File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / lighttpd / src / lemon.c
Revision 1.1.1.2 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Sun Jun 15 20:20:06 2014 UTC (10 years ago) by misho
Branches: lighttpd, MAIN
CVS tags: v1_4_35p0, v1_4_35, HEAD
lighttpd 1.4.35

    1: /*
    2: ** This file contains all sources (including headers) to the LEMON
    3: ** LALR(1) parser generator.  The sources have been combined into a
    4: ** single file to make it easy to include LEMON in the source tree
    5: ** and Makefile of another program.
    6: **
    7: ** The author of this program disclaims copyright.
    8: */
    9: #include <stdio.h>
   10: #include <stdarg.h>
   11: #include <string.h>
   12: #include <ctype.h>
   13: #include <stdlib.h>
   14: 
   15: #ifdef HAVE_CONFIG_H
   16: #include "config.h"
   17: #endif
   18: 
   19: #ifdef HAVE_STDINT_H
   20: # include <stdint.h>
   21: #endif
   22: #ifdef HAVE_INTTYPES_H
   23: # include <inttypes.h>
   24: #endif
   25: 
   26: #define UNUSED(x) ( (void)(x) )
   27: 
   28: extern void qsort();
   29: extern double strtod();
   30: extern long strtol();
   31: extern void free();
   32: extern int access();
   33: extern int atoi();
   34: extern char *getenv();
   35: 
   36: #ifndef __WIN32__
   37: #   if defined(_WIN32) || defined(WIN32)
   38: #	define __WIN32__
   39: #   endif
   40: #endif
   41: 
   42: #if __GNUC__ > 2
   43: #define NORETURN __attribute__ ((__noreturn__))
   44: #else
   45: #define NORETURN
   46: #endif
   47: 
   48: /* #define PRIVATE static */
   49: #define PRIVATE static
   50: 
   51: #ifdef TEST
   52: #define MAXRHS 5       /* Set low to exercise exception code */
   53: #else
   54: #define MAXRHS 1000
   55: #endif
   56: 
   57: char *msort();
   58: extern void *malloc();
   59: 
   60: extern void memory_error() NORETURN;
   61: 
   62: /******** From the file "action.h" *************************************/
   63: struct action *Action_new();
   64: struct action *Action_sort();
   65: void Action_add();
   66: 
   67: /********* From the file "assert.h" ************************************/
   68: void myassert() NORETURN;
   69: #ifndef NDEBUG
   70: #  define assert(X) if(!(X))myassert(__FILE__,__LINE__)
   71: #else
   72: #  define assert(X)
   73: #endif
   74: 
   75: /********** From the file "build.h" ************************************/
   76: void FindRulePrecedences();
   77: void FindFirstSets();
   78: void FindStates();
   79: void FindLinks();
   80: void FindFollowSets();
   81: void FindActions();
   82: 
   83: /********* From the file "configlist.h" *********************************/
   84: void Configlist_init(/* void */);
   85: struct config *Configlist_add(/* struct rule *, int */);
   86: struct config *Configlist_addbasis(/* struct rule *, int */);
   87: void Configlist_closure(/* void */);
   88: void Configlist_sort(/* void */);
   89: void Configlist_sortbasis(/* void */);
   90: struct config *Configlist_return(/* void */);
   91: struct config *Configlist_basis(/* void */);
   92: void Configlist_eat(/* struct config * */);
   93: void Configlist_reset(/* void */);
   94: 
   95: /********* From the file "error.h" ***************************************/
   96: void ErrorMsg(const char *, int,const char *, ...);
   97: 
   98: /****** From the file "option.h" ******************************************/
   99: struct s_options {
  100:   enum { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
  101:          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
  102:   char *label;
  103:   char *arg;
  104:   char *message;
  105: };
  106: int    OptInit(/* char**,struct s_options*,FILE* */);
  107: int    OptNArgs(/* void */);
  108: char  *OptArg(/* int */);
  109: void   OptErr(/* int */);
  110: void   OptPrint(/* void */);
  111: 
  112: /******** From the file "parse.h" *****************************************/
  113: void Parse(/* struct lemon *lemp */);
  114: 
  115: /********* From the file "plink.h" ***************************************/
  116: struct plink *Plink_new(/* void */);
  117: void Plink_add(/* struct plink **, struct config * */);
  118: void Plink_copy(/* struct plink **, struct plink * */);
  119: void Plink_delete(/* struct plink * */);
  120: 
  121: /********** From the file "report.h" *************************************/
  122: void Reprint(/* struct lemon * */);
  123: void ReportOutput(/* struct lemon * */);
  124: void ReportTable(/* struct lemon * */);
  125: void ReportHeader(/* struct lemon * */);
  126: void CompressTables(/* struct lemon * */);
  127: 
  128: /********** From the file "set.h" ****************************************/
  129: void  SetSize(/* int N */);             /* All sets will be of size N */
  130: char *SetNew(/* void */);               /* A new set for element 0..N */
  131: void  SetFree(/* char* */);             /* Deallocate a set */
  132: 
  133: int SetAdd(/* char*,int */);            /* Add element to a set */
  134: int SetUnion(/* char *A,char *B */);    /* A <- A U B, thru element N */
  135: 
  136: #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
  137: 
  138: /********** From the file "struct.h" *************************************/
  139: /*
  140: ** Principal data structures for the LEMON parser generator.
  141: */
  142: 
  143: typedef enum {Bo_FALSE=0, Bo_TRUE} Boolean;
  144: 
  145: /* Symbols (terminals and nonterminals) of the grammar are stored
  146: ** in the following: */
  147: struct symbol {
  148:   char *name;              /* Name of the symbol */
  149:   int index;               /* Index number for this symbol */
  150:   enum {
  151:     TERMINAL,
  152:     NONTERMINAL
  153:   } type;                  /* Symbols are all either TERMINALS or NTs */
  154:   struct rule *rule;       /* Linked list of rules of this (if an NT) */
  155:   struct symbol *fallback; /* fallback token in case this token doesn't parse */
  156:   int prec;                /* Precedence if defined (-1 otherwise) */
  157:   enum e_assoc {
  158:     LEFT,
  159:     RIGHT,
  160:     NONE,
  161:     UNK
  162:   } assoc;                 /* Associativity if predecence is defined */
  163:   char *firstset;          /* First-set for all rules of this symbol */
  164:   Boolean lambda;          /* True if NT and can generate an empty string */
  165:   char *destructor;        /* Code which executes whenever this symbol is
  166:                            ** popped from the stack during error processing */
  167:   int destructorln;        /* Line number of destructor code */
  168:   char *datatype;          /* The data type of information held by this
  169:                            ** object. Only used if type==NONTERMINAL */
  170:   int dtnum;               /* The data type number.  In the parser, the value
  171:                            ** stack is a union.  The .yy%d element of this
  172:                            ** union is the correct data type for this object */
  173: };
  174: 
  175: /* Each production rule in the grammar is stored in the following
  176: ** structure.  */
  177: struct rule {
  178:   struct symbol *lhs;      /* Left-hand side of the rule */
  179:   char *lhsalias;          /* Alias for the LHS (NULL if none) */
  180:   int ruleline;            /* Line number for the rule */
  181:   int nrhs;                /* Number of RHS symbols */
  182:   struct symbol **rhs;     /* The RHS symbols */
  183:   char **rhsalias;         /* An alias for each RHS symbol (NULL if none) */
  184:   int line;                /* Line number at which code begins */
  185:   char *code;              /* The code executed when this rule is reduced */
  186:   struct symbol *precsym;  /* Precedence symbol for this rule */
  187:   int index;               /* An index number for this rule */
  188:   Boolean canReduce;       /* True if this rule is ever reduced */
  189:   struct rule *nextlhs;    /* Next rule with the same LHS */
  190:   struct rule *next;       /* Next rule in the global list */
  191: };
  192: 
  193: /* A configuration is a production rule of the grammar together with
  194: ** a mark (dot) showing how much of that rule has been processed so far.
  195: ** Configurations also contain a follow-set which is a list of terminal
  196: ** symbols which are allowed to immediately follow the end of the rule.
  197: ** Every configuration is recorded as an instance of the following: */
  198: struct config {
  199:   struct rule *rp;         /* The rule upon which the configuration is based */
  200:   int dot;                 /* The parse point */
  201:   char *fws;               /* Follow-set for this configuration only */
  202:   struct plink *fplp;      /* Follow-set forward propagation links */
  203:   struct plink *bplp;      /* Follow-set backwards propagation links */
  204:   struct state *stp;       /* Pointer to state which contains this */
  205:   enum {
  206:     COMPLETE,              /* The status is used during followset and */
  207:     INCOMPLETE             /*    shift computations */
  208:   } status;
  209:   struct config *next;     /* Next configuration in the state */
  210:   struct config *bp;       /* The next basis configuration */
  211: };
  212: 
  213: /* Every shift or reduce operation is stored as one of the following */
  214: struct action {
  215:   struct symbol *sp;       /* The look-ahead symbol */
  216:   enum e_action {
  217:     SHIFT,
  218:     ACCEPT,
  219:     REDUCE,
  220:     ERROR,
  221:     CONFLICT,                /* Was a reduce, but part of a conflict */
  222:     SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
  223:     RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
  224:     NOT_USED                 /* Deleted by compression */
  225:   } type;
  226:   union {
  227:     struct state *stp;     /* The new state, if a shift */
  228:     struct rule *rp;       /* The rule, if a reduce */
  229:   } x;
  230:   struct action *next;     /* Next action for this state */
  231:   struct action *collide;  /* Next action with the same hash */
  232: };
  233: 
  234: /* Each state of the generated parser's finite state machine
  235: ** is encoded as an instance of the following structure. */
  236: struct state {
  237:   struct config *bp;       /* The basis configurations for this state */
  238:   struct config *cfp;      /* All configurations in this set */
  239:   int index;               /* Sequencial number for this state */
  240:   struct action *ap;       /* Array of actions for this state */
  241:   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
  242:   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
  243:   int iDflt;               /* Default action */
  244: };
  245: #define NO_OFFSET (-2147483647)
  246: 
  247: /* A followset propagation link indicates that the contents of one
  248: ** configuration followset should be propagated to another whenever
  249: ** the first changes. */
  250: struct plink {
  251:   struct config *cfp;      /* The configuration to which linked */
  252:   struct plink *next;      /* The next propagate link */
  253: };
  254: 
  255: /* The state vector for the entire parser generator is recorded as
  256: ** follows.  (LEMON uses no global variables and makes little use of
  257: ** static variables.  Fields in the following structure can be thought
  258: ** of as begin global variables in the program.) */
  259: struct lemon {
  260:   struct state **sorted;   /* Table of states sorted by state number */
  261:   struct rule *rule;       /* List of all rules */
  262:   int nstate;              /* Number of states */
  263:   int nrule;               /* Number of rules */
  264:   int nsymbol;             /* Number of terminal and nonterminal symbols */
  265:   int nterminal;           /* Number of terminal symbols */
  266:   struct symbol **symbols; /* Sorted array of pointers to symbols */
  267:   int errorcnt;            /* Number of errors */
  268:   struct symbol *errsym;   /* The error symbol */
  269:   char *name;              /* Name of the generated parser */
  270:   char *arg;               /* Declaration of the 3th argument to parser */
  271:   char *tokentype;         /* Type of terminal symbols in the parser stack */
  272:   char *vartype;           /* The default type of non-terminal symbols */
  273:   char *start;             /* Name of the start symbol for the grammar */
  274:   char *stacksize;         /* Size of the parser stack */
  275:   char *include;           /* Code to put at the start of the C file */
  276:   int  includeln;          /* Line number for start of include code */
  277:   char *error;             /* Code to execute when an error is seen */
  278:   int  errorln;            /* Line number for start of error code */
  279:   char *overflow;          /* Code to execute on a stack overflow */
  280:   int  overflowln;         /* Line number for start of overflow code */
  281:   char *failure;           /* Code to execute on parser failure */
  282:   int  failureln;          /* Line number for start of failure code */
  283:   char *accept;            /* Code to execute when the parser excepts */
  284:   int  acceptln;           /* Line number for the start of accept code */
  285:   char *extracode;         /* Code appended to the generated file */
  286:   int  extracodeln;        /* Line number for the start of the extra code */
  287:   char *tokendest;         /* Code to execute to destroy token data */
  288:   int  tokendestln;        /* Line number for token destroyer code */
  289:   char *vardest;           /* Code for the default non-terminal destructor */
  290:   int  vardestln;          /* Line number for default non-term destructor code*/
  291:   char *filename;          /* Name of the input file */
  292:   char *tmplname;          /* Name of the template file */
  293:   char *outname;           /* Name of the current output file */
  294:   char *tokenprefix;       /* A prefix added to token names in the .h file */
  295:   int nconflict;           /* Number of parsing conflicts */
  296:   int tablesize;           /* Size of the parse tables */
  297:   int basisflag;           /* Print only basis configurations */
  298:   int has_fallback;        /* True if any %fallback is seen in the grammer */
  299:   char *argv0;             /* Name of the program */
  300: };
  301: 
  302: #define MemoryCheck(X) if((X)==0){ \
  303:   memory_error(); \
  304: }
  305: 
  306: /**************** From the file "table.h" *********************************/
  307: /*
  308: ** All code in this file has been automatically generated
  309: ** from a specification in the file
  310: **              "table.q"
  311: ** by the associative array code building program "aagen".
  312: ** Do not edit this file!  Instead, edit the specification
  313: ** file, then rerun aagen.
  314: */
  315: /*
  316: ** Code for processing tables in the LEMON parser generator.
  317: */
  318: 
  319: /* Routines for handling a strings */
  320: 
  321: char *Strsafe();
  322: 
  323: void Strsafe_init(/* void */);
  324: int Strsafe_insert(/* char * */);
  325: char *Strsafe_find(/* char * */);
  326: 
  327: /* Routines for handling symbols of the grammar */
  328: 
  329: struct symbol *Symbol_new();
  330: int Symbolcmpp(/* struct symbol **, struct symbol ** */);
  331: void Symbol_init(/* void */);
  332: int Symbol_insert(/* struct symbol *, char * */);
  333: struct symbol *Symbol_find(/* char * */);
  334: struct symbol *Symbol_Nth(/* int */);
  335: int Symbol_count(/*  */);
  336: struct symbol **Symbol_arrayof(/*  */);
  337: 
  338: /* Routines to manage the state table */
  339: 
  340: int Configcmp(/* struct config *, struct config * */);
  341: struct state *State_new();
  342: void State_init(/* void */);
  343: int State_insert(/* struct state *, struct config * */);
  344: struct state *State_find(/* struct config * */);
  345: struct state **State_arrayof(/*  */);
  346: 
  347: /* Routines used for efficiency in Configlist_add */
  348: 
  349: void Configtable_init(/* void */);
  350: int Configtable_insert(/* struct config * */);
  351: struct config *Configtable_find(/* struct config * */);
  352: void Configtable_clear(/* int(*)(struct config *) */);
  353: /****************** From the file "action.c" *******************************/
  354: /*
  355: ** Routines processing parser actions in the LEMON parser generator.
  356: */
  357: 
  358: /* Allocate a new parser action */
  359: struct action *Action_new(){
  360:   static struct action *freelist = NULL;
  361:   struct action *new;
  362: 
  363:   if( freelist==NULL ){
  364:     int i;
  365:     int amt = 100;
  366:     freelist = (struct action *)malloc( sizeof(struct action)*amt );
  367:     if( freelist==0 ){
  368:       fprintf(stderr,"Unable to allocate memory for a new parser action.");
  369:       exit(1);
  370:     }
  371:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
  372:     freelist[amt-1].next = 0;
  373:   }
  374:   new = freelist;
  375:   freelist = freelist->next;
  376:   return new;
  377: }
  378: 
  379: /* Compare two actions */
  380: static int actioncmp(ap1,ap2)
  381: struct action *ap1;
  382: struct action *ap2;
  383: {
  384:   int rc;
  385:   rc = ap1->sp->index - ap2->sp->index;
  386:   if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
  387:   if( rc==0 ){
  388:     assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
  389:     assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
  390:     rc = ap1->x.rp->index - ap2->x.rp->index;
  391:   }
  392:   return rc;
  393: }
  394: 
  395: /* Sort parser actions */
  396: struct action *Action_sort(ap)
  397: struct action *ap;
  398: {
  399:   ap = (struct action *)msort(ap,&ap->next,actioncmp);
  400:   return ap;
  401: }
  402: 
  403: void Action_add(app,type,sp,arg)
  404: struct action **app;
  405: enum e_action type;
  406: struct symbol *sp;
  407: void *arg;
  408: {
  409:   struct action *new;
  410:   new = Action_new();
  411:   new->next = *app;
  412:   *app = new;
  413:   new->type = type;
  414:   new->sp = sp;
  415:   if( type==SHIFT ){
  416:     new->x.stp = (struct state *)arg;
  417:   }else{
  418:     new->x.rp = (struct rule *)arg;
  419:   }
  420: }
  421: /********************** New code to implement the "acttab" module ***********/
  422: /*
  423: ** This module implements routines use to construct the yy_action[] table.
  424: */
  425: 
  426: /*
  427: ** The state of the yy_action table under construction is an instance of
  428: ** the following structure
  429: */
  430: typedef struct acttab acttab;
  431: struct acttab {
  432:   int nAction;                 /* Number of used slots in aAction[] */
  433:   int nActionAlloc;            /* Slots allocated for aAction[] */
  434:   struct {
  435:     int lookahead;             /* Value of the lookahead token */
  436:     int action;                /* Action to take on the given lookahead */
  437:   } *aAction,                  /* The yy_action[] table under construction */
  438:     *aLookahead;               /* A single new transaction set */
  439:   int mnLookahead;             /* Minimum aLookahead[].lookahead */
  440:   int mnAction;                /* Action associated with mnLookahead */
  441:   int mxLookahead;             /* Maximum aLookahead[].lookahead */
  442:   int nLookahead;              /* Used slots in aLookahead[] */
  443:   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
  444: };
  445: 
  446: /* Return the number of entries in the yy_action table */
  447: #define acttab_size(X) ((X)->nAction)
  448: 
  449: /* The value for the N-th entry in yy_action */
  450: #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
  451: 
  452: /* The value for the N-th entry in yy_lookahead */
  453: #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
  454: 
  455: /* Free all memory associated with the given acttab */
  456: /*
  457: PRIVATE void acttab_free(acttab *p){
  458:   free( p->aAction );
  459:   free( p->aLookahead );
  460:   free( p );
  461: }
  462: */
  463: 
  464: /* Allocate a new acttab structure */
  465: PRIVATE acttab *acttab_alloc(void){
  466:   acttab *p = malloc( sizeof(*p) );
  467:   if( p==0 ){
  468:     fprintf(stderr,"Unable to allocate memory for a new acttab.");
  469:     exit(1);
  470:   }
  471:   memset(p, 0, sizeof(*p));
  472:   return p;
  473: }
  474: 
  475: /* Add a new action to the current transaction set
  476: */
  477: PRIVATE void acttab_action(acttab *p, int lookahead, int action){
  478:   if( p->nLookahead>=p->nLookaheadAlloc ){
  479:     p->nLookaheadAlloc += 25;
  480:     p->aLookahead = realloc( p->aLookahead,
  481:                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
  482:     if( p->aLookahead==0 ){
  483:       fprintf(stderr,"malloc failed\n");
  484:       exit(1);
  485:     }
  486:   }
  487:   if( p->nLookahead==0 ){
  488:     p->mxLookahead = lookahead;
  489:     p->mnLookahead = lookahead;
  490:     p->mnAction = action;
  491:   }else{
  492:     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
  493:     if( p->mnLookahead>lookahead ){
  494:       p->mnLookahead = lookahead;
  495:       p->mnAction = action;
  496:     }
  497:   }
  498:   p->aLookahead[p->nLookahead].lookahead = lookahead;
  499:   p->aLookahead[p->nLookahead].action = action;
  500:   p->nLookahead++;
  501: }
  502: 
  503: /*
  504: ** Add the transaction set built up with prior calls to acttab_action()
  505: ** into the current action table.  Then reset the transaction set back
  506: ** to an empty set in preparation for a new round of acttab_action() calls.
  507: **
  508: ** Return the offset into the action table of the new transaction.
  509: */
  510: PRIVATE int acttab_insert(acttab *p){
  511:   int i, j, k, n;
  512:   assert( p->nLookahead>0 );
  513: 
  514:   /* Make sure we have enough space to hold the expanded action table
  515:   ** in the worst case.  The worst case occurs if the transaction set
  516:   ** must be appended to the current action table
  517:   */
  518:   n = p->mxLookahead + 1;
  519:   if( p->nAction + n >= p->nActionAlloc ){
  520:     int oldAlloc = p->nActionAlloc;
  521:     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
  522:     p->aAction = realloc( p->aAction,
  523:                           sizeof(p->aAction[0])*p->nActionAlloc);
  524:     if( p->aAction==0 ){
  525:       fprintf(stderr,"malloc failed\n");
  526:       exit(1);
  527:     }
  528:     for(i=oldAlloc; i<p->nActionAlloc; i++){
  529:       p->aAction[i].lookahead = -1;
  530:       p->aAction[i].action = -1;
  531:     }
  532:   }
  533: 
  534:   /* Scan the existing action table looking for an offset where we can
  535:   ** insert the current transaction set.  Fall out of the loop when that
  536:   ** offset is found.  In the worst case, we fall out of the loop when
  537:   ** i reaches p->nAction, which means we append the new transaction set.
