File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / lighttpd / src / lemon.c
Revision 1.1.1.3 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Wed Nov 2 10:35:00 2016 UTC (7 years, 8 months ago) by misho
Branches: lighttpd, MAIN
CVS tags: v1_4_41p8, HEAD
lighttpd 1.4.41

    1: #include "first.h"
    2: 
    3: /*
    4: ** This file contains all sources (including headers) to the LEMON
    5: ** LALR(1) parser generator.  The sources have been combined into a
    6: ** single file to make it easy to include LEMON in the source tree
    7: ** and Makefile of another program.
    8: **
    9: ** The author of this program disclaims copyright.
   10: */
   11: #include <stdio.h>
   12: #include <stdarg.h>
   13: #include <string.h>
   14: #include <ctype.h>
   15: #include <stdlib.h>
   16: 
   17: #ifdef HAVE_STDINT_H
   18: # include <stdint.h>
   19: #endif
   20: #ifdef HAVE_INTTYPES_H
   21: # include <inttypes.h>
   22: #endif
   23: 
   24: #define UNUSED(x) ( (void)(x) )
   25: 
   26: extern void qsort();
   27: extern double strtod();
   28: extern long strtol();
   29: extern void free();
   30: extern int access();
   31: extern int atoi();
   32: extern char *getenv();
   33: 
   34: #ifndef __WIN32__
   35: #   if defined(_WIN32) || defined(WIN32)
   36: #	define __WIN32__
   37: #   endif
   38: #endif
   39: 
   40: #if __GNUC__ > 2
   41: #define NORETURN __attribute__ ((__noreturn__))
   42: #else
   43: #define NORETURN
   44: #endif
   45: 
   46: /* #define PRIVATE static */
   47: #define PRIVATE static
   48: 
   49: #ifdef TEST
   50: #define MAXRHS 5       /* Set low to exercise exception code */
   51: #else
   52: #define MAXRHS 1000
   53: #endif
   54: 
   55: char *msort();
   56: extern void *malloc();
   57: 
   58: extern void memory_error() NORETURN;
   59: 
   60: /******** From the file "action.h" *************************************/
   61: struct action *Action_new();
   62: struct action *Action_sort();
   63: void Action_add();
   64: 
   65: /********* From the file "assert.h" ************************************/
   66: void myassert() NORETURN;
   67: #ifndef NDEBUG
   68: #  define assert(X) if(!(X))myassert(__FILE__,__LINE__)
   69: #else
   70: #  define assert(X)
   71: #endif
   72: 
   73: /********** From the file "build.h" ************************************/
   74: void FindRulePrecedences();
   75: void FindFirstSets();
   76: void FindStates();
   77: void FindLinks();
   78: void FindFollowSets();
   79: void FindActions();
   80: 
   81: /********* From the file "configlist.h" *********************************/
   82: void Configlist_init(/* void */);
   83: struct config *Configlist_add(/* struct rule *, int */);
   84: struct config *Configlist_addbasis(/* struct rule *, int */);
   85: void Configlist_closure(/* void */);
   86: void Configlist_sort(/* void */);
   87: void Configlist_sortbasis(/* void */);
   88: struct config *Configlist_return(/* void */);
   89: struct config *Configlist_basis(/* void */);
   90: void Configlist_eat(/* struct config * */);
   91: void Configlist_reset(/* void */);
   92: 
   93: /********* From the file "error.h" ***************************************/
   94: void ErrorMsg(const char *, int,const char *, ...);
   95: 
   96: /****** From the file "option.h" ******************************************/
   97: struct s_options {
   98:   enum { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
   99:          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
  100:   char *label;
  101:   char *arg;
  102:   char *message;
  103: };
  104: int    OptInit(/* char**,struct s_options*,FILE* */);
  105: int    OptNArgs(/* void */);
  106: char  *OptArg(/* int */);
  107: void   OptErr(/* int */);
  108: void   OptPrint(/* void */);
  109: 
  110: /******** From the file "parse.h" *****************************************/
  111: void Parse(/* struct lemon *lemp */);
  112: 
  113: /********* From the file "plink.h" ***************************************/
  114: struct plink *Plink_new(/* void */);
  115: void Plink_add(/* struct plink **, struct config * */);
  116: void Plink_copy(/* struct plink **, struct plink * */);
  117: void Plink_delete(/* struct plink * */);
  118: 
  119: /********** From the file "report.h" *************************************/
  120: void Reprint(/* struct lemon * */);
  121: void ReportOutput(/* struct lemon * */);
  122: void ReportTable(/* struct lemon * */);
  123: void ReportHeader(/* struct lemon * */);
  124: void CompressTables(/* struct lemon * */);
  125: 
  126: /********** From the file "set.h" ****************************************/
  127: void  SetSize(/* int N */);             /* All sets will be of size N */
  128: char *SetNew(/* void */);               /* A new set for element 0..N */
  129: void  SetFree(/* char* */);             /* Deallocate a set */
  130: 
  131: int SetAdd(/* char*,int */);            /* Add element to a set */
  132: int SetUnion(/* char *A,char *B */);    /* A <- A U B, thru element N */
  133: 
  134: #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
  135: 
  136: /********** From the file "struct.h" *************************************/
  137: /*
  138: ** Principal data structures for the LEMON parser generator.
  139: */
  140: 
  141: typedef enum {Bo_FALSE=0, Bo_TRUE} Boolean;
  142: 
  143: /* Symbols (terminals and nonterminals) of the grammar are stored
  144: ** in the following: */
  145: struct symbol {
  146:   char *name;              /* Name of the symbol */
  147:   int index;               /* Index number for this symbol */
  148:   enum {
  149:     TERMINAL,
  150:     NONTERMINAL
  151:   } type;                  /* Symbols are all either TERMINALS or NTs */
  152:   struct rule *rule;       /* Linked list of rules of this (if an NT) */
  153:   struct symbol *fallback; /* fallback token in case this token doesn't parse */
  154:   int prec;                /* Precedence if defined (-1 otherwise) */
  155:   enum e_assoc {
  156:     LEFT,
  157:     RIGHT,
  158:     NONE,
  159:     UNK
  160:   } assoc;                 /* Associativity if predecence is defined */
  161:   char *firstset;          /* First-set for all rules of this symbol */
  162:   Boolean lambda;          /* True if NT and can generate an empty string */
  163:   char *destructor;        /* Code which executes whenever this symbol is
  164:                            ** popped from the stack during error processing */
  165:   int destructorln;        /* Line number of destructor code */
  166:   char *datatype;          /* The data type of information held by this
  167:                            ** object. Only used if type==NONTERMINAL */
  168:   int dtnum;               /* The data type number.  In the parser, the value
  169:                            ** stack is a union.  The .yy%d element of this
  170:                            ** union is the correct data type for this object */
  171: };
  172: 
  173: /* Each production rule in the grammar is stored in the following
  174: ** structure.  */
  175: struct rule {
  176:   struct symbol *lhs;      /* Left-hand side of the rule */
  177:   char *lhsalias;          /* Alias for the LHS (NULL if none) */
  178:   int ruleline;            /* Line number for the rule */
  179:   int nrhs;                /* Number of RHS symbols */
  180:   struct symbol **rhs;     /* The RHS symbols */
  181:   char **rhsalias;         /* An alias for each RHS symbol (NULL if none) */
  182:   int line;                /* Line number at which code begins */
  183:   char *code;              /* The code executed when this rule is reduced */
  184:   struct symbol *precsym;  /* Precedence symbol for this rule */
  185:   int index;               /* An index number for this rule */
  186:   Boolean canReduce;       /* True if this rule is ever reduced */
  187:   struct rule *nextlhs;    /* Next rule with the same LHS */
  188:   struct rule *next;       /* Next rule in the global list */
  189: };
  190: 
  191: /* A configuration is a production rule of the grammar together with
  192: ** a mark (dot) showing how much of that rule has been processed so far.
  193: ** Configurations also contain a follow-set which is a list of terminal
  194: ** symbols which are allowed to immediately follow the end of the rule.
  195: ** Every configuration is recorded as an instance of the following: */
  196: struct config {
  197:   struct rule *rp;         /* The rule upon which the configuration is based */
  198:   int dot;                 /* The parse point */
  199:   char *fws;               /* Follow-set for this configuration only */
  200:   struct plink *fplp;      /* Follow-set forward propagation links */
  201:   struct plink *bplp;      /* Follow-set backwards propagation links */
  202:   struct state *stp;       /* Pointer to state which contains this */
  203:   enum {
  204:     COMPLETE,              /* The status is used during followset and */
  205:     INCOMPLETE             /*    shift computations */
  206:   } status;
  207:   struct config *next;     /* Next configuration in the state */
  208:   struct config *bp;       /* The next basis configuration */
  209: };
  210: 
  211: /* Every shift or reduce operation is stored as one of the following */
  212: struct action {
  213:   struct symbol *sp;       /* The look-ahead symbol */
  214:   enum e_action {
  215:     SHIFT,
  216:     ACCEPT,
  217:     REDUCE,
  218:     ERROR,
  219:     CONFLICT,                /* Was a reduce, but part of a conflict */
  220:     SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
  221:     RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
  222:     NOT_USED                 /* Deleted by compression */
  223:   } type;
  224:   union {
  225:     struct state *stp;     /* The new state, if a shift */
  226:     struct rule *rp;       /* The rule, if a reduce */
  227:   } x;
  228:   struct action *next;     /* Next action for this state */
  229:   struct action *collide;  /* Next action with the same hash */
  230: };
  231: 
  232: /* Each state of the generated parser's finite state machine
  233: ** is encoded as an instance of the following structure. */
  234: struct state {
  235:   struct config *bp;       /* The basis configurations for this state */
  236:   struct config *cfp;      /* All configurations in this set */
  237:   int index;               /* Sequencial number for this state */
  238:   struct action *ap;       /* Array of actions for this state */
  239:   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
  240:   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
  241:   int iDflt;               /* Default action */
  242: };
  243: #define NO_OFFSET (-2147483647)
  244: 
  245: /* A followset propagation link indicates that the contents of one
  246: ** configuration followset should be propagated to another whenever
  247: ** the first changes. */
  248: struct plink {
  249:   struct config *cfp;      /* The configuration to which linked */
  250:   struct plink *next;      /* The next propagate link */
  251: };
  252: 
  253: /* The state vector for the entire parser generator is recorded as
  254: ** follows.  (LEMON uses no global variables and makes little use of
  255: ** static variables.  Fields in the following structure can be thought
  256: ** of as begin global variables in the program.) */
  257: struct lemon {
  258:   struct state **sorted;   /* Table of states sorted by state number */
  259:   struct rule *rule;       /* List of all rules */
  260:   int nstate;              /* Number of states */
  261:   int nrule;               /* Number of rules */
  262:   int nsymbol;             /* Number of terminal and nonterminal symbols */
  263:   int nterminal;           /* Number of terminal symbols */
  264:   struct symbol **symbols; /* Sorted array of pointers to symbols */
  265:   int errorcnt;            /* Number of errors */
  266:   struct symbol *errsym;   /* The error symbol */
  267:   char *name;              /* Name of the generated parser */
  268:   char *arg;               /* Declaration of the 3th argument to parser */
  269:   char *tokentype;         /* Type of terminal symbols in the parser stack */
  270:   char *vartype;           /* The default type of non-terminal symbols */
  271:   char *start;             /* Name of the start symbol for the grammar */
  272:   char *stacksize;         /* Size of the parser stack */
  273:   char *include;           /* Code to put at the start of the C file */
  274:   int  includeln;          /* Line number for start of include code */
  275:   char *error;             /* Code to execute when an error is seen */
  276:   int  errorln;            /* Line number for start of error code */
  277:   char *overflow;          /* Code to execute on a stack overflow */
  278:   int  overflowln;         /* Line number for start of overflow code */
  279:   char *failure;           /* Code to execute on parser failure */
  280:   int  failureln;          /* Line number for start of failure code */
  281:   char *accept;            /* Code to execute when the parser excepts */
  282:   int  acceptln;           /* Line number for the start of accept code */
  283:   char *extracode;         /* Code appended to the generated file */
  284:   int  extracodeln;        /* Line number for the start of the extra code */
  285:   char *tokendest;         /* Code to execute to destroy token data */
  286:   int  tokendestln;        /* Line number for token destroyer code */
  287:   char *vardest;           /* Code for the default non-terminal destructor */
  288:   int  vardestln;          /* Line number for default non-term destructor code*/
  289:   char *filename;          /* Name of the input file */
  290:   char *tmplname;          /* Name of the template file */
  291:   char *outname;           /* Name of the current output file */
  292:   char *tokenprefix;       /* A prefix added to token names in the .h file */
  293:   int nconflict;           /* Number of parsing conflicts */
  294:   int tablesize;           /* Size of the parse tables */
  295:   int basisflag;           /* Print only basis configurations */
  296:   int has_fallback;        /* True if any %fallback is seen in the grammer */
  297:   char *argv0;             /* Name of the program */
  298: };
  299: 
  300: #define MemoryCheck(X) if((X)==0){ \
  301:   memory_error(); \
  302: }
  303: 
  304: /**************** From the file "table.h" *********************************/
  305: /*
  306: ** All code in this file has been automatically generated
  307: ** from a specification in the file
  308: **              "table.q"
  309: ** by the associative array code building program "aagen".
  310: ** Do not edit this file!  Instead, edit the specification
  311: ** file, then rerun aagen.
  312: */
  313: /*
  314: ** Code for processing tables in the LEMON parser generator.
  315: */
  316: 
  317: /* Routines for handling a strings */
  318: 
  319: char *Strsafe();
  320: 
  321: void Strsafe_init(/* void */);
  322: int Strsafe_insert(/* char * */);
  323: char *Strsafe_find(/* char * */);
  324: 
  325: /* Routines for handling symbols of the grammar */
  326: 
  327: struct symbol *Symbol_new();
  328: int Symbolcmpp(/* struct symbol **, struct symbol ** */);
  329: void Symbol_init(/* void */);
  330: int Symbol_insert(/* struct symbol *, char * */);
  331: struct symbol *Symbol_find(/* char * */);
  332: struct symbol *Symbol_Nth(/* int */);
  333: int Symbol_count(/*  */);
  334: struct symbol **Symbol_arrayof(/*  */);
  335: 
  336: /* Routines to manage the state table */
  337: 
  338: int Configcmp(/* struct config *, struct config * */);
  339: struct state *State_new();
  340: void State_init(/* void */);
  341: int State_insert(/* struct state *, struct config * */);
  342: struct state *State_find(/* struct config * */);
  343: struct state **State_arrayof(/*  */);
  344: 
  345: /* Routines used for efficiency in Configlist_add */
  346: 
  347: void Configtable_init(/* void */);
  348: int Configtable_insert(/* struct config * */);
  349: struct config *Configtable_find(/* struct config * */);
  350: void Configtable_clear(/* int(*)(struct config *) */);
  351: /****************** From the file "action.c" *******************************/
  352: /*
  353: ** Routines processing parser actions in the LEMON parser generator.
  354: */
  355: 
  356: /* Allocate a new parser action */
  357: struct action *Action_new(){
  358:   static struct action *freelist = NULL;
  359:   struct action *new;
  360: 
  361:   if( freelist==NULL ){
  362:     int i;
  363:     int amt = 100;
  364:     freelist = (struct action *)malloc( sizeof(struct action)*amt );
  365:     if( freelist==0 ){
  366:       fprintf(stderr,"Unable to allocate memory for a new parser action.");
  367:       exit(1);
  368:     }
  369:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
  370:     freelist[amt-1].next = 0;
  371:   }
  372:   new = freelist;
  373:   freelist = freelist->next;
  374:   return new;
  375: }
  376: 
  377: /* Compare two actions */
  378: static int actioncmp(ap1,ap2)
  379: struct action *ap1;
  380: struct action *ap2;
  381: {
  382:   int rc;
  383:   rc = ap1->sp->index - ap2->sp->index;
  384:   if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
  385:   if( rc==0 ){
  386:     assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
  387:     assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
  388:     rc = ap1->x.rp->index - ap2->x.rp->index;
  389:   }
  390:   return rc;
  391: }
  392: 
  393: /* Sort parser actions */
  394: struct action *Action_sort(ap)
  395: struct action *ap;
  396: {
  397:   ap = (struct action *)msort(ap,&ap->next,actioncmp);
  398:   return ap;
  399: }
  400: 
  401: void Action_add(app,type,sp,arg)
  402: struct action **app;
  403: enum e_action type;
  404: struct symbol *sp;
  405: void *arg;
  406: {
  407:   struct action *new;
  408:   new = Action_new();
  409:   new->next = *app;
  410:   *app = new;
  411:   new->type = type;
  412:   new->sp = sp;
  413:   if( type==SHIFT ){
  414:     new->x.stp = (struct state *)arg;
  415:   }else{
  416:     new->x.rp = (struct rule *)arg;
  417:   }
  418: }
  419: /********************** New code to implement the "acttab" module ***********/
  420: /*
  421: ** This module implements routines use to construct the yy_action[] table.
  422: */
  423: 
  424: /*
  425: ** The state of the yy_action table under construction is an instance of
  426: ** the following structure
  427: */
  428: typedef struct acttab acttab;
  429: struct acttab {
  430:   int nAction;                 /* Number of used slots in aAction[] */
  431:   int nActionAlloc;            /* Slots allocated for aAction[] */
  432:   struct {
  433:     int lookahead;             /* Value of the lookahead token */
  434:     int action;                /* Action to take on the given lookahead */
  435:   } *aAction,                  /* The yy_action[] table under construction */
  436:     *aLookahead;               /* A single new transaction set */
  437:   int mnLookahead;             /* Minimum aLookahead[].lookahead */
  438:   int mnAction;                /* Action associated with mnLookahead */
  439:   int mxLookahead;             /* Maximum aLookahead[].lookahead */
  440:   int nLookahead;              /* Used slots in aLookahead[] */
  441:   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
  442: };
  443: 
  444: /* Return the number of entries in the yy_action table */
  445: #define acttab_size(X) ((X)->nAction)
  446: 
  447: /* The value for the N-th entry in yy_action */
  448: #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
  449: 
  450: /* The value for the N-th entry in yy_lookahead */
  451: #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
  452: 
  453: /* Free all memory associated with the given acttab */
  454: /*
  455: PRIVATE void acttab_free(acttab *p){
  456:   free( p->aAction );
  457:   free( p->aLookahead );
  458:   free( p );
  459: }
  460: */
  461: 
  462: /* Allocate a new acttab structure */
  463: PRIVATE acttab *acttab_alloc(void){
  464:   acttab *p = malloc( sizeof(*p) );
  465:   if( p==0 ){
  466:     fprintf(stderr,"Unable to allocate memory for a new acttab.");
  467:     exit(1);
  468:   }
  469:   memset(p, 0, sizeof(*p));
  470:   return p;
  471: }
  472: 
  473: /* Add a new action to the current transaction set
  474: */
  475: PRIVATE void acttab_action(acttab *p, int lookahead, int action){
  476:   if( p->nLookahead>=p->nLookaheadAlloc ){
  477:     p->nLookaheadAlloc += 25;
  478:     p->aLookahead = realloc( p->aLookahead,
  479:                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
  480:     if( p->aLookahead==0 ){
  481:       fprintf(stderr,"malloc failed\n");
  482:       exit(1);
  483:     }
  484:   }
  485:   if( p->nLookahead==0 ){
  486:     p->mxLookahead = lookahead;
  487:     p->mnLookahead = lookahead;
  488:     p->mnAction = action;
  489:   }else{
  490:     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
  491:     if( p->mnLookahead>lookahead ){
  492:       p->mnLookahead = lookahead;
  493:       p->mnAction = action;
  494:     }
  495:   }
  496:   p->aLookahead[p->nLookahead].lookahead = lookahead;
  497:   p->aLookahead[p->nLookahead].action = action;
  498:   p->nLookahead++;
  499: }
  500: 
  501: /*
  502: ** Add the transaction set built up with prior calls to acttab_action()
  503: ** into the current action table.  Then reset the transaction set back
  504: ** to an empty set in preparation for a new round of acttab_action() calls.
  505: **
  506: ** Return the offset into the action table of the new transaction.
  507: */
  508: PRIVATE int acttab_insert(acttab *p){
  509:   int i, j, k, n;
  510:   assert( p->nLookahead>0 );
  511: 
  512:   /* Make sure we have enough space to hold the expanded action table
  513:   ** in the worst case.  The worst case occurs if the transaction set
  514:   ** must be appended to the current action table
  515:   */
  516:   n = p->mxLookahead + 1;
  517:   if( p->nAction + n >= p->nActionAlloc ){
  518:     int oldAlloc = p->nActionAlloc;
  519:     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
  520:     p->aAction = realloc( p->aAction,
  521:                           sizeof(p->aAction[0])*p->nActionAlloc);
  522:     if( p->aAction==0 ){
  523:       fprintf(stderr,"malloc failed\n");
  524:       exit(1);
  525:     }
  526:     for(i=oldAlloc; i<p->nActionAlloc; i++){
  527:       p->aAction[i].lookahead = -1;
  528:       p->aAction[i].action = -1;
  529:     }
  530:   }
  531: 
  532:   /* Scan the existing action table looking for an offset where we can
  533:   ** insert the current transaction set.  Fall out of the loop when that
  534:   ** offset is found.  In the worst case, we fall out of the loop when
  535:   ** i reaches p->nAction, which means we append the new transaction set.
