2899:   fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
                   2900:   return;
                   2901: }
                   2902: 
                   2903: /*
                   2904: ** The following routine emits code for the destructor for the
                   2905: ** symbol sp
                   2906: */
                   2907: PRIVATE void emit_destructor_code(out,sp,lemp,lineno)
                   2908: FILE *out;
                   2909: struct symbol *sp;
                   2910: struct lemon *lemp;
                   2911: int *lineno;
                   2912: {
                   2913:  char *cp = 0;
                   2914: 
                   2915:  int linecnt = 0;
                   2916:  if( sp->type==TERMINAL ){
                   2917:    cp = lemp->tokendest;
                   2918:    if( cp==0 ) return;
                   2919:    fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
                   2920:  }else if( sp->destructor ){
                   2921:    cp = sp->destructor;
                   2922:    fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
                   2923:  }else{
                   2924:    cp = lemp->vardest;
                   2925:    if( cp==0 ) return;
                   2926:    fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
                   2927:  }
                   2928:  for(; *cp; cp++){
                   2929:    if( *cp=='$' && cp[1]=='$' ){
                   2930:      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
                   2931:      cp++;
                   2932:      continue;
                   2933:    }
                   2934:    if( *cp=='\n' ) linecnt++;
                   2935:    fputc(*cp,out);
                   2936:  }
                   2937:  (*lineno) += 3 + linecnt;
                   2938:  fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
                   2939:  return;
                   2940: }
                   2941: 
                   2942: /*
                   2943: ** Return TRUE (non-zero) if the given symbol has a destructor.
                   2944: */
                   2945: PRIVATE int has_destructor(sp, lemp)
                   2946: struct symbol *sp;
                   2947: struct lemon *lemp;
                   2948: {
                   2949:   int ret;
                   2950:   if( sp->type==TERMINAL ){
                   2951:     ret = lemp->tokendest!=0;
                   2952:   }else{
                   2953:     ret = lemp->vardest!=0 || sp->destructor!=0;
                   2954:   }
                   2955:   return ret;
                   2956: }
                   2957: 
                   2958: /*
                   2959: ** Generate code which executes when the rule "rp" is reduced.  Write
                   2960: ** the code to "out".  Make sure lineno stays up-to-date.
                   2961: */
                   2962: PRIVATE void emit_code(out,rp,lemp,lineno)
                   2963: FILE *out;
                   2964: struct rule *rp;
                   2965: struct lemon *lemp;
                   2966: int *lineno;
                   2967: {
                   2968:  char *cp, *xp;
                   2969:  int linecnt = 0;
                   2970:  int i;
                   2971:  char lhsused = 0;    /* True if the LHS element has been used */
                   2972:  char used[MAXRHS];   /* True for each RHS element which is used */
                   2973: 
                   2974:  for(i=0; i<rp->nrhs; i++) used[i] = 0;
                   2975:  lhsused = 0;
                   2976: 
                   2977:  /* Generate code to do the reduce action */
                   2978:  if( rp->code ){
                   2979:    fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
                   2980:    for(cp=rp->code; *cp; cp++){
                   2981:      if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
                   2982:        char saved;
                   2983:        for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
                   2984:        saved = *xp;
                   2985:        *xp = 0;
                   2986:        if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
                   2987:          fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
                   2988:          cp = xp;
                   2989:          lhsused = 1;
                   2990:        }else{
                   2991:          for(i=0; i<rp->nrhs; i++){
                   2992:            if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
                   2993:              fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
                   2994:              cp = xp;
                   2995:              used[i] = 1;
                   2996:              break;
                   2997:            }
                   2998:          }
                   2999:        }
                   3000:        *xp = saved;
                   3001:      }
                   3002:      if( *cp=='\n' ) linecnt++;
                   3003:      fputc(*cp,out);
                   3004:    } /* End loop */
                   3005:    (*lineno) += 3 + linecnt;
                   3006:    fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
                   3007:  } /* End if( rp->code ) */
                   3008: 
                   3009:  /* Check to make sure the LHS has been used */
                   3010:  if( rp->lhsalias && !lhsused ){
                   3011:    ErrorMsg(lemp->filename,rp->ruleline,
                   3012:      "Label \"%s\" for \"%s(%s)\" is never used.",
                   3013:        rp->lhsalias,rp->lhs->name,rp->lhsalias);
                   3014:    lemp->errorcnt++;
                   3015:  }
                   3016: 
                   3017:  /* Generate destructor code for RHS symbols which are not used in the
                   3018:  ** reduce code */
                   3019:  for(i=0; i<rp->nrhs; i++){
                   3020:    if( rp->rhsalias[i] && !used[i] ){
                   3021:      ErrorMsg(lemp->filename,rp->ruleline,
                   3022:        "Label %s for \"%s(%s)\" is never used.",
                   3023:        rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
                   3024:      lemp->errorcnt++;
                   3025:    }else if( rp->rhsalias[i]==0 ){
                   3026:      if( has_destructor(rp->rhs[i],lemp) ){
                   3027:        fprintf(out,"  yy_destructor(%d,&yymsp[%d].minor);\n",
                   3028:           rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
                   3029:      }else{
                   3030:        fprintf(out,"        /* No destructor defined for %s */\n",
                   3031:         rp->rhs[i]->name);
                   3032:         (*lineno)++;
                   3033:      }
                   3034:    }
                   3035:  }
                   3036:  return;
                   3037: }
                   3038: 
                   3039: /*
                   3040: ** Print the definition of the union used for the parser's data stack.
                   3041: ** This union contains fields for every possible data type for tokens
                   3042: ** and nonterminals.  In the process of computing and printing this
                   3043: ** union, also set the ".dtnum" field of every terminal and nonterminal
                   3044: ** symbol.
                   3045: */
                   3046: PRIVATE void print_stack_union(out,lemp,plineno,mhflag)
                   3047: FILE *out;                  /* The output stream */
                   3048: struct lemon *lemp;         /* The main info structure for this parser */
                   3049: int *plineno;               /* Pointer to the line number */
                   3050: int mhflag;                 /* True if generating makeheaders output */
                   3051: {
                   3052:   int lineno;               /* The line number of the output */
                   3053:   char **types;             /* A hash table of datatypes */
                   3054:   int arraysize;            /* Size of the "types" array */
                   3055:   int maxdtlength;          /* Maximum length of any ".datatype" field. */
                   3056:   char *stddt;              /* Standardized name for a datatype */
                   3057:   int i,j;                  /* Loop counters */
                   3058:   int hash;                 /* For hashing the name of a type */
                   3059:   char *name;               /* Name of the parser */
                   3060: 
                   3061:   /* Allocate and initialize types[] and allocate stddt[] */
                   3062:   arraysize = lemp->nsymbol * 2;
                   3063:   types = (char**)malloc( arraysize * sizeof(char*) );
                   3064:   for(i=0; i<arraysize; i++) types[i] = 0;
                   3065:   maxdtlength = 0;
                   3066:   if( lemp->vartype ){
                   3067:     maxdtlength = strlen(lemp->vartype);
                   3068:   }
                   3069:   for(i=0; i<lemp->nsymbol; i++){
                   3070:     int len;
                   3071:     struct symbol *sp = lemp->symbols[i];
                   3072:     if( sp->datatype==0 ) continue;
                   3073:     len = strlen(sp->datatype);
                   3074:     if( len>maxdtlength ) maxdtlength = len;
                   3075:   }
                   3076:   stddt = (char*)malloc( maxdtlength*2 + 1 );
                   3077:   if( types==0 || stddt==0 ){
                   3078:     fprintf(stderr,"Out of memory.\n");
                   3079:     exit(1);
                   3080:   }
                   3081: 
                   3082:   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
                   3083:   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
                   3084:   ** used for terminal symbols.  If there is no %default_type defined then
                   3085:   ** 0 is also used as the .dtnum value for nonterminals which do not specify
                   3086:   ** a datatype using the %type directive.