  538:   **
  539:   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  540:   */
  541:   for(i=0; i<p->nAction+p->mnLookahead; i++){
  542:     if( p->aAction[i].lookahead<0 ){
  543:       for(j=0; j<p->nLookahead; j++){
  544:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
  545:         if( k<0 ) break;
  546:         if( p->aAction[k].lookahead>=0 ) break;
  547:       }
  548:       if( j<p->nLookahead ) continue;
  549:       for(j=0; j<p->nAction; j++){
  550:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
  551:       }
  552:       if( j==p->nAction ){
  553:         break;  /* Fits in empty slots */
  554:       }
  555:     }else if( p->aAction[i].lookahead==p->mnLookahead ){
  556:       if( p->aAction[i].action!=p->mnAction ) continue;
  557:       for(j=0; j<p->nLookahead; j++){
  558:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
  559:         if( k<0 || k>=p->nAction ) break;
  560:         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
  561:         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
  562:       }
  563:       if( j<p->nLookahead ) continue;
  564:       n = 0;
  565:       for(j=0; j<p->nAction; j++){
  566:         if( p->aAction[j].lookahead<0 ) continue;
  567:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
  568:       }
  569:       if( n==p->nLookahead ){
  570:         break;  /* Same as a prior transaction set */
  571:       }
  572:     }
  573:   }
  574:   /* Insert transaction set at index i. */
  575:   for(j=0; j<p->nLookahead; j++){
  576:     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
  577:     p->aAction[k] = p->aLookahead[j];
  578:     if( k>=p->nAction ) p->nAction = k+1;
  579:   }
  580:   p->nLookahead = 0;
  581: 
  582:   /* Return the offset that is added to the lookahead in order to get the
  583:   ** index into yy_action of the action */
  584:   return i - p->mnLookahead;
  585: }
  586: 
  587: /********************** From the file "assert.c" ****************************/
  588: /*
  589: ** A more efficient way of handling assertions.
  590: */
  591: void myassert(file,line)
  592: char *file;
  593: int line;
  594: {
  595:   fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
  596:   exit(1);
  597: }
  598: /********************** From the file "build.c" *****************************/
  599: /*
  600: ** Routines to construction the finite state machine for the LEMON
  601: ** parser generator.
  602: */
  603: 
  604: /* Find a precedence symbol of every rule in the grammar.
  605: **
  606: ** Those rules which have a precedence symbol coded in the input
  607: ** grammar using the "[symbol]" construct will already have the
  608: ** rp->precsym field filled.  Other rules take as their precedence
  609: ** symbol the first RHS symbol with a defined precedence.  If there
  610: ** are not RHS symbols with a defined precedence, the precedence
  611: ** symbol field is left blank.
  612: */
  613: void FindRulePrecedences(xp)
  614: struct lemon *xp;
  615: {
  616:   struct rule *rp;
  617:   for(rp=xp->rule; rp; rp=rp->next){
  618:     if( rp->precsym==0 ){
  619:       int i;
  620:       for(i=0; i<rp->nrhs; i++){
  621:         if( rp->rhs[i]->prec>=0 ){
  622:           rp->precsym = rp->rhs[i];
  623:           break;
  624: 	}
  625:       }
  626:     }
  627:   }
  628:   return;
  629: }
  630: 
  631: /* Find all nonterminals which will generate the empty string.
  632: ** Then go back and compute the first sets of every nonterminal.
  633: ** The first set is the set of all terminal symbols which can begin
  634: ** a string generated by that nonterminal.
  635: */
  636: void FindFirstSets(lemp)
  637: struct lemon *lemp;
  638: {
  639:   int i;
  640:   struct rule *rp;
  641:   int progress;
  642: 
  643:   for(i=0; i<lemp->nsymbol; i++){
  644:     lemp->symbols[i]->lambda = Bo_FALSE;
  645:   }
  646:   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
  647:     lemp->symbols[i]->firstset = SetNew();
  648:   }
  649: 
  650:   /* First compute all lambdas */
  651:   do{
  652:     progress = 0;
  653:     for(rp=lemp->rule; rp; rp=rp->next){
  654:       if( rp->lhs->lambda ) continue;
  655:       for(i=0; i<rp->nrhs; i++){
  656:          if( rp->rhs[i]->lambda==Bo_FALSE ) break;
  657:       }
  658:       if( i==rp->nrhs ){
  659:         rp->lhs->lambda = Bo_TRUE;
  660:         progress = 1;
  661:       }
  662:     }
  663:   }while( progress );
  664: 
  665:   /* Now compute all first sets */
  666:   do{
  667:     struct symbol *s1, *s2;
  668:     progress = 0;
  669:     for(rp=lemp->rule; rp; rp=rp->next){
  670:       s1 = rp->lhs;
  671:       for(i=0; i<rp->nrhs; i++){
  672:         s2 = rp->rhs[i];
  673:         if( s2->type==TERMINAL ){
  674:           progress += SetAdd(s1->firstset,s2->index);
  675:           break;
  676: 	}else if( s1==s2 ){
  677:           if( s1->lambda==Bo_FALSE ) break;
  678: 	}else{
  679:           progress += SetUnion(s1->firstset,s2->firstset);
  680:           if( s2->lambda==Bo_FALSE ) break;
  681: 	}
  682:       }
  683:     }
  684:   }while( progress );
  685:   return;
  686: }
  687: 
  688: /* Compute all LR(0) states for the grammar.  Links
  689: ** are added to between some states so that the LR(1) follow sets
  690: ** can be computed later.
  691: */
  692: PRIVATE struct state *getstate(/* struct lemon * */);  /* forward reference */
  693: void FindStates(lemp)
  694: struct lemon *lemp;
  695: {
  696:   struct symbol *sp;
  697:   struct rule *rp;
  698: 
  699:   Configlist_init();
  700: 
  701:   /* Find the start symbol */
  702:   if( lemp->start ){
  703:     sp = Symbol_find(lemp->start);
  704:     if( sp==0 ){
  705:       ErrorMsg(lemp->filename,0,
  706: "The specified start symbol \"%s\" is not \
  707: in a nonterminal of the grammar.  \"%s\" will be used as the start \
  708: symbol instead.",lemp->start,lemp->rule->lhs->name);
  709:       lemp->errorcnt++;
  710:       sp = lemp->rule->lhs;
  711:     }
  712:   }else{
  713:     sp = lemp->rule->lhs;
  714:   }
  715: 
  716:   /* Make sure the start symbol doesn't occur on the right-hand side of
  717:   ** any rule.  Report an error if it does.  (YACC would generate a new
  718:   ** start symbol in this case.) */
  719:   for(rp=lemp->rule; rp; rp=rp->next){
  720:     int i;
  721:     for(i=0; i<rp->nrhs; i++){
  722:       if( rp->rhs[i]==sp ){
  723:         ErrorMsg(lemp->filename,0,
  724: "The start symbol \"%s\" occurs on the \
  725: right-hand side of a rule. This will result in a parser which \
  726: does not work properly.",sp->name);
  727:         lemp->errorcnt++;
  728:       }
  729:     }
  730:   }
  731: 
  732:   /* The basis configuration set for the first state
  733:   ** is all rules which have the start symbol as their
  734:   ** left-hand side */
  735:   for(rp=sp->rule; rp; rp=rp->nextlhs){
  736:     struct config *newcfp;
  737:     newcfp = Configlist_addbasis(rp,0);
  738:     SetAdd(newcfp->fws,0);
  739:   }
  740: 
  741:   /* Compute the first state.  All other states will be
  742:   ** computed automatically during the computation of the first one.
  743:   ** The returned pointer to the first state is not used. */
  744:   (void)getstate(lemp);
  745:   return;
  746: }
  747: 
  748: /* Return a pointer to a state which is described by the configuration
  749: ** list which has been built from calls to Configlist_add.
  750: */
  751: PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
  752: PRIVATE struct state *getstate(lemp)
  753: struct lemon *lemp;
  754: {
  755:   struct config *cfp, *bp;
  756:   struct state *stp;
  757: 
  758:   /* Extract the sorted basis of the new state.  The basis was constructed
  759:   ** by prior calls to "Configlist_addbasis()". */
  760:   Configlist_sortbasis();
  761:   bp = Configlist_basis();
  762: 
  763:   /* Get a state with the same basis */
  764:   stp = State_find(bp);
  765:   if( stp ){
  766:     /* A state with the same basis already exists!  Copy all the follow-set
  767:     ** propagation links from the state under construction into the
  768:     ** preexisting state, then return a pointer to the preexisting state */
  769:     struct config *x, *y;
  770:     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
  771:       Plink_copy(&y->bplp,x->bplp);
  772:       Plink_delete(x->fplp);
  773:       x->fplp = x->bplp = 0;
  774:     }
  775:     cfp = Configlist_return();
  776:     Configlist_eat(cfp);
  777:   }else{
  778:     /* This really is a new state.  Construct all the details */
  779:     Configlist_closure(lemp);    /* Compute the configuration closure */
  780:     Configlist_sort();           /* Sort the configuration closure */
  781:     cfp = Configlist_return();   /* Get a pointer to the config list */
  782:     stp = State_new();           /* A new state structure */
  783:     MemoryCheck(stp);
  784:     stp->bp = bp;                /* Remember the configuration basis */
  785:     stp->cfp = cfp;              /* Remember the configuration closure */
  786:     stp->index = lemp->nstate++; /* Every state gets a sequence number */
  787:     stp->ap = 0;                 /* No actions, yet. */
  788:     State_insert(stp,stp->bp);   /* Add to the state table */
  789:     buildshifts(lemp,stp);       /* Recursively compute successor states */
  790:   }
  791:   return stp;
  792: }
  793: 
  794: /* Construct all successor states to the given state.  A "successor"
  795: ** state is any state which can be reached by a shift action.
  796: */
  797: PRIVATE void buildshifts(lemp,stp)
  798: struct lemon *lemp;
  799: struct state *stp;     /* The state from which successors are computed */
  800: {
  801:   struct config *cfp;  /* For looping thru the config closure of "stp" */
  802:   struct config *bcfp; /* For the inner loop on config closure of "stp" */
  803:   struct config *new;  /* */
  804:   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
  805:   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
  806:   struct state *newstp; /* A pointer to a successor state */
  807: 
  808:   /* Each configuration becomes complete after it contibutes to a successor
  809:   ** state.  Initially, all configurations are incomplete */
  810:   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
  811: 
  812:   /* Loop through all configurations of the state "stp" */
  813:   for(cfp=stp->cfp; cfp; cfp=cfp->next){
  814:     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
  815:     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
  816:     Configlist_reset();                      /* Reset the new config set */
  817:     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
  818: 
  819:     /* For every configuration in the state "stp" which has the symbol "sp"
  820:     ** following its dot, add the same configuration to the basis set under
  821:     ** construction but with the dot shifted one symbol to the right. */
  822:     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
  823:       if( bcfp->status==COMPLETE ) continue;    /* Already used */
  824:       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
  825:       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
  826:       if( bsp!=sp ) continue;                   /* Must be same as for "cfp" */
  827:       bcfp->status = COMPLETE;                  /* Mark this config as used */
  828:       new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
  829:       Plink_add(&new->bplp,bcfp);
  830:     }
  831: 
  832:     /* Get a pointer to the state described by the basis configuration set
  833:     ** constructed in the preceding loop */
  834:     newstp = getstate(lemp);
  835: 
  836:     /* The state "newstp" is reached from the state "stp" by a shift action
  837:     ** on the symbol "sp" */
  838:     Action_add(&stp->ap,SHIFT,sp,newstp);
  839:   }
  840: }
  841: 
  842: /*
  843: ** Construct the propagation links
  844: */
  845: void FindLinks(lemp)
  846: struct lemon *lemp;
  847: {
  848:   int i;
  849:   struct config *cfp, *other;
  850:   struct state *stp;
  851:   struct plink *plp;
  852: 
  853:   /* Housekeeping detail:
  854:   ** Add to every propagate link a pointer back to the state to
  855:   ** which the link is attached. */
  856:   for(i=0; i<lemp->nstate; i++){
  857:     stp = lemp->sorted[i];
  858:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
  859:       cfp->stp = stp;
  860:     }
  861:   }
  862: 
  863:   /* Convert all backlinks into forward links.  Only the forward
  864:   ** links are used in the follow-set computation. */
  865:   for(i=0; i<lemp->nstate; i++){
  866:     stp = lemp->sorted[i];
  867:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
  868:       for(plp=cfp->bplp; plp; plp=plp->next){
  869:         other = plp->cfp;
  870:         Plink_add(&other->fplp,cfp);
  871:       }
  872:     }
  873:   }
  874: }
  875: 
  876: /* Compute all followsets.
  877: **
  878: ** A followset is the set of all symbols which can come immediately
  879: ** after a configuration.
  880: */
  881: void FindFollowSets(lemp)
  882: struct lemon *lemp;
  883: {
  884:   int i;
  885:   struct config *cfp;
  886:   struct plink *plp;
  887:   int progress;
  888:   int change;
  889: 
  890:   for(i=0; i<lemp->nstate; i++){
  891:     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
  892:       cfp->status = INCOMPLETE;
  893:     }
  894:   }
  895: 
  896:   do{
  897:     progress = 0;
  898:     for(i=0; i<lemp->nstate; i++){
  899:       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
  900:         if( cfp->status==COMPLETE ) continue;
  901:         for(plp=cfp->fplp; plp; plp=plp->next){
  902:           change = SetUnion(plp->cfp->fws,cfp->fws);
  903:           if( change ){
  904:             plp->cfp->status = INCOMPLETE;
  905:             progress = 1;
  906: 	  }
  907: 	}
  908:         cfp->status = COMPLETE;
  909:       }
  910:     }
  911:   }while( progress );
  912: }
  913: 
  914: static int resolve_conflict();
  915: 
  916: /* Compute the reduce actions, and resolve conflicts.
  917: */
  918: void FindActions(lemp)
  919: struct lemon *lemp;
  920: {
  921:   int i,j;
  922:   struct config *cfp;
  923:   struct symbol *sp;
  924:   struct rule *rp;
  925: 
  926:   /* Add all of the reduce actions
  927:   ** A reduce action is added for each element of the followset of
  928:   ** a configuration which has its dot at the extreme right.
  929:   */
  930:   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
  931:     struct state *stp;
  932:     stp = lemp->sorted[i];
  933:     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
  934:       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
  935:         for(j=0; j<lemp->nterminal; j++){
  936:           if( SetFind(cfp->fws,j) ){
  937:             /* Add a reduce action to the state "stp" which will reduce by the
  938:             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
  939:             Action_add(&stp->ap,REDUCE,lemp->symbols[j],cfp->rp);
  940:           }
  941: 	}
  942:       }
  943:     }
  944:   }
  945: 
  946:   /* Add the accepting token */
  947:   if( lemp->start ){
  948:     sp = Symbol_find(lemp->start);
  949:     if( sp==0 ) sp = lemp->rule->lhs;
  950:   }else{
  951:     sp = lemp->rule->lhs;
  952:   }
  953:   /* Add to the first state (which is always the starting state of the
  954:   ** finite state machine) an action to ACCEPT if the lookahead is the
  955:   ** start nonterminal.  */
  956:   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
  957: 
  958:   /* Resolve conflicts */
  959:   for(i=0; i<lemp->nstate; i++){
  960:     struct action *ap, *nap;
  961:     struct state *stp;
  962:     stp = lemp->sorted[i];
  963:     assert( stp->ap );
  964:     stp->ap = Action_sort(stp->ap);
  965:     for(ap=stp->ap; ap && ap->next; ap=ap->next){
  966:       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
  967:          /* The two actions "ap" and "nap" have the same lookahead.
  968:          ** Figure out which one should be used */
  969:          lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
  970:       }
  971:     }
  972:   }
  973: 
  974:   /* Report an error for each rule that can never be reduced. */
  975:   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = Bo_FALSE;
  976:   for(i=0; i<lemp->nstate; i++){
  977:     struct action *ap;
  978:     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
  979:       if( ap->type==REDUCE ) ap->x.rp->canReduce = Bo_TRUE;
  980:     }
  981:   }
  982:   for(rp=lemp->rule; rp; rp=rp->next){
  983:     if( rp->canReduce ) continue;
  984:     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
  985:     lemp->errorcnt++;
  986:   }
  987: }
  988: 
  989: /* Resolve a conflict between the two given actions.  If the
  990: ** conflict can't be resolve, return non-zero.
  991: **
  992: ** NO LONGER TRUE:
  993: **   To resolve a conflict, first look to see if either action
  994: **   is on an error rule.  In that case, take the action which
  995: **   is not associated with the error rule.  If neither or both
  996: **   actions are associated with an error rule, then try to
  997: **   use precedence to resolve the conflict.
  998: **
  999: ** If either action is a SHIFT, then it must be apx.  This
 1000: ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
 1001: */
 1002: static int resolve_conflict(apx,apy,errsym)
 1003: struct action *apx;
 1004: struct action *apy;
 1005: struct symbol *errsym;   /* The error symbol (if defined.  NULL otherwise) */
 1006: {
 1007:   struct symbol *spx, *spy;
 1008:   int errcnt = 0;
 1009:   UNUSED(errsym);
 1010:   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
 1011:   if( apx->type==SHIFT && apy->type==REDUCE ){
 1012:     spx = apx->sp;
 1013:     spy = apy->x.rp->precsym;
 1014:     if( spy==0 || spx->prec<0 || spy->prec<0 ){
 1015:       /* Not enough precedence information. */
 1016:       apy->type = CONFLICT;
 1017:       errcnt++;
 1018:     }else if( spx->prec>spy->prec ){    /* Lower precedence wins */
 1019:       apy->type = RD_RESOLVED;
 1020:     }else if( spx->prec<spy->prec ){
 1021:       apx->type = SH_RESOLVED;
 1022:     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
 1023:       apy->type = RD_RESOLVED;                             /* associativity */
 1024:     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
 1025:       apx->type = SH_RESOLVED;
 1026:     }else{
 1027:       assert( spx->prec==spy->prec && spx->assoc==NONE );
 1028:       apy->type = CONFLICT;
 1029:       errcnt++;
 1030:     }
 1031:   }else if( apx->type==REDUCE && apy->type==REDUCE ){
 1032:     spx = apx->x.rp->precsym;
 1033:     spy = apy->x.rp->precsym;
 1034:     if( spx==0 || spy==0 || spx->prec<0 ||
 1035:     spy->prec<0 || spx->prec==spy->prec ){
 1036:       apy->type = CONFLICT;
 1037:       errcnt++;
 1038:     }else if( spx->prec>spy->prec ){
 1039:       apy->type = RD_RESOLVED;
 1040:     }else if( spx->prec<spy->prec ){
 1041:       apx->type = RD_RESOLVED;
 1042:     }
 1043:   }else{
 1044:     assert(
 1045:       apx->type==SH_RESOLVED ||
 1046:       apx->type==RD_RESOLVED ||
 1047:       apx->type==CONFLICT ||
 1048:       apy->type==SH_RESOLVED ||
 1049:       apy->type==RD_RESOLVED ||
 1050:       apy->type==CONFLICT
 1051:     );
 1052:     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
 1053:     ** REDUCEs on the list.  If we reach this point it must be because
 1054:     ** the parser conflict had already been resolved. */
 1055:   }
 1056:   return errcnt;
 1057: }
 1058: /********************* From the file "configlist.c" *************************/
 1059: /*
 1060: ** Routines to processing a configuration list and building a state
 1061: ** in the LEMON parser generator.