  536:   **
  537:   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  538:   */
  539:   for(i=0; i<p->nAction+p->mnLookahead; i++){
  540:     if( p->aAction[i].lookahead<0 ){
  541:       for(j=0; j<p->nLookahead; j++){
  542:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
  543:         if( k<0 ) break;
  544:         if( p->aAction[k].lookahead>=0 ) break;
  545:       }
  546:       if( j<p->nLookahead ) continue;
  547:       for(j=0; j<p->nAction; j++){
  548:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
  549:       }
  550:       if( j==p->nAction ){
  551:         break;  /* Fits in empty slots */
  552:       }
  553:     }else if( p->aAction[i].lookahead==p->mnLookahead ){
  554:       if( p->aAction[i].action!=p->mnAction ) continue;
  555:       for(j=0; j<p->nLookahead; j++){
  556:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
  557:         if( k<0 || k>=p->nAction ) break;
  558:         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
  559:         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
  560:       }
  561:       if( j<p->nLookahead ) continue;
  562:       n = 0;
  563:       for(j=0; j<p->nAction; j++){
  564:         if( p->aAction[j].lookahead<0 ) continue;
  565:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
  566:       }
  567:       if( n==p->nLookahead ){
  568:         break;  /* Same as a prior transaction set */
  569:       }
  570:     }
  571:   }
  572:   /* Insert transaction set at index i. */
  573:   for(j=0; j<p->nLookahead; j++){
  574:     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
  575:     p->aAction[k] = p->aLookahead[j];
  576:     if( k>=p->nAction ) p->nAction = k+1;
  577:   }
  578:   p->nLookahead = 0;
  579: 
  580:   /* Return the offset that is added to the lookahead in order to get the
  581:   ** index into yy_action of the action */
  582:   return i - p->mnLookahead;
  583: }
  584: 
  585: /********************** From the file "assert.c" ****************************/
  586: /*
  587: ** A more efficient way of handling assertions.
  588: */
  589: void myassert(file,line)
  590: char *file;
  591: int line;
  592: {
  593:   fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
  594:   exit(1);
  595: }
  596: /********************** From the file "build.c" *****************************/
  597: /*
  598: ** Routines to construction the finite state machine for the LEMON
  599: ** parser generator.
  600: */
  601: 
  602: /* Find a precedence symbol of every rule in the grammar.
  603: **
  604: ** Those rules which have a precedence symbol coded in the input
  605: ** grammar using the "[symbol]" construct will already have the
  606: ** rp->precsym field filled.  Other rules take as their precedence
  607: ** symbol the first RHS symbol with a defined precedence.  If there
  608: ** are not RHS symbols with a defined precedence, the precedence
  609: ** symbol field is left blank.
  610: */
  611: void FindRulePrecedences(xp)
  612: struct lemon *xp;
  613: {
  614:   struct rule *rp;
  615:   for(rp=xp->rule; rp; rp=rp->next){
  616:     if( rp->precsym==0 ){
  617:       int i;
  618:       for(i=0; i<rp->nrhs; i++){
  619:         if( rp->rhs[i]->prec>=0 ){
  620:           rp->precsym = rp->rhs[i];
  621:           break;
  622: 	}
  623:       }
  624:     }
  625:   }
  626:   return;
  627: }
  628: 
  629: /* Find all nonterminals which will generate the empty string.
  630: ** Then go back and compute the first sets of every nonterminal.
  631: ** The first set is the set of all terminal symbols which can begin
  632: ** a string generated by that nonterminal.
  633: */
  634: void FindFirstSets(lemp)
  635: struct lemon *lemp;
  636: {
  637:   int i;
  638:   struct rule *rp;
  639:   int progress;
  640: 
  641:   for(i=0; i<lemp->nsymbol; i++){
  642:     lemp->symbols[i]->lambda = Bo_FALSE;
  643:   }
  644:   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
  645:     lemp->symbols[i]->firstset = SetNew();
  646:   }
  647: 
  648:   /* First compute all lambdas */
  649:   do{
  650:     progress = 0;
  651:     for(rp=lemp->rule; rp; rp=rp->next){
  652:       if( rp->lhs->lambda ) continue;
  653:       for(i=0; i<rp->nrhs; i++){
  654:          if( rp->rhs[i]->lambda==Bo_FALSE ) break;
  655:       }
  656:       if( i==rp->nrhs ){
  657:         rp->lhs->lambda = Bo_TRUE;
  658:         progress = 1;
  659:       }
  660:     }
  661:   }while( progress );
  662: 
  663:   /* Now compute all first sets */
  664:   do{
  665:     struct symbol *s1, *s2;
  666:     progress = 0;
  667:     for(rp=lemp->rule; rp; rp=rp->next){
  668:       s1 = rp->lhs;
  669:       for(i=0; i<rp->nrhs; i++){
  670:         s2 = rp->rhs[i];
  671:         if( s2->type==TERMINAL ){
  672:           progress += SetAdd(s1->firstset,s2->index);
  673:           break;
  674: 	}else if( s1==s2 ){
  675:           if( s1->lambda==Bo_FALSE ) break;
  676: 	}else{
  677:           progress += SetUnion(s1->firstset,s2->firstset);
  678:           if( s2->lambda==Bo_FALSE ) break;
  679: 	}
  680:       }
  681:     }
  682:   }while( progress );
  683:   return;
  684: }
  685: 
  686: /* Compute all LR(0) states for the grammar.  Links
  687: ** are added to between some states so that the LR(1) follow sets
  688: ** can be computed later.
  689: */
  690: PRIVATE struct state *getstate(/* struct lemon * */);  /* forward reference */
  691: void FindStates(lemp)
  692: struct lemon *lemp;
  693: {
  694:   struct symbol *sp;
  695:   struct rule *rp;
  696: 
  697:   Configlist_init();
  698: 
  699:   /* Find the start symbol */
  700:   if( lemp->start ){
  701:     sp = Symbol_find(lemp->start);
  702:     if( sp==0 ){
  703:       ErrorMsg(lemp->filename,0,
  704: "The specified start symbol \"%s\" is not \
  705: in a nonterminal of the grammar.  \"%s\" will be used as the start \
  706: symbol instead.",lemp->start,lemp->rule->lhs->name);
  707:       lemp->errorcnt++;
  708:       sp = lemp->rule->lhs;
  709:     }
  710:   }else{
  711:     sp = lemp->rule->lhs;
  712:   }
  713: 
  714:   /* Make sure the start symbol doesn't occur on the right-hand side of
  715:   ** any rule.  Report an error if it does.  (YACC would generate a new
  716:   ** start symbol in this case.) */
  717:   for(rp=lemp->rule; rp; rp=rp->next){
  718:     int i;
  719:     for(i=0; i<rp->nrhs; i++){
  720:       if( rp->rhs[i]==sp ){
  721:         ErrorMsg(lemp->filename,0,
  722: "The start symbol \"%s\" occurs on the \
  723: right-hand side of a rule. This will result in a parser which \
  724: does not work properly.",sp->name);
  725:         lemp->errorcnt++;
  726:       }
  727:     }
  728:   }
  729: 
  730:   /* The basis configuration set for the first state
  731:   ** is all rules which have the start symbol as their
  732:   ** left-hand side */
  733:   for(rp=sp->rule; rp; rp=rp->nextlhs){
  734:     struct config *newcfp;
  735:     newcfp = Configlist_addbasis(rp,0);
  736:     SetAdd(newcfp->fws,0);
  737:   }
  738: 
  739:   /* Compute the first state.  All other states will be
  740:   ** computed automatically during the computation of the first one.
  741:   ** The returned pointer to the first state is not used. */
  742:   (void)getstate(lemp);
  743:   return;
  744: }
  745: 
  746: /* Return a pointer to a state which is described by the configuration
  747: ** list which has been built from calls to Configlist_add.
  748: */
  749: PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
  750: PRIVATE struct state *getstate(lemp)
  751: struct lemon *lemp;
  752: {
  753:   struct config *cfp, *bp;
  754:   struct state *stp;
  755: 
  756:   /* Extract the sorted basis of the new state.  The basis was constructed
  757:   ** by prior calls to "Configlist_addbasis()". */
  758:   Configlist_sortbasis();
  759:   bp = Configlist_basis();
  760: 
  761:   /* Get a state with the same basis */
  762:   stp = State_find(bp);
  763:   if( stp ){
  764:     /* A state with the same basis already exists!  Copy all the follow-set
  765:     ** propagation links from the state under construction into the
  766:     ** preexisting state, then return a pointer to the preexisting state */
  767:     struct config *x, *y;
  768:     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
  769:       Plink_copy(&y->bplp,x->bplp);
  770:       Plink_delete(x->fplp);
  771:       x->fplp = x->bplp = 0;
  772:     }
  773:     cfp = Configlist_return();
  774:     Configlist_eat(cfp);
  775:   }else{
  776:     /* This really is a new state.  Construct all the details */
  777:     Configlist_closure(lemp);    /* Compute the configuration closure */
  778:     Configlist_sort();           /* Sort the configuration closure */
  779:     cfp = Configlist_return();   /* Get a pointer to the config list */
  780:     stp = State_new();           /* A new state structure */
  781:     MemoryCheck(stp);
  782:     stp->bp = bp;                /* Remember the configuration basis */
  783:     stp->cfp = cfp;              /* Remember the configuration closure */
  784:     stp->index = lemp->nstate++; /* Every state gets a sequence number */
  785:     stp->ap = 0;                 /* No actions, yet. */
  786:     State_insert(stp,stp->bp);   /* Add to the state table */
  787:     buildshifts(lemp,stp);       /* Recursively compute successor states */
  788:   }
  789:   return stp;
  790: }
  791: 
  792: /* Construct all successor states to the given state.  A "successor"
  793: ** state is any state which can be reached by a shift action.
  794: */
  795: PRIVATE void buildshifts(lemp,stp)
  796: struct lemon *lemp;
  797: struct state *stp;     /* The state from which successors are computed */
  798: {
  799:   struct config *cfp;  /* For looping thru the config closure of "stp" */
  800:   struct config *bcfp; /* For the inner loop on config closure of "stp" */
  801:   struct config *new;  /* */
  802:   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
  803:   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
  804:   struct state *newstp; /* A pointer to a successor state */
  805: 
  806:   /* Each configuration becomes complete after it contibutes to a successor
  807:   ** state.  Initially, all configurations are incomplete */
  808:   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
  809: 
  810:   /* Loop through all configurations of the state "stp" */
  811:   for(cfp=stp->cfp; cfp; cfp=cfp->next){
  812:     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
  813:     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
  814:     Configlist_reset();                      /* Reset the new config set */
  815:     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
  816: 
  817:     /* For every configuration in the state "stp" which has the symbol "sp"
  818:     ** following its dot, add the same configuration to the basis set under
  819:     ** construction but with the dot shifted one symbol to the right. */
  820:     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
  821:       if( bcfp->status==COMPLETE ) continue;    /* Already used */
  822:       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
  823:       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
  824:       if( bsp!=sp ) continue;                   /* Must be same as for "cfp" */
  825:       bcfp->status = COMPLETE;                  /* Mark this config as used */
  826:       new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
  827:       Plink_add(&new->bplp,bcfp);
  828:     }
  829: 
  830:     /* Get a pointer to the state described by the basis configuration set
  831:     ** constructed in the preceding loop */
  832:     newstp = getstate(lemp);
  833: 
  834:     /* The state "newstp" is reached from the state "stp" by a shift action
  835:     ** on the symbol "sp" */
  836:     Action_add(&stp->ap,SHIFT,sp,newstp);
  837:   }
  838: }
  839: 
  840: /*
  841: ** Construct the propagation links
  842: */
  843: void FindLinks(lemp)
  844: struct lemon *lemp;
  845: {
  846:   int i;
  847:   struct config *cfp, *other;
  848:   struct state *stp;
  849:   struct plink *plp;
  850: 
  851:   /* Housekeeping detail:
  852:   ** Add to every propagate link a pointer back to the state to
  853:   ** which the link is attached. */
  854:   for(i=0; i<lemp->nstate; i++){
  855:     stp = lemp->sorted[i];
  856:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
  857:       cfp->stp = stp;
  858:     }
  859:   }
  860: 
  861:   /* Convert all backlinks into forward links.  Only the forward
  862:   ** links are used in the follow-set computation. */
  863:   for(i=0; i<lemp->nstate; i++){
  864:     stp = lemp->sorted[i];
  865:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
  866:       for(plp=cfp->bplp; plp; plp=plp->next){
  867:         other = plp->cfp;
  868:         Plink_add(&other->fplp,cfp);
  869:       }
  870:     }
  871:   }
  872: }
  873: 
  874: /* Compute all followsets.
  875: **
  876: ** A followset is the set of all symbols which can come immediately
  877: ** after a configuration.
  878: */
  879: void FindFollowSets(lemp)
  880: struct lemon *lemp;
  881: {
  882:   int i;
  883:   struct config *cfp;
  884:   struct plink *plp;
  885:   int progress;
  886:   int change;
  887: 
  888:   for(i=0; i<lemp->nstate; i++){
  889:     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
  890:       cfp->status = INCOMPLETE;
  891:     }
  892:   }
  893: 
  894:   do{
  895:     progress = 0;
  896:     for(i=0; i<lemp->nstate; i++){
  897:       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
  898:         if( cfp->status==COMPLETE ) continue;
  899:         for(plp=cfp->fplp; plp; plp=plp->next){
  900:           change = SetUnion(plp->cfp->fws,cfp->fws);
  901:           if( change ){
  902:             plp->cfp->status = INCOMPLETE;
  903:             progress = 1;
  904: 	  }
  905: 	}
  906:         cfp->status = COMPLETE;
  907:       }
  908:     }
  909:   }while( progress );
  910: }
  911: 
  912: static int resolve_conflict();
  913: 
  914: /* Compute the reduce actions, and resolve conflicts.
  915: */
  916: void FindActions(lemp)
  917: struct lemon *lemp;
  918: {
  919:   int i,j;
  920:   struct config *cfp;
  921:   struct symbol *sp;
  922:   struct rule *rp;
  923: 
  924:   /* Add all of the reduce actions
  925:   ** A reduce action is added for each element of the followset of
  926:   ** a configuration which has its dot at the extreme right.
  927:   */
  928:   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
  929:     struct state *stp;
  930:     stp = lemp->sorted[i];
  931:     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
  932:       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
  933:         for(j=0; j<lemp->nterminal; j++){
  934:           if( SetFind(cfp->fws,j) ){
  935:             /* Add a reduce action to the state "stp" which will reduce by the
  936:             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
  937:             Action_add(&stp->ap,REDUCE,lemp->symbols[j],cfp->rp);
  938:           }
  939: 	}
  940:       }
  941:     }
  942:   }
  943: 
  944:   /* Add the accepting token */
  945:   if( lemp->start ){
  946:     sp = Symbol_find(lemp->start);
  947:     if( sp==0 ) sp = lemp->rule->lhs;
  948:   }else{
  949:     sp = lemp->rule->lhs;
  950:   }
  951:   /* Add to the first state (which is always the starting state of the
  952:   ** finite state machine) an action to ACCEPT if the lookahead is the
  953:   ** start nonterminal.  */
  954:   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
  955: 
  956:   /* Resolve conflicts */
  957:   for(i=0; i<lemp->nstate; i++){
  958:     struct action *ap, *nap;
  959:     struct state *stp;
  960:     stp = lemp->sorted[i];
  961:     assert( stp->ap );
  962:     stp->ap = Action_sort(stp->ap);
  963:     for(ap=stp->ap; ap && ap->next; ap=ap->next){
  964:       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
  965:          /* The two actions "ap" and "nap" have the same lookahead.
  966:          ** Figure out which one should be used */
  967:          lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
  968:       }
  969:     }
  970:   }
  971: 
  972:   /* Report an error for each rule that can never be reduced. */
  973:   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = Bo_FALSE;
  974:   for(i=0; i<lemp->nstate; i++){
  975:     struct action *ap;
  976:     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
  977:       if( ap->type==REDUCE ) ap->x.rp->canReduce = Bo_TRUE;
  978:     }
  979:   }
  980:   for(rp=lemp->rule; rp; rp=rp->next){
  981:     if( rp->canReduce ) continue;
  982:     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
  983:     lemp->errorcnt++;
  984:   }
  985: }
  986: 
  987: /* Resolve a conflict between the two given actions.  If the
  988: ** conflict can't be resolve, return non-zero.
  989: **
  990: ** NO LONGER TRUE:
  991: **   To resolve a conflict, first look to see if either action
  992: **   is on an error rule.  In that case, take the action which
  993: **   is not associated with the error rule.  If neither or both
  994: **   actions are associated with an error rule, then try to
  995: **   use precedence to resolve the conflict.
  996: **
  997: ** If either action is a SHIFT, then it must be apx.  This
  998: ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
  999: */
 1000: static int resolve_conflict(apx,apy,errsym)
 1001: struct action *apx;
 1002: struct action *apy;
 1003: struct symbol *errsym;   /* The error symbol (if defined.  NULL otherwise) */
 1004: {
 1005:   struct symbol *spx, *spy;
 1006:   int errcnt = 0;
 1007:   UNUSED(errsym);
 1008:   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
 1009:   if( apx->type==SHIFT && apy->type==REDUCE ){
 1010:     spx = apx->sp;
 1011:     spy = apy->x.rp->precsym;
 1012:     if( spy==0 || spx->prec<0 || spy->prec<0 ){
 1013:       /* Not enough precedence information. */
 1014:       apy->type = CONFLICT;
 1015:       errcnt++;
 1016:     }else if( spx->prec>spy->prec ){    /* Lower precedence wins */
 1017:       apy->type = RD_RESOLVED;
 1018:     }else if( spx->prec<spy->prec ){
 1019:       apx->type = SH_RESOLVED;
 1020:     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
 1021:       apy->type = RD_RESOLVED;                             /* associativity */
 1022:     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
 1023:       apx->type = SH_RESOLVED;
 1024:     }else{
 1025:       assert( spx->prec==spy->prec && spx->assoc==NONE );
 1026:       apy->type = CONFLICT;
 1027:       errcnt++;
 1028:     }
 1029:   }else if( apx->type==REDUCE && apy->type==REDUCE ){
 1030:     spx = apx->x.rp->precsym;
 1031:     spy = apy->x.rp->precsym;
 1032:     if( spx==0 || spy==0 || spx->prec<0 ||
 1033:     spy->prec<0 || spx->prec==spy->prec ){
 1034:       apy->type = CONFLICT;
 1035:       errcnt++;
 1036:     }else if( spx->prec>spy->prec ){
 1037:       apy->type = RD_RESOLVED;
 1038:     }else if( spx->prec<spy->prec ){
 1039:       apx->type = RD_RESOLVED;
 1040:     }
 1041:   }else{
 1042:     assert(
 1043:       apx->type==SH_RESOLVED ||
 1044:       apx->type==RD_RESOLVED ||
 1045:       apx->type==CONFLICT ||
 1046:       apy->type==SH_RESOLVED ||
 1047:       apy->type==RD_RESOLVED ||
 1048:       apy->type==CONFLICT
 1049:     );
 1050:     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
 1051:     ** REDUCEs on the list.  If we reach this point it must be because
 1052:     ** the parser conflict had already been resolved. */
 1053:   }
 1054:   return errcnt;
 1055: }
 1056: /********************* From the file "configlist.c" *************************/
 1057: /*
 1058: ** Routines to processing a configuration list and building a state
 1059: ** in the LEMON parser generator.