                   3087:   */
                   3088:   for(i=0; i<lemp->nsymbol; i++){
                   3089:     struct symbol *sp = lemp->symbols[i];
                   3090:     char *cp;
                   3091:     if( sp==lemp->errsym ){
                   3092:       sp->dtnum = arraysize+1;
                   3093:       continue;
                   3094:     }
                   3095:     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
                   3096:       sp->dtnum = 0;
                   3097:       continue;
                   3098:     }
                   3099:     cp = sp->datatype;
                   3100:     if( cp==0 ) cp = lemp->vartype;
                   3101:     j = 0;
                   3102:     while( isspace(*cp) ) cp++;
                   3103:     while( *cp ) stddt[j++] = *cp++;
                   3104:     while( j>0 && isspace(stddt[j-1]) ) j--;
                   3105:     stddt[j] = 0;
                   3106:     hash = 0;
                   3107:     for(j=0; stddt[j]; j++){
                   3108:       hash = (unsigned int)hash*53u + (unsigned int) stddt[j];
                   3109:     }
                   3110:     hash = (hash & 0x7fffffff)%arraysize;
                   3111:     while( types[hash] ){
                   3112:       if( strcmp(types[hash],stddt)==0 ){
                   3113:         sp->dtnum = hash + 1;
                   3114:         break;
                   3115:       }
                   3116:       hash++;
                   3117:       if( hash>=arraysize ) hash = 0;
                   3118:     }
                   3119:     if( types[hash]==0 ){
                   3120:       sp->dtnum = hash + 1;
                   3121:       types[hash] = (char*)malloc( strlen(stddt)+1 );
                   3122:       if( types[hash]==0 ){
                   3123:         fprintf(stderr,"Out of memory.\n");
                   3124:         exit(1);
                   3125:       }
                   3126:       strcpy(types[hash],stddt);
                   3127:     }
                   3128:   }
                   3129: 
                   3130:   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
                   3131:   name = lemp->name ? lemp->name : "Parse";
                   3132:   lineno = *plineno;
                   3133:   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
                   3134:   fprintf(out,"#define %sTOKENTYPE %s\n",name,
                   3135:     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
                   3136:   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
                   3137:   fprintf(out,"typedef union {\n"); lineno++;
                   3138:   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
                   3139:   for(i=0; i<arraysize; i++){
                   3140:     if( types[i]==0 ) continue;
                   3141:     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
                   3142:     free(types[i]);
                   3143:   }
                   3144:   fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
                   3145:   free(stddt);
                   3146:   free(types);
                   3147:   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
                   3148:   *plineno = lineno;
                   3149: }
                   3150: 
                   3151: /*
                   3152: ** Return the name of a C datatype able to represent values between
                   3153: ** lwr and upr, inclusive.
                   3154: */
                   3155: static const char *minimum_size_type(int lwr, int upr){
                   3156:   if( lwr>=0 ){
                   3157:     if( upr<=255 ){
                   3158:       return "unsigned char";
                   3159:     }else if( upr<65535 ){
                   3160:       return "unsigned short int";
                   3161:     }else{
                   3162:       return "unsigned int";
                   3163:     }
                   3164:   }else if( lwr>=-127 && upr<=127 ){
                   3165:     return "signed char";
                   3166:   }else if( lwr>=-32767 && upr<32767 ){
                   3167:     return "short";
                   3168:   }else{
                   3169:     return "int";
                   3170:   }
                   3171: }
                   3172: 
                   3173: /*
                   3174: ** Each state contains a set of token transaction and a set of
                   3175: ** nonterminal transactions.  Each of these sets makes an instance
                   3176: ** of the following structure.  An array of these structures is used
                   3177: ** to order the creation of entries in the yy_action[] table.
                   3178: */
                   3179: struct axset {
                   3180:   struct state *stp;   /* A pointer to a state */
                   3181:   int isTkn;           /* True to use tokens.  False for non-terminals */
                   3182:   int nAction;         /* Number of actions */
                   3183: };
                   3184: 
                   3185: /*
                   3186: ** Compare to axset structures for sorting purposes
                   3187: */
                   3188: static int axset_compare(const void *a, const void *b){
                   3189:   struct axset *p1 = (struct axset*)a;
                   3190:   struct axset *p2 = (struct axset*)b;
                   3191:   return p2->nAction - p1->nAction;
                   3192: }
                   3193: 
                   3194: /* Generate C source code for the parser */
                   3195: void ReportTable(lemp, mhflag)
                   3196: struct lemon *lemp;
                   3197: int mhflag;     /* Output in makeheaders format if true */
                   3198: {
                   3199:   FILE *out, *in;
                   3200:   char line[LINESIZE];
                   3201:   int  lineno;
                   3202:   struct state *stp;
                   3203:   struct action *ap;
                   3204:   struct rule *rp;
                   3205:   struct acttab *pActtab;
                   3206:   int i, j, n;
                   3207:   int mnTknOfst, mxTknOfst;
                   3208:   int mnNtOfst, mxNtOfst;
                   3209:   struct axset *ax;
                   3210:   char *name;
                   3211: 
                   3212:   in = tplt_open(lemp);
                   3213:   if( in==0 ) return;
                   3214:   out = file_open(lemp,".c","w");
                   3215:   if( out==0 ){
                   3216:     fclose(in);
                   3217:     return;
                   3218:   }
                   3219:   lineno = 1;
                   3220:   tplt_xfer(lemp->name,in,out,&lineno);
                   3221: 
                   3222:   /* Generate the include code, if any */
                   3223:   tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
                   3224:   if( mhflag ){
                   3225:     name = file_makename(lemp, ".h");
                   3226:     fprintf(out,"#include \"%s\"\n", name); lineno++;
                   3227:     free(name);
                   3228:   }
                   3229:   tplt_xfer(lemp->name,in,out,&lineno);
                   3230: 
                   3231:   /* Generate #defines for all tokens */
                   3232:   if( mhflag ){
                   3233:     char *prefix;
                   3234:     fprintf(out,"#if INTERFACE\n"); lineno++;
                   3235:     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
                   3236:     else                    prefix = "";
                   3237:     for(i=1; i<lemp->nterminal; i++){
                   3238:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
                   3239:       lineno++;
                   3240:     }
                   3241:     fprintf(out,"#endif\n"); lineno++;
                   3242:   }
                   3243:   tplt_xfer(lemp->name,in,out,&lineno);
                   3244: 
                   3245:   /* Generate the defines */
                   3246:   fprintf(out,"/* \001 */\n");
                   3247:   fprintf(out,"#define YYCODETYPE %s\n",
                   3248:     minimum_size_type(0, lemp->nsymbol+5)); lineno++;
                   3249:   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
                   3250:   fprintf(out,"#define YYACTIONTYPE %s\n",
                   3251:     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
                   3252:   print_stack_union(out,lemp,&lineno,mhflag);
                   3253:   if( lemp->stacksize ){
                   3254:     if( atoi(lemp->stacksize)<=0 ){
                   3255:       ErrorMsg(lemp->filename,0,
                   3256: "Illegal stack size: [%s].  The stack size should be an integer constant.",
                   3257:         lemp->stacksize);
                   3258:       lemp->errorcnt++;
                   3259:       lemp->stacksize = "100";
                   3260:     }
                   3261:     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
                   3262:   }else{
                   3263:     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
                   3264:   }
                   3265:   if( mhflag ){
                   3266:     fprintf(out,"#if INTERFACE\n"); lineno++;
                   3267:   }
                   3268:   name = lemp->name ? lemp->name : "Parse";
                   3269:   if( lemp->arg && lemp->arg[0] ){
                   3270:     i = strlen(lemp->arg);
                   3271:     while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
                   3272:     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
                   3273:     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
                   3274:     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
                   3275:     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
                   3276:                  name,lemp->arg,&lemp->arg[i]);  lineno++;
                   3277:     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
                   3278:                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
                   3279:   }else{
                   3280:     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
                   3281:     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
                   3282:     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
                   3283:     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
                   3284:   }
                   3285:   if( mhflag ){
                   3286:     fprintf(out,"#endif\n"); lineno++;
                   3287:   }
                   3288:   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
                   3289:   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
                   3290:   fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
                   3291:   fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
                   3292:   if( lemp->has_fallback ){
                   3293:     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
                   3294:   }
                   3295:   tplt_xfer(lemp->name,in,out,&lineno);
                   3296: 
                   3297:   /* Generate the action table and its associates:
                   3298:   **
                   3299:   **  yy_action[]        A single table containing all actions.