 1062: */
 1063: 
 1064: static struct config *freelist = 0;      /* List of free configurations */
 1065: static struct config *current = 0;       /* Top of list of configurations */
 1066: static struct config **currentend = 0;   /* Last on list of configs */
 1067: static struct config *basis = 0;         /* Top of list of basis configs */
 1068: static struct config **basisend = 0;     /* End of list of basis configs */
 1069: 
 1070: /* Return a pointer to a new configuration */
 1071: PRIVATE struct config *newconfig(){
 1072:   struct config *new;
 1073:   if( freelist==0 ){
 1074:     int i;
 1075:     int amt = 3;
 1076:     freelist = (struct config *)malloc( sizeof(struct config)*amt );
 1077:     if( freelist==0 ){
 1078:       fprintf(stderr,"Unable to allocate memory for a new configuration.");
 1079:       exit(1);
 1080:     }
 1081:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
 1082:     freelist[amt-1].next = 0;
 1083:   }
 1084:   new = freelist;
 1085:   freelist = freelist->next;
 1086:   return new;
 1087: }
 1088: 
 1089: /* The configuration "old" is no longer used */
 1090: PRIVATE void deleteconfig(old)
 1091: struct config *old;
 1092: {
 1093:   old->next = freelist;
 1094:   freelist = old;
 1095: }
 1096: 
 1097: /* Initialized the configuration list builder */
 1098: void Configlist_init(){
 1099:   current = 0;
 1100:   currentend = &current;
 1101:   basis = 0;
 1102:   basisend = &basis;
 1103:   Configtable_init();
 1104:   return;
 1105: }
 1106: 
 1107: /* Initialized the configuration list builder */
 1108: void Configlist_reset(){
 1109:   current = 0;
 1110:   currentend = &current;
 1111:   basis = 0;
 1112:   basisend = &basis;
 1113:   Configtable_clear(0);
 1114:   return;
 1115: }
 1116: 
 1117: /* Add another configuration to the configuration list */
 1118: struct config *Configlist_add(rp,dot)
 1119: struct rule *rp;    /* The rule */
 1120: int dot;            /* Index into the RHS of the rule where the dot goes */
 1121: {
 1122:   struct config *cfp, model;
 1123: 
 1124:   assert( currentend!=0 );
 1125:   model.rp = rp;
 1126:   model.dot = dot;
 1127:   cfp = Configtable_find(&model);
 1128:   if( cfp==0 ){
 1129:     cfp = newconfig();
 1130:     cfp->rp = rp;
 1131:     cfp->dot = dot;
 1132:     cfp->fws = SetNew();
 1133:     cfp->stp = 0;
 1134:     cfp->fplp = cfp->bplp = 0;
 1135:     cfp->next = 0;
 1136:     cfp->bp = 0;
 1137:     *currentend = cfp;
 1138:     currentend = &cfp->next;
 1139:     Configtable_insert(cfp);
 1140:   }
 1141:   return cfp;
 1142: }
 1143: 
 1144: /* Add a basis configuration to the configuration list */
 1145: struct config *Configlist_addbasis(rp,dot)
 1146: struct rule *rp;
 1147: int dot;
 1148: {
 1149:   struct config *cfp, model;
 1150: 
 1151:   assert( basisend!=0 );
 1152:   assert( currentend!=0 );
 1153:   model.rp = rp;
 1154:   model.dot = dot;
 1155:   cfp = Configtable_find(&model);
 1156:   if( cfp==0 ){
 1157:     cfp = newconfig();
 1158:     cfp->rp = rp;
 1159:     cfp->dot = dot;
 1160:     cfp->fws = SetNew();
 1161:     cfp->stp = 0;
 1162:     cfp->fplp = cfp->bplp = 0;
 1163:     cfp->next = 0;
 1164:     cfp->bp = 0;
 1165:     *currentend = cfp;
 1166:     currentend = &cfp->next;
 1167:     *basisend = cfp;
 1168:     basisend = &cfp->bp;
 1169:     Configtable_insert(cfp);
 1170:   }
 1171:   return cfp;
 1172: }
 1173: 
 1174: /* Compute the closure of the configuration list */
 1175: void Configlist_closure(lemp)
 1176: struct lemon *lemp;
 1177: {
 1178:   struct config *cfp, *newcfp;
 1179:   struct rule *rp, *newrp;
 1180:   struct symbol *sp, *xsp;
 1181:   int i, dot;
 1182: 
 1183:   assert( currentend!=0 );
 1184:   for(cfp=current; cfp; cfp=cfp->next){
 1185:     rp = cfp->rp;
 1186:     dot = cfp->dot;
 1187:     if( dot>=rp->nrhs ) continue;
 1188:     sp = rp->rhs[dot];
 1189:     if( sp->type==NONTERMINAL ){
 1190:       if( sp->rule==0 && sp!=lemp->errsym ){
 1191:         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
 1192:           sp->name);
 1193:         lemp->errorcnt++;
 1194:       }
 1195:       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
 1196:         newcfp = Configlist_add(newrp,0);
 1197:         for(i=dot+1; i<rp->nrhs; i++){
 1198:           xsp = rp->rhs[i];
 1199:           if( xsp->type==TERMINAL ){
 1200:             SetAdd(newcfp->fws,xsp->index);
 1201:             break;
 1202: 	  }else{
 1203:             SetUnion(newcfp->fws,xsp->firstset);
 1204:             if( xsp->lambda==Bo_FALSE ) break;
 1205: 	  }
 1206: 	}
 1207:         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
 1208:       }
 1209:     }
 1210:   }
 1211:   return;
 1212: }
 1213: 
 1214: /* Sort the configuration list */
 1215: void Configlist_sort(){
 1216:   current = (struct config *)msort(current,&(current->next),Configcmp);
 1217:   currentend = 0;
 1218:   return;
 1219: }
 1220: 
 1221: /* Sort the basis configuration list */
 1222: void Configlist_sortbasis(){
 1223:   basis = (struct config *)msort(current,&(current->bp),Configcmp);
 1224:   basisend = 0;
 1225:   return;
 1226: }
 1227: 
 1228: /* Return a pointer to the head of the configuration list and
 1229: ** reset the list */
 1230: struct config *Configlist_return(){
 1231:   struct config *old;
 1232:   old = current;
 1233:   current = 0;
 1234:   currentend = 0;
 1235:   return old;
 1236: }
 1237: 
 1238: /* Return a pointer to the head of the configuration list and
 1239: ** reset the list */
 1240: struct config *Configlist_basis(){
 1241:   struct config *old;
 1242:   old = basis;
 1243:   basis = 0;
 1244:   basisend = 0;
 1245:   return old;
 1246: }
 1247: 
 1248: /* Free all elements of the given configuration list */
 1249: void Configlist_eat(cfp)
 1250: struct config *cfp;
 1251: {
 1252:   struct config *nextcfp;
 1253:   for(; cfp; cfp=nextcfp){
 1254:     nextcfp = cfp->next;
 1255:     assert( cfp->fplp==0 );
 1256:     assert( cfp->bplp==0 );
 1257:     if( cfp->fws ) SetFree(cfp->fws);
 1258:     deleteconfig(cfp);
 1259:   }
 1260:   return;
 1261: }
 1262: /***************** From the file "error.c" *********************************/
 1263: /*
 1264: ** Code for printing error message.
 1265: */
 1266: 
 1267: /* Find a good place to break "msg" so that its length is at least "min"
 1268: ** but no more than "max".  Make the point as close to max as possible.
 1269: */
 1270: static int findbreak(msg,min,max)
 1271: char *msg;
 1272: int min;
 1273: int max;
 1274: {
 1275:   int i,spot;
 1276:   char c;
 1277:   for(i=spot=min; i<=max; i++){
 1278:     c = msg[i];
 1279:     if( c=='\t' ) msg[i] = ' ';
 1280:     if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
 1281:     if( c==0 ){ spot = i; break; }
 1282:     if( c=='-' && i<max-1 ) spot = i+1;
 1283:     if( c==' ' ) spot = i;
 1284:   }
 1285:   return spot;
 1286: }
 1287: 
 1288: /*
 1289: ** The error message is split across multiple lines if necessary.  The
 1290: ** splits occur at a space, if there is a space available near the end
 1291: ** of the line.
 1292: */
 1293: #define ERRMSGSIZE  10000 /* Hope this is big enough.  No way to error check */
 1294: #define LINEWIDTH      79 /* Max width of any output line */
 1295: #define PREFIXLIMIT    30 /* Max width of the prefix on each line */
 1296: void ErrorMsg(const char *filename, int lineno, const char *format, ...){
 1297:   char errmsg[ERRMSGSIZE];
 1298:   char prefix[PREFIXLIMIT+10];
 1299:   int errmsgsize;
 1300:   int prefixsize;
 1301:   int availablewidth;
 1302:   va_list ap;
 1303:   int end, restart, base;
 1304: 
 1305:   va_start(ap, format);
 1306:   /* Prepare a prefix to be prepended to every output line */
 1307:   if( lineno>0 ){
 1308:     sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
 1309:   }else{
 1310:     sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
 1311:   }
 1312:   prefixsize = strlen(prefix);
 1313:   availablewidth = LINEWIDTH - prefixsize;
 1314: 
 1315:   /* Generate the error message */
 1316:   vsprintf(errmsg,format,ap);
 1317:   va_end(ap);
 1318:   errmsgsize = strlen(errmsg);
 1319:   /* Remove trailing '\n's from the error message. */
 1320:   while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
 1321:      errmsg[--errmsgsize] = 0;
 1322:   }
 1323: 
 1324:   /* Print the error message */
 1325:   base = 0;
 1326:   while( errmsg[base]!=0 ){
 1327:     end = restart = findbreak(&errmsg[base],0,availablewidth);
 1328:     restart += base;
 1329:     while( errmsg[restart]==' ' ) restart++;
 1330:     fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
 1331:     base = restart;
 1332:   }
 1333: }
 1334: /**************** From the file "main.c" ************************************/
 1335: /*
 1336: ** Main program file for the LEMON parser generator.
 1337: */
 1338: 
 1339: /* Report an out-of-memory condition and abort.  This function
 1340: ** is used mostly by the "MemoryCheck" macro in struct.h
 1341: */
 1342: void memory_error() {
 1343:   fprintf(stderr,"Out of memory.  Aborting...\n");
 1344:   exit(1);
 1345: }
 1346: 
 1347: 
 1348: /* The main program.  Parse the command line and do it... */
 1349: int main(argc,argv)
 1350: int argc;
 1351: char **argv;
 1352: {
 1353:   static int version = 0;
 1354:   static int rpflag = 0;
 1355:   static int basisflag = 0;
 1356:   static int compress = 0;
 1357:   static int quiet = 0;
 1358:   static int statistics = 0;
 1359:   static int mhflag = 0;
 1360:   static struct s_options options[] = {
 1361:     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
 1362:     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
 1363:     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
 1364:     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
 1365:     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
 1366:     {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
 1367:     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
 1368:     {OPT_FLAG,0,0,0}
 1369:   };
 1370:   int i;
 1371:   struct lemon lem;
 1372:   char *def_tmpl_name = "lempar.c";
 1373: 
 1374:   UNUSED(argc);
 1375:   OptInit(argv,options,stderr);
 1376:   if( version ){
 1377:      printf("Lemon version 1.0\n");
 1378:      exit(0);
 1379:   }
 1380:   if( OptNArgs() < 1 ){
 1381:     fprintf(stderr,"Exactly one filename argument is required.\n");
 1382:     exit(1);
 1383:   }
 1384:   lem.errorcnt = 0;
 1385: 
 1386:   /* Initialize the machine */
 1387:   Strsafe_init();
 1388:   Symbol_init();
 1389:   State_init();
 1390:   lem.argv0 = argv[0];
 1391:   lem.filename = OptArg(0);
 1392:   lem.tmplname = (OptNArgs() == 2) ? OptArg(1) : def_tmpl_name;
 1393:   lem.basisflag = basisflag;
 1394:   lem.has_fallback = 0;
 1395:   lem.nconflict = 0;
 1396:   lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
 1397:   lem.vartype = 0;
 1398:   lem.stacksize = 0;
 1399:   lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
 1400:   lem.tokenprefix = lem.outname = lem.extracode = 0;
 1401:   lem.vardest = 0;
 1402:   lem.tablesize = 0;
 1403:   Symbol_new("$");
 1404:   lem.errsym = Symbol_new("error");
 1405: 
 1406:   /* Parse the input file */
 1407:   Parse(&lem);
 1408:   if( lem.errorcnt ) exit(lem.errorcnt);
 1409:   if( lem.rule==0 ){
 1410:     fprintf(stderr,"Empty grammar.\n");
 1411:     exit(1);
 1412:   }
 1413: 
 1414:   /* Count and index the symbols of the grammar */
 1415:   lem.nsymbol = Symbol_count();
 1416:   Symbol_new("{default}");
 1417:   lem.symbols = Symbol_arrayof();
 1418:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
 1419:   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
 1420:         (int(*)())Symbolcmpp);
 1421:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
 1422:   for(i=1; isupper(lem.symbols[i]->name[0]); i++);
 1423:   lem.nterminal = i;
 1424: 
 1425:   /* Generate a reprint of the grammar, if requested on the command line */
 1426:   if( rpflag ){
 1427:     Reprint(&lem);
 1428:   }else{
 1429:     /* Initialize the size for all follow and first sets */
 1430:     SetSize(lem.nterminal);
 1431: 
 1432:     /* Find the precedence for every production rule (that has one) */
 1433:     FindRulePrecedences(&lem);
 1434: 
 1435:     /* Compute the lambda-nonterminals and the first-sets for every
 1436:     ** nonterminal */
 1437:     FindFirstSets(&lem);
 1438: 
 1439:     /* Compute all LR(0) states.  Also record follow-set propagation
 1440:     ** links so that the follow-set can be computed later */
 1441:     lem.nstate = 0;
 1442:     FindStates(&lem);
 1443:     lem.sorted = State_arrayof();
 1444: 
 1445:     /* Tie up loose ends on the propagation links */
 1446:     FindLinks(&lem);
 1447: 
 1448:     /* Compute the follow set of every reducible configuration */
 1449:     FindFollowSets(&lem);
 1450: 
 1451:     /* Compute the action tables */
 1452:     FindActions(&lem);
 1453: 
 1454:     /* Compress the action tables */
 1455:     if( compress==0 ) CompressTables(&lem);
 1456: 
 1457:     /* Generate a report of the parser generated.  (the "y.output" file) */
 1458:     if( !quiet ) ReportOutput(&lem);
 1459: 
 1460:     /* Generate the source code for the parser */
 1461:     ReportTable(&lem, mhflag);
 1462: 
 1463:     /* Produce a header file for use by the scanner.  (This step is
 1464:     ** omitted if the "-m" option is used because makeheaders will
 1465:     ** generate the file for us.) */
 1466:     if( !mhflag ) ReportHeader(&lem);
 1467:   }
 1468:   if( statistics ){
 1469:     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
 1470:       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
 1471:     printf("                   %d states, %d parser table entries, %d conflicts\n",
 1472:       lem.nstate, lem.tablesize, lem.nconflict);
 1473:   }
 1474:   if( lem.nconflict ){
 1475:     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
 1476:   }
 1477:   exit(lem.errorcnt + lem.nconflict);
 1478: }
 1479: /******************** From the file "msort.c" *******************************/
 1480: /*
 1481: ** A generic merge-sort program.
 1482: **
 1483: ** USAGE:
 1484: ** Let "ptr" be a pointer to some structure which is at the head of
 1485: ** a null-terminated list.  Then to sort the list call:
 1486: **
 1487: **     ptr = msort(ptr,&(ptr->next),cmpfnc);
 1488: **
 1489: ** In the above, "cmpfnc" is a pointer to a function which compares
 1490: ** two instances of the structure and returns an integer, as in
 1491: ** strcmp.  The second argument is a pointer to the pointer to the
 1492: ** second element of the linked list.  This address is used to compute
 1493: ** the offset to the "next" field within the structure.  The offset to
 1494: ** the "next" field must be constant for all structures in the list.
 1495: **
 1496: ** The function returns a new pointer which is the head of the list
 1497: ** after sorting.
 1498: **
 1499: ** ALGORITHM:
 1500: ** Merge-sort.
 1501: */
 1502: 
 1503: /*
 1504: ** Return a pointer to the next structure in the linked list.
 1505: */
 1506: #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
 1507: 
 1508: /*
 1509: ** Inputs:
 1510: **   a:       A sorted, null-terminated linked list.  (May be null).
 1511: **   b:       A sorted, null-terminated linked list.  (May be null).
 1512: **   cmp:     A pointer to the comparison function.
 1513: **   offset:  Offset in the structure to the "next" field.
 1514: **
 1515: ** Return Value:
 1516: **   A pointer to the head of a sorted list containing the elements
 1517: **   of both a and b.
 1518: **
 1519: ** Side effects:
 1520: **   The "next" pointers for elements in the lists a and b are
 1521: **   changed.
 1522: */
 1523: static char *merge(a,b,cmp,offset)
 1524: char *a;
 1525: char *b;
 1526: int (*cmp)();
 1527: int offset;
 1528: {
 1529:   char *ptr, *head;
 1530: 
 1531:   if( a==0 ){
 1532:     head = b;
 1533:   }else if( b==0 ){
 1534:     head = a;
 1535:   }else{
 1536:     if( (*cmp)(a,b)<0 ){
 1537:       ptr = a;
 1538:       a = NEXT(a);
 1539:     }else{
 1540:       ptr = b;
 1541:       b = NEXT(b);
 1542:     }
 1543:     head = ptr;
 1544:     while( a && b ){
 1545:       if( (*cmp)(a,b)<0 ){
 1546:         NEXT(ptr) = a;
 1547:         ptr = a;
 1548:         a = NEXT(a);
 1549:       }else{
 1550:         NEXT(ptr) = b;
 1551:         ptr = b;
 1552:         b = NEXT(b);
 1553:       }
 1554:     }
 1555:     if( a ) NEXT(ptr) = a;
 1556:     else    NEXT(ptr) = b;
 1557:   }
 1558:   return head;
 1559: }
 1560: 
 1561: /*
 1562: ** Inputs:
 1563: **   list:      Pointer to a singly-linked list of structures.
 1564: **   next:      Pointer to pointer to the second element of the list.
 1565: **   cmp:       A comparison function.
 1566: **
 1567: ** Return Value:
 1568: **   A pointer to the head of a sorted list containing the elements
 1569: **   orginally in list.
 1570: **
 1571: ** Side effects:
 1572: **   The "next" pointers for elements in list are changed.
 1573: */
 1574: #define LISTSIZE 30
 1575: char *msort(list,next,cmp)
 1576: char *list;
 1577: char **next;
 1578: int (*cmp)();
 1579: {
 1580:   unsigned long offset;
 1581:   char *ep;
 1582:   char *set[LISTSIZE];
 1583:   int i;
 1584:   offset = (unsigned long)next - (unsigned long)list;
 1585:   for(i=0; i<LISTSIZE; i++) set[i] = 0;
 1586:   while( list ){
 1587:     ep = list;
 1588:     list = NEXT(list);
 1589:     NEXT(ep) = 0;
 1590:     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
 1591:       ep = merge(ep,set[i],cmp,offset);
 1592:       set[i] = 0;
 1593:     }
 1594:     set[i] = ep;
 1595:   }
 1596:   ep = 0;
 1597:   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
 1598:   return ep;
 1599: }
 1600: /************************ From the file "option.c" **************************/
 1601: static char **argv;
 1602: static struct s_options *op;
 1603: static FILE *errstream;
 1604: 
 1605: #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
 1606: 
 1607: /*
 1608: ** Print the command line with a carrot pointing to the k-th character
 1609: ** of the n-th field.
 1610: */
 1611: static void errline(n,k,err)
 1612: int n;
 1613: int k;
 1614: FILE *err;
 1615: {
 1616:   int spcnt = 0, i;
 1617:   if( argv[0] ) {
 1618:     fprintf(err,"%s",argv[0]);
 1619:     spcnt += strlen(argv[0]) + 1;
 1620:   }
 1621:   for(i=1; i<n && argv[i]; i++){
 1622:     fprintf(err," %s",argv[i]);
 1623:     spcnt += strlen(argv[i]) + 1;
 1624:   }
 1625:   spcnt += k;
 1626:   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
 1627:   if( spcnt<20 ){
 1628:     fprintf(err,"\n%*s^-- here\n",spcnt,"");
 1629:   }else{
 1630:     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
 1631:   }
 1632: }
 1633: 
 1634: /*
 1635: ** Return the index of the N-th non-switch argument.  Return -1
 1636: ** if N is out of range.
 1637: */
 1638: static int argindex(n)
 1639: int n;
 1640: {
 1641:   int i;
 1642:   int dashdash = 0;
 1643:   if( argv!=0 && *argv!=0 ){
 1644:     for(i=1; argv[i]; i++){
 1645:       if( dashdash || !ISOPT(argv[i]) ){
 1646:         if( n==0 ) return i;
 1647:         n--;
 1648:       }
 1649:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
 1650:     }
 1651:   }
 1652:   return -1;
 1653: }
 1654: 
 1655: static char emsg[] = "Command line syntax error: ";
 1656: 
 1657: /*
 1658: ** Process a flag command line argument.