 1060: */
 1061: 
 1062: static struct config *freelist = 0;      /* List of free configurations */
 1063: static struct config *current = 0;       /* Top of list of configurations */
 1064: static struct config **currentend = 0;   /* Last on list of configs */
 1065: static struct config *basis = 0;         /* Top of list of basis configs */
 1066: static struct config **basisend = 0;     /* End of list of basis configs */
 1067: 
 1068: /* Return a pointer to a new configuration */
 1069: PRIVATE struct config *newconfig(){
 1070:   struct config *new;
 1071:   if( freelist==0 ){
 1072:     int i;
 1073:     int amt = 3;
 1074:     freelist = (struct config *)malloc( sizeof(struct config)*amt );
 1075:     if( freelist==0 ){
 1076:       fprintf(stderr,"Unable to allocate memory for a new configuration.");
 1077:       exit(1);
 1078:     }
 1079:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
 1080:     freelist[amt-1].next = 0;
 1081:   }
 1082:   new = freelist;
 1083:   freelist = freelist->next;
 1084:   return new;
 1085: }
 1086: 
 1087: /* The configuration "old" is no longer used */
 1088: PRIVATE void deleteconfig(old)
 1089: struct config *old;
 1090: {
 1091:   old->next = freelist;
 1092:   freelist = old;
 1093: }
 1094: 
 1095: /* Initialized the configuration list builder */
 1096: void Configlist_init(){
 1097:   current = 0;
 1098:   currentend = &current;
 1099:   basis = 0;
 1100:   basisend = &basis;
 1101:   Configtable_init();
 1102:   return;
 1103: }
 1104: 
 1105: /* Initialized the configuration list builder */
 1106: void Configlist_reset(){
 1107:   current = 0;
 1108:   currentend = &current;
 1109:   basis = 0;
 1110:   basisend = &basis;
 1111:   Configtable_clear(0);
 1112:   return;
 1113: }
 1114: 
 1115: /* Add another configuration to the configuration list */
 1116: struct config *Configlist_add(rp,dot)
 1117: struct rule *rp;    /* The rule */
 1118: int dot;            /* Index into the RHS of the rule where the dot goes */
 1119: {
 1120:   struct config *cfp, model;
 1121: 
 1122:   assert( currentend!=0 );
 1123:   model.rp = rp;
 1124:   model.dot = dot;
 1125:   cfp = Configtable_find(&model);
 1126:   if( cfp==0 ){
 1127:     cfp = newconfig();
 1128:     cfp->rp = rp;
 1129:     cfp->dot = dot;
 1130:     cfp->fws = SetNew();
 1131:     cfp->stp = 0;
 1132:     cfp->fplp = cfp->bplp = 0;
 1133:     cfp->next = 0;
 1134:     cfp->bp = 0;
 1135:     *currentend = cfp;
 1136:     currentend = &cfp->next;
 1137:     Configtable_insert(cfp);
 1138:   }
 1139:   return cfp;
 1140: }
 1141: 
 1142: /* Add a basis configuration to the configuration list */
 1143: struct config *Configlist_addbasis(rp,dot)
 1144: struct rule *rp;
 1145: int dot;
 1146: {
 1147:   struct config *cfp, model;
 1148: 
 1149:   assert( basisend!=0 );
 1150:   assert( currentend!=0 );
 1151:   model.rp = rp;
 1152:   model.dot = dot;
 1153:   cfp = Configtable_find(&model);
 1154:   if( cfp==0 ){
 1155:     cfp = newconfig();
 1156:     cfp->rp = rp;
 1157:     cfp->dot = dot;
 1158:     cfp->fws = SetNew();
 1159:     cfp->stp = 0;
 1160:     cfp->fplp = cfp->bplp = 0;
 1161:     cfp->next = 0;
 1162:     cfp->bp = 0;
 1163:     *currentend = cfp;
 1164:     currentend = &cfp->next;
 1165:     *basisend = cfp;
 1166:     basisend = &cfp->bp;
 1167:     Configtable_insert(cfp);
 1168:   }
 1169:   return cfp;
 1170: }
 1171: 
 1172: /* Compute the closure of the configuration list */
 1173: void Configlist_closure(lemp)
 1174: struct lemon *lemp;
 1175: {
 1176:   struct config *cfp, *newcfp;
 1177:   struct rule *rp, *newrp;
 1178:   struct symbol *sp, *xsp;
 1179:   int i, dot;
 1180: 
 1181:   assert( currentend!=0 );
 1182:   for(cfp=current; cfp; cfp=cfp->next){
 1183:     rp = cfp->rp;
 1184:     dot = cfp->dot;
 1185:     if( dot>=rp->nrhs ) continue;
 1186:     sp = rp->rhs[dot];
 1187:     if( sp->type==NONTERMINAL ){
 1188:       if( sp->rule==0 && sp!=lemp->errsym ){
 1189:         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
 1190:           sp->name);
 1191:         lemp->errorcnt++;
 1192:       }
 1193:       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
 1194:         newcfp = Configlist_add(newrp,0);
 1195:         for(i=dot+1; i<rp->nrhs; i++){
 1196:           xsp = rp->rhs[i];
 1197:           if( xsp->type==TERMINAL ){
 1198:             SetAdd(newcfp->fws,xsp->index);
 1199:             break;
 1200: 	  }else{
 1201:             SetUnion(newcfp->fws,xsp->firstset);
 1202:             if( xsp->lambda==Bo_FALSE ) break;
 1203: 	  }
 1204: 	}
 1205:         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
 1206:       }
 1207:     }
 1208:   }
 1209:   return;
 1210: }
 1211: 
 1212: /* Sort the configuration list */
 1213: void Configlist_sort(){
 1214:   current = (struct config *)msort(current,&(current->next),Configcmp);
 1215:   currentend = 0;
 1216:   return;
 1217: }
 1218: 
 1219: /* Sort the basis configuration list */
 1220: void Configlist_sortbasis(){
 1221:   basis = (struct config *)msort(current,&(current->bp),Configcmp);
 1222:   basisend = 0;
 1223:   return;
 1224: }
 1225: 
 1226: /* Return a pointer to the head of the configuration list and
 1227: ** reset the list */
 1228: struct config *Configlist_return(){
 1229:   struct config *old;
 1230:   old = current;
 1231:   current = 0;
 1232:   currentend = 0;
 1233:   return old;
 1234: }
 1235: 
 1236: /* Return a pointer to the head of the configuration list and
 1237: ** reset the list */
 1238: struct config *Configlist_basis(){
 1239:   struct config *old;
 1240:   old = basis;
 1241:   basis = 0;
 1242:   basisend = 0;
 1243:   return old;
 1244: }
 1245: 
 1246: /* Free all elements of the given configuration list */
 1247: void Configlist_eat(cfp)
 1248: struct config *cfp;
 1249: {
 1250:   struct config *nextcfp;
 1251:   for(; cfp; cfp=nextcfp){
 1252:     nextcfp = cfp->next;
 1253:     assert( cfp->fplp==0 );
 1254:     assert( cfp->bplp==0 );
 1255:     if( cfp->fws ) SetFree(cfp->fws);
 1256:     deleteconfig(cfp);
 1257:   }
 1258:   return;
 1259: }
 1260: /***************** From the file "error.c" *********************************/
 1261: /*
 1262: ** Code for printing error message.
 1263: */
 1264: 
 1265: /* Find a good place to break "msg" so that its length is at least "min"
 1266: ** but no more than "max".  Make the point as close to max as possible.
 1267: */
 1268: static int findbreak(msg,min,max)
 1269: char *msg;
 1270: int min;
 1271: int max;
 1272: {
 1273:   int i,spot;
 1274:   char c;
 1275:   for(i=spot=min; i<=max; i++){
 1276:     c = msg[i];
 1277:     if( c=='\t' ) msg[i] = ' ';
 1278:     if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
 1279:     if( c==0 ){ spot = i; break; }
 1280:     if( c=='-' && i<max-1 ) spot = i+1;
 1281:     if( c==' ' ) spot = i;
 1282:   }
 1283:   return spot;
 1284: }
 1285: 
 1286: /*
 1287: ** The error message is split across multiple lines if necessary.  The
 1288: ** splits occur at a space, if there is a space available near the end
 1289: ** of the line.
 1290: */
 1291: #define ERRMSGSIZE  10000 /* Hope this is big enough.  No way to error check */
 1292: #define LINEWIDTH      79 /* Max width of any output line */
 1293: #define PREFIXLIMIT    30 /* Max width of the prefix on each line */
 1294: void ErrorMsg(const char *filename, int lineno, const char *format, ...){
 1295:   char errmsg[ERRMSGSIZE];
 1296:   char prefix[PREFIXLIMIT+10];
 1297:   int errmsgsize;
 1298:   int prefixsize;
 1299:   int availablewidth;
 1300:   va_list ap;
 1301:   int end, restart, base;
 1302: 
 1303:   va_start(ap, format);
 1304:   /* Prepare a prefix to be prepended to every output line */
 1305:   if( lineno>0 ){
 1306:     sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
 1307:   }else{
 1308:     sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
 1309:   }
 1310:   prefixsize = strlen(prefix);
 1311:   availablewidth = LINEWIDTH - prefixsize;
 1312: 
 1313:   /* Generate the error message */
 1314:   vsprintf(errmsg,format,ap);
 1315:   va_end(ap);
 1316:   errmsgsize = strlen(errmsg);
 1317:   /* Remove trailing '\n's from the error message. */
 1318:   while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
 1319:      errmsg[--errmsgsize] = 0;
 1320:   }
 1321: 
 1322:   /* Print the error message */
 1323:   base = 0;
 1324:   while( errmsg[base]!=0 ){
 1325:     end = restart = findbreak(&errmsg[base],0,availablewidth);
 1326:     restart += base;
 1327:     while( errmsg[restart]==' ' ) restart++;
 1328:     fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
 1329:     base = restart;
 1330:   }
 1331: }
 1332: /**************** From the file "main.c" ************************************/
 1333: /*
 1334: ** Main program file for the LEMON parser generator.
 1335: */
 1336: 
 1337: /* Report an out-of-memory condition and abort.  This function
 1338: ** is used mostly by the "MemoryCheck" macro in struct.h
 1339: */
 1340: void memory_error() {
 1341:   fprintf(stderr,"Out of memory.  Aborting...\n");
 1342:   exit(1);
 1343: }
 1344: 
 1345: 
 1346: /* The main program.  Parse the command line and do it... */
 1347: int main(argc,argv)
 1348: int argc;
 1349: char **argv;
 1350: {
 1351:   static int version = 0;
 1352:   static int rpflag = 0;
 1353:   static int basisflag = 0;
 1354:   static int compress = 0;
 1355:   static int quiet = 0;
 1356:   static int statistics = 0;
 1357:   static int mhflag = 0;
 1358:   static struct s_options options[] = {
 1359:     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
 1360:     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
 1361:     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
 1362:     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
 1363:     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
 1364:     {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
 1365:     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
 1366:     {OPT_FLAG,0,0,0}
 1367:   };
 1368:   int i;
 1369:   struct lemon lem;
 1370:   char *def_tmpl_name = "lempar.c";
 1371: 
 1372:   UNUSED(argc);
 1373:   OptInit(argv,options,stderr);
 1374:   if( version ){
 1375:      printf("Lemon version 1.0\n");
 1376:      exit(0);
 1377:   }
 1378:   if( OptNArgs() < 1 ){
 1379:     fprintf(stderr,"Exactly one filename argument is required.\n");
 1380:     exit(1);
 1381:   }
 1382:   lem.errorcnt = 0;
 1383: 
 1384:   /* Initialize the machine */
 1385:   Strsafe_init();
 1386:   Symbol_init();
 1387:   State_init();
 1388:   lem.argv0 = argv[0];
 1389:   lem.filename = OptArg(0);
 1390:   lem.tmplname = (OptNArgs() == 2) ? OptArg(1) : def_tmpl_name;
 1391:   lem.basisflag = basisflag;
 1392:   lem.has_fallback = 0;
 1393:   lem.nconflict = 0;
 1394:   lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
 1395:   lem.vartype = 0;
 1396:   lem.stacksize = 0;
 1397:   lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
 1398:   lem.tokenprefix = lem.outname = lem.extracode = 0;
 1399:   lem.vardest = 0;
 1400:   lem.tablesize = 0;
 1401:   Symbol_new("$");
 1402:   lem.errsym = Symbol_new("error");
 1403: 
 1404:   /* Parse the input file */
 1405:   Parse(&lem);
 1406:   if( lem.errorcnt ) exit(lem.errorcnt);
 1407:   if( lem.rule==0 ){
 1408:     fprintf(stderr,"Empty grammar.\n");
 1409:     exit(1);
 1410:   }
 1411: 
 1412:   /* Count and index the symbols of the grammar */
 1413:   lem.nsymbol = Symbol_count();
 1414:   Symbol_new("{default}");
 1415:   lem.symbols = Symbol_arrayof();
 1416:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
 1417:   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
 1418:         (int(*)())Symbolcmpp);
 1419:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
 1420:   for(i=1; isupper(lem.symbols[i]->name[0]); i++);
 1421:   lem.nterminal = i;
 1422: 
 1423:   /* Generate a reprint of the grammar, if requested on the command line */
 1424:   if( rpflag ){
 1425:     Reprint(&lem);
 1426:   }else{
 1427:     /* Initialize the size for all follow and first sets */
 1428:     SetSize(lem.nterminal);
 1429: 
 1430:     /* Find the precedence for every production rule (that has one) */
 1431:     FindRulePrecedences(&lem);
 1432: 
 1433:     /* Compute the lambda-nonterminals and the first-sets for every
 1434:     ** nonterminal */
 1435:     FindFirstSets(&lem);
 1436: 
 1437:     /* Compute all LR(0) states.  Also record follow-set propagation
 1438:     ** links so that the follow-set can be computed later */
 1439:     lem.nstate = 0;
 1440:     FindStates(&lem);
 1441:     lem.sorted = State_arrayof();
 1442: 
 1443:     /* Tie up loose ends on the propagation links */
 1444:     FindLinks(&lem);
 1445: 
 1446:     /* Compute the follow set of every reducible configuration */
 1447:     FindFollowSets(&lem);
 1448: 
 1449:     /* Compute the action tables */
 1450:     FindActions(&lem);
 1451: 
 1452:     /* Compress the action tables */
 1453:     if( compress==0 ) CompressTables(&lem);
 1454: 
 1455:     /* Generate a report of the parser generated.  (the "y.output" file) */
 1456:     if( !quiet ) ReportOutput(&lem);
 1457: 
 1458:     /* Generate the source code for the parser */
 1459:     ReportTable(&lem, mhflag);
 1460: 
 1461:     /* Produce a header file for use by the scanner.  (This step is
 1462:     ** omitted if the "-m" option is used because makeheaders will
 1463:     ** generate the file for us.) */
 1464:     if( !mhflag ) ReportHeader(&lem);
 1465:   }
 1466:   if( statistics ){
 1467:     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
 1468:       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
 1469:     printf("                   %d states, %d parser table entries, %d conflicts\n",
 1470:       lem.nstate, lem.tablesize, lem.nconflict);
 1471:   }
 1472:   if( lem.nconflict ){
 1473:     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
 1474:   }
 1475:   exit(lem.errorcnt + lem.nconflict);
 1476: }
 1477: /******************** From the file "msort.c" *******************************/
 1478: /*
 1479: ** A generic merge-sort program.
 1480: **
 1481: ** USAGE:
 1482: ** Let "ptr" be a pointer to some structure which is at the head of
 1483: ** a null-terminated list.  Then to sort the list call:
 1484: **
 1485: **     ptr = msort(ptr,&(ptr->next),cmpfnc);
 1486: **
 1487: ** In the above, "cmpfnc" is a pointer to a function which compares
 1488: ** two instances of the structure and returns an integer, as in
 1489: ** strcmp.  The second argument is a pointer to the pointer to the
 1490: ** second element of the linked list.  This address is used to compute
 1491: ** the offset to the "next" field within the structure.  The offset to
 1492: ** the "next" field must be constant for all structures in the list.
 1493: **
 1494: ** The function returns a new pointer which is the head of the list
 1495: ** after sorting.
 1496: **
 1497: ** ALGORITHM:
 1498: ** Merge-sort.
 1499: */
 1500: 
 1501: /*
 1502: ** Return a pointer to the next structure in the linked list.
 1503: */
 1504: #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
 1505: 
 1506: /*
 1507: ** Inputs:
 1508: **   a:       A sorted, null-terminated linked list.  (May be null).
 1509: **   b:       A sorted, null-terminated linked list.  (May be null).
 1510: **   cmp:     A pointer to the comparison function.
 1511: **   offset:  Offset in the structure to the "next" field.
 1512: **
 1513: ** Return Value:
 1514: **   A pointer to the head of a sorted list containing the elements
 1515: **   of both a and b.
 1516: **
 1517: ** Side effects:
 1518: **   The "next" pointers for elements in the lists a and b are
 1519: **   changed.
 1520: */
 1521: static char *merge(a,b,cmp,offset)
 1522: char *a;
 1523: char *b;
 1524: int (*cmp)();
 1525: int offset;
 1526: {
 1527:   char *ptr, *head;
 1528: 
 1529:   if( a==0 ){
 1530:     head = b;
 1531:   }else if( b==0 ){
 1532:     head = a;
 1533:   }else{
 1534:     if( (*cmp)(a,b)<0 ){
 1535:       ptr = a;
 1536:       a = NEXT(a);
 1537:     }else{
 1538:       ptr = b;
 1539:       b = NEXT(b);
 1540:     }
 1541:     head = ptr;
 1542:     while( a && b ){
 1543:       if( (*cmp)(a,b)<0 ){
 1544:         NEXT(ptr) = a;
 1545:         ptr = a;
 1546:         a = NEXT(a);
 1547:       }else{
 1548:         NEXT(ptr) = b;
 1549:         ptr = b;
 1550:         b = NEXT(b);
 1551:       }
 1552:     }
 1553:     if( a ) NEXT(ptr) = a;
 1554:     else    NEXT(ptr) = b;
 1555:   }
 1556:   return head;
 1557: }
 1558: 
 1559: /*
 1560: ** Inputs:
 1561: **   list:      Pointer to a singly-linked list of structures.
 1562: **   next:      Pointer to pointer to the second element of the list.
 1563: **   cmp:       A comparison function.
 1564: **
 1565: ** Return Value:
 1566: **   A pointer to the head of a sorted list containing the elements
 1567: **   orginally in list.
 1568: **
 1569: ** Side effects:
 1570: **   The "next" pointers for elements in list are changed.
 1571: */
 1572: #define LISTSIZE 30
 1573: char *msort(list,next,cmp)
 1574: char *list;
 1575: char **next;
 1576: int (*cmp)();
 1577: {
 1578:   unsigned long offset;
 1579:   char *ep;
 1580:   char *set[LISTSIZE];
 1581:   int i;
 1582:   offset = (unsigned long)next - (unsigned long)list;
 1583:   for(i=0; i<LISTSIZE; i++) set[i] = 0;
 1584:   while( list ){
 1585:     ep = list;
 1586:     list = NEXT(list);
 1587:     NEXT(ep) = 0;
 1588:     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
 1589:       ep = merge(ep,set[i],cmp,offset);
 1590:       set[i] = 0;
 1591:     }
 1592:     set[i] = ep;
 1593:   }
 1594:   ep = 0;
 1595:   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
 1596:   return ep;
 1597: }
 1598: /************************ From the file "option.c" **************************/
 1599: static char **argv;
 1600: static struct s_options *op;
 1601: static FILE *errstream;
 1602: 
 1603: #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
 1604: 
 1605: /*
 1606: ** Print the command line with a carrot pointing to the k-th character
 1607: ** of the n-th field.
 1608: */
 1609: static void errline(n,k,err)
 1610: int n;
 1611: int k;
 1612: FILE *err;
 1613: {
 1614:   int spcnt = 0, i;
 1615:   if( argv[0] ) {
 1616:     fprintf(err,"%s",argv[0]);
 1617:     spcnt += strlen(argv[0]) + 1;
 1618:   }
 1619:   for(i=1; i<n && argv[i]; i++){
 1620:     fprintf(err," %s",argv[i]);
 1621:     spcnt += strlen(argv[i]) + 1;
 1622:   }
 1623:   spcnt += k;
 1624:   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
 1625:   if( spcnt<20 ){
 1626:     fprintf(err,"\n%*s^-- here\n",spcnt,"");
 1627:   }else{
 1628:     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
 1629:   }
 1630: }
 1631: 
 1632: /*
 1633: ** Return the index of the N-th non-switch argument.  Return -1
 1634: ** if N is out of range.
 1635: */
 1636: static int argindex(n)
 1637: int n;
 1638: {
 1639:   int i;
 1640:   int dashdash = 0;
 1641:   if( argv!=0 && *argv!=0 ){
 1642:     for(i=1; argv[i]; i++){
 1643:       if( dashdash || !ISOPT(argv[i]) ){
 1644:         if( n==0 ) return i;
 1645:         n--;
 1646:       }
 1647:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
 1648:     }
 1649:   }
 1650:   return -1;
 1651: }
 1652: 
 1653: static char emsg[] = "Command line syntax error: ";
 1654: 
 1655: /*
 1656: ** Process a flag command line argument.