                   3300:   **  yy_lookahead[]     A table containing the lookahead for each entry in
                   3301:   **                     yy_action.  Used to detect hash collisions.
                   3302:   **  yy_shift_ofst[]    For each state, the offset into yy_action for
                   3303:   **                     shifting terminals.
                   3304:   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
                   3305:   **                     shifting non-terminals after a reduce.
                   3306:   **  yy_default[]       Default action for each state.
                   3307:   */
                   3308: 
                   3309:   /* Compute the actions on all states and count them up */
                   3310:   ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
                   3311:   if( ax==0 ){
                   3312:     fprintf(stderr,"malloc failed\n");
                   3313:     exit(1);
                   3314:   }
                   3315:   for(i=0; i<lemp->nstate; i++){
                   3316:     stp = lemp->sorted[i];
                   3317:     stp->nTknAct = stp->nNtAct = 0;
                   3318:     stp->iDflt = lemp->nstate + lemp->nrule;
                   3319:     stp->iTknOfst = NO_OFFSET;
                   3320:     stp->iNtOfst = NO_OFFSET;
                   3321:     for(ap=stp->ap; ap; ap=ap->next){
                   3322:       if( compute_action(lemp,ap)>=0 ){
                   3323:         if( ap->sp->index<lemp->nterminal ){
                   3324:           stp->nTknAct++;
                   3325:         }else if( ap->sp->index<lemp->nsymbol ){
                   3326:           stp->nNtAct++;
                   3327:         }else{
                   3328:           stp->iDflt = compute_action(lemp, ap);
                   3329:         }
                   3330:       }
                   3331:     }
                   3332:     ax[i*2].stp = stp;
                   3333:     ax[i*2].isTkn = 1;
                   3334:     ax[i*2].nAction = stp->nTknAct;
                   3335:     ax[i*2+1].stp = stp;
                   3336:     ax[i*2+1].isTkn = 0;
                   3337:     ax[i*2+1].nAction = stp->nNtAct;
                   3338:   }
                   3339:   mxTknOfst = mnTknOfst = 0;
                   3340:   mxNtOfst = mnNtOfst = 0;
                   3341: 
                   3342:   /* Compute the action table.  In order to try to keep the size of the
                   3343:   ** action table to a minimum, the heuristic of placing the largest action
                   3344:   ** sets first is used.
                   3345:   */
                   3346:   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
                   3347:   pActtab = acttab_alloc();
                   3348:   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
                   3349:     stp = ax[i].stp;
                   3350:     if( ax[i].isTkn ){
                   3351:       for(ap=stp->ap; ap; ap=ap->next){
                   3352:         int action;
                   3353:         if( ap->sp->index>=lemp->nterminal ) continue;
                   3354:         action = compute_action(lemp, ap);
                   3355:         if( action<0 ) continue;
                   3356:         acttab_action(pActtab, ap->sp->index, action);
                   3357:       }
                   3358:       stp->iTknOfst = acttab_insert(pActtab);
                   3359:       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
                   3360:       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
                   3361:     }else{
                   3362:       for(ap=stp->ap; ap; ap=ap->next){
                   3363:         int action;
                   3364:         if( ap->sp->index<lemp->nterminal ) continue;
                   3365:         if( ap->sp->index==lemp->nsymbol ) continue;
                   3366:         action = compute_action(lemp, ap);
                   3367:         if( action<0 ) continue;
                   3368:         acttab_action(pActtab, ap->sp->index, action);
                   3369:       }
                   3370:       stp->iNtOfst = acttab_insert(pActtab);
                   3371:       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
                   3372:       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
                   3373:     }
                   3374:   }
                   3375:   free(ax);
                   3376: 
                   3377:   /* Output the yy_action table */
                   3378:   fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
                   3379:   n = acttab_size(pActtab);
                   3380:   for(i=j=0; i<n; i++){
                   3381:     int action = acttab_yyaction(pActtab, i);
                   3382:     if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
                   3383:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3384:     fprintf(out, " %4d,", action);
                   3385:     if( j==9 || i==n-1 ){
                   3386:       fprintf(out, "\n"); lineno++;
                   3387:       j = 0;
                   3388:     }else{
                   3389:       j++;
                   3390:     }
                   3391:   }
                   3392:   fprintf(out, "};\n"); lineno++;
                   3393: 
                   3394:   /* Output the yy_lookahead table */
                   3395:   fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
                   3396:   for(i=j=0; i<n; i++){
                   3397:     int la = acttab_yylookahead(pActtab, i);
                   3398:     if( la<0 ) la = lemp->nsymbol;
                   3399:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3400:     fprintf(out, " %4d,", la);
                   3401:     if( j==9 || i==n-1 ){
                   3402:       fprintf(out, "\n"); lineno++;
                   3403:       j = 0;
                   3404:     }else{
                   3405:       j++;
                   3406:     }
                   3407:   }
                   3408:   fprintf(out, "};\n"); lineno++;
                   3409: 
                   3410:   /* Output the yy_shift_ofst[] table */
                   3411:   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
                   3412:   fprintf(out, "static %s yy_shift_ofst[] = {\n",
                   3413:           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
                   3414:   n = lemp->nstate;
                   3415:   for(i=j=0; i<n; i++){
                   3416:     int ofst;
                   3417:     stp = lemp->sorted[i];
                   3418:     ofst = stp->iTknOfst;
                   3419:     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
                   3420:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3421:     fprintf(out, " %4d,", ofst);
                   3422:     if( j==9 || i==n-1 ){
                   3423:       fprintf(out, "\n"); lineno++;
                   3424:       j = 0;
                   3425:     }else{
                   3426:       j++;
                   3427:     }
                   3428:   }
                   3429:   fprintf(out, "};\n"); lineno++;
                   3430: 
                   3431:   /* Output the yy_reduce_ofst[] table */
                   3432:   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
                   3433:   fprintf(out, "static %s yy_reduce_ofst[] = {\n",
                   3434:           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
                   3435:   n = lemp->nstate;
                   3436:   for(i=j=0; i<n; i++){
                   3437:     int ofst;
                   3438:     stp = lemp->sorted[i];
                   3439:     ofst = stp->iNtOfst;
                   3440:     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
                   3441:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3442:     fprintf(out, " %4d,", ofst);
                   3443:     if( j==9 || i==n-1 ){
                   3444:       fprintf(out, "\n"); lineno++;
                   3445:       j = 0;
                   3446:     }else{
                   3447:       j++;
                   3448:     }
                   3449:   }
                   3450:   fprintf(out, "};\n"); lineno++;
                   3451: 
                   3452:   /* Output the default action table */
                   3453:   fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
                   3454:   n = lemp->nstate;
                   3455:   for(i=j=0; i<n; i++){
                   3456:     stp = lemp->sorted[i];
                   3457:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3458:     fprintf(out, " %4d,", stp->iDflt);
                   3459:     if( j==9 || i==n-1 ){
                   3460:       fprintf(out, "\n"); lineno++;
                   3461:       j = 0;
                   3462:     }else{
                   3463:       j++;
                   3464:     }
                   3465:   }
                   3466:   fprintf(out, "};\n"); lineno++;
                   3467:   tplt_xfer(lemp->name,in,out,&lineno);
                   3468: 
                   3469:   /* Generate the table of fallback tokens.