 1659: */
 1660: static int handleflags(i,err)
 1661: int i;
 1662: FILE *err;
 1663: {
 1664:   int v;
 1665:   int errcnt = 0;
 1666:   int j;
 1667:   for(j=0; op[j].label; j++){
 1668:     if( strcmp(&argv[i][1],op[j].label)==0 ) break;
 1669:   }
 1670:   v = argv[i][0]=='-' ? 1 : 0;
 1671:   if( op[j].label==0 ){
 1672:     if( err ){
 1673:       fprintf(err,"%sundefined option.\n",emsg);
 1674:       errline(i,1,err);
 1675:     }
 1676:     errcnt++;
 1677:   }else if( op[j].type==OPT_FLAG ){
 1678:     *((int*)op[j].arg) = v;
 1679:   }else if( op[j].type==OPT_FFLAG ){
 1680:     (*(void(*)())(intptr_t)(op[j].arg))(v);
 1681:   }else{
 1682:     if( err ){
 1683:       fprintf(err,"%smissing argument on switch.\n",emsg);
 1684:       errline(i,1,err);
 1685:     }
 1686:     errcnt++;
 1687:   }
 1688:   return errcnt;
 1689: }
 1690: 
 1691: /*
 1692: ** Process a command line switch which has an argument.
 1693: */
 1694: static int handleswitch(i,err)
 1695: int i;
 1696: FILE *err;
 1697: {
 1698:   int lv = 0;
 1699:   double dv = 0.0;
 1700:   char *sv = 0, *end;
 1701:   char *cp;
 1702:   int j;
 1703:   int errcnt = 0;
 1704:   cp = strchr(argv[i],'=');
 1705:   *cp = 0;
 1706:   for(j=0; op[j].label; j++){
 1707:     if( strcmp(argv[i],op[j].label)==0 ) break;
 1708:   }
 1709:   *cp = '=';
 1710:   if( op[j].label==0 ){
 1711:     if( err ){
 1712:       fprintf(err,"%sundefined option.\n",emsg);
 1713:       errline(i,0,err);
 1714:     }
 1715:     errcnt++;
 1716:   }else{
 1717:     cp++;
 1718:     switch( op[j].type ){
 1719:       case OPT_FLAG:
 1720:       case OPT_FFLAG:
 1721:         if( err ){
 1722:           fprintf(err,"%soption requires an argument.\n",emsg);
 1723:           errline(i,0,err);
 1724:         }
 1725:         errcnt++;
 1726:         break;
 1727:       case OPT_DBL:
 1728:       case OPT_FDBL:
 1729:         dv = strtod(cp,&end);
 1730:         if( *end ){
 1731:           if( err ){
 1732:             fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
 1733:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
 1734:           }
 1735:           errcnt++;
 1736:         }
 1737:         break;
 1738:       case OPT_INT:
 1739:       case OPT_FINT:
 1740:         lv = strtol(cp,&end,0);
 1741:         if( *end ){
 1742:           if( err ){
 1743:             fprintf(err,"%sillegal character in integer argument.\n",emsg);
 1744:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
 1745:           }
 1746:           errcnt++;
 1747:         }
 1748:         break;
 1749:       case OPT_STR:
 1750:       case OPT_FSTR:
 1751:         sv = cp;
 1752:         break;
 1753:     }
 1754:     switch( op[j].type ){
 1755:       case OPT_FLAG:
 1756:       case OPT_FFLAG:
 1757:         break;
 1758:       case OPT_DBL:
 1759:         *(double*)(op[j].arg) = dv;
 1760:         break;
 1761:       case OPT_FDBL:
 1762:         (*(void(*)())(intptr_t)(op[j].arg))(dv);
 1763:         break;
 1764:       case OPT_INT:
 1765:         *(int*)(op[j].arg) = lv;
 1766:         break;
 1767:       case OPT_FINT:
 1768:         (*(void(*)())(intptr_t)(op[j].arg))((int)lv);
 1769:         break;
 1770:       case OPT_STR:
 1771:         *(char**)(op[j].arg) = sv;
 1772:         break;
 1773:       case OPT_FSTR:
 1774:         (*(void(*)())(intptr_t)(op[j].arg))(sv);
 1775:         break;
 1776:     }
 1777:   }
 1778:   return errcnt;
 1779: }
 1780: 
 1781: int OptInit(a,o,err)
 1782: char **a;
 1783: struct s_options *o;
 1784: FILE *err;
 1785: {
 1786:   int errcnt = 0;
 1787:   argv = a;
 1788:   op = o;
 1789:   errstream = err;
 1790:   if( argv && *argv && op ){
 1791:     int i;
 1792:     for(i=1; argv[i]; i++){
 1793:       if( argv[i][0]=='+' || argv[i][0]=='-' ){
 1794:         errcnt += handleflags(i,err);
 1795:       }else if( strchr(argv[i],'=') ){
 1796:         errcnt += handleswitch(i,err);
 1797:       }
 1798:     }
 1799:   }
 1800:   if( errcnt>0 ){
 1801:     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
 1802:     OptPrint();
 1803:     exit(1);
 1804:   }
 1805:   return 0;
 1806: }
 1807: 
 1808: int OptNArgs(){
 1809:   int cnt = 0;
 1810:   int dashdash = 0;
 1811:   int i;
 1812:   if( argv!=0 && argv[0]!=0 ){
 1813:     for(i=1; argv[i]; i++){
 1814:       if( dashdash || !ISOPT(argv[i]) ) cnt++;
 1815:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
 1816:     }
 1817:   }
 1818:   return cnt;
 1819: }
 1820: 
 1821: char *OptArg(n)
 1822: int n;
 1823: {
 1824:   int i;
 1825:   i = argindex(n);
 1826:   return i>=0 ? argv[i] : 0;
 1827: }
 1828: 
 1829: void OptErr(n)
 1830: int n;
 1831: {
 1832:   int i;
 1833:   i = argindex(n);
 1834:   if( i>=0 ) errline(i,0,errstream);
 1835: }
 1836: 
 1837: void OptPrint(){
 1838:   int i;
 1839:   int max, len;
 1840:   max = 0;
 1841:   for(i=0; op[i].label; i++){
 1842:     len = strlen(op[i].label) + 1;
 1843:     switch( op[i].type ){
 1844:       case OPT_FLAG:
 1845:       case OPT_FFLAG:
 1846:         break;
 1847:       case OPT_INT:
 1848:       case OPT_FINT:
 1849:         len += 9;       /* length of "<integer>" */
 1850:         break;
 1851:       case OPT_DBL:
 1852:       case OPT_FDBL:
 1853:         len += 6;       /* length of "<real>" */
 1854:         break;
 1855:       case OPT_STR:
 1856:       case OPT_FSTR:
 1857:         len += 8;       /* length of "<string>" */
 1858:         break;
 1859:     }
 1860:     if( len>max ) max = len;
 1861:   }
 1862:   for(i=0; op[i].label; i++){
 1863:     switch( op[i].type ){
 1864:       case OPT_FLAG:
 1865:       case OPT_FFLAG:
 1866:         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
 1867:         break;
 1868:       case OPT_INT:
 1869:       case OPT_FINT:
 1870:         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
 1871:           (int)(max-strlen(op[i].label)-9),"",op[i].message);
 1872:         break;
 1873:       case OPT_DBL:
 1874:       case OPT_FDBL:
 1875:         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
 1876:           (int)(max-strlen(op[i].label)-6),"",op[i].message);
 1877:         break;
 1878:       case OPT_STR:
 1879:       case OPT_FSTR:
 1880:         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
 1881:           (int)(max-strlen(op[i].label)-8),"",op[i].message);
 1882:         break;
 1883:     }
 1884:   }
 1885: }
 1886: /*********************** From the file "parse.c" ****************************/
 1887: /*
 1888: ** Input file parser for the LEMON parser generator.
 1889: */
 1890: 
 1891: /* The state of the parser */
 1892: struct pstate {
 1893:   char *filename;       /* Name of the input file */
 1894:   int tokenlineno;      /* Linenumber at which current token starts */
 1895:   int errorcnt;         /* Number of errors so far */
 1896:   char *tokenstart;     /* Text of current token */
 1897:   struct lemon *gp;     /* Global state vector */
 1898:   enum e_state {
 1899:     INITIALIZE,
 1900:     WAITING_FOR_DECL_OR_RULE,
 1901:     WAITING_FOR_DECL_KEYWORD,
 1902:     WAITING_FOR_DECL_ARG,
 1903:     WAITING_FOR_PRECEDENCE_SYMBOL,
 1904:     WAITING_FOR_ARROW,
 1905:     IN_RHS,
 1906:     LHS_ALIAS_1,
 1907:     LHS_ALIAS_2,
 1908:     LHS_ALIAS_3,
 1909:     RHS_ALIAS_1,
 1910:     RHS_ALIAS_2,
 1911:     PRECEDENCE_MARK_1,
 1912:     PRECEDENCE_MARK_2,
 1913:     RESYNC_AFTER_RULE_ERROR,
 1914:     RESYNC_AFTER_DECL_ERROR,
 1915:     WAITING_FOR_DESTRUCTOR_SYMBOL,
 1916:     WAITING_FOR_DATATYPE_SYMBOL,
 1917:     WAITING_FOR_FALLBACK_ID
 1918:   } state;                   /* The state of the parser */
 1919:   struct symbol *fallback;   /* The fallback token */
 1920:   struct symbol *lhs;        /* Left-hand side of current rule */
 1921:   char *lhsalias;            /* Alias for the LHS */
 1922:   int nrhs;                  /* Number of right-hand side symbols seen */
 1923:   struct symbol *rhs[MAXRHS];  /* RHS symbols */
 1924:   char *alias[MAXRHS];       /* Aliases for each RHS symbol (or NULL) */
 1925:   struct rule *prevrule;     /* Previous rule parsed */
 1926:   char *declkeyword;         /* Keyword of a declaration */
 1927:   char **declargslot;        /* Where the declaration argument should be put */
 1928:   int *decllnslot;           /* Where the declaration linenumber is put */
 1929:   enum e_assoc declassoc;    /* Assign this association to decl arguments */
 1930:   int preccounter;           /* Assign this precedence to decl arguments */
 1931:   struct rule *firstrule;    /* Pointer to first rule in the grammar */
 1932:   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
 1933: };
 1934: 
 1935: /* Parse a single token */
 1936: static void parseonetoken(psp)
 1937: struct pstate *psp;
 1938: {
 1939:   char *x;
 1940:   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
 1941: #if 0
 1942:   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
 1943:     x,psp->state);
 1944: #endif
 1945:   switch( psp->state ){
 1946:     case INITIALIZE:
 1947:       psp->prevrule = 0;
 1948:       psp->preccounter = 0;
 1949:       psp->firstrule = psp->lastrule = 0;
 1950:       psp->gp->nrule = 0;
 1951:       /* Fall thru to next case */
 1952:     case WAITING_FOR_DECL_OR_RULE:
 1953:       if( x[0]=='%' ){
 1954:         psp->state = WAITING_FOR_DECL_KEYWORD;
 1955:       }else if( islower(x[0]) ){
 1956:         psp->lhs = Symbol_new(x);
 1957:         psp->nrhs = 0;
 1958:         psp->lhsalias = 0;
 1959:         psp->state = WAITING_FOR_ARROW;
 1960:       }else if( x[0]=='{' ){
 1961:         if( psp->prevrule==0 ){
 1962:           ErrorMsg(psp->filename,psp->tokenlineno,
 1963: "There is not prior rule opon which to attach the code \
 1964: fragment which begins on this line.");
 1965:           psp->errorcnt++;
 1966: 	}else if( psp->prevrule->code!=0 ){
 1967:           ErrorMsg(psp->filename,psp->tokenlineno,
 1968: "Code fragment beginning on this line is not the first \
 1969: to follow the previous rule.");
 1970:           psp->errorcnt++;
 1971:         }else{
 1972:           psp->prevrule->line = psp->tokenlineno;
 1973:           psp->prevrule->code = &x[1];
 1974: 	}
 1975:       }else if( x[0]=='[' ){
 1976:         psp->state = PRECEDENCE_MARK_1;
 1977:       }else{
 1978:         ErrorMsg(psp->filename,psp->tokenlineno,
 1979:           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
 1980:           x);
 1981:         psp->errorcnt++;
 1982:       }
 1983:       break;
 1984:     case PRECEDENCE_MARK_1:
 1985:       if( !isupper(x[0]) ){
 1986:         ErrorMsg(psp->filename,psp->tokenlineno,
 1987:           "The precedence symbol must be a terminal.");
 1988:         psp->errorcnt++;
 1989:       }else if( psp->prevrule==0 ){
 1990:         ErrorMsg(psp->filename,psp->tokenlineno,
 1991:           "There is no prior rule to assign precedence \"[%s]\".",x);
 1992:         psp->errorcnt++;
 1993:       }else if( psp->prevrule->precsym!=0 ){
 1994:         ErrorMsg(psp->filename,psp->tokenlineno,
 1995: "Precedence mark on this line is not the first \
 1996: to follow the previous rule.");
 1997:         psp->errorcnt++;
 1998:       }else{
 1999:         psp->prevrule->precsym = Symbol_new(x);
 2000:       }
 2001:       psp->state = PRECEDENCE_MARK_2;
 2002:       break;
 2003:     case PRECEDENCE_MARK_2:
 2004:       if( x[0]!=']' ){
 2005:         ErrorMsg(psp->filename,psp->tokenlineno,
 2006:           "Missing \"]\" on precedence mark.");
 2007:         psp->errorcnt++;
 2008:       }
 2009:       psp->state = WAITING_FOR_DECL_OR_RULE;
 2010:       break;
 2011:     case WAITING_FOR_ARROW:
 2012:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
 2013:         psp->state = IN_RHS;
 2014:       }else if( x[0]=='(' ){
 2015:         psp->state = LHS_ALIAS_1;
 2016:       }else{
 2017:         ErrorMsg(psp->filename,psp->tokenlineno,
 2018:           "Expected to see a \":\" following the LHS symbol \"%s\".",
 2019:           psp->lhs->name);
 2020:         psp->errorcnt++;
 2021:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2022:       }
 2023:       break;
 2024:     case LHS_ALIAS_1:
 2025:       if( isalpha(x[0]) ){
 2026:         psp->lhsalias = x;
 2027:         psp->state = LHS_ALIAS_2;
 2028:       }else{
 2029:         ErrorMsg(psp->filename,psp->tokenlineno,
 2030:           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
 2031:           x,psp->lhs->name);
 2032:         psp->errorcnt++;
 2033:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2034:       }
 2035:       break;
 2036:     case LHS_ALIAS_2:
 2037:       if( x[0]==')' ){
 2038:         psp->state = LHS_ALIAS_3;
 2039:       }else{
 2040:         ErrorMsg(psp->filename,psp->tokenlineno,
 2041:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
 2042:         psp->errorcnt++;
 2043:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2044:       }
 2045:       break;
 2046:     case LHS_ALIAS_3:
 2047:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
 2048:         psp->state = IN_RHS;
 2049:       }else{
 2050:         ErrorMsg(psp->filename,psp->tokenlineno,
 2051:           "Missing \"->\" following: \"%s(%s)\".",
 2052:            psp->lhs->name,psp->lhsalias);
 2053:         psp->errorcnt++;
 2054:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2055:       }
 2056:       break;
 2057:     case IN_RHS:
 2058:       if( x[0]=='.' ){
 2059:         struct rule *rp;
 2060:         rp = (struct rule *)malloc( sizeof(struct rule) +
 2061:              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
 2062:         if( rp==0 ){
 2063:           ErrorMsg(psp->filename,psp->tokenlineno,
 2064:             "Can't allocate enough memory for this rule.");
 2065:           psp->errorcnt++;
 2066:           psp->prevrule = 0;
 2067: 	}else{
 2068:           int i;
 2069:           rp->ruleline = psp->tokenlineno;
 2070:           rp->rhs = (struct symbol**)&rp[1];
 2071:           rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
 2072:           for(i=0; i<psp->nrhs; i++){
 2073:             rp->rhs[i] = psp->rhs[i];
 2074:             rp->rhsalias[i] = psp->alias[i];
 2075: 	  }
 2076:           rp->lhs = psp->lhs;
 2077:           rp->lhsalias = psp->lhsalias;
 2078:           rp->nrhs = psp->nrhs;
 2079:           rp->code = 0;
 2080:           rp->precsym = 0;
 2081:           rp->index = psp->gp->nrule++;
 2082:           rp->nextlhs = rp->lhs->rule;
 2083:           rp->lhs->rule = rp;
 2084:           rp->next = 0;
 2085:           if( psp->firstrule==0 ){
 2086:             psp->firstrule = psp->lastrule = rp;
 2087: 	  }else{
 2088:             psp->lastrule->next = rp;
 2089:             psp->lastrule = rp;
 2090: 	  }
 2091:           psp->prevrule = rp;
 2092: 	}
 2093:         psp->state = WAITING_FOR_DECL_OR_RULE;
 2094:       }else if( isalpha(x[0]) ){
 2095:         if( psp->nrhs>=MAXRHS ){
 2096:           ErrorMsg(psp->filename,psp->tokenlineno,
 2097:             "Too many symbol on RHS or rule beginning at \"%s\".",
 2098:             x);
 2099:           psp->errorcnt++;
 2100:           psp->state = RESYNC_AFTER_RULE_ERROR;
 2101: 	}else{
 2102:           psp->rhs[psp->nrhs] = Symbol_new(x);
 2103:           psp->alias[psp->nrhs] = 0;
 2104:           psp->nrhs++;
 2105: 	}
 2106:       }else if( x[0]=='(' && psp->nrhs>0 ){
 2107:         psp->state = RHS_ALIAS_1;
 2108:       }else{
 2109:         ErrorMsg(psp->filename,psp->tokenlineno,
 2110:           "Illegal character on RHS of rule: \"%s\".",x);
 2111:         psp->errorcnt++;
 2112:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2113:       }
 2114:       break;
 2115:     case RHS_ALIAS_1:
 2116:       if( isalpha(x[0]) ){
 2117:         psp->alias[psp->nrhs-1] = x;
 2118:         psp->state = RHS_ALIAS_2;
 2119:       }else{
 2120:         ErrorMsg(psp->filename,psp->tokenlineno,
 2121:           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
 2122:           x,psp->rhs[psp->nrhs-1]->name);
 2123:         psp->errorcnt++;
 2124:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2125:       }
 2126:       break;
 2127:     case RHS_ALIAS_2:
 2128:       if( x[0]==')' ){
 2129:         psp->state = IN_RHS;
 2130:       }else{
 2131:         ErrorMsg(psp->filename,psp->tokenlineno,
 2132:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
 2133:         psp->errorcnt++;
 2134:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2135:       }
 2136:       break;
 2137:     case WAITING_FOR_DECL_KEYWORD:
 2138:       if( isalpha(x[0]) ){
 2139:         psp->declkeyword = x;
 2140:         psp->declargslot = 0;
 2141:         psp->decllnslot = 0;
 2142:         psp->state = WAITING_FOR_DECL_ARG;
 2143:         if( strcmp(x,"name")==0 ){
 2144:           psp->declargslot = &(psp->gp->name);
 2145: 	}else if( strcmp(x,"include")==0 ){
 2146:           psp->declargslot = &(psp->gp->include);
 2147:           psp->decllnslot = &psp->gp->includeln;
 2148: 	}else if( strcmp(x,"code")==0 ){
 2149:           psp->declargslot = &(psp->gp->extracode);
 2150:           psp->decllnslot = &psp->gp->extracodeln;
 2151: 	}else if( strcmp(x,"token_destructor")==0 ){
 2152:           psp->declargslot = &psp->gp->tokendest;
 2153:           psp->decllnslot = &psp->gp->tokendestln;
 2154: 	}else if( strcmp(x,"default_destructor")==0 ){
 2155:           psp->declargslot = &psp->gp->vardest;
 2156:           psp->decllnslot = &psp->gp->vardestln;
 2157: 	}else if( strcmp(x,"token_prefix")==0 ){
 2158:           psp->declargslot = &psp->gp->tokenprefix;
 2159: 	}else if( strcmp(x,"syntax_error")==0 ){
 2160:           psp->declargslot = &(psp->gp->error);
 2161:           psp->decllnslot = &psp->gp->errorln;
 2162: 	}else if( strcmp(x,"parse_accept")==0 ){
 2163:           psp->declargslot = &(psp->gp->accept);
 2164:           psp->decllnslot = &psp->gp->acceptln;
 2165: 	}else if( strcmp(x,"parse_failure")==0 ){
 2166:           psp->declargslot = &(psp->gp->failure);
 2167:           psp->decllnslot = &psp->gp->failureln;
 2168: 	}else if( strcmp(x,"stack_overflow")==0 ){
 2169:           psp->declargslot = &(psp->gp->overflow);
 2170:           psp->decllnslot = &psp->gp->overflowln;
 2171:         }else if( strcmp(x,"extra_argument")==0 ){
 2172:           psp->declargslot = &(psp->gp->arg);
 2173:         }else if( strcmp(x,"token_type")==0 ){
 2174:           psp->declargslot = &(psp->gp->tokentype);
 2175:         }else if( strcmp(x,"default_type")==0 ){
 2176:           psp->declargslot = &(psp->gp->vartype);
 2177:         }else if( strcmp(x,"stack_size")==0 ){
 2178:           psp->declargslot = &(psp->gp->stacksize);
 2179:         }else if( strcmp(x,"start_symbol")==0 ){
 2180:           psp->declargslot = &(psp->gp->start);
 2181:         }else if( strcmp(x,"left")==0 ){
 2182:           psp->preccounter++;
 2183:           psp->declassoc = LEFT;
 2184:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 2185:         }else if( strcmp(x,"right")==0 ){
 2186:           psp->preccounter++;
 2187:           psp->declassoc = RIGHT;
 2188:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 2189:         }else if( strcmp(x,"nonassoc")==0 ){
 2190:           psp->preccounter++;
 2191:           psp->declassoc = NONE;
 2192:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 2193: 	}else if( strcmp(x,"destructor")==0 ){
 2194:           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
 2195: 	}else if( strcmp(x,"type")==0 ){
 2196:           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
 2197:         }else if( strcmp(x,"fallback")==0 ){
 2198:           psp->fallback = 0;
 2199:           psp->state = WAITING_FOR_FALLBACK_ID;
 2200:         }else{
 2201:           ErrorMsg(psp->filename,psp->tokenlineno,
 2202:             "Unknown declaration keyword: \"%%%s\".",x);
 2203:           psp->errorcnt++;
 2204:           psp->state = RESYNC_AFTER_DECL_ERROR;
 2205: 	}
 2206:       }else{
 2207:         ErrorMsg(psp->filename,psp->tokenlineno,
 2208:           "Illegal declaration keyword: \"%s\".",x);
 2209:         psp->errorcnt++;
 2210:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2211:       }
 2212:       break;
 2213:     case WAITING_FOR_DESTRUCTOR_SYMBOL:
 2214:       if( !isalpha(x[0]) ){
 2215:         ErrorMsg(psp->filename,psp->tokenlineno,
 2216:           "Symbol name missing after %destructor keyword");
 2217:         psp->errorcnt++;
 2218:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2219:       }else{
 2220:         struct symbol *sp = Symbol_new(x);
 2221:         psp->declargslot = &sp->destructor;
 2222:         psp->decllnslot = &sp->destructorln;
 2223:         psp->state = WAITING_FOR_DECL_ARG;
 2224:       }
 2225:       break;
 2226:     case WAITING_FOR_DATATYPE_SYMBOL:
 2227:       if( !isalpha(x[0]) ){
 2228:         ErrorMsg(psp->filename,psp->tokenlineno,
 2229:           "Symbol name missing after %destructor keyword");
 2230:         psp->errorcnt++;
 2231:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2232:       }else{
 2233:         struct symbol *sp = Symbol_new(x);
 2234:         psp->declargslot = &sp->datatype;
 2235:         psp->decllnslot = 0;
 2236:         psp->state = WAITING_FOR_DECL_ARG;
 2237:       }
 2238:       break;
 2239:     case WAITING_FOR_PRECEDENCE_SYMBOL:
 2240:       if( x[0]=='.' ){
 2241:         psp->state = WAITING_FOR_DECL_OR_RULE;
 2242:       }else if( isupper(x[0]) ){
 2243:         struct symbol *sp;
 2244:         sp = Symbol_new(x);
 2245:         if( sp->prec>=0 ){
 2246:           ErrorMsg(psp->filename,psp->tokenlineno,
 2247:             "Symbol \"%s\" has already be given a precedence.",x);
 2248:           psp->errorcnt++;
 2249: 	}else{
 2250:           sp->prec = psp->preccounter;
 2251:           sp->assoc = psp->declassoc;
 2252: 	}
 2253:       }else{
 2254:         ErrorMsg(psp->filename,psp->tokenlineno,
 2255:           "Can't assign a precedence to \"%s\".",x);
 2256:         psp->errorcnt++;
 2257:       }
 2258:       break;
 2259:     case WAITING_FOR_DECL_ARG:
 2260:       if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
 2261:         if( *(psp->declargslot)!=0 ){
 2262:           ErrorMsg(psp->filename,psp->tokenlineno,
 2263:             "The argument \"%s\" to declaration \"%%%s\" is not the first.",
 2264:             x[0]=='\"' ? &x[1] : x,psp->declkeyword);
 2265:           psp->errorcnt++;
 2266:           psp->state = RESYNC_AFTER_DECL_ERROR;
 2267: 	}else{
 2268:           *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
 2269:           if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
 2270:           psp->state = WAITING_FOR_DECL_OR_RULE;
 2271: 	}
 2272:       }else{
 2273:         ErrorMsg(psp->filename,psp->tokenlineno,
 2274:           "Illegal argument to %%%s: %s",psp->declkeyword,x);
 2275:         psp->errorcnt++;
 2276:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2277:       }
 2278:       break;
 2279:     case WAITING_FOR_FALLBACK_ID:
 2280:       if( x[0]=='.' ){
 2281:         psp->state = WAITING_FOR_DECL_OR_RULE;
 2282:       }else if( !isupper(x[0]) ){
 2283:         ErrorMsg(psp->filename, psp->tokenlineno,
 2284:           "%%fallback argument \"%s\" should be a token", x);
 2285:         psp->errorcnt++;
 2286:       }else{
 2287:         struct symbol *sp = Symbol_new(x);
 2288:         if( psp->fallback==0 ){
 2289:           psp->fallback = sp;
 2290:         }else if( sp->fallback ){
 2291:           ErrorMsg(psp->filename, psp->tokenlineno,
 2292:             "More than one fallback assigned to token %s", x);
 2293:           psp->errorcnt++;
 2294:         }else{
 2295:           sp->fallback = psp->fallback;
 2296:           psp->gp->has_fallback = 1;
 2297:         }
 2298:       }
 2299:       break;
 2300:     case RESYNC_AFTER_RULE_ERROR:
 2301: /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
 2302: **      break; */
 2303:     case RESYNC_AFTER_DECL_ERROR:
 2304:       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
 2305:       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
 2306:       break;
 2307:   }
 2308: }
 2309: 
 2310: /* In spite of its name, this function is really a scanner.  It read
 2311: ** in the entire input file (all at once) then tokenizes it.  Each
 2312: ** token is passed to the function "parseonetoken" which builds all
 2313: ** the appropriate data structures in the global state vector "gp".