 1657: */
 1658: static int handleflags(i,err)
 1659: int i;
 1660: FILE *err;
 1661: {
 1662:   int v;
 1663:   int errcnt = 0;
 1664:   int j;
 1665:   for(j=0; op[j].label; j++){
 1666:     if( strcmp(&argv[i][1],op[j].label)==0 ) break;
 1667:   }
 1668:   v = argv[i][0]=='-' ? 1 : 0;
 1669:   if( op[j].label==0 ){
 1670:     if( err ){
 1671:       fprintf(err,"%sundefined option.\n",emsg);
 1672:       errline(i,1,err);
 1673:     }
 1674:     errcnt++;
 1675:   }else if( op[j].type==OPT_FLAG ){
 1676:     *((int*)op[j].arg) = v;
 1677:   }else if( op[j].type==OPT_FFLAG ){
 1678:     (*(void(*)())(intptr_t)(op[j].arg))(v);
 1679:   }else{
 1680:     if( err ){
 1681:       fprintf(err,"%smissing argument on switch.\n",emsg);
 1682:       errline(i,1,err);
 1683:     }
 1684:     errcnt++;
 1685:   }
 1686:   return errcnt;
 1687: }
 1688: 
 1689: /*
 1690: ** Process a command line switch which has an argument.
 1691: */
 1692: static int handleswitch(i,err)
 1693: int i;
 1694: FILE *err;
 1695: {
 1696:   int lv = 0;
 1697:   double dv = 0.0;
 1698:   char *sv = 0, *end;
 1699:   char *cp;
 1700:   int j;
 1701:   int errcnt = 0;
 1702:   cp = strchr(argv[i],'=');
 1703:   *cp = 0;
 1704:   for(j=0; op[j].label; j++){
 1705:     if( strcmp(argv[i],op[j].label)==0 ) break;
 1706:   }
 1707:   *cp = '=';
 1708:   if( op[j].label==0 ){
 1709:     if( err ){
 1710:       fprintf(err,"%sundefined option.\n",emsg);
 1711:       errline(i,0,err);
 1712:     }
 1713:     errcnt++;
 1714:   }else{
 1715:     cp++;
 1716:     switch( op[j].type ){
 1717:       case OPT_FLAG:
 1718:       case OPT_FFLAG:
 1719:         if( err ){
 1720:           fprintf(err,"%soption requires an argument.\n",emsg);
 1721:           errline(i,0,err);
 1722:         }
 1723:         errcnt++;
 1724:         break;
 1725:       case OPT_DBL:
 1726:       case OPT_FDBL:
 1727:         dv = strtod(cp,&end);
 1728:         if( *end ){
 1729:           if( err ){
 1730:             fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
 1731:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
 1732:           }
 1733:           errcnt++;
 1734:         }
 1735:         break;
 1736:       case OPT_INT:
 1737:       case OPT_FINT:
 1738:         lv = strtol(cp,&end,0);
 1739:         if( *end ){
 1740:           if( err ){
 1741:             fprintf(err,"%sillegal character in integer argument.\n",emsg);
 1742:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
 1743:           }
 1744:           errcnt++;
 1745:         }
 1746:         break;
 1747:       case OPT_STR:
 1748:       case OPT_FSTR:
 1749:         sv = cp;
 1750:         break;
 1751:     }
 1752:     switch( op[j].type ){
 1753:       case OPT_FLAG:
 1754:       case OPT_FFLAG:
 1755:         break;
 1756:       case OPT_DBL:
 1757:         *(double*)(op[j].arg) = dv;
 1758:         break;
 1759:       case OPT_FDBL:
 1760:         (*(void(*)())(intptr_t)(op[j].arg))(dv);
 1761:         break;
 1762:       case OPT_INT:
 1763:         *(int*)(op[j].arg) = lv;
 1764:         break;
 1765:       case OPT_FINT:
 1766:         (*(void(*)())(intptr_t)(op[j].arg))((int)lv);
 1767:         break;
 1768:       case OPT_STR:
 1769:         *(char**)(op[j].arg) = sv;
 1770:         break;
 1771:       case OPT_FSTR:
 1772:         (*(void(*)())(intptr_t)(op[j].arg))(sv);
 1773:         break;
 1774:     }
 1775:   }
 1776:   return errcnt;
 1777: }
 1778: 
 1779: int OptInit(a,o,err)
 1780: char **a;
 1781: struct s_options *o;
 1782: FILE *err;
 1783: {
 1784:   int errcnt = 0;
 1785:   argv = a;
 1786:   op = o;
 1787:   errstream = err;
 1788:   if( argv && *argv && op ){
 1789:     int i;
 1790:     for(i=1; argv[i]; i++){
 1791:       if( argv[i][0]=='+' || argv[i][0]=='-' ){
 1792:         errcnt += handleflags(i,err);
 1793:       }else if( strchr(argv[i],'=') ){
 1794:         errcnt += handleswitch(i,err);
 1795:       }
 1796:     }
 1797:   }
 1798:   if( errcnt>0 ){
 1799:     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
 1800:     OptPrint();
 1801:     exit(1);
 1802:   }
 1803:   return 0;
 1804: }
 1805: 
 1806: int OptNArgs(){
 1807:   int cnt = 0;
 1808:   int dashdash = 0;
 1809:   int i;
 1810:   if( argv!=0 && argv[0]!=0 ){
 1811:     for(i=1; argv[i]; i++){
 1812:       if( dashdash || !ISOPT(argv[i]) ) cnt++;
 1813:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
 1814:     }
 1815:   }
 1816:   return cnt;
 1817: }
 1818: 
 1819: char *OptArg(n)
 1820: int n;
 1821: {
 1822:   int i;
 1823:   i = argindex(n);
 1824:   return i>=0 ? argv[i] : 0;
 1825: }
 1826: 
 1827: void OptErr(n)
 1828: int n;
 1829: {
 1830:   int i;
 1831:   i = argindex(n);
 1832:   if( i>=0 ) errline(i,0,errstream);
 1833: }
 1834: 
 1835: void OptPrint(){
 1836:   int i;
 1837:   int max, len;
 1838:   max = 0;
 1839:   for(i=0; op[i].label; i++){
 1840:     len = strlen(op[i].label) + 1;
 1841:     switch( op[i].type ){
 1842:       case OPT_FLAG:
 1843:       case OPT_FFLAG:
 1844:         break;
 1845:       case OPT_INT:
 1846:       case OPT_FINT:
 1847:         len += 9;       /* length of "<integer>" */
 1848:         break;
 1849:       case OPT_DBL:
 1850:       case OPT_FDBL:
 1851:         len += 6;       /* length of "<real>" */
 1852:         break;
 1853:       case OPT_STR:
 1854:       case OPT_FSTR:
 1855:         len += 8;       /* length of "<string>" */
 1856:         break;
 1857:     }
 1858:     if( len>max ) max = len;
 1859:   }
 1860:   for(i=0; op[i].label; i++){
 1861:     switch( op[i].type ){
 1862:       case OPT_FLAG:
 1863:       case OPT_FFLAG:
 1864:         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
 1865:         break;
 1866:       case OPT_INT:
 1867:       case OPT_FINT:
 1868:         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
 1869:           (int)(max-strlen(op[i].label)-9),"",op[i].message);
 1870:         break;
 1871:       case OPT_DBL:
 1872:       case OPT_FDBL:
 1873:         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
 1874:           (int)(max-strlen(op[i].label)-6),"",op[i].message);
 1875:         break;
 1876:       case OPT_STR:
 1877:       case OPT_FSTR:
 1878:         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
 1879:           (int)(max-strlen(op[i].label)-8),"",op[i].message);
 1880:         break;
 1881:     }
 1882:   }
 1883: }
 1884: /*********************** From the file "parse.c" ****************************/
 1885: /*
 1886: ** Input file parser for the LEMON parser generator.
 1887: */
 1888: 
 1889: /* The state of the parser */
 1890: struct pstate {
 1891:   char *filename;       /* Name of the input file */
 1892:   int tokenlineno;      /* Linenumber at which current token starts */
 1893:   int errorcnt;         /* Number of errors so far */
 1894:   char *tokenstart;     /* Text of current token */
 1895:   struct lemon *gp;     /* Global state vector */
 1896:   enum e_state {
 1897:     INITIALIZE,
 1898:     WAITING_FOR_DECL_OR_RULE,
 1899:     WAITING_FOR_DECL_KEYWORD,
 1900:     WAITING_FOR_DECL_ARG,
 1901:     WAITING_FOR_PRECEDENCE_SYMBOL,
 1902:     WAITING_FOR_ARROW,
 1903:     IN_RHS,
 1904:     LHS_ALIAS_1,
 1905:     LHS_ALIAS_2,
 1906:     LHS_ALIAS_3,
 1907:     RHS_ALIAS_1,
 1908:     RHS_ALIAS_2,
 1909:     PRECEDENCE_MARK_1,
 1910:     PRECEDENCE_MARK_2,
 1911:     RESYNC_AFTER_RULE_ERROR,
 1912:     RESYNC_AFTER_DECL_ERROR,
 1913:     WAITING_FOR_DESTRUCTOR_SYMBOL,
 1914:     WAITING_FOR_DATATYPE_SYMBOL,
 1915:     WAITING_FOR_FALLBACK_ID
 1916:   } state;                   /* The state of the parser */
 1917:   struct symbol *fallback;   /* The fallback token */
 1918:   struct symbol *lhs;        /* Left-hand side of current rule */
 1919:   char *lhsalias;            /* Alias for the LHS */
 1920:   int nrhs;                  /* Number of right-hand side symbols seen */
 1921:   struct symbol *rhs[MAXRHS];  /* RHS symbols */
 1922:   char *alias[MAXRHS];       /* Aliases for each RHS symbol (or NULL) */
 1923:   struct rule *prevrule;     /* Previous rule parsed */
 1924:   char *declkeyword;         /* Keyword of a declaration */
 1925:   char **declargslot;        /* Where the declaration argument should be put */
 1926:   int *decllnslot;           /* Where the declaration linenumber is put */
 1927:   enum e_assoc declassoc;    /* Assign this association to decl arguments */
 1928:   int preccounter;           /* Assign this precedence to decl arguments */
 1929:   struct rule *firstrule;    /* Pointer to first rule in the grammar */
 1930:   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
 1931: };
 1932: 
 1933: /* Parse a single token */
 1934: static void parseonetoken(psp)
 1935: struct pstate *psp;
 1936: {
 1937:   char *x;
 1938:   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
 1939: #if 0
 1940:   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
 1941:     x,psp->state);
 1942: #endif
 1943:   switch( psp->state ){
 1944:     case INITIALIZE:
 1945:       psp->prevrule = 0;
 1946:       psp->preccounter = 0;
 1947:       psp->firstrule = psp->lastrule = 0;
 1948:       psp->gp->nrule = 0;
 1949:       /* Fall thru to next case */
 1950:     case WAITING_FOR_DECL_OR_RULE:
 1951:       if( x[0]=='%' ){
 1952:         psp->state = WAITING_FOR_DECL_KEYWORD;
 1953:       }else if( islower(x[0]) ){
 1954:         psp->lhs = Symbol_new(x);
 1955:         psp->nrhs = 0;
 1956:         psp->lhsalias = 0;
 1957:         psp->state = WAITING_FOR_ARROW;
 1958:       }else if( x[0]=='{' ){
 1959:         if( psp->prevrule==0 ){
 1960:           ErrorMsg(psp->filename,psp->tokenlineno,
 1961: "There is not prior rule opon which to attach the code \
 1962: fragment which begins on this line.");
 1963:           psp->errorcnt++;
 1964: 	}else if( psp->prevrule->code!=0 ){
 1965:           ErrorMsg(psp->filename,psp->tokenlineno,
 1966: "Code fragment beginning on this line is not the first \
 1967: to follow the previous rule.");
 1968:           psp->errorcnt++;
 1969:         }else{
 1970:           psp->prevrule->line = psp->tokenlineno;
 1971:           psp->prevrule->code = &x[1];
 1972: 	}
 1973:       }else if( x[0]=='[' ){
 1974:         psp->state = PRECEDENCE_MARK_1;
 1975:       }else{
 1976:         ErrorMsg(psp->filename,psp->tokenlineno,
 1977:           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
 1978:           x);
 1979:         psp->errorcnt++;
 1980:       }
 1981:       break;
 1982:     case PRECEDENCE_MARK_1:
 1983:       if( !isupper(x[0]) ){
 1984:         ErrorMsg(psp->filename,psp->tokenlineno,
 1985:           "The precedence symbol must be a terminal.");
 1986:         psp->errorcnt++;
 1987:       }else if( psp->prevrule==0 ){
 1988:         ErrorMsg(psp->filename,psp->tokenlineno,
 1989:           "There is no prior rule to assign precedence \"[%s]\".",x);
 1990:         psp->errorcnt++;
 1991:       }else if( psp->prevrule->precsym!=0 ){
 1992:         ErrorMsg(psp->filename,psp->tokenlineno,
 1993: "Precedence mark on this line is not the first \
 1994: to follow the previous rule.");
 1995:         psp->errorcnt++;
 1996:       }else{
 1997:         psp->prevrule->precsym = Symbol_new(x);
 1998:       }
 1999:       psp->state = PRECEDENCE_MARK_2;
 2000:       break;
 2001:     case PRECEDENCE_MARK_2:
 2002:       if( x[0]!=']' ){
 2003:         ErrorMsg(psp->filename,psp->tokenlineno,
 2004:           "Missing \"]\" on precedence mark.");
 2005:         psp->errorcnt++;
 2006:       }
 2007:       psp->state = WAITING_FOR_DECL_OR_RULE;
 2008:       break;
 2009:     case WAITING_FOR_ARROW:
 2010:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
 2011:         psp->state = IN_RHS;
 2012:       }else if( x[0]=='(' ){
 2013:         psp->state = LHS_ALIAS_1;
 2014:       }else{
 2015:         ErrorMsg(psp->filename,psp->tokenlineno,
 2016:           "Expected to see a \":\" following the LHS symbol \"%s\".",
 2017:           psp->lhs->name);
 2018:         psp->errorcnt++;
 2019:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2020:       }
 2021:       break;
 2022:     case LHS_ALIAS_1:
 2023:       if( isalpha(x[0]) ){
 2024:         psp->lhsalias = x;
 2025:         psp->state = LHS_ALIAS_2;
 2026:       }else{
 2027:         ErrorMsg(psp->filename,psp->tokenlineno,
 2028:           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
 2029:           x,psp->lhs->name);
 2030:         psp->errorcnt++;
 2031:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2032:       }
 2033:       break;
 2034:     case LHS_ALIAS_2:
 2035:       if( x[0]==')' ){
 2036:         psp->state = LHS_ALIAS_3;
 2037:       }else{
 2038:         ErrorMsg(psp->filename,psp->tokenlineno,
 2039:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
 2040:         psp->errorcnt++;
 2041:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2042:       }
 2043:       break;
 2044:     case LHS_ALIAS_3:
 2045:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
 2046:         psp->state = IN_RHS;
 2047:       }else{
 2048:         ErrorMsg(psp->filename,psp->tokenlineno,
 2049:           "Missing \"->\" following: \"%s(%s)\".",
 2050:            psp->lhs->name,psp->lhsalias);
 2051:         psp->errorcnt++;
 2052:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2053:       }
 2054:       break;
 2055:     case IN_RHS:
 2056:       if( x[0]=='.' ){
 2057:         struct rule *rp;
 2058:         rp = (struct rule *)malloc( sizeof(struct rule) +
 2059:              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
 2060:         if( rp==0 ){
 2061:           ErrorMsg(psp->filename,psp->tokenlineno,
 2062:             "Can't allocate enough memory for this rule.");
 2063:           psp->errorcnt++;
 2064:           psp->prevrule = 0;
 2065: 	}else{
 2066:           int i;
 2067:           rp->ruleline = psp->tokenlineno;
 2068:           rp->rhs = (struct symbol**)&rp[1];
 2069:           rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
 2070:           for(i=0; i<psp->nrhs; i++){
 2071:             rp->rhs[i] = psp->rhs[i];
 2072:             rp->rhsalias[i] = psp->alias[i];
 2073: 	  }
 2074:           rp->lhs = psp->lhs;
 2075:           rp->lhsalias = psp->lhsalias;
 2076:           rp->nrhs = psp->nrhs;
 2077:           rp->code = 0;
 2078:           rp->precsym = 0;
 2079:           rp->index = psp->gp->nrule++;
 2080:           rp->nextlhs = rp->lhs->rule;
 2081:           rp->lhs->rule = rp;
 2082:           rp->next = 0;
 2083:           if( psp->firstrule==0 ){
 2084:             psp->firstrule = psp->lastrule = rp;
 2085: 	  }else{
 2086:             psp->lastrule->next = rp;
 2087:             psp->lastrule = rp;
 2088: 	  }
 2089:           psp->prevrule = rp;
 2090: 	}
 2091:         psp->state = WAITING_FOR_DECL_OR_RULE;
 2092:       }else if( isalpha(x[0]) ){
 2093:         if( psp->nrhs>=MAXRHS ){
 2094:           ErrorMsg(psp->filename,psp->tokenlineno,
 2095:             "Too many symbol on RHS or rule beginning at \"%s\".",
 2096:             x);
 2097:           psp->errorcnt++;
 2098:           psp->state = RESYNC_AFTER_RULE_ERROR;
 2099: 	}else{
 2100:           psp->rhs[psp->nrhs] = Symbol_new(x);
 2101:           psp->alias[psp->nrhs] = 0;
 2102:           psp->nrhs++;
 2103: 	}
 2104:       }else if( x[0]=='(' && psp->nrhs>0 ){
 2105:         psp->state = RHS_ALIAS_1;
 2106:       }else{
 2107:         ErrorMsg(psp->filename,psp->tokenlineno,
 2108:           "Illegal character on RHS of rule: \"%s\".",x);
 2109:         psp->errorcnt++;
 2110:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2111:       }
 2112:       break;
 2113:     case RHS_ALIAS_1:
 2114:       if( isalpha(x[0]) ){
 2115:         psp->alias[psp->nrhs-1] = x;
 2116:         psp->state = RHS_ALIAS_2;
 2117:       }else{
 2118:         ErrorMsg(psp->filename,psp->tokenlineno,
 2119:           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
 2120:           x,psp->rhs[psp->nrhs-1]->name);
 2121:         psp->errorcnt++;
 2122:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2123:       }
 2124:       break;
 2125:     case RHS_ALIAS_2:
 2126:       if( x[0]==')' ){
 2127:         psp->state = IN_RHS;
 2128:       }else{
 2129:         ErrorMsg(psp->filename,psp->tokenlineno,
 2130:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
 2131:         psp->errorcnt++;
 2132:         psp->state = RESYNC_AFTER_RULE_ERROR;
 2133:       }
 2134:       break;
 2135:     case WAITING_FOR_DECL_KEYWORD:
 2136:       if( isalpha(x[0]) ){
 2137:         psp->declkeyword = x;
 2138:         psp->declargslot = 0;
 2139:         psp->decllnslot = 0;
 2140:         psp->state = WAITING_FOR_DECL_ARG;
 2141:         if( strcmp(x,"name")==0 ){
 2142:           psp->declargslot = &(psp->gp->name);
 2143: 	}else if( strcmp(x,"include")==0 ){
 2144:           psp->declargslot = &(psp->gp->include);
 2145:           psp->decllnslot = &psp->gp->includeln;
 2146: 	}else if( strcmp(x,"code")==0 ){
 2147:           psp->declargslot = &(psp->gp->extracode);
 2148:           psp->decllnslot = &psp->gp->extracodeln;
 2149: 	}else if( strcmp(x,"token_destructor")==0 ){
 2150:           psp->declargslot = &psp->gp->tokendest;
 2151:           psp->decllnslot = &psp->gp->tokendestln;
 2152: 	}else if( strcmp(x,"default_destructor")==0 ){
 2153:           psp->declargslot = &psp->gp->vardest;
 2154:           psp->decllnslot = &psp->gp->vardestln;
 2155: 	}else if( strcmp(x,"token_prefix")==0 ){
 2156:           psp->declargslot = &psp->gp->tokenprefix;
 2157: 	}else if( strcmp(x,"syntax_error")==0 ){
 2158:           psp->declargslot = &(psp->gp->error);
 2159:           psp->decllnslot = &psp->gp->errorln;
 2160: 	}else if( strcmp(x,"parse_accept")==0 ){
 2161:           psp->declargslot = &(psp->gp->accept);
 2162:           psp->decllnslot = &psp->gp->acceptln;
 2163: 	}else if( strcmp(x,"parse_failure")==0 ){
 2164:           psp->declargslot = &(psp->gp->failure);
 2165:           psp->decllnslot = &psp->gp->failureln;
 2166: 	}else if( strcmp(x,"stack_overflow")==0 ){
 2167:           psp->declargslot = &(psp->gp->overflow);
 2168:           psp->decllnslot = &psp->gp->overflowln;
 2169:         }else if( strcmp(x,"extra_argument")==0 ){
 2170:           psp->declargslot = &(psp->gp->arg);
 2171:         }else if( strcmp(x,"token_type")==0 ){
 2172:           psp->declargslot = &(psp->gp->tokentype);
 2173:         }else if( strcmp(x,"default_type")==0 ){
 2174:           psp->declargslot = &(psp->gp->vartype);
 2175:         }else if( strcmp(x,"stack_size")==0 ){
 2176:           psp->declargslot = &(psp->gp->stacksize);
 2177:         }else if( strcmp(x,"start_symbol")==0 ){
 2178:           psp->declargslot = &(psp->gp->start);
 2179:         }else if( strcmp(x,"left")==0 ){
 2180:           psp->preccounter++;
 2181:           psp->declassoc = LEFT;
 2182:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 2183:         }else if( strcmp(x,"right")==0 ){
 2184:           psp->preccounter++;
 2185:           psp->declassoc = RIGHT;
 2186:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 2187:         }else if( strcmp(x,"nonassoc")==0 ){
 2188:           psp->preccounter++;
 2189:           psp->declassoc = NONE;
 2190:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 2191: 	}else if( strcmp(x,"destructor")==0 ){
 2192:           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
 2193: 	}else if( strcmp(x,"type")==0 ){
 2194:           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
 2195:         }else if( strcmp(x,"fallback")==0 ){
 2196:           psp->fallback = 0;
 2197:           psp->state = WAITING_FOR_FALLBACK_ID;
 2198:         }else{
 2199:           ErrorMsg(psp->filename,psp->tokenlineno,
 2200:             "Unknown declaration keyword: \"%%%s\".",x);
 2201:           psp->errorcnt++;
 2202:           psp->state = RESYNC_AFTER_DECL_ERROR;
 2203: 	}
 2204:       }else{
 2205:         ErrorMsg(psp->filename,psp->tokenlineno,
 2206:           "Illegal declaration keyword: \"%s\".",x);
 2207:         psp->errorcnt++;
 2208:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2209:       }
 2210:       break;
 2211:     case WAITING_FOR_DESTRUCTOR_SYMBOL:
 2212:       if( !isalpha(x[0]) ){
 2213:         ErrorMsg(psp->filename,psp->tokenlineno,
 2214:           "Symbol name missing after %destructor keyword");
 2215:         psp->errorcnt++;
 2216:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2217:       }else{
 2218:         struct symbol *sp = Symbol_new(x);
 2219:         psp->declargslot = &sp->destructor;
 2220:         psp->decllnslot = &sp->destructorln;
 2221:         psp->state = WAITING_FOR_DECL_ARG;
 2222:       }
 2223:       break;
 2224:     case WAITING_FOR_DATATYPE_SYMBOL:
 2225:       if( !isalpha(x[0]) ){
 2226:         ErrorMsg(psp->filename,psp->tokenlineno,
 2227:           "Symbol name missing after %destructor keyword");
 2228:         psp->errorcnt++;
 2229:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2230:       }else{
 2231:         struct symbol *sp = Symbol_new(x);
 2232:         psp->declargslot = &sp->datatype;
 2233:         psp->decllnslot = 0;
 2234:         psp->state = WAITING_FOR_DECL_ARG;
 2235:       }
 2236:       break;
 2237:     case WAITING_FOR_PRECEDENCE_SYMBOL:
 2238:       if( x[0]=='.' ){
 2239:         psp->state = WAITING_FOR_DECL_OR_RULE;
 2240:       }else if( isupper(x[0]) ){
 2241:         struct symbol *sp;
 2242:         sp = Symbol_new(x);
 2243:         if( sp->prec>=0 ){
 2244:           ErrorMsg(psp->filename,psp->tokenlineno,
 2245:             "Symbol \"%s\" has already be given a precedence.",x);
 2246:           psp->errorcnt++;
 2247: 	}else{
 2248:           sp->prec = psp->preccounter;
 2249:           sp->assoc = psp->declassoc;
 2250: 	}
 2251:       }else{
 2252:         ErrorMsg(psp->filename,psp->tokenlineno,
 2253:           "Can't assign a precedence to \"%s\".",x);
 2254:         psp->errorcnt++;
 2255:       }
 2256:       break;
 2257:     case WAITING_FOR_DECL_ARG:
 2258:       if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
 2259:         if( *(psp->declargslot)!=0 ){
 2260:           ErrorMsg(psp->filename,psp->tokenlineno,
 2261:             "The argument \"%s\" to declaration \"%%%s\" is not the first.",
 2262:             x[0]=='\"' ? &x[1] : x,psp->declkeyword);
 2263:           psp->errorcnt++;
 2264:           psp->state = RESYNC_AFTER_DECL_ERROR;
 2265: 	}else{
 2266:           *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
 2267:           if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
 2268:           psp->state = WAITING_FOR_DECL_OR_RULE;
 2269: 	}
 2270:       }else{
 2271:         ErrorMsg(psp->filename,psp->tokenlineno,
 2272:           "Illegal argument to %%%s: %s",psp->declkeyword,x);
 2273:         psp->errorcnt++;
 2274:         psp->state = RESYNC_AFTER_DECL_ERROR;
 2275:       }
 2276:       break;
 2277:     case WAITING_FOR_FALLBACK_ID:
 2278:       if( x[0]=='.' ){
 2279:         psp->state = WAITING_FOR_DECL_OR_RULE;
 2280:       }else if( !isupper(x[0]) ){
 2281:         ErrorMsg(psp->filename, psp->tokenlineno,
 2282:           "%%fallback argument \"%s\" should be a token", x);
 2283:         psp->errorcnt++;
 2284:       }else{
 2285:         struct symbol *sp = Symbol_new(x);
 2286:         if( psp->fallback==0 ){
 2287:           psp->fallback = sp;
 2288:         }else if( sp->fallback ){
 2289:           ErrorMsg(psp->filename, psp->tokenlineno,
 2290:             "More than one fallback assigned to token %s", x);
 2291:           psp->errorcnt++;
 2292:         }else{
 2293:           sp->fallback = psp->fallback;
 2294:           psp->gp->has_fallback = 1;
 2295:         }
 2296:       }
 2297:       break;
 2298:     case RESYNC_AFTER_RULE_ERROR:
 2299: /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
 2300: **      break; */
 2301:     case RESYNC_AFTER_DECL_ERROR:
 2302:       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
 2303:       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
 2304:       break;
 2305:   }
 2306: }
 2307: 
 2308: /* In spite of its name, this function is really a scanner.  It read
 2309: ** in the entire input file (all at once) then tokenizes it.  Each
 2310: ** token is passed to the function "parseonetoken" which builds all
 2311: ** the appropriate data structures in the global state vector "gp".