                   3470:   */
                   3471:   if( lemp->has_fallback ){
                   3472:     for(i=0; i<lemp->nterminal; i++){
                   3473:       struct symbol *p = lemp->symbols[i];
                   3474:       if( p->fallback==0 ){
                   3475:         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
                   3476:       }else{
                   3477:         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
                   3478:           p->name, p->fallback->name);
                   3479:       }
                   3480:       lineno++;
                   3481:     }
                   3482:   }
                   3483:   tplt_xfer(lemp->name, in, out, &lineno);
                   3484: 
                   3485:   /* Generate a table containing the symbolic name of every symbol
                   3486:   */
                   3487:   for(i=0; i<lemp->nsymbol; i++){
                   3488:     sprintf(line,"\"%s\",",lemp->symbols[i]->name);
                   3489:     fprintf(out,"  %-15s",line);
                   3490:     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
                   3491:   }
                   3492:   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
                   3493:   tplt_xfer(lemp->name,in,out,&lineno);
                   3494: 
                   3495:   /* Generate a table containing a text string that describes every
                   3496:   ** rule in the rule set of the grammer.  This information is used
                   3497:   ** when tracing REDUCE actions.
                   3498:   */
                   3499:   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
                   3500:     assert( rp->index==i );
                   3501:     fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
                   3502:     for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
                   3503:     fprintf(out,"\",\n"); lineno++;
                   3504:   }
                   3505:   tplt_xfer(lemp->name,in,out,&lineno);
                   3506: 
                   3507:   /* Generate code which executes every time a symbol is popped from
                   3508:   ** the stack while processing errors or while destroying the parser.
                   3509:   ** (In other words, generate the %destructor actions)
                   3510:   */
                   3511:   if( lemp->tokendest ){
                   3512:     for(i=0; i<lemp->nsymbol; i++){
                   3513:       struct symbol *sp = lemp->symbols[i];
                   3514:       if( sp==0 || sp->type!=TERMINAL ) continue;
                   3515:       fprintf(out,"    case %d:\n",sp->index); lineno++;
                   3516:     }
                   3517:     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
                   3518:     if( i<lemp->nsymbol ){
                   3519:       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
                   3520:       fprintf(out,"      break;\n"); lineno++;
                   3521:     }
                   3522:   }
                   3523:   for(i=0; i<lemp->nsymbol; i++){
                   3524:     struct symbol *sp = lemp->symbols[i];
                   3525:     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
                   3526:     fprintf(out,"    case %d:\n",sp->index); lineno++;
                   3527:     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
                   3528:     fprintf(out,"      break;\n"); lineno++;
                   3529:   }
                   3530:   if( lemp->vardest ){
                   3531:     struct symbol *dflt_sp = 0;
                   3532:     for(i=0; i<lemp->nsymbol; i++){
                   3533:       struct symbol *sp = lemp->symbols[i];
                   3534:       if( sp==0 || sp->type==TERMINAL ||
                   3535:           sp->index<=0 || sp->destructor!=0 ) continue;
                   3536:       fprintf(out,"    case %d:\n",sp->index); lineno++;
                   3537:       dflt_sp = sp;
                   3538:     }
                   3539:     if( dflt_sp!=0 ){
                   3540:       emit_destructor_code(out,dflt_sp,lemp,&lineno);
                   3541:       fprintf(out,"      break;\n"); lineno++;
                   3542:     }
                   3543:   }
                   3544:   tplt_xfer(lemp->name,in,out,&lineno);
                   3545: 
                   3546:   /* Generate code which executes whenever the parser stack overflows */
                   3547:   tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
                   3548:   tplt_xfer(lemp->name,in,out,&lineno);
                   3549: 
                   3550:   /* Generate the table of rule information
                   3551:   **
                   3552:   ** Note: This code depends on the fact that rules are number
                   3553:   ** sequentually beginning with 0.
                   3554:   */
                   3555:   for(rp=lemp->rule; rp; rp=rp->next){
                   3556:     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
                   3557:   }
                   3558:   tplt_xfer(lemp->name,in,out,&lineno);
                   3559: 
                   3560:   /* Generate code which execution during each REDUCE action */
                   3561:   for(rp=lemp->rule; rp; rp=rp->next){
                   3562:     fprintf(out,"      case %d:\n",rp->index); lineno++;
                   3563:     emit_code(out,rp,lemp,&lineno);
                   3564:     fprintf(out,"        break;\n"); lineno++;
                   3565:   }
                   3566:   tplt_xfer(lemp->name,in,out,&lineno);
                   3567: 
                   3568:   /* Generate code which executes if a parse fails */
                   3569:   tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
                   3570:   tplt_xfer(lemp->name,in,out,&lineno);
                   3571: 
                   3572:   /* Generate code which executes when a syntax error occurs */
                   3573:   tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
                   3574:   tplt_xfer(lemp->name,in,out,&lineno);
                   3575: 
                   3576:   /* Generate code which executes when the parser accepts its input */
                   3577:   tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
                   3578:   tplt_xfer(lemp->name,in,out,&lineno);
                   3579: 
                   3580:   /* Append any addition code the user desires */
                   3581:   tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
                   3582: 
                   3583:   fclose(in);
                   3584:   fclose(out);
                   3585:   return;
                   3586: }
                   3587: 
                   3588: /* Generate a header file for the parser */
                   3589: void ReportHeader(lemp)
                   3590: struct lemon *lemp;
                   3591: {
                   3592:   FILE *out, *in;
                   3593:   char *prefix;
                   3594:   char line[LINESIZE];
                   3595:   char pattern[LINESIZE];
                   3596:   int i;
                   3597: 
                   3598:   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
                   3599:   else                    prefix = "";
                   3600:   in = file_open(lemp,".h","r");
                   3601:   if( in ){
                   3602:     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
                   3603:       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
                   3604:       if( strcmp(line,pattern) ) break;
                   3605:     }
                   3606:     fclose(in);
                   3607:     if( i==lemp->nterminal ){
                   3608:       /* No change in the file.  Don't rewrite it. */
                   3609:       return;
                   3610:     }
                   3611:   }
                   3612:   out = file_open(lemp,".h","w");
                   3613:   if( out ){
                   3614:     for(i=1; i<lemp->nterminal; i++){
                   3615:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
                   3616:     }
                   3617:     fclose(out);
                   3618:   }
                   3619:   return;
                   3620: }
                   3621: 
                   3622: /* Reduce the size of the action tables, if possible, by making use
                   3623: ** of defaults.
                   3624: **
                   3625: ** In this version, we take the most frequent REDUCE action and make
                   3626: ** it the default.  Only default a reduce if there are more than one.