 2314: */
 2315: struct pstate ps;
 2316: void Parse(gp)
 2317: struct lemon *gp;
 2318: {
 2319:   FILE *fp;
 2320:   char *filebuf;
 2321:   size_t filesize;
 2322:   int lineno;
 2323:   int c;
 2324:   char *cp, *nextcp;
 2325:   int startline = 0;
 2326: 
 2327:   ps.gp = gp;
 2328:   ps.filename = gp->filename;
 2329:   ps.errorcnt = 0;
 2330:   ps.state = INITIALIZE;
 2331: 
 2332:   /* Begin by reading the input file */
 2333:   fp = fopen(ps.filename,"rb");
 2334:   if( fp==0 ){
 2335:     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
 2336:     gp->errorcnt++;
 2337:     return;
 2338:   }
 2339:   fseek(fp,0,2);
 2340:   filesize = ftell(fp);
 2341:   rewind(fp);
 2342:   filebuf = (char *)malloc( filesize+1 );
 2343:   if( filebuf==0 ){
 2344:     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
 2345:       filesize+1);
 2346:     fclose(fp);
 2347:     gp->errorcnt++;
 2348:     return;
 2349:   }
 2350:   if( fread(filebuf,1,filesize,fp)!=filesize ){
 2351:     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
 2352:       filesize);
 2353:     free(filebuf);
 2354:     fclose(fp);
 2355:     gp->errorcnt++;
 2356:     return;
 2357:   }
 2358:   fclose(fp);
 2359:   filebuf[filesize] = 0;
 2360: 
 2361:   /* Now scan the text of the input file */
 2362:   lineno = 1;
 2363:   for(cp=filebuf; (c= *cp)!=0; ){
 2364:     if( c=='\n' ) lineno++;              /* Keep track of the line number */
 2365:     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
 2366:     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
 2367:       cp+=2;
 2368:       while( (c= *cp)!=0 && c!='\n' ) cp++;
 2369:       continue;
 2370:     }
 2371:     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
 2372:       cp+=2;
 2373:       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
 2374:         if( c=='\n' ) lineno++;
 2375:         cp++;
 2376:       }
 2377:       if( c ) cp++;
 2378:       continue;
 2379:     }
 2380:     ps.tokenstart = cp;                /* Mark the beginning of the token */
 2381:     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
 2382:     if( c=='\"' ){                     /* String literals */
 2383:       cp++;
 2384:       while( (c= *cp)!=0 && c!='\"' ){
 2385:         if( c=='\n' ) lineno++;
 2386:         cp++;
 2387:       }
 2388:       if( c==0 ){
 2389:         ErrorMsg(ps.filename,startline,
 2390: "String starting on this line is not terminated before the end of the file.");
 2391:         ps.errorcnt++;
 2392:         nextcp = cp;
 2393:       }else{
 2394:         nextcp = cp+1;
 2395:       }
 2396:     }else if( c=='{' ){               /* A block of C code */
 2397:       int level;
 2398:       cp++;
 2399:       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
 2400:         if( c=='\n' ) lineno++;
 2401:         else if( c=='{' ) level++;
 2402:         else if( c=='}' ) level--;
 2403:         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
 2404:           int prevc;
 2405:           cp = &cp[2];
 2406:           prevc = 0;
 2407:           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
 2408:             if( c=='\n' ) lineno++;
 2409:             prevc = c;
 2410:             cp++;
 2411: 	  }
 2412: 	}else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
 2413:           cp = &cp[2];
 2414:           while( (c= *cp)!=0 && c!='\n' ) cp++;
 2415:           if( c ) lineno++;
 2416: 	}else if( c=='\'' || c=='\"' ){    /* String a character literals */
 2417:           int startchar, prevc;
 2418:           startchar = c;
 2419:           prevc = 0;
 2420:           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
 2421:             if( c=='\n' ) lineno++;
 2422:             if( prevc=='\\' ) prevc = 0;
 2423:             else              prevc = c;
 2424: 	  }
 2425: 	}
 2426:       }
 2427:       if( c==0 ){
 2428:         ErrorMsg(ps.filename,ps.tokenlineno,
 2429: "C code starting on this line is not terminated before the end of the file.");
 2430:         ps.errorcnt++;
 2431:         nextcp = cp;
 2432:       }else{
 2433:         nextcp = cp+1;
 2434:       }
 2435:     }else if( isalnum(c) ){          /* Identifiers */
 2436:       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
 2437:       nextcp = cp;
 2438:     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
 2439:       cp += 3;
 2440:       nextcp = cp;
 2441:     }else{                          /* All other (one character) operators */
 2442:       cp++;
 2443:       nextcp = cp;
 2444:     }
 2445:     c = *cp;
 2446:     *cp = 0;                        /* Null terminate the token */
 2447:     parseonetoken(&ps);             /* Parse the token */
 2448:     *cp = c;                        /* Restore the buffer */
 2449:     cp = nextcp;
 2450:   }
 2451:   free(filebuf);                    /* Release the buffer after parsing */
 2452:   gp->rule = ps.firstrule;
 2453:   gp->errorcnt = ps.errorcnt;
 2454: }
 2455: /*************************** From the file "plink.c" *********************/
 2456: /*
 2457: ** Routines processing configuration follow-set propagation links
 2458: ** in the LEMON parser generator.
 2459: */
 2460: static struct plink *plink_freelist = 0;
 2461: 
 2462: /* Allocate a new plink */
 2463: struct plink *Plink_new(){
 2464:   struct plink *new;
 2465: 
 2466:   if( plink_freelist==0 ){
 2467:     int i;
 2468:     int amt = 100;
 2469:     plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
 2470:     if( plink_freelist==0 ){
 2471:       fprintf(stderr,
 2472:       "Unable to allocate memory for a new follow-set propagation link.\n");
 2473:       exit(1);
 2474:     }
 2475:     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
 2476:     plink_freelist[amt-1].next = 0;
 2477:   }
 2478:   new = plink_freelist;
 2479:   plink_freelist = plink_freelist->next;
 2480:   return new;
 2481: }
 2482: 
 2483: /* Add a plink to a plink list */
 2484: void Plink_add(plpp,cfp)
 2485: struct plink **plpp;
 2486: struct config *cfp;
 2487: {
 2488:   struct plink *new;
 2489:   new = Plink_new();
 2490:   new->next = *plpp;
 2491:   *plpp = new;
 2492:   new->cfp = cfp;
 2493: }
 2494: 
 2495: /* Transfer every plink on the list "from" to the list "to" */
 2496: void Plink_copy(to,from)
 2497: struct plink **to;
 2498: struct plink *from;
 2499: {
 2500:   struct plink *nextpl;
 2501:   while( from ){
 2502:     nextpl = from->next;
 2503:     from->next = *to;
 2504:     *to = from;
 2505:     from = nextpl;
 2506:   }
 2507: }
 2508: 
 2509: /* Delete every plink on the list */
 2510: void Plink_delete(plp)
 2511: struct plink *plp;
 2512: {
 2513:   struct plink *nextpl;
 2514: 
 2515:   while( plp ){
 2516:     nextpl = plp->next;
 2517:     plp->next = plink_freelist;
 2518:     plink_freelist = plp;
 2519:     plp = nextpl;
 2520:   }
 2521: }
 2522: /*********************** From the file "report.c" **************************/
 2523: /*
 2524: ** Procedures for generating reports and tables in the LEMON parser generator.
 2525: */
 2526: 
 2527: /* Generate a filename with the given suffix.  Space to hold the
 2528: ** name comes from malloc() and must be freed by the calling
 2529: ** function.
 2530: */
 2531: PRIVATE char *file_makename(lemp,suffix)
 2532: struct lemon *lemp;
 2533: char *suffix;
 2534: {
 2535:   char *name;
 2536:   char *cp;
 2537: 
 2538:   name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
 2539:   if( name==0 ){
 2540:     fprintf(stderr,"Can't allocate space for a filename.\n");
 2541:     exit(1);
 2542:   }
 2543: 	/* skip directory, JK */
 2544: 	if (NULL == (cp = strrchr(lemp->filename, '/'))) {
 2545: 		cp = lemp->filename;
 2546: 	} else {
 2547: 		cp++;
 2548: 	}
 2549:   strcpy(name,cp);
 2550:   cp = strrchr(name,'.');
 2551:   if( cp ) *cp = 0;
 2552:   strcat(name,suffix);
 2553:   return name;
 2554: }
 2555: 
 2556: /* Open a file with a name based on the name of the input file,
 2557: ** but with a different (specified) suffix, and return a pointer
 2558: ** to the stream */
 2559: PRIVATE FILE *file_open(lemp,suffix,mode)
 2560: struct lemon *lemp;
 2561: char *suffix;
 2562: char *mode;
 2563: {
 2564:   FILE *fp;
 2565: 
 2566:   if( lemp->outname ) free(lemp->outname);
 2567:   lemp->outname = file_makename(lemp, suffix);
 2568:   fp = fopen(lemp->outname,mode);
 2569:   if( fp==0 && *mode=='w' ){
 2570:     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
 2571:     lemp->errorcnt++;
 2572:     return 0;
 2573:   }
 2574:   return fp;
 2575: }
 2576: 
 2577: /* Duplicate the input file without comments and without actions
 2578: ** on rules */
 2579: void Reprint(lemp)
 2580: struct lemon *lemp;
 2581: {
 2582:   struct rule *rp;
 2583:   struct symbol *sp;
 2584:   int i, j, maxlen, len, ncolumns, skip;
 2585:   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
 2586:   maxlen = 10;
 2587:   for(i=0; i<lemp->nsymbol; i++){
 2588:     sp = lemp->symbols[i];
 2589:     len = strlen(sp->name);
 2590:     if( len>maxlen ) maxlen = len;
 2591:   }
 2592:   ncolumns = 76/(maxlen+5);
 2593:   if( ncolumns<1 ) ncolumns = 1;
 2594:   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
 2595:   for(i=0; i<skip; i++){
 2596:     printf("//");
 2597:     for(j=i; j<lemp->nsymbol; j+=skip){
 2598:       sp = lemp->symbols[j];
 2599:       assert( sp->index==j );
 2600:       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
 2601:     }
 2602:     printf("\n");
 2603:   }
 2604:   for(rp=lemp->rule; rp; rp=rp->next){
 2605:     printf("%s",rp->lhs->name);
 2606: /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
 2607:     printf(" ::=");
 2608:     for(i=0; i<rp->nrhs; i++){
 2609:       printf(" %s",rp->rhs[i]->name);
 2610: /*      if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
 2611:     }
 2612:     printf(".");
 2613:     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
 2614: /*    if( rp->code ) printf("\n    %s",rp->code); */
 2615:     printf("\n");
 2616:   }
 2617: }
 2618: 
 2619: PRIVATE void ConfigPrint(fp,cfp)
 2620: FILE *fp;
 2621: struct config *cfp;
 2622: {
 2623:   struct rule *rp;
 2624:   int i;
 2625:   rp = cfp->rp;
 2626:   fprintf(fp,"%s ::=",rp->lhs->name);
 2627:   for(i=0; i<=rp->nrhs; i++){
 2628:     if( i==cfp->dot ) fprintf(fp," *");
 2629:     if( i==rp->nrhs ) break;
 2630:     fprintf(fp," %s",rp->rhs[i]->name);
 2631:   }
 2632: }
 2633: 
 2634: /* #define TEST */
 2635: #ifdef TEST
 2636: /* Print a set */
 2637: PRIVATE void SetPrint(out,set,lemp)
 2638: FILE *out;
 2639: char *set;
 2640: struct lemon *lemp;
 2641: {
 2642:   int i;
 2643:   char *spacer;
 2644:   spacer = "";
 2645:   fprintf(out,"%12s[","");
 2646:   for(i=0; i<lemp->nterminal; i++){
 2647:     if( SetFind(set,i) ){
 2648:       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
 2649:       spacer = " ";
 2650:     }
 2651:   }
 2652:   fprintf(out,"]\n");
 2653: }
 2654: 
 2655: /* Print a plink chain */
 2656: void PlinkPrint(out,plp,tag)
 2657: FILE *out;
 2658: struct plink *plp;
 2659: char *tag;
 2660: {
 2661:   while( plp ){
 2662:     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
 2663:     ConfigPrint(out,plp->cfp);
 2664:     fprintf(out,"\n");
 2665:     plp = plp->next;
 2666:   }
 2667: }
 2668: #endif
 2669: 
 2670: /* Print an action to the given file descriptor.  Return FALSE if
 2671: ** nothing was actually printed.
 2672: */
 2673: PRIVATE int PrintAction(struct action *ap, FILE *fp, int indent){
 2674:   int result = 1;
 2675:   switch( ap->type ){
 2676:     case SHIFT:
 2677:       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->index);
 2678:       break;
 2679:     case REDUCE:
 2680:       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
 2681:       break;
 2682:     case ACCEPT:
 2683:       fprintf(fp,"%*s accept",indent,ap->sp->name);
 2684:       break;
 2685:     case ERROR:
 2686:       fprintf(fp,"%*s error",indent,ap->sp->name);
 2687:       break;
 2688:     case CONFLICT:
 2689:       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
 2690:         indent,ap->sp->name,ap->x.rp->index);
 2691:       break;
 2692:     case SH_RESOLVED:
 2693:     case RD_RESOLVED:
 2694:     case NOT_USED:
 2695:       result = 0;
 2696:       break;
 2697:   }
 2698:   return result;
 2699: }
 2700: 
 2701: /* Generate the "y.output" log file */
 2702: void ReportOutput(lemp)
 2703: struct lemon *lemp;
 2704: {
 2705:   int i;
 2706:   struct state *stp;
 2707:   struct config *cfp;
 2708:   struct action *ap;
 2709:   FILE *fp;
 2710: 
 2711:   fp = file_open(lemp,".out","w");
 2712:   if( fp==0 ) return;
 2713:   fprintf(fp," \b");
 2714:   for(i=0; i<lemp->nstate; i++){
 2715:     stp = lemp->sorted[i];
 2716:     fprintf(fp,"State %d:\n",stp->index);
 2717:     if( lemp->basisflag ) cfp=stp->bp;
 2718:     else                  cfp=stp->cfp;
 2719:     while( cfp ){
 2720:       char buf[20];
 2721:       if( cfp->dot==cfp->rp->nrhs ){
 2722:         sprintf(buf,"(%d)",cfp->rp->index);
 2723:         fprintf(fp,"    %5s ",buf);
 2724:       }else{
 2725:         fprintf(fp,"          ");
 2726:       }
 2727:       ConfigPrint(fp,cfp);
 2728:       fprintf(fp,"\n");
 2729: #ifdef TEST
 2730:       SetPrint(fp,cfp->fws,lemp);
 2731:       PlinkPrint(fp,cfp->fplp,"To  ");
 2732:       PlinkPrint(fp,cfp->bplp,"From");
 2733: #endif
 2734:       if( lemp->basisflag ) cfp=cfp->bp;
 2735:       else                  cfp=cfp->next;
 2736:     }
 2737:     fprintf(fp,"\n");
 2738:     for(ap=stp->ap; ap; ap=ap->next){
 2739:       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
 2740:     }
 2741:     fprintf(fp,"\n");
 2742:   }
 2743:   fclose(fp);
 2744:   return;
 2745: }
 2746: 
 2747:   extern int access();
 2748: /* Search for the file "name" which is in the same directory as
 2749: ** the exacutable */
 2750: PRIVATE char *pathsearch(argv0,name,modemask)
 2751: char *argv0;
 2752: char *name;
 2753: int modemask;
 2754: {
 2755:   char *pathlist;
 2756:   char *path,*cp;
 2757:   char c;
 2758: 
 2759: #ifdef __WIN32__
 2760:   cp = strrchr(argv0,'\\');
 2761: #else
 2762:   cp = strrchr(argv0,'/');
 2763: #endif
 2764:   if( cp ){
 2765:     c = *cp;
 2766:     *cp = 0;
 2767:     path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
 2768:     if( path ) sprintf(path,"%s/%s",argv0,name);
 2769:     *cp = c;
 2770:   }else{
 2771:     pathlist = getenv("PATH");
 2772:     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
 2773:     path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
 2774:     if( path!=0 ){
 2775:       while( *pathlist ){
 2776:         cp = strchr(pathlist,':');
 2777:         if( cp==0 ) cp = &pathlist[strlen(pathlist)];
 2778:         c = *cp;
 2779:         *cp = 0;
 2780:         sprintf(path,"%s/%s",pathlist,name);
 2781:         *cp = c;
 2782:         if( c==0 ) pathlist = "";
 2783:         else pathlist = &cp[1];
 2784:         if( access(path,modemask)==0 ) break;
 2785:       }
 2786:     }
 2787:   }
 2788:   return path;
 2789: }
 2790: 
 2791: /* Given an action, compute the integer value for that action
 2792: ** which is to be put in the action table of the generated machine.