 2312: */
 2313: struct pstate ps;
 2314: void Parse(gp)
 2315: struct lemon *gp;
 2316: {
 2317:   FILE *fp;
 2318:   char *filebuf;
 2319:   size_t filesize;
 2320:   int lineno;
 2321:   int c;
 2322:   char *cp, *nextcp;
 2323:   int startline = 0;
 2324: 
 2325:   ps.gp = gp;
 2326:   ps.filename = gp->filename;
 2327:   ps.errorcnt = 0;
 2328:   ps.state = INITIALIZE;
 2329: 
 2330:   /* Begin by reading the input file */
 2331:   fp = fopen(ps.filename,"rb");
 2332:   if( fp==0 ){
 2333:     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
 2334:     gp->errorcnt++;
 2335:     return;
 2336:   }
 2337:   fseek(fp,0,2);
 2338:   filesize = ftell(fp);
 2339:   rewind(fp);
 2340:   filebuf = (char *)malloc( filesize+1 );
 2341:   if( filebuf==0 ){
 2342:     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
 2343:       filesize+1);
 2344:     fclose(fp);
 2345:     gp->errorcnt++;
 2346:     return;
 2347:   }
 2348:   if( fread(filebuf,1,filesize,fp)!=filesize ){
 2349:     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
 2350:       filesize);
 2351:     free(filebuf);
 2352:     fclose(fp);
 2353:     gp->errorcnt++;
 2354:     return;
 2355:   }
 2356:   fclose(fp);
 2357:   filebuf[filesize] = 0;
 2358: 
 2359:   /* Now scan the text of the input file */
 2360:   lineno = 1;
 2361:   for(cp=filebuf; (c= *cp)!=0; ){
 2362:     if( c=='\n' ) lineno++;              /* Keep track of the line number */
 2363:     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
 2364:     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
 2365:       cp+=2;
 2366:       while( (c= *cp)!=0 && c!='\n' ) cp++;
 2367:       continue;
 2368:     }
 2369:     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
 2370:       cp+=2;
 2371:       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
 2372:         if( c=='\n' ) lineno++;
 2373:         cp++;
 2374:       }
 2375:       if( c ) cp++;
 2376:       continue;
 2377:     }
 2378:     ps.tokenstart = cp;                /* Mark the beginning of the token */
 2379:     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
 2380:     if( c=='\"' ){                     /* String literals */
 2381:       cp++;
 2382:       while( (c= *cp)!=0 && c!='\"' ){
 2383:         if( c=='\n' ) lineno++;
 2384:         cp++;
 2385:       }
 2386:       if( c==0 ){
 2387:         ErrorMsg(ps.filename,startline,
 2388: "String starting on this line is not terminated before the end of the file.");
 2389:         ps.errorcnt++;
 2390:         nextcp = cp;
 2391:       }else{
 2392:         nextcp = cp+1;
 2393:       }
 2394:     }else if( c=='{' ){               /* A block of C code */
 2395:       int level;
 2396:       cp++;
 2397:       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
 2398:         if( c=='\n' ) lineno++;
 2399:         else if( c=='{' ) level++;
 2400:         else if( c=='}' ) level--;
 2401:         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
 2402:           int prevc;
 2403:           cp = &cp[2];
 2404:           prevc = 0;
 2405:           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
 2406:             if( c=='\n' ) lineno++;
 2407:             prevc = c;
 2408:             cp++;
 2409: 	  }
 2410: 	}else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
 2411:           cp = &cp[2];
 2412:           while( (c= *cp)!=0 && c!='\n' ) cp++;
 2413:           if( c ) lineno++;
 2414: 	}else if( c=='\'' || c=='\"' ){    /* String a character literals */
 2415:           int startchar, prevc;
 2416:           startchar = c;
 2417:           prevc = 0;
 2418:           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
 2419:             if( c=='\n' ) lineno++;
 2420:             if( prevc=='\\' ) prevc = 0;
 2421:             else              prevc = c;
 2422: 	  }
 2423: 	}
 2424:       }
 2425:       if( c==0 ){
 2426:         ErrorMsg(ps.filename,ps.tokenlineno,
 2427: "C code starting on this line is not terminated before the end of the file.");
 2428:         ps.errorcnt++;
 2429:         nextcp = cp;
 2430:       }else{
 2431:         nextcp = cp+1;
 2432:       }
 2433:     }else if( isalnum(c) ){          /* Identifiers */
 2434:       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
 2435:       nextcp = cp;
 2436:     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
 2437:       cp += 3;
 2438:       nextcp = cp;
 2439:     }else{                          /* All other (one character) operators */
 2440:       cp++;
 2441:       nextcp = cp;
 2442:     }
 2443:     c = *cp;
 2444:     *cp = 0;                        /* Null terminate the token */
 2445:     parseonetoken(&ps);             /* Parse the token */
 2446:     *cp = c;                        /* Restore the buffer */
 2447:     cp = nextcp;
 2448:   }
 2449:   free(filebuf);                    /* Release the buffer after parsing */
 2450:   gp->rule = ps.firstrule;
 2451:   gp->errorcnt = ps.errorcnt;
 2452: }
 2453: /*************************** From the file "plink.c" *********************/
 2454: /*
 2455: ** Routines processing configuration follow-set propagation links
 2456: ** in the LEMON parser generator.
 2457: */
 2458: static struct plink *plink_freelist = 0;
 2459: 
 2460: /* Allocate a new plink */
 2461: struct plink *Plink_new(){
 2462:   struct plink *new;
 2463: 
 2464:   if( plink_freelist==0 ){
 2465:     int i;
 2466:     int amt = 100;
 2467:     plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
 2468:     if( plink_freelist==0 ){
 2469:       fprintf(stderr,
 2470:       "Unable to allocate memory for a new follow-set propagation link.\n");
 2471:       exit(1);
 2472:     }
 2473:     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
 2474:     plink_freelist[amt-1].next = 0;
 2475:   }
 2476:   new = plink_freelist;
 2477:   plink_freelist = plink_freelist->next;
 2478:   return new;
 2479: }
 2480: 
 2481: /* Add a plink to a plink list */
 2482: void Plink_add(plpp,cfp)
 2483: struct plink **plpp;
 2484: struct config *cfp;
 2485: {
 2486:   struct plink *new;
 2487:   new = Plink_new();
 2488:   new->next = *plpp;
 2489:   *plpp = new;
 2490:   new->cfp = cfp;
 2491: }
 2492: 
 2493: /* Transfer every plink on the list "from" to the list "to" */
 2494: void Plink_copy(to,from)
 2495: struct plink **to;
 2496: struct plink *from;
 2497: {
 2498:   struct plink *nextpl;
 2499:   while( from ){
 2500:     nextpl = from->next;
 2501:     from->next = *to;
 2502:     *to = from;
 2503:     from = nextpl;
 2504:   }
 2505: }
 2506: 
 2507: /* Delete every plink on the list */
 2508: void Plink_delete(plp)
 2509: struct plink *plp;
 2510: {
 2511:   struct plink *nextpl;
 2512: 
 2513:   while( plp ){
 2514:     nextpl = plp->next;
 2515:     plp->next = plink_freelist;
 2516:     plink_freelist = plp;
 2517:     plp = nextpl;
 2518:   }
 2519: }
 2520: /*********************** From the file "report.c" **************************/
 2521: /*
 2522: ** Procedures for generating reports and tables in the LEMON parser generator.
 2523: */
 2524: 
 2525: /* Generate a filename with the given suffix.  Space to hold the
 2526: ** name comes from malloc() and must be freed by the calling
 2527: ** function.
 2528: */
 2529: PRIVATE char *file_makename(lemp,suffix)
 2530: struct lemon *lemp;
 2531: char *suffix;
 2532: {
 2533:   char *name;
 2534:   char *cp;
 2535: 
 2536:   name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
 2537:   if( name==0 ){
 2538:     fprintf(stderr,"Can't allocate space for a filename.\n");
 2539:     exit(1);
 2540:   }
 2541: 	/* skip directory, JK */
 2542: 	if (NULL == (cp = strrchr(lemp->filename, '/'))) {
 2543: 		cp = lemp->filename;
 2544: 	} else {
 2545: 		cp++;
 2546: 	}
 2547:   strcpy(name,cp);
 2548:   cp = strrchr(name,'.');
 2549:   if( cp ) *cp = 0;
 2550:   strcat(name,suffix);
 2551:   return name;
 2552: }
 2553: 
 2554: /* Open a file with a name based on the name of the input file,
 2555: ** but with a different (specified) suffix, and return a pointer
 2556: ** to the stream */
 2557: PRIVATE FILE *file_open(lemp,suffix,mode)
 2558: struct lemon *lemp;
 2559: char *suffix;
 2560: char *mode;
 2561: {
 2562:   FILE *fp;
 2563: 
 2564:   if( lemp->outname ) free(lemp->outname);
 2565:   lemp->outname = file_makename(lemp, suffix);
 2566:   fp = fopen(lemp->outname,mode);
 2567:   if( fp==0 && *mode=='w' ){
 2568:     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
 2569:     lemp->errorcnt++;
 2570:     return 0;
 2571:   }
 2572:   return fp;
 2573: }
 2574: 
 2575: /* Duplicate the input file without comments and without actions
 2576: ** on rules */
 2577: void Reprint(lemp)
 2578: struct lemon *lemp;
 2579: {
 2580:   struct rule *rp;
 2581:   struct symbol *sp;
 2582:   int i, j, maxlen, len, ncolumns, skip;
 2583:   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
 2584:   maxlen = 10;
 2585:   for(i=0; i<lemp->nsymbol; i++){
 2586:     sp = lemp->symbols[i];
 2587:     len = strlen(sp->name);
 2588:     if( len>maxlen ) maxlen = len;
 2589:   }
 2590:   ncolumns = 76/(maxlen+5);
 2591:   if( ncolumns<1 ) ncolumns = 1;
 2592:   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
 2593:   for(i=0; i<skip; i++){
 2594:     printf("//");
 2595:     for(j=i; j<lemp->nsymbol; j+=skip){
 2596:       sp = lemp->symbols[j];
 2597:       assert( sp->index==j );
 2598:       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
 2599:     }
 2600:     printf("\n");
 2601:   }
 2602:   for(rp=lemp->rule; rp; rp=rp->next){
 2603:     printf("%s",rp->lhs->name);
 2604: /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
 2605:     printf(" ::=");
 2606:     for(i=0; i<rp->nrhs; i++){
 2607:       printf(" %s",rp->rhs[i]->name);
 2608: /*      if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
 2609:     }
 2610:     printf(".");
 2611:     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
 2612: /*    if( rp->code ) printf("\n    %s",rp->code); */
 2613:     printf("\n");
 2614:   }
 2615: }
 2616: 
 2617: PRIVATE void ConfigPrint(fp,cfp)
 2618: FILE *fp;
 2619: struct config *cfp;
 2620: {
 2621:   struct rule *rp;
 2622:   int i;
 2623:   rp = cfp->rp;
 2624:   fprintf(fp,"%s ::=",rp->lhs->name);
 2625:   for(i=0; i<=rp->nrhs; i++){
 2626:     if( i==cfp->dot ) fprintf(fp," *");
 2627:     if( i==rp->nrhs ) break;
 2628:     fprintf(fp," %s",rp->rhs[i]->name);
 2629:   }
 2630: }
 2631: 
 2632: /* #define TEST */
 2633: #ifdef TEST
 2634: /* Print a set */
 2635: PRIVATE void SetPrint(out,set,lemp)
 2636: FILE *out;
 2637: char *set;
 2638: struct lemon *lemp;
 2639: {
 2640:   int i;
 2641:   char *spacer;
 2642:   spacer = "";
 2643:   fprintf(out,"%12s[","");
 2644:   for(i=0; i<lemp->nterminal; i++){
 2645:     if( SetFind(set,i) ){
 2646:       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
 2647:       spacer = " ";
 2648:     }
 2649:   }
 2650:   fprintf(out,"]\n");
 2651: }
 2652: 
 2653: /* Print a plink chain */
 2654: void PlinkPrint(out,plp,tag)
 2655: FILE *out;
 2656: struct plink *plp;
 2657: char *tag;
 2658: {
 2659:   while( plp ){
 2660:     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
 2661:     ConfigPrint(out,plp->cfp);
 2662:     fprintf(out,"\n");
 2663:     plp = plp->next;
 2664:   }
 2665: }
 2666: #endif
 2667: 
 2668: /* Print an action to the given file descriptor.  Return FALSE if
 2669: ** nothing was actually printed.
 2670: */
 2671: PRIVATE int PrintAction(struct action *ap, FILE *fp, int indent){
 2672:   int result = 1;
 2673:   switch( ap->type ){
 2674:     case SHIFT:
 2675:       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->index);
 2676:       break;
 2677:     case REDUCE:
 2678:       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
 2679:       break;
 2680:     case ACCEPT:
 2681:       fprintf(fp,"%*s accept",indent,ap->sp->name);
 2682:       break;
 2683:     case ERROR:
 2684:       fprintf(fp,"%*s error",indent,ap->sp->name);
 2685:       break;
 2686:     case CONFLICT:
 2687:       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
 2688:         indent,ap->sp->name,ap->x.rp->index);
 2689:       break;
 2690:     case SH_RESOLVED:
 2691:     case RD_RESOLVED:
 2692:     case NOT_USED:
 2693:       result = 0;
 2694:       break;
 2695:   }
 2696:   return result;
 2697: }
 2698: 
 2699: /* Generate the "y.output" log file */
 2700: void ReportOutput(lemp)
 2701: struct lemon *lemp;
 2702: {
 2703:   int i;
 2704:   struct state *stp;
 2705:   struct config *cfp;
 2706:   struct action *ap;
 2707:   FILE *fp;
 2708: 
 2709:   fp = file_open(lemp,".out","w");
 2710:   if( fp==0 ) return;
 2711:   fprintf(fp," \b");
 2712:   for(i=0; i<lemp->nstate; i++){
 2713:     stp = lemp->sorted[i];
 2714:     fprintf(fp,"State %d:\n",stp->index);
 2715:     if( lemp->basisflag ) cfp=stp->bp;
 2716:     else                  cfp=stp->cfp;
 2717:     while( cfp ){
 2718:       char buf[20];
 2719:       if( cfp->dot==cfp->rp->nrhs ){
 2720:         sprintf(buf,"(%d)",cfp->rp->index);
 2721:         fprintf(fp,"    %5s ",buf);
 2722:       }else{
 2723:         fprintf(fp,"          ");
 2724:       }
 2725:       ConfigPrint(fp,cfp);
 2726:       fprintf(fp,"\n");
 2727: #ifdef TEST
 2728:       SetPrint(fp,cfp->fws,lemp);
 2729:       PlinkPrint(fp,cfp->fplp,"To  ");
 2730:       PlinkPrint(fp,cfp->bplp,"From");
 2731: #endif
 2732:       if( lemp->basisflag ) cfp=cfp->bp;
 2733:       else                  cfp=cfp->next;
 2734:     }
 2735:     fprintf(fp,"\n");
 2736:     for(ap=stp->ap; ap; ap=ap->next){
 2737:       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
 2738:     }
 2739:     fprintf(fp,"\n");
 2740:   }
 2741:   fclose(fp);
 2742:   return;
 2743: }
 2744: 
 2745:   extern int access();
 2746: /* Search for the file "name" which is in the same directory as
 2747: ** the exacutable */
 2748: PRIVATE char *pathsearch(argv0,name,modemask)
 2749: char *argv0;
 2750: char *name;
 2751: int modemask;
 2752: {
 2753:   char *pathlist;
 2754:   char *path,*cp;
 2755:   char c;
 2756: 
 2757: #ifdef __WIN32__
 2758:   cp = strrchr(argv0,'\\');
 2759: #else
 2760:   cp = strrchr(argv0,'/');
 2761: #endif
 2762:   if( cp ){
 2763:     c = *cp;
 2764:     *cp = 0;
 2765:     path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
 2766:     if( path ) sprintf(path,"%s/%s",argv0,name);
 2767:     *cp = c;
 2768:   }else{
 2769:     pathlist = getenv("PATH");
 2770:     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
 2771:     path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
 2772:     if( path!=0 ){
 2773:       while( *pathlist ){
 2774:         cp = strchr(pathlist,':');
 2775:         if( cp==0 ) cp = &pathlist[strlen(pathlist)];
 2776:         c = *cp;
 2777:         *cp = 0;
 2778:         sprintf(path,"%s/%s",pathlist,name);
 2779:         *cp = c;
 2780:         if( c==0 ) pathlist = "";
 2781:         else pathlist = &cp[1];
 2782:         if( access(path,modemask)==0 ) break;
 2783:       }
 2784:     }
 2785:   }
 2786:   return path;
 2787: }
 2788: 
 2789: /* Given an action, compute the integer value for that action
 2790: ** which is to be put in the action table of the generated machine.