                   3627: */
                   3628: void CompressTables(lemp)
                   3629: struct lemon *lemp;
                   3630: {
                   3631:   struct state *stp;
                   3632:   struct action *ap, *ap2;
                   3633:   struct rule *rp, *rp2, *rbest;
                   3634:   int nbest, n;
                   3635:   int i;
                   3636: 
                   3637:   for(i=0; i<lemp->nstate; i++){
                   3638:     stp = lemp->sorted[i];
                   3639:     nbest = 0;
                   3640:     rbest = 0;
                   3641: 
                   3642:     for(ap=stp->ap; ap; ap=ap->next){
                   3643:       if( ap->type!=REDUCE ) continue;
                   3644:       rp = ap->x.rp;
                   3645:       if( rp==rbest ) continue;
                   3646:       n = 1;
                   3647:       for(ap2=ap->next; ap2; ap2=ap2->next){
                   3648:         if( ap2->type!=REDUCE ) continue;
                   3649:         rp2 = ap2->x.rp;
                   3650:         if( rp2==rbest ) continue;
                   3651:         if( rp2==rp ) n++;
                   3652:       }
                   3653:       if( n>nbest ){
                   3654:         nbest = n;
                   3655:         rbest = rp;
                   3656:       }
                   3657:     }
                   3658: 
                   3659:     /* Do not make a default if the number of rules to default
                   3660:     ** is not at least 2 */
                   3661:     if( nbest<2 ) continue;
                   3662: 
                   3663: 
                   3664:     /* Combine matching REDUCE actions into a single default */
                   3665:     for(ap=stp->ap; ap; ap=ap->next){
                   3666:       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
                   3667:     }
                   3668:     assert( ap );
                   3669:     ap->sp = Symbol_new("{default}");
                   3670:     for(ap=ap->next; ap; ap=ap->next){
                   3671:       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
                   3672:     }
                   3673:     stp->ap = Action_sort(stp->ap);
                   3674:   }
                   3675: }
                   3676: 
                   3677: /***************** From the file "set.c" ************************************/
                   3678: /*
                   3679: ** Set manipulation routines for the LEMON parser generator.
                   3680: */
                   3681: 
                   3682: static int global_size = 0;
                   3683: 
                   3684: /* Set the set size */
                   3685: void SetSize(n)
                   3686: int n;
                   3687: {
                   3688:   global_size = n+1;
                   3689: }
                   3690: 
                   3691: /* Allocate a new set */
                   3692: char *SetNew(){
                   3693:   char *s;
                   3694:   int i;
                   3695:   s = (char*)malloc( global_size );
                   3696:   if( s==0 ){
                   3697:     memory_error();
                   3698:   }
                   3699:   for(i=0; i<global_size; i++) s[i] = 0;
                   3700:   return s;
                   3701: }
                   3702: 
                   3703: /* Deallocate a set */
                   3704: void SetFree(s)
                   3705: char *s;
                   3706: {
                   3707:   free(s);
                   3708: }
                   3709: 
                   3710: /* Add a new element to the set.  Return TRUE if the element was added
                   3711: ** and FALSE if it was already there. */
                   3712: int SetAdd(s,e)
                   3713: char *s;
                   3714: int e;
                   3715: {
                   3716:   int rv;
                   3717:   rv = s[e];
                   3718:   s[e] = 1;
                   3719:   return !rv;
                   3720: }
                   3721: 
                   3722: /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
                   3723: int SetUnion(s1,s2)
                   3724: char *s1;
                   3725: char *s2;
                   3726: {
                   3727:   int i, progress;
                   3728:   progress = 0;
                   3729:   for(i=0; i<global_size; i++){
                   3730:     if( s2[i]==0 ) continue;
                   3731:     if( s1[i]==0 ){
                   3732:       progress = 1;
                   3733:       s1[i] = 1;
                   3734:     }
                   3735:   }
                   3736:   return progress;
                   3737: }
                   3738: /********************** From the file "table.c" ****************************/
                   3739: /*
                   3740: ** All code in this file has been automatically generated
                   3741: ** from a specification in the file
                   3742: **              "table.q"
                   3743: ** by the associative array code building program "aagen".
                   3744: ** Do not edit this file!  Instead, edit the specification
                   3745: ** file, then rerun aagen.
                   3746: */
                   3747: /*
                   3748: ** Code for processing tables in the LEMON parser generator.
                   3749: */
                   3750: 
                   3751: PRIVATE int strhash(x)
                   3752: char *x;
                   3753: {
                   3754:   unsigned int h = 0;
                   3755:   while( *x) h = h*13u + (unsigned int) *(x++);
                   3756:   return h;
                   3757: }
                   3758: 
                   3759: /* Works like strdup, sort of.  Save a string in malloced memory, but
                   3760: ** keep strings in a table so that the same string is not in more
                   3761: ** than one place.
                   3762: */
                   3763: char *Strsafe(y)
                   3764: char *y;
                   3765: {
                   3766:   char *z;
                   3767: 
                   3768:   z = Strsafe_find(y);
                   3769:   if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
                   3770:     strcpy(z,y);
                   3771:     Strsafe_insert(z);
                   3772:   }
                   3773:   MemoryCheck(z);
                   3774:   return z;
                   3775: }
                   3776: 
                   3777: /* There is one instance of the following structure for each
                   3778: ** associative array of type "x1".
                   3779: */
                   3780: struct s_x1 {
                   3781:   int size;               /* The number of available slots. */
                   3782:                           /*   Must be a power of 2 greater than or */
                   3783:                           /*   equal to 1 */
                   3784:   int count;              /* Number of currently slots filled */
                   3785:   struct s_x1node *tbl;  /* The data stored here */
                   3786:   struct s_x1node **ht;  /* Hash table for lookups */
                   3787: };
                   3788: 
                   3789: /* There is one instance of this structure for every data element
                   3790: ** in an associative array of type "x1".
                   3791: */
                   3792: typedef struct s_x1node {
                   3793:   char *data;                  /* The data */
                   3794:   struct s_x1node *next;   /* Next entry with the same hash */
                   3795:   struct s_x1node **from;  /* Previous link */
                   3796: } x1node;
                   3797: 
                   3798: /* There is only one instance of the array, which is the following */
                   3799: static struct s_x1 *x1a;
                   3800: 
                   3801: /* Allocate a new associative array */
                   3802: void Strsafe_init(){
                   3803:   if( x1a ) return;
                   3804:   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
                   3805:   if( x1a ){
                   3806:     x1a->size = 1024;
                   3807:     x1a->count = 0;
                   3808:     x1a->tbl = (x1node*)malloc(
                   3809:       (sizeof(x1node) + sizeof(x1node*))*1024 );
                   3810:     if( x1a->tbl==0 ){
                   3811:       free(x1a);
                   3812:       x1a = 0;
                   3813:     }else{
                   3814:       int i;
                   3815:       x1a->ht = (x1node**)&(x1a->tbl[1024]);
                   3816:       for(i=0; i<1024; i++) x1a->ht[i] = 0;
                   3817:     }
                   3818:   }
                   3819: }
                   3820: /* Insert a new record into the array.  Return TRUE if successful.