 2793: ** Return negative if no action should be generated.
 2794: */
 2795: PRIVATE int compute_action(lemp,ap)
 2796: struct lemon *lemp;
 2797: struct action *ap;
 2798: {
 2799:   int act;
 2800:   switch( ap->type ){
 2801:     case SHIFT:  act = ap->x.stp->index;               break;
 2802:     case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
 2803:     case ERROR:  act = lemp->nstate + lemp->nrule;     break;
 2804:     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
 2805:     default:     act = -1; break;
 2806:   }
 2807:   return act;
 2808: }
 2809: 
 2810: #define LINESIZE 1000
 2811: /* The next cluster of routines are for reading the template file
 2812: ** and writing the results to the generated parser */
 2813: /* The first function transfers data from "in" to "out" until
 2814: ** a line is seen which begins with "%%".  The line number is
 2815: ** tracked.
 2816: **
 2817: ** if name!=0, then any word that begin with "Parse" is changed to
 2818: ** begin with *name instead.
 2819: */
 2820: PRIVATE void tplt_xfer(name,in,out,lineno)
 2821: char *name;
 2822: FILE *in;
 2823: FILE *out;
 2824: int *lineno;
 2825: {
 2826:   int i, iStart;
 2827:   char line[LINESIZE];
 2828:   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
 2829:     (*lineno)++;
 2830:     iStart = 0;
 2831:     if( name ){
 2832:       for(i=0; line[i]; i++){
 2833:         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
 2834:           && (i==0 || !isalpha(line[i-1]))
 2835:         ){
 2836:           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
 2837:           fprintf(out,"%s",name);
 2838:           i += 4;
 2839:           iStart = i+1;
 2840:         }
 2841:       }
 2842:     }
 2843:     fprintf(out,"%s",&line[iStart]);
 2844:   }
 2845: }
 2846: 
 2847: /* The next function finds the template file and opens it, returning
 2848: ** a pointer to the opened file. */
 2849: PRIVATE FILE *tplt_open(lemp)
 2850: struct lemon *lemp;
 2851: {
 2852: 
 2853:   char buf[1000];
 2854:   FILE *in;
 2855:   char *tpltname;
 2856:   char *cp;
 2857: 
 2858:   cp = strrchr(lemp->filename,'.');
 2859:   if( cp ){
 2860:     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
 2861:   }else{
 2862:     sprintf(buf,"%s.lt",lemp->filename);
 2863:   }
 2864:   if( access(buf,004)==0 ){
 2865:     tpltname = buf;
 2866:   }else if( access(lemp->tmplname,004)==0 ){
 2867:     tpltname = lemp->tmplname;
 2868:   }else{
 2869:     tpltname = pathsearch(lemp->argv0,lemp->tmplname,0);
 2870:   }
 2871:   if( tpltname==0 ){
 2872:     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
 2873:     lemp->tmplname);
 2874:     lemp->errorcnt++;
 2875:     return 0;
 2876:   }
 2877:   in = fopen(tpltname,"r");
 2878:   if( in==0 ){
 2879:     fprintf(stderr,"Can't open the template file \"%s\".\n",lemp->tmplname);
 2880:     lemp->errorcnt++;
 2881:     return 0;
 2882:   }
 2883:   return in;
 2884: }
 2885: 
 2886: /* Print a string to the file and keep the linenumber up to date */
 2887: PRIVATE void tplt_print(out,lemp,str,strln,lineno)
 2888: FILE *out;
 2889: struct lemon *lemp;
 2890: char *str;
 2891: int strln;
 2892: int *lineno;
 2893: {
 2894:   if( str==0 ) return;
 2895:   fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
 2896:   while( *str ){
 2897:     if( *str=='\n' ) (*lineno)++;
 2898:     putc(*str,out);
 2899:     str++;
 2900:   }
 2901:   fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
 2902:   return;
 2903: }
 2904: 
 2905: /*
 2906: ** The following routine emits code for the destructor for the
 2907: ** symbol sp
 2908: */
 2909: PRIVATE void emit_destructor_code(out,sp,lemp,lineno)
 2910: FILE *out;
 2911: struct symbol *sp;
 2912: struct lemon *lemp;
 2913: int *lineno;
 2914: {
 2915:  char *cp = 0;
 2916: 
 2917:  int linecnt = 0;
 2918:  if( sp->type==TERMINAL ){
 2919:    cp = lemp->tokendest;
 2920:    if( cp==0 ) return;
 2921:    fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
 2922:  }else if( sp->destructor ){
 2923:    cp = sp->destructor;
 2924:    fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
 2925:  }else{
 2926:    cp = lemp->vardest;
 2927:    if( cp==0 ) return;
 2928:    fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
 2929:  }
 2930:  for(; *cp; cp++){
 2931:    if( *cp=='$' && cp[1]=='$' ){
 2932:      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
 2933:      cp++;
 2934:      continue;
 2935:    }
 2936:    if( *cp=='\n' ) linecnt++;
 2937:    fputc(*cp,out);
 2938:  }
 2939:  (*lineno) += 3 + linecnt;
 2940:  fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
 2941:  return;
 2942: }
 2943: 
 2944: /*
 2945: ** Return TRUE (non-zero) if the given symbol has a destructor.
 2946: */
 2947: PRIVATE int has_destructor(sp, lemp)
 2948: struct symbol *sp;
 2949: struct lemon *lemp;
 2950: {
 2951:   int ret;
 2952:   if( sp->type==TERMINAL ){
 2953:     ret = lemp->tokendest!=0;
 2954:   }else{
 2955:     ret = lemp->vardest!=0 || sp->destructor!=0;
 2956:   }
 2957:   return ret;
 2958: }
 2959: 
 2960: /*
 2961: ** Generate code which executes when the rule "rp" is reduced.  Write
 2962: ** the code to "out".  Make sure lineno stays up-to-date.
 2963: */
 2964: PRIVATE void emit_code(out,rp,lemp,lineno)
 2965: FILE *out;
 2966: struct rule *rp;
 2967: struct lemon *lemp;
 2968: int *lineno;
 2969: {
 2970:  char *cp, *xp;
 2971:  int linecnt = 0;
 2972:  int i;
 2973:  char lhsused = 0;    /* True if the LHS element has been used */
 2974:  char used[MAXRHS];   /* True for each RHS element which is used */
 2975: 
 2976:  for(i=0; i<rp->nrhs; i++) used[i] = 0;
 2977:  lhsused = 0;
 2978: 
 2979:  /* Generate code to do the reduce action */
 2980:  if( rp->code ){
 2981:    fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
 2982:    for(cp=rp->code; *cp; cp++){
 2983:      if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
 2984:        char saved;
 2985:        for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
 2986:        saved = *xp;
 2987:        *xp = 0;
 2988:        if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
 2989:          fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
 2990:          cp = xp;
 2991:          lhsused = 1;
 2992:        }else{
 2993:          for(i=0; i<rp->nrhs; i++){
 2994:            if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
 2995:              fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
 2996:              cp = xp;
 2997:              used[i] = 1;
 2998:              break;
 2999:            }
 3000:          }
 3001:        }
 3002:        *xp = saved;
 3003:      }
 3004:      if( *cp=='\n' ) linecnt++;
 3005:      fputc(*cp,out);
 3006:    } /* End loop */
 3007:    (*lineno) += 3 + linecnt;
 3008:    fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
 3009:  } /* End if( rp->code ) */
 3010: 
 3011:  /* Check to make sure the LHS has been used */
 3012:  if( rp->lhsalias && !lhsused ){
 3013:    ErrorMsg(lemp->filename,rp->ruleline,
 3014:      "Label \"%s\" for \"%s(%s)\" is never used.",
 3015:        rp->lhsalias,rp->lhs->name,rp->lhsalias);
 3016:    lemp->errorcnt++;
 3017:  }
 3018: 
 3019:  /* Generate destructor code for RHS symbols which are not used in the
 3020:  ** reduce code */
 3021:  for(i=0; i<rp->nrhs; i++){
 3022:    if( rp->rhsalias[i] && !used[i] ){
 3023:      ErrorMsg(lemp->filename,rp->ruleline,
 3024:        "Label %s for \"%s(%s)\" is never used.",
 3025:        rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
 3026:      lemp->errorcnt++;
 3027:    }else if( rp->rhsalias[i]==0 ){
 3028:      if( has_destructor(rp->rhs[i],lemp) ){
 3029:        fprintf(out,"  yy_destructor(%d,&yymsp[%d].minor);\n",
 3030:           rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
 3031:      }else{
 3032:        fprintf(out,"        /* No destructor defined for %s */\n",
 3033:         rp->rhs[i]->name);
 3034:         (*lineno)++;
 3035:      }
 3036:    }
 3037:  }
 3038:  return;
 3039: }
 3040: 
 3041: /*
 3042: ** Print the definition of the union used for the parser's data stack.
 3043: ** This union contains fields for every possible data type for tokens
 3044: ** and nonterminals.  In the process of computing and printing this
 3045: ** union, also set the ".dtnum" field of every terminal and nonterminal
 3046: ** symbol.
 3047: */
 3048: PRIVATE void print_stack_union(out,lemp,plineno,mhflag)
 3049: FILE *out;                  /* The output stream */
 3050: struct lemon *lemp;         /* The main info structure for this parser */
 3051: int *plineno;               /* Pointer to the line number */
 3052: int mhflag;                 /* True if generating makeheaders output */
 3053: {
 3054:   int lineno;               /* The line number of the output */
 3055:   char **types;             /* A hash table of datatypes */
 3056:   int arraysize;            /* Size of the "types" array */
 3057:   int maxdtlength;          /* Maximum length of any ".datatype" field. */
 3058:   char *stddt;              /* Standardized name for a datatype */
 3059:   int i,j;                  /* Loop counters */
 3060:   int hash;                 /* For hashing the name of a type */
 3061:   char *name;               /* Name of the parser */
 3062: 
 3063:   /* Allocate and initialize types[] and allocate stddt[] */
 3064:   arraysize = lemp->nsymbol * 2;
 3065:   types = (char**)malloc( arraysize * sizeof(char*) );
 3066:   for(i=0; i<arraysize; i++) types[i] = 0;
 3067:   maxdtlength = 0;
 3068:   if( lemp->vartype ){
 3069:     maxdtlength = strlen(lemp->vartype);
 3070:   }
 3071:   for(i=0; i<lemp->nsymbol; i++){
 3072:     int len;
 3073:     struct symbol *sp = lemp->symbols[i];
 3074:     if( sp->datatype==0 ) continue;
 3075:     len = strlen(sp->datatype);
 3076:     if( len>maxdtlength ) maxdtlength = len;
 3077:   }
 3078:   stddt = (char*)malloc( maxdtlength*2 + 1 );
 3079:   if( types==0 || stddt==0 ){
 3080:     fprintf(stderr,"Out of memory.\n");
 3081:     exit(1);
 3082:   }
 3083: 
 3084:   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
 3085:   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
 3086:   ** used for terminal symbols.  If there is no %default_type defined then
 3087:   ** 0 is also used as the .dtnum value for nonterminals which do not specify
 3088:   ** a datatype using the %type directive.
 3089:   */
 3090:   for(i=0; i<lemp->nsymbol; i++){
 3091:     struct symbol *sp = lemp->symbols[i];
 3092:     char *cp;
 3093:     if( sp==lemp->errsym ){
 3094:       sp->dtnum = arraysize+1;
 3095:       continue;
 3096:     }
 3097:     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
 3098:       sp->dtnum = 0;
 3099:       continue;
 3100:     }
 3101:     cp = sp->datatype;
 3102:     if( cp==0 ) cp = lemp->vartype;
 3103:     j = 0;
 3104:     while( isspace(*cp) ) cp++;
 3105:     while( *cp ) stddt[j++] = *cp++;
 3106:     while( j>0 && isspace(stddt[j-1]) ) j--;
 3107:     stddt[j] = 0;
 3108:     hash = 0;
 3109:     for(j=0; stddt[j]; j++){
 3110:       hash = (unsigned int)hash*53u + (unsigned int) stddt[j];
 3111:     }
 3112:     hash = (hash & 0x7fffffff)%arraysize;
 3113:     while( types[hash] ){
 3114:       if( strcmp(types[hash],stddt)==0 ){
 3115:         sp->dtnum = hash + 1;
 3116:         break;
 3117:       }
 3118:       hash++;
 3119:       if( hash>=arraysize ) hash = 0;
 3120:     }
 3121:     if( types[hash]==0 ){
 3122:       sp->dtnum = hash + 1;
 3123:       types[hash] = (char*)malloc( strlen(stddt)+1 );
 3124:       if( types[hash]==0 ){
 3125:         fprintf(stderr,"Out of memory.\n");
 3126:         exit(1);
 3127:       }
 3128:       strcpy(types[hash],stddt);
 3129:     }
 3130:   }
 3131: 
 3132:   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
 3133:   name = lemp->name ? lemp->name : "Parse";
 3134:   lineno = *plineno;
 3135:   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
 3136:   fprintf(out,"#define %sTOKENTYPE %s\n",name,
 3137:     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
 3138:   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
 3139:   fprintf(out,"typedef union {\n"); lineno++;
 3140:   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
 3141:   for(i=0; i<arraysize; i++){
 3142:     if( types[i]==0 ) continue;
 3143:     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
 3144:     free(types[i]);
 3145:   }
 3146:   fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
 3147:   free(stddt);
 3148:   free(types);
 3149:   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
 3150:   *plineno = lineno;
 3151: }
 3152: 
 3153: /*
 3154: ** Return the name of a C datatype able to represent values between
 3155: ** lwr and upr, inclusive.
 3156: */
 3157: static const char *minimum_size_type(int lwr, int upr){
 3158:   if( lwr>=0 ){
 3159:     if( upr<=255 ){
 3160:       return "unsigned char";
 3161:     }else if( upr<65535 ){
 3162:       return "unsigned short int";
 3163:     }else{
 3164:       return "unsigned int";
 3165:     }
 3166:   }else if( lwr>=-127 && upr<=127 ){
 3167:     return "signed char";
 3168:   }else if( lwr>=-32767 && upr<32767 ){
 3169:     return "short";
 3170:   }else{
 3171:     return "int";
 3172:   }
 3173: }
 3174: 
 3175: /*
 3176: ** Each state contains a set of token transaction and a set of
 3177: ** nonterminal transactions.  Each of these sets makes an instance
 3178: ** of the following structure.  An array of these structures is used
 3179: ** to order the creation of entries in the yy_action[] table.
 3180: */
 3181: struct axset {
 3182:   struct state *stp;   /* A pointer to a state */
 3183:   int isTkn;           /* True to use tokens.  False for non-terminals */
 3184:   int nAction;         /* Number of actions */
 3185: };
 3186: 
 3187: /*
 3188: ** Compare to axset structures for sorting purposes
 3189: */
 3190: static int axset_compare(const void *a, const void *b){
 3191:   struct axset *p1 = (struct axset*)a;
 3192:   struct axset *p2 = (struct axset*)b;
 3193:   return p2->nAction - p1->nAction;
 3194: }
 3195: 
 3196: /* Generate C source code for the parser */
 3197: void ReportTable(lemp, mhflag)
 3198: struct lemon *lemp;
 3199: int mhflag;     /* Output in makeheaders format if true */
 3200: {
 3201:   FILE *out, *in;
 3202:   char line[LINESIZE];
 3203:   int  lineno;
 3204:   struct state *stp;
 3205:   struct action *ap;
 3206:   struct rule *rp;
 3207:   struct acttab *pActtab;
 3208:   int i, j, n;
 3209:   int mnTknOfst, mxTknOfst;
 3210:   int mnNtOfst, mxNtOfst;
 3211:   struct axset *ax;
 3212:   char *name;
 3213: 
 3214:   in = tplt_open(lemp);
 3215:   if( in==0 ) return;
 3216:   out = file_open(lemp,".c","w");
 3217:   if( out==0 ){
 3218:     fclose(in);
 3219:     return;
 3220:   }
 3221:   lineno = 1;
 3222:   tplt_xfer(lemp->name,in,out,&lineno);
 3223: 
 3224:   /* Generate the include code, if any */
 3225:   tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
 3226:   if( mhflag ){
 3227:     name = file_makename(lemp, ".h");
 3228:     fprintf(out,"#include \"%s\"\n", name); lineno++;
 3229:     free(name);
 3230:   }
 3231:   tplt_xfer(lemp->name,in,out,&lineno);
 3232: 
 3233:   /* Generate #defines for all tokens */
 3234:   if( mhflag ){
 3235:     char *prefix;
 3236:     fprintf(out,"#if INTERFACE\n"); lineno++;
 3237:     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
 3238:     else                    prefix = "";
 3239:     for(i=1; i<lemp->nterminal; i++){
 3240:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 3241:       lineno++;
 3242:     }
 3243:     fprintf(out,"#endif\n"); lineno++;
 3244:   }
 3245:   tplt_xfer(lemp->name,in,out,&lineno);
 3246: 
 3247:   /* Generate the defines */
 3248:   fprintf(out,"/* \001 */\n");
 3249:   fprintf(out,"#define YYCODETYPE %s\n",
 3250:     minimum_size_type(0, lemp->nsymbol+5)); lineno++;
 3251:   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
 3252:   fprintf(out,"#define YYACTIONTYPE %s\n",
 3253:     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
 3254:   print_stack_union(out,lemp,&lineno,mhflag);
 3255:   if( lemp->stacksize ){
 3256:     if( atoi(lemp->stacksize)<=0 ){
 3257:       ErrorMsg(lemp->filename,0,
 3258: "Illegal stack size: [%s].  The stack size should be an integer constant.",
 3259:         lemp->stacksize);
 3260:       lemp->errorcnt++;
 3261:       lemp->stacksize = "100";
 3262:     }
 3263:     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
 3264:   }else{
 3265:     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
 3266:   }
 3267:   if( mhflag ){
 3268:     fprintf(out,"#if INTERFACE\n"); lineno++;
 3269:   }
 3270:   name = lemp->name ? lemp->name : "Parse";
 3271:   if( lemp->arg && lemp->arg[0] ){
 3272:     i = strlen(lemp->arg);
 3273:     while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
 3274:     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
 3275:     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
 3276:     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
 3277:     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
 3278:                  name,lemp->arg,&lemp->arg[i]);  lineno++;
 3279:     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
 3280:                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
 3281:   }else{
 3282:     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
 3283:     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
 3284:     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
 3285:     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
 3286:   }
 3287:   if( mhflag ){
 3288:     fprintf(out,"#endif\n"); lineno++;
 3289:   }
 3290:   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
 3291:   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
 3292:   fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
 3293:   fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
 3294:   if( lemp->has_fallback ){
 3295:     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
 3296:   }
 3297:   tplt_xfer(lemp->name,in,out,&lineno);
 3298: 
 3299:   /* Generate the action table and its associates:
 3300:   **
 3301:   **  yy_action[]        A single table containing all actions.