 2791: ** Return negative if no action should be generated.
 2792: */
 2793: PRIVATE int compute_action(lemp,ap)
 2794: struct lemon *lemp;
 2795: struct action *ap;
 2796: {
 2797:   int act;
 2798:   switch( ap->type ){
 2799:     case SHIFT:  act = ap->x.stp->index;               break;
 2800:     case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
 2801:     case ERROR:  act = lemp->nstate + lemp->nrule;     break;
 2802:     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
 2803:     default:     act = -1; break;
 2804:   }
 2805:   return act;
 2806: }
 2807: 
 2808: #define LINESIZE 1000
 2809: /* The next cluster of routines are for reading the template file
 2810: ** and writing the results to the generated parser */
 2811: /* The first function transfers data from "in" to "out" until
 2812: ** a line is seen which begins with "%%".  The line number is
 2813: ** tracked.
 2814: **
 2815: ** if name!=0, then any word that begin with "Parse" is changed to
 2816: ** begin with *name instead.
 2817: */
 2818: PRIVATE void tplt_xfer(name,in,out,lineno)
 2819: char *name;
 2820: FILE *in;
 2821: FILE *out;
 2822: int *lineno;
 2823: {
 2824:   int i, iStart;
 2825:   char line[LINESIZE];
 2826:   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
 2827:     (*lineno)++;
 2828:     iStart = 0;
 2829:     if( name ){
 2830:       for(i=0; line[i]; i++){
 2831:         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
 2832:           && (i==0 || !isalpha(line[i-1]))
 2833:         ){
 2834:           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
 2835:           fprintf(out,"%s",name);
 2836:           i += 4;
 2837:           iStart = i+1;
 2838:         }
 2839:       }
 2840:     }
 2841:     fprintf(out,"%s",&line[iStart]);
 2842:   }
 2843: }
 2844: 
 2845: /* The next function finds the template file and opens it, returning
 2846: ** a pointer to the opened file. */
 2847: PRIVATE FILE *tplt_open(lemp)
 2848: struct lemon *lemp;
 2849: {
 2850: 
 2851:   char buf[1000];
 2852:   FILE *in;
 2853:   char *tpltname;
 2854:   char *cp;
 2855: 
 2856:   cp = strrchr(lemp->filename,'.');
 2857:   if( cp ){
 2858:     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
 2859:   }else{
 2860:     sprintf(buf,"%s.lt",lemp->filename);
 2861:   }
 2862:   if( access(buf,004)==0 ){
 2863:     tpltname = buf;
 2864:   }else if( access(lemp->tmplname,004)==0 ){
 2865:     tpltname = lemp->tmplname;
 2866:   }else{
 2867:     tpltname = pathsearch(lemp->argv0,lemp->tmplname,0);
 2868:   }
 2869:   if( tpltname==0 ){
 2870:     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
 2871:     lemp->tmplname);
 2872:     lemp->errorcnt++;
 2873:     return 0;
 2874:   }
 2875:   in = fopen(tpltname,"r");
 2876:   if( in==0 ){
 2877:     fprintf(stderr,"Can't open the template file \"%s\".\n",lemp->tmplname);
 2878:     lemp->errorcnt++;
 2879:     return 0;
 2880:   }
 2881:   return in;
 2882: }
 2883: 
 2884: /* Print a string to the file and keep the linenumber up to date */
 2885: PRIVATE void tplt_print(out,lemp,str,strln,lineno)
 2886: FILE *out;
 2887: struct lemon *lemp;
 2888: char *str;
 2889: int strln;
 2890: int *lineno;
 2891: {
 2892:   if( str==0 ) return;
 2893:   fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
 2894:   while( *str ){
 2895:     if( *str=='\n' ) (*lineno)++;
 2896:     putc(*str,out);
 2897:     str++;
 2898:   }
 2899:   fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
 2900:   return;
 2901: }
 2902: 
 2903: /*
 2904: ** The following routine emits code for the destructor for the
 2905: ** symbol sp
 2906: */
 2907: PRIVATE void emit_destructor_code(out,sp,lemp,lineno)
 2908: FILE *out;
 2909: struct symbol *sp;
 2910: struct lemon *lemp;
 2911: int *lineno;
 2912: {
 2913:  char *cp = 0;
 2914: 
 2915:  int linecnt = 0;
 2916:  if( sp->type==TERMINAL ){
 2917:    cp = lemp->tokendest;
 2918:    if( cp==0 ) return;
 2919:    fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
 2920:  }else if( sp->destructor ){
 2921:    cp = sp->destructor;
 2922:    fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
 2923:  }else{
 2924:    cp = lemp->vardest;
 2925:    if( cp==0 ) return;
 2926:    fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
 2927:  }
 2928:  for(; *cp; cp++){
 2929:    if( *cp=='$' && cp[1]=='$' ){
 2930:      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
 2931:      cp++;
 2932:      continue;
 2933:    }
 2934:    if( *cp=='\n' ) linecnt++;
 2935:    fputc(*cp,out);
 2936:  }
 2937:  (*lineno) += 3 + linecnt;
 2938:  fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
 2939:  return;
 2940: }
 2941: 
 2942: /*
 2943: ** Return TRUE (non-zero) if the given symbol has a destructor.
 2944: */
 2945: PRIVATE int has_destructor(sp, lemp)
 2946: struct symbol *sp;
 2947: struct lemon *lemp;
 2948: {
 2949:   int ret;
 2950:   if( sp->type==TERMINAL ){
 2951:     ret = lemp->tokendest!=0;
 2952:   }else{
 2953:     ret = lemp->vardest!=0 || sp->destructor!=0;
 2954:   }
 2955:   return ret;
 2956: }
 2957: 
 2958: /*
 2959: ** Generate code which executes when the rule "rp" is reduced.  Write
 2960: ** the code to "out".  Make sure lineno stays up-to-date.
 2961: */
 2962: PRIVATE void emit_code(out,rp,lemp,lineno)
 2963: FILE *out;
 2964: struct rule *rp;
 2965: struct lemon *lemp;
 2966: int *lineno;
 2967: {
 2968:  char *cp, *xp;
 2969:  int linecnt = 0;
 2970:  int i;
 2971:  char lhsused = 0;    /* True if the LHS element has been used */
 2972:  char used[MAXRHS];   /* True for each RHS element which is used */
 2973: 
 2974:  for(i=0; i<rp->nrhs; i++) used[i] = 0;
 2975:  lhsused = 0;
 2976: 
 2977:  /* Generate code to do the reduce action */
 2978:  if( rp->code ){
 2979:    fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
 2980:    for(cp=rp->code; *cp; cp++){
 2981:      if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
 2982:        char saved;
 2983:        for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
 2984:        saved = *xp;
 2985:        *xp = 0;
 2986:        if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
 2987:          fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
 2988:          cp = xp;
 2989:          lhsused = 1;
 2990:        }else{
 2991:          for(i=0; i<rp->nrhs; i++){
 2992:            if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
 2993:              fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
 2994:              cp = xp;
 2995:              used[i] = 1;
 2996:              break;
 2997:            }
 2998:          }
 2999:        }
 3000:        *xp = saved;
 3001:      }
 3002:      if( *cp=='\n' ) linecnt++;
 3003:      fputc(*cp,out);
 3004:    } /* End loop */
 3005:    (*lineno) += 3 + linecnt;
 3006:    fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
 3007:  } /* End if( rp->code ) */
 3008: 
 3009:  /* Check to make sure the LHS has been used */
 3010:  if( rp->lhsalias && !lhsused ){
 3011:    ErrorMsg(lemp->filename,rp->ruleline,
 3012:      "Label \"%s\" for \"%s(%s)\" is never used.",
 3013:        rp->lhsalias,rp->lhs->name,rp->lhsalias);
 3014:    lemp->errorcnt++;
 3015:  }
 3016: 
 3017:  /* Generate destructor code for RHS symbols which are not used in the
 3018:  ** reduce code */
 3019:  for(i=0; i<rp->nrhs; i++){
 3020:    if( rp->rhsalias[i] && !used[i] ){
 3021:      ErrorMsg(lemp->filename,rp->ruleline,
 3022:        "Label %s for \"%s(%s)\" is never used.",
 3023:        rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
 3024:      lemp->errorcnt++;
 3025:    }else if( rp->rhsalias[i]==0 ){
 3026:      if( has_destructor(rp->rhs[i],lemp) ){
 3027:        fprintf(out,"  yy_destructor(%d,&yymsp[%d].minor);\n",
 3028:           rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
 3029:      }else{
 3030:        fprintf(out,"        /* No destructor defined for %s */\n",
 3031:         rp->rhs[i]->name);
 3032:         (*lineno)++;
 3033:      }
 3034:    }
 3035:  }
 3036:  return;
 3037: }
 3038: 
 3039: /*
 3040: ** Print the definition of the union used for the parser's data stack.
 3041: ** This union contains fields for every possible data type for tokens
 3042: ** and nonterminals.  In the process of computing and printing this
 3043: ** union, also set the ".dtnum" field of every terminal and nonterminal
 3044: ** symbol.
 3045: */
 3046: PRIVATE void print_stack_union(out,lemp,plineno,mhflag)
 3047: FILE *out;                  /* The output stream */
 3048: struct lemon *lemp;         /* The main info structure for this parser */
 3049: int *plineno;               /* Pointer to the line number */
 3050: int mhflag;                 /* True if generating makeheaders output */
 3051: {
 3052:   int lineno;               /* The line number of the output */
 3053:   char **types;             /* A hash table of datatypes */
 3054:   int arraysize;            /* Size of the "types" array */
 3055:   int maxdtlength;          /* Maximum length of any ".datatype" field. */
 3056:   char *stddt;              /* Standardized name for a datatype */
 3057:   int i,j;                  /* Loop counters */
 3058:   int hash;                 /* For hashing the name of a type */
 3059:   char *name;               /* Name of the parser */
 3060: 
 3061:   /* Allocate and initialize types[] and allocate stddt[] */
 3062:   arraysize = lemp->nsymbol * 2;
 3063:   types = (char**)malloc( arraysize * sizeof(char*) );
 3064:   for(i=0; i<arraysize; i++) types[i] = 0;
 3065:   maxdtlength = 0;
 3066:   if( lemp->vartype ){
 3067:     maxdtlength = strlen(lemp->vartype);
 3068:   }
 3069:   for(i=0; i<lemp->nsymbol; i++){
 3070:     int len;
 3071:     struct symbol *sp = lemp->symbols[i];
 3072:     if( sp->datatype==0 ) continue;
 3073:     len = strlen(sp->datatype);
 3074:     if( len>maxdtlength ) maxdtlength = len;
 3075:   }
 3076:   stddt = (char*)malloc( maxdtlength*2 + 1 );
 3077:   if( types==0 || stddt==0 ){
 3078:     fprintf(stderr,"Out of memory.\n");
 3079:     exit(1);
 3080:   }
 3081: 
 3082:   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
 3083:   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
 3084:   ** used for terminal symbols.  If there is no %default_type defined then
 3085:   ** 0 is also used as the .dtnum value for nonterminals which do not specify
 3086:   ** a datatype using the %type directive.
 3087:   */
 3088:   for(i=0; i<lemp->nsymbol; i++){
 3089:     struct symbol *sp = lemp->symbols[i];
 3090:     char *cp;
 3091:     if( sp==lemp->errsym ){
 3092:       sp->dtnum = arraysize+1;
 3093:       continue;
 3094:     }
 3095:     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
 3096:       sp->dtnum = 0;
 3097:       continue;
 3098:     }
 3099:     cp = sp->datatype;
 3100:     if( cp==0 ) cp = lemp->vartype;
 3101:     j = 0;
 3102:     while( isspace(*cp) ) cp++;
 3103:     while( *cp ) stddt[j++] = *cp++;
 3104:     while( j>0 && isspace(stddt[j-1]) ) j--;
 3105:     stddt[j] = 0;
 3106:     hash = 0;
 3107:     for(j=0; stddt[j]; j++){
 3108:       hash = (unsigned int)hash*53u + (unsigned int) stddt[j];
 3109:     }
 3110:     hash = (hash & 0x7fffffff)%arraysize;
 3111:     while( types[hash] ){
 3112:       if( strcmp(types[hash],stddt)==0 ){
 3113:         sp->dtnum = hash + 1;
 3114:         break;
 3115:       }
 3116:       hash++;
 3117:       if( hash>=arraysize ) hash = 0;
 3118:     }
 3119:     if( types[hash]==0 ){
 3120:       sp->dtnum = hash + 1;
 3121:       types[hash] = (char*)malloc( strlen(stddt)+1 );
 3122:       if( types[hash]==0 ){
 3123:         fprintf(stderr,"Out of memory.\n");
 3124:         exit(1);
 3125:       }
 3126:       strcpy(types[hash],stddt);
 3127:     }
 3128:   }
 3129: 
 3130:   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
 3131:   name = lemp->name ? lemp->name : "Parse";
 3132:   lineno = *plineno;
 3133:   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
 3134:   fprintf(out,"#define %sTOKENTYPE %s\n",name,
 3135:     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
 3136:   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
 3137:   fprintf(out,"typedef union {\n"); lineno++;
 3138:   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
 3139:   for(i=0; i<arraysize; i++){
 3140:     if( types[i]==0 ) continue;
 3141:     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
 3142:     free(types[i]);
 3143:   }
 3144:   fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
 3145:   free(stddt);
 3146:   free(types);
 3147:   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
 3148:   *plineno = lineno;
 3149: }
 3150: 
 3151: /*
 3152: ** Return the name of a C datatype able to represent values between
 3153: ** lwr and upr, inclusive.
 3154: */
 3155: static const char *minimum_size_type(int lwr, int upr){
 3156:   if( lwr>=0 ){
 3157:     if( upr<=255 ){
 3158:       return "unsigned char";
 3159:     }else if( upr<65535 ){
 3160:       return "unsigned short int";
 3161:     }else{
 3162:       return "unsigned int";
 3163:     }
 3164:   }else if( lwr>=-127 && upr<=127 ){
 3165:     return "signed char";
 3166:   }else if( lwr>=-32767 && upr<32767 ){
 3167:     return "short";
 3168:   }else{
 3169:     return "int";
 3170:   }
 3171: }
 3172: 
 3173: /*
 3174: ** Each state contains a set of token transaction and a set of
 3175: ** nonterminal transactions.  Each of these sets makes an instance
 3176: ** of the following structure.  An array of these structures is used
 3177: ** to order the creation of entries in the yy_action[] table.
 3178: */
 3179: struct axset {
 3180:   struct state *stp;   /* A pointer to a state */
 3181:   int isTkn;           /* True to use tokens.  False for non-terminals */
 3182:   int nAction;         /* Number of actions */
 3183: };
 3184: 
 3185: /*
 3186: ** Compare to axset structures for sorting purposes
 3187: */
 3188: static int axset_compare(const void *a, const void *b){
 3189:   struct axset *p1 = (struct axset*)a;
 3190:   struct axset *p2 = (struct axset*)b;
 3191:   return p2->nAction - p1->nAction;
 3192: }
 3193: 
 3194: /* Generate C source code for the parser */
 3195: void ReportTable(lemp, mhflag)
 3196: struct lemon *lemp;
 3197: int mhflag;     /* Output in makeheaders format if true */
 3198: {
 3199:   FILE *out, *in;
 3200:   char line[LINESIZE];
 3201:   int  lineno;
 3202:   struct state *stp;
 3203:   struct action *ap;
 3204:   struct rule *rp;
 3205:   struct acttab *pActtab;
 3206:   int i, j, n;
 3207:   int mnTknOfst, mxTknOfst;
 3208:   int mnNtOfst, mxNtOfst;
 3209:   struct axset *ax;
 3210:   char *name;
 3211: 
 3212:   in = tplt_open(lemp);
 3213:   if( in==0 ) return;
 3214:   out = file_open(lemp,".c","w");
 3215:   if( out==0 ){
 3216:     fclose(in);
 3217:     return;
 3218:   }
 3219:   lineno = 1;
 3220:   tplt_xfer(lemp->name,in,out,&lineno);
 3221: 
 3222:   /* Generate the include code, if any */
 3223:   tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
 3224:   if( mhflag ){
 3225:     name = file_makename(lemp, ".h");
 3226:     fprintf(out,"#include \"%s\"\n", name); lineno++;
 3227:     free(name);
 3228:   }
 3229:   tplt_xfer(lemp->name,in,out,&lineno);
 3230: 
 3231:   /* Generate #defines for all tokens */
 3232:   if( mhflag ){
 3233:     char *prefix;
 3234:     fprintf(out,"#if INTERFACE\n"); lineno++;
 3235:     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
 3236:     else                    prefix = "";
 3237:     for(i=1; i<lemp->nterminal; i++){
 3238:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 3239:       lineno++;
 3240:     }
 3241:     fprintf(out,"#endif\n"); lineno++;
 3242:   }
 3243:   tplt_xfer(lemp->name,in,out,&lineno);
 3244: 
 3245:   /* Generate the defines */
 3246:   fprintf(out,"/* \001 */\n");
 3247:   fprintf(out,"#define YYCODETYPE %s\n",
 3248:     minimum_size_type(0, lemp->nsymbol+5)); lineno++;
 3249:   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
 3250:   fprintf(out,"#define YYACTIONTYPE %s\n",
 3251:     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
 3252:   print_stack_union(out,lemp,&lineno,mhflag);
 3253:   if( lemp->stacksize ){
 3254:     if( atoi(lemp->stacksize)<=0 ){
 3255:       ErrorMsg(lemp->filename,0,
 3256: "Illegal stack size: [%s].  The stack size should be an integer constant.",
 3257:         lemp->stacksize);
 3258:       lemp->errorcnt++;
 3259:       lemp->stacksize = "100";
 3260:     }
 3261:     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
 3262:   }else{
 3263:     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
 3264:   }
 3265:   if( mhflag ){
 3266:     fprintf(out,"#if INTERFACE\n"); lineno++;
 3267:   }
 3268:   name = lemp->name ? lemp->name : "Parse";
 3269:   if( lemp->arg && lemp->arg[0] ){
 3270:     i = strlen(lemp->arg);
 3271:     while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
 3272:     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
 3273:     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
 3274:     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
 3275:     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
 3276:                  name,lemp->arg,&lemp->arg[i]);  lineno++;
 3277:     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
 3278:                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
 3279:   }else{
 3280:     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
 3281:     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
 3282:     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
 3283:     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
 3284:   }
 3285:   if( mhflag ){
 3286:     fprintf(out,"#endif\n"); lineno++;
 3287:   }
 3288:   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
 3289:   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
 3290:   fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
 3291:   fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
 3292:   if( lemp->has_fallback ){
 3293:     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
 3294:   }
 3295:   tplt_xfer(lemp->name,in,out,&lineno);
 3296: 
 3297:   /* Generate the action table and its associates:
 3298:   **
 3299:   **  yy_action[]        A single table containing all actions.