                   3821: ** Prior data with the same key is NOT overwritten */
                   3822: int Strsafe_insert(data)
                   3823: char *data;
                   3824: {
                   3825:   x1node *np;
                   3826:   int h;
                   3827:   int ph;
                   3828: 
                   3829:   if( x1a==0 ) return 0;
                   3830:   ph = strhash(data);
                   3831:   h = ph & (x1a->size-1);
                   3832:   np = x1a->ht[h];
                   3833:   while( np ){
                   3834:     if( strcmp(np->data,data)==0 ){
                   3835:       /* An existing entry with the same key is found. */
                   3836:       /* Fail because overwrite is not allows. */
                   3837:       return 0;
                   3838:     }
                   3839:     np = np->next;
                   3840:   }
                   3841:   if( x1a->count>=x1a->size ){
                   3842:     /* Need to make the hash table bigger */
                   3843:     int i,size;
                   3844:     struct s_x1 array;
                   3845:     array.size = size = x1a->size*2;
                   3846:     array.count = x1a->count;
                   3847:     array.tbl = (x1node*)malloc(
                   3848:       (sizeof(x1node) + sizeof(x1node*))*size );
                   3849:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   3850:     array.ht = (x1node**)&(array.tbl[size]);
                   3851:     for(i=0; i<size; i++) array.ht[i] = 0;
                   3852:     for(i=0; i<x1a->count; i++){
                   3853:       x1node *oldnp, *newnp;
                   3854:       oldnp = &(x1a->tbl[i]);
                   3855:       h = strhash(oldnp->data) & (size-1);
                   3856:       newnp = &(array.tbl[i]);
                   3857:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   3858:       newnp->next = array.ht[h];
                   3859:       newnp->data = oldnp->data;
                   3860:       newnp->from = &(array.ht[h]);
                   3861:       array.ht[h] = newnp;
                   3862:     }
                   3863:     free(x1a->tbl);
                   3864:     *x1a = array;
                   3865:   }
                   3866:   /* Insert the new data */
                   3867:   h = ph & (x1a->size-1);
                   3868:   np = &(x1a->tbl[x1a->count++]);
                   3869:   np->data = data;
                   3870:   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
                   3871:   np->next = x1a->ht[h];
                   3872:   x1a->ht[h] = np;
                   3873:   np->from = &(x1a->ht[h]);
                   3874:   return 1;
                   3875: }
                   3876: 
                   3877: /* Return a pointer to data assigned to the given key.  Return NULL
                   3878: ** if no such key. */
                   3879: char *Strsafe_find(key)
                   3880: char *key;
                   3881: {
                   3882:   int h;
                   3883:   x1node *np;
                   3884: 
                   3885:   if( x1a==0 ) return 0;
                   3886:   h = strhash(key) & (x1a->size-1);
                   3887:   np = x1a->ht[h];
                   3888:   while( np ){
                   3889:     if( strcmp(np->data,key)==0 ) break;
                   3890:     np = np->next;
                   3891:   }
                   3892:   return np ? np->data : 0;
                   3893: }
                   3894: 
                   3895: /* Return a pointer to the (terminal or nonterminal) symbol "x".
                   3896: ** Create a new symbol if this is the first time "x" has been seen.
                   3897: */
                   3898: struct symbol *Symbol_new(x)
                   3899: char *x;
                   3900: {
                   3901:   struct symbol *sp;
                   3902: 
                   3903:   sp = Symbol_find(x);
                   3904:   if( sp==0 ){
                   3905:     sp = (struct symbol *)malloc( sizeof(struct symbol) );
                   3906:     MemoryCheck(sp);
                   3907:     sp->name = Strsafe(x);
                   3908:     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
                   3909:     sp->rule = 0;
                   3910:     sp->fallback = 0;
                   3911:     sp->prec = -1;
                   3912:     sp->assoc = UNK;
                   3913:     sp->firstset = 0;
                   3914:     sp->lambda = Bo_FALSE;
                   3915:     sp->destructor = 0;
                   3916:     sp->datatype = 0;
                   3917:     Symbol_insert(sp,sp->name);
                   3918:   }
                   3919:   return sp;
                   3920: }
                   3921: 
                   3922: /* Compare two symbols for working purposes
                   3923: **
                   3924: ** Symbols that begin with upper case letters (terminals or tokens)
                   3925: ** must sort before symbols that begin with lower case letters
                   3926: ** (non-terminals).  Other than that, the order does not matter.
                   3927: **
                   3928: ** We find experimentally that leaving the symbols in their original
                   3929: ** order (the order they appeared in the grammar file) gives the
                   3930: ** smallest parser tables in SQLite.
                   3931: */
                   3932: int Symbolcmpp(struct symbol **a, struct symbol **b){
                   3933:   int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
                   3934:   int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
                   3935:   return i1-i2;
                   3936: }
                   3937: 
                   3938: /* There is one instance of the following structure for each
                   3939: ** associative array of type "x2".
                   3940: */
                   3941: struct s_x2 {
                   3942:   int size;               /* The number of available slots. */
                   3943:                           /*   Must be a power of 2 greater than or */
                   3944:                           /*   equal to 1 */
                   3945:   int count;              /* Number of currently slots filled */
                   3946:   struct s_x2node *tbl;  /* The data stored here */
                   3947:   struct s_x2node **ht;  /* Hash table for lookups */
                   3948: };
                   3949: 
                   3950: /* There is one instance of this structure for every data element
                   3951: ** in an associative array of type "x2".
                   3952: */
                   3953: typedef struct s_x2node {
                   3954:   struct symbol *data;                  /* The data */
                   3955:   char *key;                   /* The key */
                   3956:   struct s_x2node *next;   /* Next entry with the same hash */
                   3957:   struct s_x2node **from;  /* Previous link */
                   3958: } x2node;
                   3959: 
                   3960: /* There is only one instance of the array, which is the following */
                   3961: static struct s_x2 *x2a;
                   3962: 
                   3963: /* Allocate a new associative array */
                   3964: void Symbol_init(){
                   3965:   if( x2a ) return;
                   3966:   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
                   3967:   if( x2a ){
                   3968:     x2a->size = 128;
                   3969:     x2a->count = 0;
                   3970:     x2a->tbl = (x2node*)malloc(
                   3971:       (sizeof(x2node) + sizeof(x2node*))*128 );
                   3972:     if( x2a->tbl==0 ){
                   3973:       free(x2a);
                   3974:       x2a = 0;
                   3975:     }else{
                   3976:       int i;
                   3977:       x2a->ht = (x2node**)&(x2a->tbl[128]);
                   3978:       for(i=0; i<128; i++) x2a->ht[i] = 0;
                   3979:     }
                   3980:   }
                   3981: }
                   3982: /* Insert a new record into the array.  Return TRUE if successful.