 3302:   **  yy_lookahead[]     A table containing the lookahead for each entry in
 3303:   **                     yy_action.  Used to detect hash collisions.
 3304:   **  yy_shift_ofst[]    For each state, the offset into yy_action for
 3305:   **                     shifting terminals.
 3306:   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
 3307:   **                     shifting non-terminals after a reduce.
 3308:   **  yy_default[]       Default action for each state.
 3309:   */
 3310: 
 3311:   /* Compute the actions on all states and count them up */
 3312:   ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
 3313:   if( ax==0 ){
 3314:     fprintf(stderr,"malloc failed\n");
 3315:     exit(1);
 3316:   }
 3317:   for(i=0; i<lemp->nstate; i++){
 3318:     stp = lemp->sorted[i];
 3319:     stp->nTknAct = stp->nNtAct = 0;
 3320:     stp->iDflt = lemp->nstate + lemp->nrule;
 3321:     stp->iTknOfst = NO_OFFSET;
 3322:     stp->iNtOfst = NO_OFFSET;
 3323:     for(ap=stp->ap; ap; ap=ap->next){
 3324:       if( compute_action(lemp,ap)>=0 ){
 3325:         if( ap->sp->index<lemp->nterminal ){
 3326:           stp->nTknAct++;
 3327:         }else if( ap->sp->index<lemp->nsymbol ){
 3328:           stp->nNtAct++;
 3329:         }else{
 3330:           stp->iDflt = compute_action(lemp, ap);
 3331:         }
 3332:       }
 3333:     }
 3334:     ax[i*2].stp = stp;
 3335:     ax[i*2].isTkn = 1;
 3336:     ax[i*2].nAction = stp->nTknAct;
 3337:     ax[i*2+1].stp = stp;
 3338:     ax[i*2+1].isTkn = 0;
 3339:     ax[i*2+1].nAction = stp->nNtAct;
 3340:   }
 3341:   mxTknOfst = mnTknOfst = 0;
 3342:   mxNtOfst = mnNtOfst = 0;
 3343: 
 3344:   /* Compute the action table.  In order to try to keep the size of the
 3345:   ** action table to a minimum, the heuristic of placing the largest action
 3346:   ** sets first is used.
 3347:   */
 3348:   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
 3349:   pActtab = acttab_alloc();
 3350:   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
 3351:     stp = ax[i].stp;
 3352:     if( ax[i].isTkn ){
 3353:       for(ap=stp->ap; ap; ap=ap->next){
 3354:         int action;
 3355:         if( ap->sp->index>=lemp->nterminal ) continue;
 3356:         action = compute_action(lemp, ap);
 3357:         if( action<0 ) continue;
 3358:         acttab_action(pActtab, ap->sp->index, action);
 3359:       }
 3360:       stp->iTknOfst = acttab_insert(pActtab);
 3361:       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
 3362:       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
 3363:     }else{
 3364:       for(ap=stp->ap; ap; ap=ap->next){
 3365:         int action;
 3366:         if( ap->sp->index<lemp->nterminal ) continue;
 3367:         if( ap->sp->index==lemp->nsymbol ) continue;
 3368:         action = compute_action(lemp, ap);
 3369:         if( action<0 ) continue;
 3370:         acttab_action(pActtab, ap->sp->index, action);
 3371:       }
 3372:       stp->iNtOfst = acttab_insert(pActtab);
 3373:       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
 3374:       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
 3375:     }
 3376:   }
 3377:   free(ax);
 3378: 
 3379:   /* Output the yy_action table */
 3380:   fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
 3381:   n = acttab_size(pActtab);
 3382:   for(i=j=0; i<n; i++){
 3383:     int action = acttab_yyaction(pActtab, i);
 3384:     if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
 3385:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3386:     fprintf(out, " %4d,", action);
 3387:     if( j==9 || i==n-1 ){
 3388:       fprintf(out, "\n"); lineno++;
 3389:       j = 0;
 3390:     }else{
 3391:       j++;
 3392:     }
 3393:   }
 3394:   fprintf(out, "};\n"); lineno++;
 3395: 
 3396:   /* Output the yy_lookahead table */
 3397:   fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
 3398:   for(i=j=0; i<n; i++){
 3399:     int la = acttab_yylookahead(pActtab, i);
 3400:     if( la<0 ) la = lemp->nsymbol;
 3401:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3402:     fprintf(out, " %4d,", la);
 3403:     if( j==9 || i==n-1 ){
 3404:       fprintf(out, "\n"); lineno++;
 3405:       j = 0;
 3406:     }else{
 3407:       j++;
 3408:     }
 3409:   }
 3410:   fprintf(out, "};\n"); lineno++;
 3411: 
 3412:   /* Output the yy_shift_ofst[] table */
 3413:   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
 3414:   fprintf(out, "static %s yy_shift_ofst[] = {\n",
 3415:           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
 3416:   n = lemp->nstate;
 3417:   for(i=j=0; i<n; i++){
 3418:     int ofst;
 3419:     stp = lemp->sorted[i];
 3420:     ofst = stp->iTknOfst;
 3421:     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
 3422:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3423:     fprintf(out, " %4d,", ofst);
 3424:     if( j==9 || i==n-1 ){
 3425:       fprintf(out, "\n"); lineno++;
 3426:       j = 0;
 3427:     }else{
 3428:       j++;
 3429:     }
 3430:   }
 3431:   fprintf(out, "};\n"); lineno++;
 3432: 
 3433:   /* Output the yy_reduce_ofst[] table */
 3434:   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
 3435:   fprintf(out, "static %s yy_reduce_ofst[] = {\n",
 3436:           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
 3437:   n = lemp->nstate;
 3438:   for(i=j=0; i<n; i++){
 3439:     int ofst;
 3440:     stp = lemp->sorted[i];
 3441:     ofst = stp->iNtOfst;
 3442:     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
 3443:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3444:     fprintf(out, " %4d,", ofst);
 3445:     if( j==9 || i==n-1 ){
 3446:       fprintf(out, "\n"); lineno++;
 3447:       j = 0;
 3448:     }else{
 3449:       j++;
 3450:     }
 3451:   }
 3452:   fprintf(out, "};\n"); lineno++;
 3453: 
 3454:   /* Output the default action table */
 3455:   fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
 3456:   n = lemp->nstate;
 3457:   for(i=j=0; i<n; i++){
 3458:     stp = lemp->sorted[i];
 3459:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3460:     fprintf(out, " %4d,", stp->iDflt);
 3461:     if( j==9 || i==n-1 ){
 3462:       fprintf(out, "\n"); lineno++;
 3463:       j = 0;
 3464:     }else{
 3465:       j++;
 3466:     }
 3467:   }
 3468:   fprintf(out, "};\n"); lineno++;
 3469:   tplt_xfer(lemp->name,in,out,&lineno);
 3470: 
 3471:   /* Generate the table of fallback tokens.
 3472:   */
 3473:   if( lemp->has_fallback ){
 3474:     for(i=0; i<lemp->nterminal; i++){
 3475:       struct symbol *p = lemp->symbols[i];
 3476:       if( p->fallback==0 ){
 3477:         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
 3478:       }else{
 3479:         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
 3480:           p->name, p->fallback->name);
 3481:       }
 3482:       lineno++;
 3483:     }
 3484:   }
 3485:   tplt_xfer(lemp->name, in, out, &lineno);
 3486: 
 3487:   /* Generate a table containing the symbolic name of every symbol
 3488:   */
 3489:   for(i=0; i<lemp->nsymbol; i++){
 3490:     sprintf(line,"\"%s\",",lemp->symbols[i]->name);
 3491:     fprintf(out,"  %-15s",line);
 3492:     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
 3493:   }
 3494:   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
 3495:   tplt_xfer(lemp->name,in,out,&lineno);
 3496: 
 3497:   /* Generate a table containing a text string that describes every
 3498:   ** rule in the rule set of the grammer.  This information is used
 3499:   ** when tracing REDUCE actions.
 3500:   */
 3501:   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
 3502:     assert( rp->index==i );
 3503:     fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
 3504:     for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
 3505:     fprintf(out,"\",\n"); lineno++;
 3506:   }
 3507:   tplt_xfer(lemp->name,in,out,&lineno);
 3508: 
 3509:   /* Generate code which executes every time a symbol is popped from
 3510:   ** the stack while processing errors or while destroying the parser.
 3511:   ** (In other words, generate the %destructor actions)
 3512:   */
 3513:   if( lemp->tokendest ){
 3514:     for(i=0; i<lemp->nsymbol; i++){
 3515:       struct symbol *sp = lemp->symbols[i];
 3516:       if( sp==0 || sp->type!=TERMINAL ) continue;
 3517:       fprintf(out,"    case %d:\n",sp->index); lineno++;
 3518:     }
 3519:     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
 3520:     if( i<lemp->nsymbol ){
 3521:       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
 3522:       fprintf(out,"      break;\n"); lineno++;
 3523:     }
 3524:   }
 3525:   for(i=0; i<lemp->nsymbol; i++){
 3526:     struct symbol *sp = lemp->symbols[i];
 3527:     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
 3528:     fprintf(out,"    case %d:\n",sp->index); lineno++;
 3529:     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
 3530:     fprintf(out,"      break;\n"); lineno++;
 3531:   }
 3532:   if( lemp->vardest ){
 3533:     struct symbol *dflt_sp = 0;
 3534:     for(i=0; i<lemp->nsymbol; i++){
 3535:       struct symbol *sp = lemp->symbols[i];
 3536:       if( sp==0 || sp->type==TERMINAL ||
 3537:           sp->index<=0 || sp->destructor!=0 ) continue;
 3538:       fprintf(out,"    case %d:\n",sp->index); lineno++;
 3539:       dflt_sp = sp;
 3540:     }
 3541:     if( dflt_sp!=0 ){
 3542:       emit_destructor_code(out,dflt_sp,lemp,&lineno);
 3543:       fprintf(out,"      break;\n"); lineno++;
 3544:     }
 3545:   }
 3546:   tplt_xfer(lemp->name,in,out,&lineno);
 3547: 
 3548:   /* Generate code which executes whenever the parser stack overflows */
 3549:   tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
 3550:   tplt_xfer(lemp->name,in,out,&lineno);
 3551: 
 3552:   /* Generate the table of rule information
 3553:   **
 3554:   ** Note: This code depends on the fact that rules are number
 3555:   ** sequentually beginning with 0.
 3556:   */
 3557:   for(rp=lemp->rule; rp; rp=rp->next){
 3558:     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
 3559:   }
 3560:   tplt_xfer(lemp->name,in,out,&lineno);
 3561: 
 3562:   /* Generate code which execution during each REDUCE action */
 3563:   for(rp=lemp->rule; rp; rp=rp->next){
 3564:     fprintf(out,"      case %d:\n",rp->index); lineno++;
 3565:     emit_code(out,rp,lemp,&lineno);
 3566:     fprintf(out,"        break;\n"); lineno++;
 3567:   }
 3568:   tplt_xfer(lemp->name,in,out,&lineno);
 3569: 
 3570:   /* Generate code which executes if a parse fails */
 3571:   tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
 3572:   tplt_xfer(lemp->name,in,out,&lineno);
 3573: 
 3574:   /* Generate code which executes when a syntax error occurs */
 3575:   tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
 3576:   tplt_xfer(lemp->name,in,out,&lineno);
 3577: 
 3578:   /* Generate code which executes when the parser accepts its input */
 3579:   tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
 3580:   tplt_xfer(lemp->name,in,out,&lineno);
 3581: 
 3582:   /* Append any addition code the user desires */
 3583:   tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
 3584: 
 3585:   fclose(in);
 3586:   fclose(out);
 3587:   return;
 3588: }
 3589: 
 3590: /* Generate a header file for the parser */
 3591: void ReportHeader(lemp)
 3592: struct lemon *lemp;
 3593: {
 3594:   FILE *out, *in;
 3595:   char *prefix;
 3596:   char line[LINESIZE];
 3597:   char pattern[LINESIZE];
 3598:   int i;
 3599: 
 3600:   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
 3601:   else                    prefix = "";
 3602:   in = file_open(lemp,".h","r");
 3603:   if( in ){
 3604:     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
 3605:       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 3606:       if( strcmp(line,pattern) ) break;
 3607:     }
 3608:     fclose(in);
 3609:     if( i==lemp->nterminal ){
 3610:       /* No change in the file.  Don't rewrite it. */
 3611:       return;
 3612:     }
 3613:   }
 3614:   out = file_open(lemp,".h","w");
 3615:   if( out ){
 3616:     for(i=1; i<lemp->nterminal; i++){
 3617:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 3618:     }
 3619:     fclose(out);
 3620:   }
 3621:   return;
 3622: }
 3623: 
 3624: /* Reduce the size of the action tables, if possible, by making use
 3625: ** of defaults.
 3626: **
 3627: ** In this version, we take the most frequent REDUCE action and make
 3628: ** it the default.  Only default a reduce if there are more than one.
 3629: */
 3630: void CompressTables(lemp)
 3631: struct lemon *lemp;
 3632: {
 3633:   struct state *stp;
 3634:   struct action *ap, *ap2;
 3635:   struct rule *rp, *rp2, *rbest;
 3636:   int nbest, n;
 3637:   int i;
 3638: 
 3639:   for(i=0; i<lemp->nstate; i++){
 3640:     stp = lemp->sorted[i];
 3641:     nbest = 0;
 3642:     rbest = 0;
 3643: 
 3644:     for(ap=stp->ap; ap; ap=ap->next){
 3645:       if( ap->type!=REDUCE ) continue;
 3646:       rp = ap->x.rp;
 3647:       if( rp==rbest ) continue;
 3648:       n = 1;
 3649:       for(ap2=ap->next; ap2; ap2=ap2->next){
 3650:         if( ap2->type!=REDUCE ) continue;
 3651:         rp2 = ap2->x.rp;
 3652:         if( rp2==rbest ) continue;
 3653:         if( rp2==rp ) n++;
 3654:       }
 3655:       if( n>nbest ){
 3656:         nbest = n;
 3657:         rbest = rp;
 3658:       }
 3659:     }
 3660: 
 3661:     /* Do not make a default if the number of rules to default
 3662:     ** is not at least 2 */
 3663:     if( nbest<2 ) continue;
 3664: 
 3665: 
 3666:     /* Combine matching REDUCE actions into a single default */
 3667:     for(ap=stp->ap; ap; ap=ap->next){
 3668:       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
 3669:     }
 3670:     assert( ap );
 3671:     ap->sp = Symbol_new("{default}");
 3672:     for(ap=ap->next; ap; ap=ap->next){
 3673:       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
 3674:     }
 3675:     stp->ap = Action_sort(stp->ap);
 3676:   }
 3677: }
 3678: 
 3679: /***************** From the file "set.c" ************************************/
 3680: /*
 3681: ** Set manipulation routines for the LEMON parser generator.
 3682: */
 3683: 
 3684: static int global_size = 0;
 3685: 
 3686: /* Set the set size */
 3687: void SetSize(n)
 3688: int n;
 3689: {
 3690:   global_size = n+1;
 3691: }
 3692: 
 3693: /* Allocate a new set */
 3694: char *SetNew(){
 3695:   char *s;
 3696:   int i;
 3697:   s = (char*)malloc( global_size );
 3698:   if( s==0 ){
 3699:     memory_error();
 3700:   }
 3701:   for(i=0; i<global_size; i++) s[i] = 0;
 3702:   return s;
 3703: }
 3704: 
 3705: /* Deallocate a set */
 3706: void SetFree(s)
 3707: char *s;
 3708: {
 3709:   free(s);
 3710: }
 3711: 
 3712: /* Add a new element to the set.  Return TRUE if the element was added
 3713: ** and FALSE if it was already there. */
 3714: int SetAdd(s,e)
 3715: char *s;
 3716: int e;
 3717: {
 3718:   int rv;
 3719:   rv = s[e];
 3720:   s[e] = 1;
 3721:   return !rv;
 3722: }
 3723: 
 3724: /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
 3725: int SetUnion(s1,s2)
 3726: char *s1;
 3727: char *s2;
 3728: {
 3729:   int i, progress;
 3730:   progress = 0;
 3731:   for(i=0; i<global_size; i++){
 3732:     if( s2[i]==0 ) continue;
 3733:     if( s1[i]==0 ){
 3734:       progress = 1;
 3735:       s1[i] = 1;
 3736:     }
 3737:   }
 3738:   return progress;
 3739: }
 3740: /********************** From the file "table.c" ****************************/
 3741: /*
 3742: ** All code in this file has been automatically generated
 3743: ** from a specification in the file
 3744: **              "table.q"
 3745: ** by the associative array code building program "aagen".
 3746: ** Do not edit this file!  Instead, edit the specification
 3747: ** file, then rerun aagen.
 3748: */
 3749: /*
 3750: ** Code for processing tables in the LEMON parser generator.
 3751: */
 3752: 
 3753: PRIVATE int strhash(x)
 3754: char *x;
 3755: {
 3756:   unsigned int h = 0;
 3757:   while( *x) h = h*13u + (unsigned int) *(x++);
 3758:   return h;
 3759: }
 3760: 
 3761: /* Works like strdup, sort of.  Save a string in malloced memory, but
 3762: ** keep strings in a table so that the same string is not in more
 3763: ** than one place.
 3764: */
 3765: char *Strsafe(y)
 3766: char *y;
 3767: {
 3768:   char *z;
 3769: 
 3770:   z = Strsafe_find(y);
 3771:   if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
 3772:     strcpy(z,y);
 3773:     Strsafe_insert(z);
 3774:   }
 3775:   MemoryCheck(z);
 3776:   return z;
 3777: }
 3778: 
 3779: /* There is one instance of the following structure for each
 3780: ** associative array of type "x1".
 3781: */
 3782: struct s_x1 {
 3783:   int size;               /* The number of available slots. */
 3784:                           /*   Must be a power of 2 greater than or */
 3785:                           /*   equal to 1 */
 3786:   int count;              /* Number of currently slots filled */
 3787:   struct s_x1node *tbl;  /* The data stored here */
 3788:   struct s_x1node **ht;  /* Hash table for lookups */
 3789: };
 3790: 
 3791: /* There is one instance of this structure for every data element
 3792: ** in an associative array of type "x1".
 3793: */
 3794: typedef struct s_x1node {
 3795:   char *data;                  /* The data */
 3796:   struct s_x1node *next;   /* Next entry with the same hash */
 3797:   struct s_x1node **from;  /* Previous link */
 3798: } x1node;
 3799: 
 3800: /* There is only one instance of the array, which is the following */
 3801: static struct s_x1 *x1a;
 3802: 
 3803: /* Allocate a new associative array */
 3804: void Strsafe_init(){
 3805:   if( x1a ) return;
 3806:   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
 3807:   if( x1a ){
 3808:     x1a->size = 1024;
 3809:     x1a->count = 0;
 3810:     x1a->tbl = (x1node*)malloc(
 3811:       (sizeof(x1node) + sizeof(x1node*))*1024 );
 3812:     if( x1a->tbl==0 ){
 3813:       free(x1a);
 3814:       x1a = 0;
 3815:     }else{
 3816:       int i;
 3817:       x1a->ht = (x1node**)&(x1a->tbl[1024]);
 3818:       for(i=0; i<1024; i++) x1a->ht[i] = 0;
 3819:     }
 3820:   }
 3821: }
 3822: /* Insert a new record into the array.  Return TRUE if successful.