 3300:   **  yy_lookahead[]     A table containing the lookahead for each entry in
 3301:   **                     yy_action.  Used to detect hash collisions.
 3302:   **  yy_shift_ofst[]    For each state, the offset into yy_action for
 3303:   **                     shifting terminals.
 3304:   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
 3305:   **                     shifting non-terminals after a reduce.
 3306:   **  yy_default[]       Default action for each state.
 3307:   */
 3308: 
 3309:   /* Compute the actions on all states and count them up */
 3310:   ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
 3311:   if( ax==0 ){
 3312:     fprintf(stderr,"malloc failed\n");
 3313:     exit(1);
 3314:   }
 3315:   for(i=0; i<lemp->nstate; i++){
 3316:     stp = lemp->sorted[i];
 3317:     stp->nTknAct = stp->nNtAct = 0;
 3318:     stp->iDflt = lemp->nstate + lemp->nrule;
 3319:     stp->iTknOfst = NO_OFFSET;
 3320:     stp->iNtOfst = NO_OFFSET;
 3321:     for(ap=stp->ap; ap; ap=ap->next){
 3322:       if( compute_action(lemp,ap)>=0 ){
 3323:         if( ap->sp->index<lemp->nterminal ){
 3324:           stp->nTknAct++;
 3325:         }else if( ap->sp->index<lemp->nsymbol ){
 3326:           stp->nNtAct++;
 3327:         }else{
 3328:           stp->iDflt = compute_action(lemp, ap);
 3329:         }
 3330:       }
 3331:     }
 3332:     ax[i*2].stp = stp;
 3333:     ax[i*2].isTkn = 1;
 3334:     ax[i*2].nAction = stp->nTknAct;
 3335:     ax[i*2+1].stp = stp;
 3336:     ax[i*2+1].isTkn = 0;
 3337:     ax[i*2+1].nAction = stp->nNtAct;
 3338:   }
 3339:   mxTknOfst = mnTknOfst = 0;
 3340:   mxNtOfst = mnNtOfst = 0;
 3341: 
 3342:   /* Compute the action table.  In order to try to keep the size of the
 3343:   ** action table to a minimum, the heuristic of placing the largest action
 3344:   ** sets first is used.
 3345:   */
 3346:   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
 3347:   pActtab = acttab_alloc();
 3348:   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
 3349:     stp = ax[i].stp;
 3350:     if( ax[i].isTkn ){
 3351:       for(ap=stp->ap; ap; ap=ap->next){
 3352:         int action;
 3353:         if( ap->sp->index>=lemp->nterminal ) continue;
 3354:         action = compute_action(lemp, ap);
 3355:         if( action<0 ) continue;
 3356:         acttab_action(pActtab, ap->sp->index, action);
 3357:       }
 3358:       stp->iTknOfst = acttab_insert(pActtab);
 3359:       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
 3360:       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
 3361:     }else{
 3362:       for(ap=stp->ap; ap; ap=ap->next){
 3363:         int action;
 3364:         if( ap->sp->index<lemp->nterminal ) continue;
 3365:         if( ap->sp->index==lemp->nsymbol ) continue;
 3366:         action = compute_action(lemp, ap);
 3367:         if( action<0 ) continue;
 3368:         acttab_action(pActtab, ap->sp->index, action);
 3369:       }
 3370:       stp->iNtOfst = acttab_insert(pActtab);
 3371:       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
 3372:       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
 3373:     }
 3374:   }
 3375:   free(ax);
 3376: 
 3377:   /* Output the yy_action table */
 3378:   fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
 3379:   n = acttab_size(pActtab);
 3380:   for(i=j=0; i<n; i++){
 3381:     int action = acttab_yyaction(pActtab, i);
 3382:     if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
 3383:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3384:     fprintf(out, " %4d,", action);
 3385:     if( j==9 || i==n-1 ){
 3386:       fprintf(out, "\n"); lineno++;
 3387:       j = 0;
 3388:     }else{
 3389:       j++;
 3390:     }
 3391:   }
 3392:   fprintf(out, "};\n"); lineno++;
 3393: 
 3394:   /* Output the yy_lookahead table */
 3395:   fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
 3396:   for(i=j=0; i<n; i++){
 3397:     int la = acttab_yylookahead(pActtab, i);
 3398:     if( la<0 ) la = lemp->nsymbol;
 3399:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3400:     fprintf(out, " %4d,", la);
 3401:     if( j==9 || i==n-1 ){
 3402:       fprintf(out, "\n"); lineno++;
 3403:       j = 0;
 3404:     }else{
 3405:       j++;
 3406:     }
 3407:   }
 3408:   fprintf(out, "};\n"); lineno++;
 3409: 
 3410:   /* Output the yy_shift_ofst[] table */
 3411:   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
 3412:   fprintf(out, "static %s yy_shift_ofst[] = {\n",
 3413:           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
 3414:   n = lemp->nstate;
 3415:   for(i=j=0; i<n; i++){
 3416:     int ofst;
 3417:     stp = lemp->sorted[i];
 3418:     ofst = stp->iTknOfst;
 3419:     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
 3420:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3421:     fprintf(out, " %4d,", ofst);
 3422:     if( j==9 || i==n-1 ){
 3423:       fprintf(out, "\n"); lineno++;
 3424:       j = 0;
 3425:     }else{
 3426:       j++;
 3427:     }
 3428:   }
 3429:   fprintf(out, "};\n"); lineno++;
 3430: 
 3431:   /* Output the yy_reduce_ofst[] table */
 3432:   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
 3433:   fprintf(out, "static %s yy_reduce_ofst[] = {\n",
 3434:           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
 3435:   n = lemp->nstate;
 3436:   for(i=j=0; i<n; i++){
 3437:     int ofst;
 3438:     stp = lemp->sorted[i];
 3439:     ofst = stp->iNtOfst;
 3440:     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
 3441:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3442:     fprintf(out, " %4d,", ofst);
 3443:     if( j==9 || i==n-1 ){
 3444:       fprintf(out, "\n"); lineno++;
 3445:       j = 0;
 3446:     }else{
 3447:       j++;
 3448:     }
 3449:   }
 3450:   fprintf(out, "};\n"); lineno++;
 3451: 
 3452:   /* Output the default action table */
 3453:   fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
 3454:   n = lemp->nstate;
 3455:   for(i=j=0; i<n; i++){
 3456:     stp = lemp->sorted[i];
 3457:     if( j==0 ) fprintf(out," /* %5d */ ", i);
 3458:     fprintf(out, " %4d,", stp->iDflt);
 3459:     if( j==9 || i==n-1 ){
 3460:       fprintf(out, "\n"); lineno++;
 3461:       j = 0;
 3462:     }else{
 3463:       j++;
 3464:     }
 3465:   }
 3466:   fprintf(out, "};\n"); lineno++;
 3467:   tplt_xfer(lemp->name,in,out,&lineno);
 3468: 
 3469:   /* Generate the table of fallback tokens.
 3470:   */
 3471:   if( lemp->has_fallback ){
 3472:     for(i=0; i<lemp->nterminal; i++){
 3473:       struct symbol *p = lemp->symbols[i];
 3474:       if( p->fallback==0 ){
 3475:         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
 3476:       }else{
 3477:         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
 3478:           p->name, p->fallback->name);
 3479:       }
 3480:       lineno++;
 3481:     }
 3482:   }
 3483:   tplt_xfer(lemp->name, in, out, &lineno);
 3484: 
 3485:   /* Generate a table containing the symbolic name of every symbol
 3486:   */
 3487:   for(i=0; i<lemp->nsymbol; i++){
 3488:     sprintf(line,"\"%s\",",lemp->symbols[i]->name);
 3489:     fprintf(out,"  %-15s",line);
 3490:     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
 3491:   }
 3492:   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
 3493:   tplt_xfer(lemp->name,in,out,&lineno);
 3494: 
 3495:   /* Generate a table containing a text string that describes every
 3496:   ** rule in the rule set of the grammer.  This information is used
 3497:   ** when tracing REDUCE actions.
 3498:   */
 3499:   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
 3500:     assert( rp->index==i );
 3501:     fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
 3502:     for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
 3503:     fprintf(out,"\",\n"); lineno++;
 3504:   }
 3505:   tplt_xfer(lemp->name,in,out,&lineno);
 3506: 
 3507:   /* Generate code which executes every time a symbol is popped from
 3508:   ** the stack while processing errors or while destroying the parser.
 3509:   ** (In other words, generate the %destructor actions)
 3510:   */
 3511:   if( lemp->tokendest ){
 3512:     for(i=0; i<lemp->nsymbol; i++){
 3513:       struct symbol *sp = lemp->symbols[i];
 3514:       if( sp==0 || sp->type!=TERMINAL ) continue;
 3515:       fprintf(out,"    case %d:\n",sp->index); lineno++;
 3516:     }
 3517:     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
 3518:     if( i<lemp->nsymbol ){
 3519:       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
 3520:       fprintf(out,"      break;\n"); lineno++;
 3521:     }
 3522:   }
 3523:   for(i=0; i<lemp->nsymbol; i++){
 3524:     struct symbol *sp = lemp->symbols[i];
 3525:     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
 3526:     fprintf(out,"    case %d:\n",sp->index); lineno++;
 3527:     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
 3528:     fprintf(out,"      break;\n"); lineno++;
 3529:   }
 3530:   if( lemp->vardest ){
 3531:     struct symbol *dflt_sp = 0;
 3532:     for(i=0; i<lemp->nsymbol; i++){
 3533:       struct symbol *sp = lemp->symbols[i];
 3534:       if( sp==0 || sp->type==TERMINAL ||
 3535:           sp->index<=0 || sp->destructor!=0 ) continue;
 3536:       fprintf(out,"    case %d:\n",sp->index); lineno++;
 3537:       dflt_sp = sp;
 3538:     }
 3539:     if( dflt_sp!=0 ){
 3540:       emit_destructor_code(out,dflt_sp,lemp,&lineno);
 3541:       fprintf(out,"      break;\n"); lineno++;
 3542:     }
 3543:   }
 3544:   tplt_xfer(lemp->name,in,out,&lineno);
 3545: 
 3546:   /* Generate code which executes whenever the parser stack overflows */
 3547:   tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
 3548:   tplt_xfer(lemp->name,in,out,&lineno);
 3549: 
 3550:   /* Generate the table of rule information
 3551:   **
 3552:   ** Note: This code depends on the fact that rules are number
 3553:   ** sequentually beginning with 0.
 3554:   */
 3555:   for(rp=lemp->rule; rp; rp=rp->next){
 3556:     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
 3557:   }
 3558:   tplt_xfer(lemp->name,in,out,&lineno);
 3559: 
 3560:   /* Generate code which execution during each REDUCE action */
 3561:   for(rp=lemp->rule; rp; rp=rp->next){
 3562:     fprintf(out,"      case %d:\n",rp->index); lineno++;
 3563:     emit_code(out,rp,lemp,&lineno);
 3564:     fprintf(out,"        break;\n"); lineno++;
 3565:   }
 3566:   tplt_xfer(lemp->name,in,out,&lineno);
 3567: 
 3568:   /* Generate code which executes if a parse fails */
 3569:   tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
 3570:   tplt_xfer(lemp->name,in,out,&lineno);
 3571: 
 3572:   /* Generate code which executes when a syntax error occurs */
 3573:   tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
 3574:   tplt_xfer(lemp->name,in,out,&lineno);
 3575: 
 3576:   /* Generate code which executes when the parser accepts its input */
 3577:   tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
 3578:   tplt_xfer(lemp->name,in,out,&lineno);
 3579: 
 3580:   /* Append any addition code the user desires */
 3581:   tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
 3582: 
 3583:   fclose(in);
 3584:   fclose(out);
 3585:   return;
 3586: }
 3587: 
 3588: /* Generate a header file for the parser */
 3589: void ReportHeader(lemp)
 3590: struct lemon *lemp;
 3591: {
 3592:   FILE *out, *in;
 3593:   char *prefix;
 3594:   char line[LINESIZE];
 3595:   char pattern[LINESIZE];
 3596:   int i;
 3597: 
 3598:   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
 3599:   else                    prefix = "";
 3600:   in = file_open(lemp,".h","r");
 3601:   if( in ){
 3602:     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
 3603:       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 3604:       if( strcmp(line,pattern) ) break;
 3605:     }
 3606:     fclose(in);
 3607:     if( i==lemp->nterminal ){
 3608:       /* No change in the file.  Don't rewrite it. */
 3609:       return;
 3610:     }
 3611:   }
 3612:   out = file_open(lemp,".h","w");
 3613:   if( out ){
 3614:     for(i=1; i<lemp->nterminal; i++){
 3615:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 3616:     }
 3617:     fclose(out);
 3618:   }
 3619:   return;
 3620: }
 3621: 
 3622: /* Reduce the size of the action tables, if possible, by making use
 3623: ** of defaults.
 3624: **
 3625: ** In this version, we take the most frequent REDUCE action and make
 3626: ** it the default.  Only default a reduce if there are more than one.
 3627: */
 3628: void CompressTables(lemp)
 3629: struct lemon *lemp;
 3630: {
 3631:   struct state *stp;
 3632:   struct action *ap, *ap2;
 3633:   struct rule *rp, *rp2, *rbest;
 3634:   int nbest, n;
 3635:   int i;
 3636: 
 3637:   for(i=0; i<lemp->nstate; i++){
 3638:     stp = lemp->sorted[i];
 3639:     nbest = 0;
 3640:     rbest = 0;
 3641: 
 3642:     for(ap=stp->ap; ap; ap=ap->next){
 3643:       if( ap->type!=REDUCE ) continue;
 3644:       rp = ap->x.rp;
 3645:       if( rp==rbest ) continue;
 3646:       n = 1;
 3647:       for(ap2=ap->next; ap2; ap2=ap2->next){
 3648:         if( ap2->type!=REDUCE ) continue;
 3649:         rp2 = ap2->x.rp;
 3650:         if( rp2==rbest ) continue;
 3651:         if( rp2==rp ) n++;
 3652:       }
 3653:       if( n>nbest ){
 3654:         nbest = n;
 3655:         rbest = rp;
 3656:       }
 3657:     }
 3658: 
 3659:     /* Do not make a default if the number of rules to default
 3660:     ** is not at least 2 */
 3661:     if( nbest<2 ) continue;
 3662: 
 3663: 
 3664:     /* Combine matching REDUCE actions into a single default */
 3665:     for(ap=stp->ap; ap; ap=ap->next){
 3666:       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
 3667:     }
 3668:     assert( ap );
 3669:     ap->sp = Symbol_new("{default}");
 3670:     for(ap=ap->next; ap; ap=ap->next){
 3671:       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
 3672:     }
 3673:     stp->ap = Action_sort(stp->ap);
 3674:   }
 3675: }
 3676: 
 3677: /***************** From the file "set.c" ************************************/
 3678: /*
 3679: ** Set manipulation routines for the LEMON parser generator.
 3680: */
 3681: 
 3682: static int global_size = 0;
 3683: 
 3684: /* Set the set size */
 3685: void SetSize(n)
 3686: int n;
 3687: {
 3688:   global_size = n+1;
 3689: }
 3690: 
 3691: /* Allocate a new set */
 3692: char *SetNew(){
 3693:   char *s;
 3694:   int i;
 3695:   s = (char*)malloc( global_size );
 3696:   if( s==0 ){
 3697:     memory_error();
 3698:   }
 3699:   for(i=0; i<global_size; i++) s[i] = 0;
 3700:   return s;
 3701: }
 3702: 
 3703: /* Deallocate a set */
 3704: void SetFree(s)
 3705: char *s;
 3706: {
 3707:   free(s);
 3708: }
 3709: 
 3710: /* Add a new element to the set.  Return TRUE if the element was added
 3711: ** and FALSE if it was already there. */
 3712: int SetAdd(s,e)
 3713: char *s;
 3714: int e;
 3715: {
 3716:   int rv;
 3717:   rv = s[e];
 3718:   s[e] = 1;
 3719:   return !rv;
 3720: }
 3721: 
 3722: /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
 3723: int SetUnion(s1,s2)
 3724: char *s1;
 3725: char *s2;
 3726: {
 3727:   int i, progress;
 3728:   progress = 0;
 3729:   for(i=0; i<global_size; i++){
 3730:     if( s2[i]==0 ) continue;
 3731:     if( s1[i]==0 ){
 3732:       progress = 1;
 3733:       s1[i] = 1;
 3734:     }
 3735:   }
 3736:   return progress;
 3737: }
 3738: /********************** From the file "table.c" ****************************/
 3739: /*
 3740: ** All code in this file has been automatically generated
 3741: ** from a specification in the file
 3742: **              "table.q"
 3743: ** by the associative array code building program "aagen".
 3744: ** Do not edit this file!  Instead, edit the specification
 3745: ** file, then rerun aagen.
 3746: */
 3747: /*
 3748: ** Code for processing tables in the LEMON parser generator.
 3749: */
 3750: 
 3751: PRIVATE int strhash(x)
 3752: char *x;
 3753: {
 3754:   unsigned int h = 0;
 3755:   while( *x) h = h*13u + (unsigned int) *(x++);
 3756:   return h;
 3757: }
 3758: 
 3759: /* Works like strdup, sort of.  Save a string in malloced memory, but
 3760: ** keep strings in a table so that the same string is not in more
 3761: ** than one place.
 3762: */
 3763: char *Strsafe(y)
 3764: char *y;
 3765: {
 3766:   char *z;
 3767: 
 3768:   z = Strsafe_find(y);
 3769:   if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
 3770:     strcpy(z,y);
 3771:     Strsafe_insert(z);
 3772:   }
 3773:   MemoryCheck(z);
 3774:   return z;
 3775: }
 3776: 
 3777: /* There is one instance of the following structure for each
 3778: ** associative array of type "x1".
 3779: */
 3780: struct s_x1 {
 3781:   int size;               /* The number of available slots. */
 3782:                           /*   Must be a power of 2 greater than or */
 3783:                           /*   equal to 1 */
 3784:   int count;              /* Number of currently slots filled */
 3785:   struct s_x1node *tbl;  /* The data stored here */
 3786:   struct s_x1node **ht;  /* Hash table for lookups */
 3787: };
 3788: 
 3789: /* There is one instance of this structure for every data element
 3790: ** in an associative array of type "x1".
 3791: */
 3792: typedef struct s_x1node {
 3793:   char *data;                  /* The data */
 3794:   struct s_x1node *next;   /* Next entry with the same hash */
 3795:   struct s_x1node **from;  /* Previous link */
 3796: } x1node;
 3797: 
 3798: /* There is only one instance of the array, which is the following */
 3799: static struct s_x1 *x1a;
 3800: 
 3801: /* Allocate a new associative array */
 3802: void Strsafe_init(){
 3803:   if( x1a ) return;
 3804:   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
 3805:   if( x1a ){
 3806:     x1a->size = 1024;
 3807:     x1a->count = 0;
 3808:     x1a->tbl = (x1node*)malloc(
 3809:       (sizeof(x1node) + sizeof(x1node*))*1024 );
 3810:     if( x1a->tbl==0 ){
 3811:       free(x1a);
 3812:       x1a = 0;
 3813:     }else{
 3814:       int i;
 3815:       x1a->ht = (x1node**)&(x1a->tbl[1024]);
 3816:       for(i=0; i<1024; i++) x1a->ht[i] = 0;
 3817:     }
 3818:   }
 3819: }
 3820: /* Insert a new record into the array.  Return TRUE if successful.