                   3983: ** Prior data with the same key is NOT overwritten */
                   3984: int Symbol_insert(data,key)
                   3985: struct symbol *data;
                   3986: char *key;
                   3987: {
                   3988:   x2node *np;
                   3989:   int h;
                   3990:   int ph;
                   3991: 
                   3992:   if( x2a==0 ) return 0;
                   3993:   ph = strhash(key);
                   3994:   h = ph & (x2a->size-1);
                   3995:   np = x2a->ht[h];
                   3996:   while( np ){
                   3997:     if( strcmp(np->key,key)==0 ){
                   3998:       /* An existing entry with the same key is found. */
                   3999:       /* Fail because overwrite is not allows. */
                   4000:       return 0;
                   4001:     }
                   4002:     np = np->next;
                   4003:   }
                   4004:   if( x2a->count>=x2a->size ){
                   4005:     /* Need to make the hash table bigger */
                   4006:     int i,size;
                   4007:     struct s_x2 array;
                   4008:     array.size = size = x2a->size*2;
                   4009:     array.count = x2a->count;
                   4010:     array.tbl = (x2node*)malloc(
                   4011:       (sizeof(x2node) + sizeof(x2node*))*size );
                   4012:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4013:     array.ht = (x2node**)&(array.tbl[size]);
                   4014:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4015:     for(i=0; i<x2a->count; i++){
                   4016:       x2node *oldnp, *newnp;
                   4017:       oldnp = &(x2a->tbl[i]);
                   4018:       h = strhash(oldnp->key) & (size-1);
                   4019:       newnp = &(array.tbl[i]);
                   4020:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4021:       newnp->next = array.ht[h];
                   4022:       newnp->key = oldnp->key;
                   4023:       newnp->data = oldnp->data;
                   4024:       newnp->from = &(array.ht[h]);
                   4025:       array.ht[h] = newnp;
                   4026:     }
                   4027:     free(x2a->tbl);
                   4028:     *x2a = array;
                   4029:   }
                   4030:   /* Insert the new data */
                   4031:   h = ph & (x2a->size-1);
                   4032:   np = &(x2a->tbl[x2a->count++]);
                   4033:   np->key = key;
                   4034:   np->data = data;
                   4035:   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
                   4036:   np->next = x2a->ht[h];
                   4037:   x2a->ht[h] = np;
                   4038:   np->from = &(x2a->ht[h]);
                   4039:   return 1;
                   4040: }
                   4041: 
                   4042: /* Return a pointer to data assigned to the given key.  Return NULL
                   4043: ** if no such key. */
                   4044: struct symbol *Symbol_find(key)
                   4045: char *key;
                   4046: {
                   4047:   int h;
                   4048:   x2node *np;
                   4049: 
                   4050:   if( x2a==0 ) return 0;
                   4051:   h = strhash(key) & (x2a->size-1);
                   4052:   np = x2a->ht[h];
                   4053:   while( np ){
                   4054:     if( strcmp(np->key,key)==0 ) break;
                   4055:     np = np->next;
                   4056:   }
                   4057:   return np ? np->data : 0;
                   4058: }
                   4059: 
                   4060: /* Return the n-th data.  Return NULL if n is out of range. */
                   4061: struct symbol *Symbol_Nth(n)
                   4062: int n;
                   4063: {
                   4064:   struct symbol *data;
                   4065:   if( x2a && n>0 && n<=x2a->count ){
                   4066:     data = x2a->tbl[n-1].data;
                   4067:   }else{
                   4068:     data = 0;
                   4069:   }
                   4070:   return data;
                   4071: }
                   4072: 
                   4073: /* Return the size of the array */
                   4074: int Symbol_count()
                   4075: {
                   4076:   return x2a ? x2a->count : 0;
                   4077: }
                   4078: 
                   4079: /* Return an array of pointers to all data in the table.
                   4080: ** The array is obtained from malloc.  Return NULL if memory allocation
                   4081: ** problems, or if the array is empty. */
                   4082: struct symbol **Symbol_arrayof()
                   4083: {
                   4084:   struct symbol **array;
                   4085:   int i,size;
                   4086:   if( x2a==0 ) return 0;
                   4087:   size = x2a->count;
                   4088:   array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
                   4089:   if( array ){
                   4090:     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
                   4091:   }
                   4092:   return array;
                   4093: }
                   4094: 
                   4095: /* Compare two configurations */
                   4096: int Configcmp(a,b)
                   4097: struct config *a;
                   4098: struct config *b;
                   4099: {
                   4100:   int x;
                   4101:   x = a->rp->index - b->rp->index;
                   4102:   if( x==0 ) x = a->dot - b->dot;
                   4103:   return x;
                   4104: }
                   4105: 
                   4106: /* Compare two states */
                   4107: PRIVATE int statecmp(a,b)
                   4108: struct config *a;
                   4109: struct config *b;
                   4110: {
                   4111:   int rc;
                   4112:   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
                   4113:     rc = a->rp->index - b->rp->index;
                   4114:     if( rc==0 ) rc = a->dot - b->dot;
                   4115:   }
                   4116:   if( rc==0 ){
                   4117:     if( a ) rc = 1;
                   4118:     if( b ) rc = -1;
                   4119:   }
                   4120:   return rc;
                   4121: }
                   4122: 
                   4123: /* Hash a state */
                   4124: PRIVATE int statehash(a)
                   4125: struct config *a;
                   4126: {
                   4127:   unsigned int h=0;
                   4128:   while( a ){
                   4129:     h = h*571u + (unsigned int)a->rp->index*37u + (unsigned int)a->dot;
                   4130:     a = a->bp;
                   4131:   }
                   4132:   return h;
                   4133: }
                   4134: 
                   4135: /* Allocate a new state structure */
                   4136: struct state *State_new()
                   4137: {
                   4138:   struct state *new;
                   4139:   new = (struct state *)malloc( sizeof(struct state) );
                   4140:   MemoryCheck(new);
                   4141:   return new;
                   4142: }
                   4143: 
                   4144: /* There is one instance of the following structure for each
                   4145: ** associative array of type "x3".
                   4146: */
                   4147: struct s_x3 {
                   4148:   int size;               /* The number of available slots. */
                   4149:                           /*   Must be a power of 2 greater than or */
                   4150:                           /*   equal to 1 */
                   4151:   int count;              /* Number of currently slots filled */
                   4152:   struct s_x3node *tbl;  /* The data stored here */
                   4153:   struct s_x3node **ht;  /* Hash table for lookups */
                   4154: };
                   4155: 
                   4156: /* There is one instance of this structure for every data element
                   4157: ** in an associative array of type "x3".
                   4158: */
                   4159: typedef struct s_x3node {
                   4160:   struct state *data;                  /* The data */
                   4161:   struct config *key;                   /* The key */
                   4162:   struct s_x3node *next;   /* Next entry with the same hash */
                   4163:   struct s_x3node **from;  /* Previous link */
                   4164: } x3node;
                   4165: 
                   4166: /* There is only one instance of the array, which is the following */
                   4167: static struct s_x3 *x3a;
                   4168: 
                   4169: /* Allocate a new associative array */
                   4170: void State_init(){
                   4171:   if( x3a ) return;
                   4172:   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
                   4173:   if( x3a ){
                   4174:     x3a->size = 128;
                   4175:     x3a->count = 0;
                   4176:     x3a->tbl = (x3node*)malloc(
                   4177:       (sizeof(x3node) + sizeof(x3node*))*128 );
                   4178:     if( x3a->tbl==0 ){
                   4179:       free(x3a);
                   4180:       x3a = 0;
                   4181:     }else{
                   4182:       int i;
                   4183:       x3a->ht = (x3node**)&(x3a->tbl[128]);
                   4184:       for(i=0; i<128; i++) x3a->ht[i] = 0;
                   4185:     }
                   4186:   }
                   4187: }
                   4188: /* Insert a new record into the array.  Return TRUE if successful.
                   4189: ** Prior data with the same key is NOT overwritten */
                   4190: int State_insert(data,key)
                   4191: struct state *data;
                   4192: struct config *key;
                   4193: {
                   4194:   x3node *np;
                   4195:   int h;
                   4196:   int ph;
                   4197: 
                   4198:   if( x3a==0 ) return 0;
                   4199:   ph = statehash(key);
                   4200:   h = ph & (x3a->size-1);
                   4201:   np = x3a->ht[h];
                   4202:   while( np ){
                   4203:     if( statecmp(np->key,key)==0 ){
                   4204:       /* An existing entry with the same key is found. */
                   4205:       /* Fail because overwrite is not allows. */
                   4206:       return 0;
                   4207:     }
                   4208:     np = np->next;
                   4209:   }
                   4210:   if( x3a->count>=x3a->size ){
                   4211:     /* Need to make the hash table bigger */
                   4212:     int i,size;
                   4213:     struct s_x3 array;
                   4214:     array.size = size = x3a->size*2;
                   4215:     array.count = x3a->count;
                   4216:     array.tbl = (x3node*)malloc(
                   4217:       (sizeof(x3node) + sizeof(x3node*))*size );
                   4218:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4219:     array.ht = (x3node**)&(array.tbl[size]);
                   4220:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4221:     for(i=0; i<x3a->count; i++){
                   4222:       x3node *oldnp, *newnp;
                   4223:       oldnp = &(x3a->tbl[i]);
                   4224:       h = statehash(oldnp->key) & (size-1);
                   4225:       newnp = &(array.tbl[i]);
                   4226:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4227:       newnp->next = array.ht[h];
                   4228:       newnp->key = oldnp->key;
                   4229:       newnp->data = oldnp->data;
                   4230:       newnp->from = &(array.ht[h]);
                   4231:       array.ht[h] = newnp;
                   4232:     }
                   4233:     free(x3a->tbl);
                   4234:     *x3a = array;
                   4235:   }
                   4236:   /* Insert the new data */
                   4237:   h = ph & (x3a->size-1);
                   4238:   np = &(x3a->tbl[x3a->count++]);
                   4239:   np->key = key;
                   4240:   np->data = data;
                   4241:   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
                   4242:   np->next = x3a->ht[h];
                   4243:   x3a->ht[h] = np;
                   4244:   np->from = &(x3a->ht[h]);
                   4245:   return 1;
                   4246: }
                   4247: 
                   4248: /* Return a pointer to data assigned to the given key.  Return NULL
                   4249: ** if no such key. */
                   4250: struct state *State_find(key)
                   4251: struct config *key;
                   4252: {
                   4253:   int h;
                   4254:   x3node *np;
                   4255: 
                   4256:   if( x3a==0 ) return 0;
                   4257:   h = statehash(key) & (x3a->size-1);
                   4258:   np = x3a->ht[h];
                   4259:   while( np ){
                   4260:     if( statecmp(np->key,key)==0 ) break;
                   4261:     np = np->next;
                   4262:   }
                   4263:   return np ? np->data : 0;
                   4264: }
                   4265: 
                   4266: /* Return an array of pointers to all data in the table.