 3823: ** Prior data with the same key is NOT overwritten */
 3824: int Strsafe_insert(data)
 3825: char *data;
 3826: {
 3827:   x1node *np;
 3828:   int h;
 3829:   int ph;
 3830: 
 3831:   if( x1a==0 ) return 0;
 3832:   ph = strhash(data);
 3833:   h = ph & (x1a->size-1);
 3834:   np = x1a->ht[h];
 3835:   while( np ){
 3836:     if( strcmp(np->data,data)==0 ){
 3837:       /* An existing entry with the same key is found. */
 3838:       /* Fail because overwrite is not allows. */
 3839:       return 0;
 3840:     }
 3841:     np = np->next;
 3842:   }
 3843:   if( x1a->count>=x1a->size ){
 3844:     /* Need to make the hash table bigger */
 3845:     int i,size;
 3846:     struct s_x1 array;
 3847:     array.size = size = x1a->size*2;
 3848:     array.count = x1a->count;
 3849:     array.tbl = (x1node*)malloc(
 3850:       (sizeof(x1node) + sizeof(x1node*))*size );
 3851:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 3852:     array.ht = (x1node**)&(array.tbl[size]);
 3853:     for(i=0; i<size; i++) array.ht[i] = 0;
 3854:     for(i=0; i<x1a->count; i++){
 3855:       x1node *oldnp, *newnp;
 3856:       oldnp = &(x1a->tbl[i]);
 3857:       h = strhash(oldnp->data) & (size-1);
 3858:       newnp = &(array.tbl[i]);
 3859:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 3860:       newnp->next = array.ht[h];
 3861:       newnp->data = oldnp->data;
 3862:       newnp->from = &(array.ht[h]);
 3863:       array.ht[h] = newnp;
 3864:     }
 3865:     free(x1a->tbl);
 3866:     *x1a = array;
 3867:   }
 3868:   /* Insert the new data */
 3869:   h = ph & (x1a->size-1);
 3870:   np = &(x1a->tbl[x1a->count++]);
 3871:   np->data = data;
 3872:   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
 3873:   np->next = x1a->ht[h];
 3874:   x1a->ht[h] = np;
 3875:   np->from = &(x1a->ht[h]);
 3876:   return 1;
 3877: }
 3878: 
 3879: /* Return a pointer to data assigned to the given key.  Return NULL
 3880: ** if no such key. */
 3881: char *Strsafe_find(key)
 3882: char *key;
 3883: {
 3884:   int h;
 3885:   x1node *np;
 3886: 
 3887:   if( x1a==0 ) return 0;
 3888:   h = strhash(key) & (x1a->size-1);
 3889:   np = x1a->ht[h];
 3890:   while( np ){
 3891:     if( strcmp(np->data,key)==0 ) break;
 3892:     np = np->next;
 3893:   }
 3894:   return np ? np->data : 0;
 3895: }
 3896: 
 3897: /* Return a pointer to the (terminal or nonterminal) symbol "x".
 3898: ** Create a new symbol if this is the first time "x" has been seen.
 3899: */
 3900: struct symbol *Symbol_new(x)
 3901: char *x;
 3902: {
 3903:   struct symbol *sp;
 3904: 
 3905:   sp = Symbol_find(x);
 3906:   if( sp==0 ){
 3907:     sp = (struct symbol *)malloc( sizeof(struct symbol) );
 3908:     MemoryCheck(sp);
 3909:     sp->name = Strsafe(x);
 3910:     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
 3911:     sp->rule = 0;
 3912:     sp->fallback = 0;
 3913:     sp->prec = -1;
 3914:     sp->assoc = UNK;
 3915:     sp->firstset = 0;
 3916:     sp->lambda = Bo_FALSE;
 3917:     sp->destructor = 0;
 3918:     sp->datatype = 0;
 3919:     Symbol_insert(sp,sp->name);
 3920:   }
 3921:   return sp;
 3922: }
 3923: 
 3924: /* Compare two symbols for working purposes
 3925: **
 3926: ** Symbols that begin with upper case letters (terminals or tokens)
 3927: ** must sort before symbols that begin with lower case letters
 3928: ** (non-terminals).  Other than that, the order does not matter.
 3929: **
 3930: ** We find experimentally that leaving the symbols in their original
 3931: ** order (the order they appeared in the grammar file) gives the
 3932: ** smallest parser tables in SQLite.
 3933: */
 3934: int Symbolcmpp(struct symbol **a, struct symbol **b){
 3935:   int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
 3936:   int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
 3937:   return i1-i2;
 3938: }
 3939: 
 3940: /* There is one instance of the following structure for each
 3941: ** associative array of type "x2".
 3942: */
 3943: struct s_x2 {
 3944:   int size;               /* The number of available slots. */
 3945:                           /*   Must be a power of 2 greater than or */
 3946:                           /*   equal to 1 */
 3947:   int count;              /* Number of currently slots filled */
 3948:   struct s_x2node *tbl;  /* The data stored here */
 3949:   struct s_x2node **ht;  /* Hash table for lookups */
 3950: };
 3951: 
 3952: /* There is one instance of this structure for every data element
 3953: ** in an associative array of type "x2".
 3954: */
 3955: typedef struct s_x2node {
 3956:   struct symbol *data;                  /* The data */
 3957:   char *key;                   /* The key */
 3958:   struct s_x2node *next;   /* Next entry with the same hash */
 3959:   struct s_x2node **from;  /* Previous link */
 3960: } x2node;
 3961: 
 3962: /* There is only one instance of the array, which is the following */
 3963: static struct s_x2 *x2a;
 3964: 
 3965: /* Allocate a new associative array */
 3966: void Symbol_init(){
 3967:   if( x2a ) return;
 3968:   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
 3969:   if( x2a ){
 3970:     x2a->size = 128;
 3971:     x2a->count = 0;
 3972:     x2a->tbl = (x2node*)malloc(
 3973:       (sizeof(x2node) + sizeof(x2node*))*128 );
 3974:     if( x2a->tbl==0 ){
 3975:       free(x2a);
 3976:       x2a = 0;
 3977:     }else{
 3978:       int i;
 3979:       x2a->ht = (x2node**)&(x2a->tbl[128]);
 3980:       for(i=0; i<128; i++) x2a->ht[i] = 0;
 3981:     }
 3982:   }
 3983: }
 3984: /* Insert a new record into the array.  Return TRUE if successful.
 3985: ** Prior data with the same key is NOT overwritten */
 3986: int Symbol_insert(data,key)
 3987: struct symbol *data;
 3988: char *key;
 3989: {
 3990:   x2node *np;
 3991:   int h;
 3992:   int ph;
 3993: 
 3994:   if( x2a==0 ) return 0;
 3995:   ph = strhash(key);
 3996:   h = ph & (x2a->size-1);
 3997:   np = x2a->ht[h];
 3998:   while( np ){
 3999:     if( strcmp(np->key,key)==0 ){
 4000:       /* An existing entry with the same key is found. */
 4001:       /* Fail because overwrite is not allows. */
 4002:       return 0;
 4003:     }
 4004:     np = np->next;
 4005:   }
 4006:   if( x2a->count>=x2a->size ){
 4007:     /* Need to make the hash table bigger */
 4008:     int i,size;
 4009:     struct s_x2 array;
 4010:     array.size = size = x2a->size*2;
 4011:     array.count = x2a->count;
 4012:     array.tbl = (x2node*)malloc(
 4013:       (sizeof(x2node) + sizeof(x2node*))*size );
 4014:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 4015:     array.ht = (x2node**)&(array.tbl[size]);
 4016:     for(i=0; i<size; i++) array.ht[i] = 0;
 4017:     for(i=0; i<x2a->count; i++){
 4018:       x2node *oldnp, *newnp;
 4019:       oldnp = &(x2a->tbl[i]);
 4020:       h = strhash(oldnp->key) & (size-1);
 4021:       newnp = &(array.tbl[i]);
 4022:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 4023:       newnp->next = array.ht[h];
 4024:       newnp->key = oldnp->key;
 4025:       newnp->data = oldnp->data;
 4026:       newnp->from = &(array.ht[h]);
 4027:       array.ht[h] = newnp;
 4028:     }
 4029:     free(x2a->tbl);
 4030:     *x2a = array;
 4031:   }
 4032:   /* Insert the new data */
 4033:   h = ph & (x2a->size-1);
 4034:   np = &(x2a->tbl[x2a->count++]);
 4035:   np->key = key;
 4036:   np->data = data;
 4037:   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
 4038:   np->next = x2a->ht[h];
 4039:   x2a->ht[h] = np;
 4040:   np->from = &(x2a->ht[h]);
 4041:   return 1;
 4042: }
 4043: 
 4044: /* Return a pointer to data assigned to the given key.  Return NULL
 4045: ** if no such key. */
 4046: struct symbol *Symbol_find(key)
 4047: char *key;
 4048: {
 4049:   int h;
 4050:   x2node *np;
 4051: 
 4052:   if( x2a==0 ) return 0;
 4053:   h = strhash(key) & (x2a->size-1);
 4054:   np = x2a->ht[h];
 4055:   while( np ){
 4056:     if( strcmp(np->key,key)==0 ) break;
 4057:     np = np->next;
 4058:   }
 4059:   return np ? np->data : 0;
 4060: }
 4061: 
 4062: /* Return the n-th data.  Return NULL if n is out of range. */
 4063: struct symbol *Symbol_Nth(n)
 4064: int n;
 4065: {
 4066:   struct symbol *data;
 4067:   if( x2a && n>0 && n<=x2a->count ){
 4068:     data = x2a->tbl[n-1].data;
 4069:   }else{
 4070:     data = 0;
 4071:   }
 4072:   return data;
 4073: }
 4074: 
 4075: /* Return the size of the array */
 4076: int Symbol_count()
 4077: {
 4078:   return x2a ? x2a->count : 0;
 4079: }
 4080: 
 4081: /* Return an array of pointers to all data in the table.
 4082: ** The array is obtained from malloc.  Return NULL if memory allocation
 4083: ** problems, or if the array is empty. */
 4084: struct symbol **Symbol_arrayof()
 4085: {
 4086:   struct symbol **array;
 4087:   int i,size;
 4088:   if( x2a==0 ) return 0;
 4089:   size = x2a->count;
 4090:   array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
 4091:   if( array ){
 4092:     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
 4093:   }
 4094:   return array;
 4095: }
 4096: 
 4097: /* Compare two configurations */
 4098: int Configcmp(a,b)
 4099: struct config *a;
 4100: struct config *b;
 4101: {
 4102:   int x;
 4103:   x = a->rp->index - b->rp->index;
 4104:   if( x==0 ) x = a->dot - b->dot;
 4105:   return x;
 4106: }
 4107: 
 4108: /* Compare two states */
 4109: PRIVATE int statecmp(a,b)
 4110: struct config *a;
 4111: struct config *b;
 4112: {
 4113:   int rc;
 4114:   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
 4115:     rc = a->rp->index - b->rp->index;
 4116:     if( rc==0 ) rc = a->dot - b->dot;
 4117:   }
 4118:   if( rc==0 ){
 4119:     if( a ) rc = 1;
 4120:     if( b ) rc = -1;
 4121:   }
 4122:   return rc;
 4123: }
 4124: 
 4125: /* Hash a state */
 4126: PRIVATE int statehash(a)
 4127: struct config *a;
 4128: {
 4129:   unsigned int h=0;
 4130:   while( a ){
 4131:     h = h*571u + (unsigned int)a->rp->index*37u + (unsigned int)a->dot;
 4132:     a = a->bp;
 4133:   }
 4134:   return h;
 4135: }
 4136: 
 4137: /* Allocate a new state structure */
 4138: struct state *State_new()
 4139: {
 4140:   struct state *new;
 4141:   new = (struct state *)malloc( sizeof(struct state) );
 4142:   MemoryCheck(new);
 4143:   return new;
 4144: }
 4145: 
 4146: /* There is one instance of the following structure for each
 4147: ** associative array of type "x3".
 4148: */
 4149: struct s_x3 {
 4150:   int size;               /* The number of available slots. */
 4151:                           /*   Must be a power of 2 greater than or */
 4152:                           /*   equal to 1 */
 4153:   int count;              /* Number of currently slots filled */
 4154:   struct s_x3node *tbl;  /* The data stored here */
 4155:   struct s_x3node **ht;  /* Hash table for lookups */
 4156: };
 4157: 
 4158: /* There is one instance of this structure for every data element
 4159: ** in an associative array of type "x3".
 4160: */
 4161: typedef struct s_x3node {
 4162:   struct state *data;                  /* The data */
 4163:   struct config *key;                   /* The key */
 4164:   struct s_x3node *next;   /* Next entry with the same hash */
 4165:   struct s_x3node **from;  /* Previous link */
 4166: } x3node;
 4167: 
 4168: /* There is only one instance of the array, which is the following */
 4169: static struct s_x3 *x3a;
 4170: 
 4171: /* Allocate a new associative array */
 4172: void State_init(){
 4173:   if( x3a ) return;
 4174:   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
 4175:   if( x3a ){
 4176:     x3a->size = 128;
 4177:     x3a->count = 0;
 4178:     x3a->tbl = (x3node*)malloc(
 4179:       (sizeof(x3node) + sizeof(x3node*))*128 );
 4180:     if( x3a->tbl==0 ){
 4181:       free(x3a);
 4182:       x3a = 0;
 4183:     }else{
 4184:       int i;
 4185:       x3a->ht = (x3node**)&(x3a->tbl[128]);
 4186:       for(i=0; i<128; i++) x3a->ht[i] = 0;
 4187:     }
 4188:   }
 4189: }
 4190: /* Insert a new record into the array.  Return TRUE if successful.
 4191: ** Prior data with the same key is NOT overwritten */
 4192: int State_insert(data,key)
 4193: struct state *data;
 4194: struct config *key;
 4195: {
 4196:   x3node *np;
 4197:   int h;
 4198:   int ph;
 4199: 
 4200:   if( x3a==0 ) return 0;
 4201:   ph = statehash(key);
 4202:   h = ph & (x3a->size-1);
 4203:   np = x3a->ht[h];
 4204:   while( np ){
 4205:     if( statecmp(np->key,key)==0 ){
 4206:       /* An existing entry with the same key is found. */
 4207:       /* Fail because overwrite is not allows. */
 4208:       return 0;
 4209:     }
 4210:     np = np->next;
 4211:   }
 4212:   if( x3a->count>=x3a->size ){
 4213:     /* Need to make the hash table bigger */
 4214:     int i,size;
 4215:     struct s_x3 array;
 4216:     array.size = size = x3a->size*2;
 4217:     array.count = x3a->count;
 4218:     array.tbl = (x3node*)malloc(
 4219:       (sizeof(x3node) + sizeof(x3node*))*size );
 4220:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 4221:     array.ht = (x3node**)&(array.tbl[size]);
 4222:     for(i=0; i<size; i++) array.ht[i] = 0;
 4223:     for(i=0; i<x3a->count; i++){
 4224:       x3node *oldnp, *newnp;
 4225:       oldnp = &(x3a->tbl[i]);
 4226:       h = statehash(oldnp->key) & (size-1);
 4227:       newnp = &(array.tbl[i]);
 4228:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 4229:       newnp->next = array.ht[h];
 4230:       newnp->key = oldnp->key;
 4231:       newnp->data = oldnp->data;
 4232:       newnp->from = &(array.ht[h]);
 4233:       array.ht[h] = newnp;
 4234:     }
 4235:     free(x3a->tbl);
 4236:     *x3a = array;
 4237:   }
 4238:   /* Insert the new data */
 4239:   h = ph & (x3a->size-1);
 4240:   np = &(x3a->tbl[x3a->count++]);
 4241:   np->key = key;
 4242:   np->data = data;
 4243:   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
 4244:   np->next = x3a->ht[h];
 4245:   x3a->ht[h] = np;
 4246:   np->from = &(x3a->ht[h]);
 4247:   return 1;
 4248: }
 4249: 
 4250: /* Return a pointer to data assigned to the given key.  Return NULL
 4251: ** if no such key. */
 4252: struct state *State_find(key)
 4253: struct config *key;
 4254: {
 4255:   int h;
 4256:   x3node *np;
 4257: 
 4258:   if( x3a==0 ) return 0;
 4259:   h = statehash(key) & (x3a->size-1);
 4260:   np = x3a->ht[h];
 4261:   while( np ){
 4262:     if( statecmp(np->key,key)==0 ) break;
 4263:     np = np->next;
 4264:   }
 4265:   return np ? np->data : 0;
 4266: }
 4267: 
 4268: /* Return an array of pointers to all data in the table.
 4269: ** The array is obtained from malloc.  Return NULL if memory allocation
 4270: ** problems, or if the array is empty. */
 4271: struct state **State_arrayof()
 4272: {
 4273:   struct state **array;
 4274:   int i,size;
 4275:   if( x3a==0 ) return 0;
 4276:   size = x3a->count;
 4277:   array = (struct state **)malloc( sizeof(struct state *)*size );
 4278:   if( array ){
 4279:     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
 4280:   }
 4281:   return array;
 4282: }
 4283: 
 4284: /* Hash a configuration */
 4285: PRIVATE int confighash(a)
 4286: struct config *a;
 4287: {
 4288:   int h=0;
 4289:   h = h*571 + a->rp->index*37 + a->dot;
 4290:   return h;
 4291: }
 4292: 
 4293: /* There is one instance of the following structure for each
 4294: ** associative array of type "x4".
 4295: */
 4296: struct s_x4 {
 4297:   int size;               /* The number of available slots. */
 4298:                           /*   Must be a power of 2 greater than or */
 4299:                           /*   equal to 1 */
 4300:   int count;              /* Number of currently slots filled */
 4301:   struct s_x4node *tbl;  /* The data stored here */
 4302:   struct s_x4node **ht;  /* Hash table for lookups */
 4303: };
 4304: 
 4305: /* There is one instance of this structure for every data element
 4306: ** in an associative array of type "x4".
 4307: */
 4308: typedef struct s_x4node {
 4309:   struct config *data;                  /* The data */
 4310:   struct s_x4node *next;   /* Next entry with the same hash */
 4311:   struct s_x4node **from;  /* Previous link */
 4312: } x4node;
 4313: 
 4314: /* There is only one instance of the array, which is the following */
 4315: static struct s_x4 *x4a;
 4316: 
 4317: /* Allocate a new associative array */
 4318: void Configtable_init(){
 4319:   if( x4a ) return;
 4320:   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
 4321:   if( x4a ){
 4322:     x4a->size = 64;
 4323:     x4a->count = 0;
 4324:     x4a->tbl = (x4node*)malloc(
 4325:       (sizeof(x4node) + sizeof(x4node*))*64 );
 4326:     if( x4a->tbl==0 ){
 4327:       free(x4a);
 4328:       x4a = 0;
 4329:     }else{
 4330:       int i;
 4331:       x4a->ht = (x4node**)&(x4a->tbl[64]);
 4332:       for(i=0; i<64; i++) x4a->ht[i] = 0;
 4333:     }
 4334:   }
 4335: }
 4336: /* Insert a new record into the array.  Return TRUE if successful.
 4337: ** Prior data with the same key is NOT overwritten */
 4338: int Configtable_insert(data)
 4339: struct config *data;
 4340: {
 4341:   x4node *np;
 4342:   int h;
 4343:   int ph;
 4344: 
 4345:   if( x4a==0 ) return 0;
 4346:   ph = confighash(data);
 4347:   h = ph & (x4a->size-1);
 4348:   np = x4a->ht[h];
 4349:   while( np ){
 4350:     if( Configcmp(np->data,data)==0 ){
 4351:       /* An existing entry with the same key is found. */
 4352:       /* Fail because overwrite is not allows. */
 4353:       return 0;
 4354:     }
 4355:     np = np->next;
 4356:   }
 4357:   if( x4a->count>=x4a->size ){
 4358:     /* Need to make the hash table bigger */
 4359:     int i,size;
 4360:     struct s_x4 array;
 4361:     array.size = size = x4a->size*2;
 4362:     array.count = x4a->count;
 4363:     array.tbl = (x4node*)malloc(
 4364:       (sizeof(x4node) + sizeof(x4node*))*size );
 4365:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 4366:     array.ht = (x4node**)&(array.tbl[size]);
 4367:     for(i=0; i<size; i++) array.ht[i] = 0;
 4368:     for(i=0; i<x4a->count; i++){
 4369:       x4node *oldnp, *newnp;
 4370:       oldnp = &(x4a->tbl[i]);
 4371:       h = confighash(oldnp->data) & (size-1);
 4372:       newnp = &(array.tbl[i]);
 4373:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 4374:       newnp->next = array.ht[h];
 4375:       newnp->data = oldnp->data;
 4376:       newnp->from = &(array.ht[h]);
 4377:       array.ht[h] = newnp;
 4378:     }
 4379:     free(x4a->tbl);
 4380:     *x4a = array;
 4381:   }
 4382:   /* Insert the new data */
 4383:   h = ph & (x4a->size-1);
 4384:   np = &(x4a->tbl[x4a->count++]);
 4385:   np->data = data;
 4386:   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
 4387:   np->next = x4a->ht[h];
 4388:   x4a->ht[h] = np;
 4389:   np->from = &(x4a->ht[h]);
 4390:   return 1;
 4391: }
 4392: 
 4393: /* Return a pointer to data assigned to the given key.  Return NULL
 4394: ** if no such key. */
 4395: struct config *Configtable_find(key)
 4396: struct config *key;
 4397: {
 4398:   int h;
 4399:   x4node *np;
 4400: 
 4401:   if( x4a==0 ) return 0;
 4402:   h = confighash(key) & (x4a->size-1);
 4403:   np = x4a->ht[h];
 4404:   while( np ){
 4405:     if( Configcmp(np->data,key)==0 ) break;
 4406:     np = np->next;
 4407:   }
 4408:   return np ? np->data : 0;
 4409: }
 4410: 
 4411: /* Remove all data from the table.  Pass each data to the function "f"
 4412: ** as it is removed.  ("f" may be null to avoid this step.) */
 4413: void Configtable_clear(f)
 4414: int(*f)(/* struct config * */);
 4415: {
 4416:   int i;
 4417:   if( x4a==0 || x4a->count==0 ) return;
 4418:   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
 4419:   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
 4420:   x4a->count = 0;
 4421:   return;
 4422: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>