 3821: ** Prior data with the same key is NOT overwritten */
 3822: int Strsafe_insert(data)
 3823: char *data;
 3824: {
 3825:   x1node *np;
 3826:   int h;
 3827:   int ph;
 3828: 
 3829:   if( x1a==0 ) return 0;
 3830:   ph = strhash(data);
 3831:   h = ph & (x1a->size-1);
 3832:   np = x1a->ht[h];
 3833:   while( np ){
 3834:     if( strcmp(np->data,data)==0 ){
 3835:       /* An existing entry with the same key is found. */
 3836:       /* Fail because overwrite is not allows. */
 3837:       return 0;
 3838:     }
 3839:     np = np->next;
 3840:   }
 3841:   if( x1a->count>=x1a->size ){
 3842:     /* Need to make the hash table bigger */
 3843:     int i,size;
 3844:     struct s_x1 array;
 3845:     array.size = size = x1a->size*2;
 3846:     array.count = x1a->count;
 3847:     array.tbl = (x1node*)malloc(
 3848:       (sizeof(x1node) + sizeof(x1node*))*size );
 3849:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 3850:     array.ht = (x1node**)&(array.tbl[size]);
 3851:     for(i=0; i<size; i++) array.ht[i] = 0;
 3852:     for(i=0; i<x1a->count; i++){
 3853:       x1node *oldnp, *newnp;
 3854:       oldnp = &(x1a->tbl[i]);
 3855:       h = strhash(oldnp->data) & (size-1);
 3856:       newnp = &(array.tbl[i]);
 3857:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 3858:       newnp->next = array.ht[h];
 3859:       newnp->data = oldnp->data;
 3860:       newnp->from = &(array.ht[h]);
 3861:       array.ht[h] = newnp;
 3862:     }
 3863:     free(x1a->tbl);
 3864:     *x1a = array;
 3865:   }
 3866:   /* Insert the new data */
 3867:   h = ph & (x1a->size-1);
 3868:   np = &(x1a->tbl[x1a->count++]);
 3869:   np->data = data;
 3870:   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
 3871:   np->next = x1a->ht[h];
 3872:   x1a->ht[h] = np;
 3873:   np->from = &(x1a->ht[h]);
 3874:   return 1;
 3875: }
 3876: 
 3877: /* Return a pointer to data assigned to the given key.  Return NULL
 3878: ** if no such key. */
 3879: char *Strsafe_find(key)
 3880: char *key;
 3881: {
 3882:   int h;
 3883:   x1node *np;
 3884: 
 3885:   if( x1a==0 ) return 0;
 3886:   h = strhash(key) & (x1a->size-1);
 3887:   np = x1a->ht[h];
 3888:   while( np ){
 3889:     if( strcmp(np->data,key)==0 ) break;
 3890:     np = np->next;
 3891:   }
 3892:   return np ? np->data : 0;
 3893: }
 3894: 
 3895: /* Return a pointer to the (terminal or nonterminal) symbol "x".
 3896: ** Create a new symbol if this is the first time "x" has been seen.
 3897: */
 3898: struct symbol *Symbol_new(x)
 3899: char *x;
 3900: {
 3901:   struct symbol *sp;
 3902: 
 3903:   sp = Symbol_find(x);
 3904:   if( sp==0 ){
 3905:     sp = (struct symbol *)malloc( sizeof(struct symbol) );
 3906:     MemoryCheck(sp);
 3907:     sp->name = Strsafe(x);
 3908:     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
 3909:     sp->rule = 0;
 3910:     sp->fallback = 0;
 3911:     sp->prec = -1;
 3912:     sp->assoc = UNK;
 3913:     sp->firstset = 0;
 3914:     sp->lambda = Bo_FALSE;
 3915:     sp->destructor = 0;
 3916:     sp->datatype = 0;
 3917:     Symbol_insert(sp,sp->name);
 3918:   }
 3919:   return sp;
 3920: }
 3921: 
 3922: /* Compare two symbols for working purposes
 3923: **
 3924: ** Symbols that begin with upper case letters (terminals or tokens)
 3925: ** must sort before symbols that begin with lower case letters
 3926: ** (non-terminals).  Other than that, the order does not matter.
 3927: **
 3928: ** We find experimentally that leaving the symbols in their original
 3929: ** order (the order they appeared in the grammar file) gives the
 3930: ** smallest parser tables in SQLite.
 3931: */
 3932: int Symbolcmpp(struct symbol **a, struct symbol **b){
 3933:   int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
 3934:   int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
 3935:   return i1-i2;
 3936: }
 3937: 
 3938: /* There is one instance of the following structure for each
 3939: ** associative array of type "x2".
 3940: */
 3941: struct s_x2 {
 3942:   int size;               /* The number of available slots. */
 3943:                           /*   Must be a power of 2 greater than or */
 3944:                           /*   equal to 1 */
 3945:   int count;              /* Number of currently slots filled */
 3946:   struct s_x2node *tbl;  /* The data stored here */
 3947:   struct s_x2node **ht;  /* Hash table for lookups */
 3948: };
 3949: 
 3950: /* There is one instance of this structure for every data element
 3951: ** in an associative array of type "x2".
 3952: */
 3953: typedef struct s_x2node {
 3954:   struct symbol *data;                  /* The data */
 3955:   char *key;                   /* The key */
 3956:   struct s_x2node *next;   /* Next entry with the same hash */
 3957:   struct s_x2node **from;  /* Previous link */
 3958: } x2node;
 3959: 
 3960: /* There is only one instance of the array, which is the following */
 3961: static struct s_x2 *x2a;
 3962: 
 3963: /* Allocate a new associative array */
 3964: void Symbol_init(){
 3965:   if( x2a ) return;
 3966:   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
 3967:   if( x2a ){
 3968:     x2a->size = 128;
 3969:     x2a->count = 0;
 3970:     x2a->tbl = (x2node*)malloc(
 3971:       (sizeof(x2node) + sizeof(x2node*))*128 );
 3972:     if( x2a->tbl==0 ){
 3973:       free(x2a);
 3974:       x2a = 0;
 3975:     }else{
 3976:       int i;
 3977:       x2a->ht = (x2node**)&(x2a->tbl[128]);
 3978:       for(i=0; i<128; i++) x2a->ht[i] = 0;
 3979:     }
 3980:   }
 3981: }
 3982: /* Insert a new record into the array.  Return TRUE if successful.
 3983: ** Prior data with the same key is NOT overwritten */
 3984: int Symbol_insert(data,key)
 3985: struct symbol *data;
 3986: char *key;
 3987: {
 3988:   x2node *np;
 3989:   int h;
 3990:   int ph;
 3991: 
 3992:   if( x2a==0 ) return 0;
 3993:   ph = strhash(key);
 3994:   h = ph & (x2a->size-1);
 3995:   np = x2a->ht[h];
 3996:   while( np ){
 3997:     if( strcmp(np->key,key)==0 ){
 3998:       /* An existing entry with the same key is found. */
 3999:       /* Fail because overwrite is not allows. */
 4000:       return 0;
 4001:     }
 4002:     np = np->next;
 4003:   }
 4004:   if( x2a->count>=x2a->size ){
 4005:     /* Need to make the hash table bigger */
 4006:     int i,size;
 4007:     struct s_x2 array;
 4008:     array.size = size = x2a->size*2;
 4009:     array.count = x2a->count;
 4010:     array.tbl = (x2node*)malloc(
 4011:       (sizeof(x2node) + sizeof(x2node*))*size );
 4012:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 4013:     array.ht = (x2node**)&(array.tbl[size]);
 4014:     for(i=0; i<size; i++) array.ht[i] = 0;
 4015:     for(i=0; i<x2a->count; i++){
 4016:       x2node *oldnp, *newnp;
 4017:       oldnp = &(x2a->tbl[i]);
 4018:       h = strhash(oldnp->key) & (size-1);
 4019:       newnp = &(array.tbl[i]);
 4020:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 4021:       newnp->next = array.ht[h];
 4022:       newnp->key = oldnp->key;
 4023:       newnp->data = oldnp->data;
 4024:       newnp->from = &(array.ht[h]);
 4025:       array.ht[h] = newnp;
 4026:     }
 4027:     free(x2a->tbl);
 4028:     *x2a = array;
 4029:   }
 4030:   /* Insert the new data */
 4031:   h = ph & (x2a->size-1);
 4032:   np = &(x2a->tbl[x2a->count++]);
 4033:   np->key = key;
 4034:   np->data = data;
 4035:   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
 4036:   np->next = x2a->ht[h];
 4037:   x2a->ht[h] = np;
 4038:   np->from = &(x2a->ht[h]);
 4039:   return 1;
 4040: }
 4041: 
 4042: /* Return a pointer to data assigned to the given key.  Return NULL
 4043: ** if no such key. */
 4044: struct symbol *Symbol_find(key)
 4045: char *key;
 4046: {
 4047:   int h;
 4048:   x2node *np;
 4049: 
 4050:   if( x2a==0 ) return 0;
 4051:   h = strhash(key) & (x2a->size-1);
 4052:   np = x2a->ht[h];
 4053:   while( np ){
 4054:     if( strcmp(np->key,key)==0 ) break;
 4055:     np = np->next;
 4056:   }
 4057:   return np ? np->data : 0;
 4058: }
 4059: 
 4060: /* Return the n-th data.  Return NULL if n is out of range. */
 4061: struct symbol *Symbol_Nth(n)
 4062: int n;
 4063: {
 4064:   struct symbol *data;
 4065:   if( x2a && n>0 && n<=x2a->count ){
 4066:     data = x2a->tbl[n-1].data;
 4067:   }else{
 4068:     data = 0;
 4069:   }
 4070:   return data;
 4071: }
 4072: 
 4073: /* Return the size of the array */
 4074: int Symbol_count()
 4075: {
 4076:   return x2a ? x2a->count : 0;
 4077: }
 4078: 
 4079: /* Return an array of pointers to all data in the table.
 4080: ** The array is obtained from malloc.  Return NULL if memory allocation
 4081: ** problems, or if the array is empty. */
 4082: struct symbol **Symbol_arrayof()
 4083: {
 4084:   struct symbol **array;
 4085:   int i,size;
 4086:   if( x2a==0 ) return 0;
 4087:   size = x2a->count;
 4088:   array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
 4089:   if( array ){
 4090:     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
 4091:   }
 4092:   return array;
 4093: }
 4094: 
 4095: /* Compare two configurations */
 4096: int Configcmp(a,b)
 4097: struct config *a;
 4098: struct config *b;
 4099: {
 4100:   int x;
 4101:   x = a->rp->index - b->rp->index;
 4102:   if( x==0 ) x = a->dot - b->dot;
 4103:   return x;
 4104: }
 4105: 
 4106: /* Compare two states */
 4107: PRIVATE int statecmp(a,b)
 4108: struct config *a;
 4109: struct config *b;
 4110: {
 4111:   int rc;
 4112:   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
 4113:     rc = a->rp->index - b->rp->index;
 4114:     if( rc==0 ) rc = a->dot - b->dot;
 4115:   }
 4116:   if( rc==0 ){
 4117:     if( a ) rc = 1;
 4118:     if( b ) rc = -1;
 4119:   }
 4120:   return rc;
 4121: }
 4122: 
 4123: /* Hash a state */
 4124: PRIVATE int statehash(a)
 4125: struct config *a;
 4126: {
 4127:   unsigned int h=0;
 4128:   while( a ){
 4129:     h = h*571u + (unsigned int)a->rp->index*37u + (unsigned int)a->dot;
 4130:     a = a->bp;
 4131:   }
 4132:   return h;
 4133: }
 4134: 
 4135: /* Allocate a new state structure */
 4136: struct state *State_new()
 4137: {
 4138:   struct state *new;
 4139:   new = (struct state *)malloc( sizeof(struct state) );
 4140:   MemoryCheck(new);
 4141:   return new;
 4142: }
 4143: 
 4144: /* There is one instance of the following structure for each
 4145: ** associative array of type "x3".
 4146: */
 4147: struct s_x3 {
 4148:   int size;               /* The number of available slots. */
 4149:                           /*   Must be a power of 2 greater than or */
 4150:                           /*   equal to 1 */
 4151:   int count;              /* Number of currently slots filled */
 4152:   struct s_x3node *tbl;  /* The data stored here */
 4153:   struct s_x3node **ht;  /* Hash table for lookups */
 4154: };
 4155: 
 4156: /* There is one instance of this structure for every data element
 4157: ** in an associative array of type "x3".
 4158: */
 4159: typedef struct s_x3node {
 4160:   struct state *data;                  /* The data */
 4161:   struct config *key;                   /* The key */
 4162:   struct s_x3node *next;   /* Next entry with the same hash */
 4163:   struct s_x3node **from;  /* Previous link */
 4164: } x3node;
 4165: 
 4166: /* There is only one instance of the array, which is the following */
 4167: static struct s_x3 *x3a;
 4168: 
 4169: /* Allocate a new associative array */
 4170: void State_init(){
 4171:   if( x3a ) return;
 4172:   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
 4173:   if( x3a ){
 4174:     x3a->size = 128;
 4175:     x3a->count = 0;
 4176:     x3a->tbl = (x3node*)malloc(
 4177:       (sizeof(x3node) + sizeof(x3node*))*128 );
 4178:     if( x3a->tbl==0 ){
 4179:       free(x3a);
 4180:       x3a = 0;
 4181:     }else{
 4182:       int i;
 4183:       x3a->ht = (x3node**)&(x3a->tbl[128]);
 4184:       for(i=0; i<128; i++) x3a->ht[i] = 0;
 4185:     }
 4186:   }
 4187: }
 4188: /* Insert a new record into the array.  Return TRUE if successful.
 4189: ** Prior data with the same key is NOT overwritten */
 4190: int State_insert(data,key)
 4191: struct state *data;
 4192: struct config *key;
 4193: {
 4194:   x3node *np;
 4195:   int h;
 4196:   int ph;
 4197: 
 4198:   if( x3a==0 ) return 0;
 4199:   ph = statehash(key);
 4200:   h = ph & (x3a->size-1);
 4201:   np = x3a->ht[h];
 4202:   while( np ){
 4203:     if( statecmp(np->key,key)==0 ){
 4204:       /* An existing entry with the same key is found. */
 4205:       /* Fail because overwrite is not allows. */
 4206:       return 0;
 4207:     }
 4208:     np = np->next;
 4209:   }
 4210:   if( x3a->count>=x3a->size ){
 4211:     /* Need to make the hash table bigger */
 4212:     int i,size;
 4213:     struct s_x3 array;
 4214:     array.size = size = x3a->size*2;
 4215:     array.count = x3a->count;
 4216:     array.tbl = (x3node*)malloc(
 4217:       (sizeof(x3node) + sizeof(x3node*))*size );
 4218:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 4219:     array.ht = (x3node**)&(array.tbl[size]);
 4220:     for(i=0; i<size; i++) array.ht[i] = 0;
 4221:     for(i=0; i<x3a->count; i++){
 4222:       x3node *oldnp, *newnp;
 4223:       oldnp = &(x3a->tbl[i]);
 4224:       h = statehash(oldnp->key) & (size-1);
 4225:       newnp = &(array.tbl[i]);
 4226:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 4227:       newnp->next = array.ht[h];
 4228:       newnp->key = oldnp->key;
 4229:       newnp->data = oldnp->data;
 4230:       newnp->from = &(array.ht[h]);
 4231:       array.ht[h] = newnp;
 4232:     }
 4233:     free(x3a->tbl);
 4234:     *x3a = array;
 4235:   }
 4236:   /* Insert the new data */
 4237:   h = ph & (x3a->size-1);
 4238:   np = &(x3a->tbl[x3a->count++]);
 4239:   np->key = key;
 4240:   np->data = data;
 4241:   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
 4242:   np->next = x3a->ht[h];
 4243:   x3a->ht[h] = np;
 4244:   np->from = &(x3a->ht[h]);
 4245:   return 1;
 4246: }
 4247: 
 4248: /* Return a pointer to data assigned to the given key.  Return NULL
 4249: ** if no such key. */
 4250: struct state *State_find(key)
 4251: struct config *key;
 4252: {
 4253:   int h;
 4254:   x3node *np;
 4255: 
 4256:   if( x3a==0 ) return 0;
 4257:   h = statehash(key) & (x3a->size-1);
 4258:   np = x3a->ht[h];
 4259:   while( np ){
 4260:     if( statecmp(np->key,key)==0 ) break;
 4261:     np = np->next;
 4262:   }
 4263:   return np ? np->data : 0;
 4264: }
 4265: 
 4266: /* Return an array of pointers to all data in the table.
 4267: ** The array is obtained from malloc.  Return NULL if memory allocation
 4268: ** problems, or if the array is empty. */
 4269: struct state **State_arrayof()
 4270: {
 4271:   struct state **array;
 4272:   int i,size;
 4273:   if( x3a==0 ) return 0;
 4274:   size = x3a->count;
 4275:   array = (struct state **)malloc( sizeof(struct state *)*size );
 4276:   if( array ){
 4277:     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
 4278:   }
 4279:   return array;
 4280: }
 4281: 
 4282: /* Hash a configuration */
 4283: PRIVATE int confighash(a)
 4284: struct config *a;
 4285: {
 4286:   int h=0;
 4287:   h = h*571 + a->rp->index*37 + a->dot;
 4288:   return h;
 4289: }
 4290: 
 4291: /* There is one instance of the following structure for each
 4292: ** associative array of type "x4".
 4293: */
 4294: struct s_x4 {
 4295:   int size;               /* The number of available slots. */
 4296:                           /*   Must be a power of 2 greater than or */
 4297:                           /*   equal to 1 */
 4298:   int count;              /* Number of currently slots filled */
 4299:   struct s_x4node *tbl;  /* The data stored here */
 4300:   struct s_x4node **ht;  /* Hash table for lookups */
 4301: };
 4302: 
 4303: /* There is one instance of this structure for every data element
 4304: ** in an associative array of type "x4".
 4305: */
 4306: typedef struct s_x4node {
 4307:   struct config *data;                  /* The data */
 4308:   struct s_x4node *next;   /* Next entry with the same hash */
 4309:   struct s_x4node **from;  /* Previous link */
 4310: } x4node;
 4311: 
 4312: /* There is only one instance of the array, which is the following */
 4313: static struct s_x4 *x4a;
 4314: 
 4315: /* Allocate a new associative array */
 4316: void Configtable_init(){
 4317:   if( x4a ) return;
 4318:   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
 4319:   if( x4a ){
 4320:     x4a->size = 64;
 4321:     x4a->count = 0;
 4322:     x4a->tbl = (x4node*)malloc(
 4323:       (sizeof(x4node) + sizeof(x4node*))*64 );
 4324:     if( x4a->tbl==0 ){
 4325:       free(x4a);
 4326:       x4a = 0;
 4327:     }else{
 4328:       int i;
 4329:       x4a->ht = (x4node**)&(x4a->tbl[64]);
 4330:       for(i=0; i<64; i++) x4a->ht[i] = 0;
 4331:     }
 4332:   }
 4333: }
 4334: /* Insert a new record into the array.  Return TRUE if successful.
 4335: ** Prior data with the same key is NOT overwritten */
 4336: int Configtable_insert(data)
 4337: struct config *data;
 4338: {
 4339:   x4node *np;
 4340:   int h;
 4341:   int ph;
 4342: 
 4343:   if( x4a==0 ) return 0;
 4344:   ph = confighash(data);
 4345:   h = ph & (x4a->size-1);
 4346:   np = x4a->ht[h];
 4347:   while( np ){
 4348:     if( Configcmp(np->data,data)==0 ){
 4349:       /* An existing entry with the same key is found. */
 4350:       /* Fail because overwrite is not allows. */
 4351:       return 0;
 4352:     }
 4353:     np = np->next;
 4354:   }
 4355:   if( x4a->count>=x4a->size ){
 4356:     /* Need to make the hash table bigger */
 4357:     int i,size;
 4358:     struct s_x4 array;
 4359:     array.size = size = x4a->size*2;
 4360:     array.count = x4a->count;
 4361:     array.tbl = (x4node*)malloc(
 4362:       (sizeof(x4node) + sizeof(x4node*))*size );
 4363:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 4364:     array.ht = (x4node**)&(array.tbl[size]);
 4365:     for(i=0; i<size; i++) array.ht[i] = 0;
 4366:     for(i=0; i<x4a->count; i++){
 4367:       x4node *oldnp, *newnp;
 4368:       oldnp = &(x4a->tbl[i]);
 4369:       h = confighash(oldnp->data) & (size-1);
 4370:       newnp = &(array.tbl[i]);
 4371:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 4372:       newnp->next = array.ht[h];
 4373:       newnp->data = oldnp->data;
 4374:       newnp->from = &(array.ht[h]);
 4375:       array.ht[h] = newnp;
 4376:     }
 4377:     free(x4a->tbl);
 4378:     *x4a = array;
 4379:   }
 4380:   /* Insert the new data */
 4381:   h = ph & (x4a->size-1);
 4382:   np = &(x4a->tbl[x4a->count++]);
 4383:   np->data = data;
 4384:   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
 4385:   np->next = x4a->ht[h];
 4386:   x4a->ht[h] = np;
 4387:   np->from = &(x4a->ht[h]);
 4388:   return 1;
 4389: }
 4390: 
 4391: /* Return a pointer to data assigned to the given key.  Return NULL
 4392: ** if no such key. */
 4393: struct config *Configtable_find(key)
 4394: struct config *key;
 4395: {
 4396:   int h;
 4397:   x4node *np;
 4398: 
 4399:   if( x4a==0 ) return 0;
 4400:   h = confighash(key) & (x4a->size-1);
 4401:   np = x4a->ht[h];
 4402:   while( np ){
 4403:     if( Configcmp(np->data,key)==0 ) break;
 4404:     np = np->next;
 4405:   }
 4406:   return np ? np->data : 0;
 4407: }
 4408: 
 4409: /* Remove all data from the table.  Pass each data to the function "f"
 4410: ** as it is removed.  ("f" may be null to avoid this step.) */
 4411: void Configtable_clear(f)
 4412: int(*f)(/* struct config * */);
 4413: {
 4414:   int i;
 4415:   if( x4a==0 || x4a->count==0 ) return;
 4416:   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
 4417:   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
 4418:   x4a->count = 0;
 4419:   return;
 4420: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>