                   4267: ** The array is obtained from malloc.  Return NULL if memory allocation
                   4268: ** problems, or if the array is empty. */
                   4269: struct state **State_arrayof()
                   4270: {
                   4271:   struct state **array;
                   4272:   int i,size;
                   4273:   if( x3a==0 ) return 0;
                   4274:   size = x3a->count;
                   4275:   array = (struct state **)malloc( sizeof(struct state *)*size );
                   4276:   if( array ){
                   4277:     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
                   4278:   }
                   4279:   return array;
                   4280: }
                   4281: 
                   4282: /* Hash a configuration */
                   4283: PRIVATE int confighash(a)
                   4284: struct config *a;
                   4285: {
                   4286:   int h=0;
                   4287:   h = h*571 + a->rp->index*37 + a->dot;
                   4288:   return h;
                   4289: }
                   4290: 
                   4291: /* There is one instance of the following structure for each
                   4292: ** associative array of type "x4".
                   4293: */
                   4294: struct s_x4 {
                   4295:   int size;               /* The number of available slots. */
                   4296:                           /*   Must be a power of 2 greater than or */
                   4297:                           /*   equal to 1 */
                   4298:   int count;              /* Number of currently slots filled */
                   4299:   struct s_x4node *tbl;  /* The data stored here */
                   4300:   struct s_x4node **ht;  /* Hash table for lookups */
                   4301: };
                   4302: 
                   4303: /* There is one instance of this structure for every data element
                   4304: ** in an associative array of type "x4".
                   4305: */
                   4306: typedef struct s_x4node {
                   4307:   struct config *data;                  /* The data */
                   4308:   struct s_x4node *next;   /* Next entry with the same hash */
                   4309:   struct s_x4node **from;  /* Previous link */
                   4310: } x4node;
                   4311: 
                   4312: /* There is only one instance of the array, which is the following */
                   4313: static struct s_x4 *x4a;
                   4314: 
                   4315: /* Allocate a new associative array */
                   4316: void Configtable_init(){
                   4317:   if( x4a ) return;
                   4318:   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
                   4319:   if( x4a ){
                   4320:     x4a->size = 64;
                   4321:     x4a->count = 0;
                   4322:     x4a->tbl = (x4node*)malloc(
                   4323:       (sizeof(x4node) + sizeof(x4node*))*64 );
                   4324:     if( x4a->tbl==0 ){
                   4325:       free(x4a);
                   4326:       x4a = 0;
                   4327:     }else{
                   4328:       int i;
                   4329:       x4a->ht = (x4node**)&(x4a->tbl[64]);
                   4330:       for(i=0; i<64; i++) x4a->ht[i] = 0;
                   4331:     }
                   4332:   }
                   4333: }
                   4334: /* Insert a new record into the array.  Return TRUE if successful.
                   4335: ** Prior data with the same key is NOT overwritten */
                   4336: int Configtable_insert(data)
                   4337: struct config *data;
                   4338: {
                   4339:   x4node *np;
                   4340:   int h;
                   4341:   int ph;
                   4342: 
                   4343:   if( x4a==0 ) return 0;
                   4344:   ph = confighash(data);
                   4345:   h = ph & (x4a->size-1);
                   4346:   np = x4a->ht[h];
                   4347:   while( np ){
                   4348:     if( Configcmp(np->data,data)==0 ){
                   4349:       /* An existing entry with the same key is found. */
                   4350:       /* Fail because overwrite is not allows. */
                   4351:       return 0;
                   4352:     }
                   4353:     np = np->next;
                   4354:   }
                   4355:   if( x4a->count>=x4a->size ){
                   4356:     /* Need to make the hash table bigger */
                   4357:     int i,size;
                   4358:     struct s_x4 array;
                   4359:     array.size = size = x4a->size*2;
                   4360:     array.count = x4a->count;
                   4361:     array.tbl = (x4node*)malloc(
                   4362:       (sizeof(x4node) + sizeof(x4node*))*size );
                   4363:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4364:     array.ht = (x4node**)&(array.tbl[size]);
                   4365:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4366:     for(i=0; i<x4a->count; i++){
                   4367:       x4node *oldnp, *newnp;
                   4368:       oldnp = &(x4a->tbl[i]);
                   4369:       h = confighash(oldnp->data) & (size-1);
                   4370:       newnp = &(array.tbl[i]);
                   4371:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4372:       newnp->next = array.ht[h];
                   4373:       newnp->data = oldnp->data;
                   4374:       newnp->from = &(array.ht[h]);
                   4375:       array.ht[h] = newnp;
                   4376:     }
                   4377:     free(x4a->tbl);
                   4378:     *x4a = array;
                   4379:   }
                   4380:   /* Insert the new data */
                   4381:   h = ph & (x4a->size-1);
                   4382:   np = &(x4a->tbl[x4a->count++]);
                   4383:   np->data = data;
                   4384:   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
                   4385:   np->next = x4a->ht[h];
                   4386:   x4a->ht[h] = np;
                   4387:   np->from = &(x4a->ht[h]);
                   4388:   return 1;
                   4389: }
                   4390: 
                   4391: /* Return a pointer to data assigned to the given key.  Return NULL
                   4392: ** if no such key. */
                   4393: struct config *Configtable_find(key)
                   4394: struct config *key;
                   4395: {
                   4396:   int h;
                   4397:   x4node *np;
                   4398: 
                   4399:   if( x4a==0 ) return 0;
                   4400:   h = confighash(key) & (x4a->size-1);
                   4401:   np = x4a->ht[h];
                   4402:   while( np ){
                   4403:     if( Configcmp(np->data,key)==0 ) break;
                   4404:     np = np->next;
                   4405:   }
                   4406:   return np ? np->data : 0;
                   4407: }
                   4408: 
                   4409: /* Remove all data from the table.  Pass each data to the function "f"
                   4410: ** as it is removed.  ("f" may be null to avoid this step.) */
                   4411: void Configtable_clear(f)
                   4412: int(*f)(/* struct config * */);
                   4413: {
                   4414:   int i;
                   4415:   if( x4a==0 || x4a->count==0 ) return;
                   4416:   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
                   4417:   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
                   4418:   x4a->count = 0;
                   4419:   return;
                   4420: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>