File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / ntp / lib / isc / sha2.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue May 29 12:08:38 2012 UTC (12 years, 1 month ago) by misho
Branches: ntp, MAIN
CVS tags: v4_2_6p5p0, v4_2_6p5, HEAD
ntp 4.2.6p5

    1: /*
    2:  * Copyright (C) 2005-2007, 2009  Internet Systems Consortium, Inc. ("ISC")
    3:  *
    4:  * Permission to use, copy, modify, and/or distribute this software for any
    5:  * purpose with or without fee is hereby granted, provided that the above
    6:  * copyright notice and this permission notice appear in all copies.
    7:  *
    8:  * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
    9:  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
   10:  * AND FITNESS.  IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
   11:  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
   12:  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
   13:  * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
   14:  * PERFORMANCE OF THIS SOFTWARE.
   15:  */
   16: 
   17: /* $Id: sha2.c,v 1.1.1.1 2012/05/29 12:08:38 misho Exp $ */
   18: 
   19: /*	$FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $	*/
   20: /*	$KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $	*/
   21: 
   22: /*
   23:  * sha2.c
   24:  *
   25:  * Version 1.0.0beta1
   26:  *
   27:  * Written by Aaron D. Gifford <me@aarongifford.com>
   28:  *
   29:  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
   30:  *
   31:  * Redistribution and use in source and binary forms, with or without
   32:  * modification, are permitted provided that the following conditions
   33:  * are met:
   34:  * 1. Redistributions of source code must retain the above copyright
   35:  *    notice, this list of conditions and the following disclaimer.
   36:  * 2. Redistributions in binary form must reproduce the above copyright
   37:  *    notice, this list of conditions and the following disclaimer in the
   38:  *    documentation and/or other materials provided with the distribution.
   39:  * 3. Neither the name of the copyright holder nor the names of contributors
   40:  *    may be used to endorse or promote products derived from this software
   41:  *    without specific prior written permission.
   42:  *
   43:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
   44:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   45:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   46:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
   47:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   48:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   49:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   50:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   51:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   52:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   53:  * SUCH DAMAGE.
   54:  *
   55:  */
   56: 
   57: 
   58: #include <config.h>
   59: 
   60: #include <isc/assertions.h>
   61: #include <isc/sha2.h>
   62: #include <isc/string.h>
   63: #include <isc/util.h>
   64: 
   65: /*
   66:  * UNROLLED TRANSFORM LOOP NOTE:
   67:  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
   68:  * loop version for the hash transform rounds (defined using macros
   69:  * later in this file).  Either define on the command line, for example:
   70:  *
   71:  *   cc -DISC_SHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
   72:  *
   73:  * or define below:
   74:  *
   75:  *   \#define ISC_SHA2_UNROLL_TRANSFORM
   76:  *
   77:  */
   78: 
   79: /*** SHA-256/384/512 Machine Architecture Definitions *****************/
   80: /*
   81:  * BYTE_ORDER NOTE:
   82:  *
   83:  * Please make sure that your system defines BYTE_ORDER.  If your
   84:  * architecture is little-endian, make sure it also defines
   85:  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
   86:  * equivalent.
   87:  *
   88:  * If your system does not define the above, then you can do so by
   89:  * hand like this:
   90:  *
   91:  *   \#define LITTLE_ENDIAN 1234
   92:  *   \#define BIG_ENDIAN    4321
   93:  *
   94:  * And for little-endian machines, add:
   95:  *
   96:  *   \#define BYTE_ORDER LITTLE_ENDIAN
   97:  *
   98:  * Or for big-endian machines:
   99:  *
  100:  *   \#define BYTE_ORDER BIG_ENDIAN
  101:  *
  102:  * The FreeBSD machine this was written on defines BYTE_ORDER
  103:  * appropriately by including <sys/types.h> (which in turn includes
  104:  * <machine/endian.h> where the appropriate definitions are actually
  105:  * made).
  106:  */
  107: #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  108: #ifndef BYTE_ORDER
  109: #ifndef BIG_ENDIAN
  110: #define BIG_ENDIAN 4321
  111: #endif
  112: #ifndef LITTLE_ENDIAN
  113: #define LITTLE_ENDIAN 1234
  114: #endif
  115: #ifdef WORDS_BIGENDIAN
  116: #define BYTE_ORDER BIG_ENDIAN
  117: #else
  118: #define BYTE_ORDER LITTLE_ENDIAN
  119: #endif
  120: #else
  121: #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  122: #endif
  123: #endif
  124: 
  125: /*** SHA-256/384/512 Various Length Definitions ***********************/
  126: /* NOTE: Most of these are in sha2.h */
  127: #define ISC_SHA256_SHORT_BLOCK_LENGTH	(ISC_SHA256_BLOCK_LENGTH - 8)
  128: #define ISC_SHA384_SHORT_BLOCK_LENGTH	(ISC_SHA384_BLOCK_LENGTH - 16)
  129: #define ISC_SHA512_SHORT_BLOCK_LENGTH	(ISC_SHA512_BLOCK_LENGTH - 16)
  130: 
  131: 
  132: /*** ENDIAN REVERSAL MACROS *******************************************/
  133: #if BYTE_ORDER == LITTLE_ENDIAN
  134: #define REVERSE32(w,x)	{ \
  135: 	isc_uint32_t tmp = (w); \
  136: 	tmp = (tmp >> 16) | (tmp << 16); \
  137: 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  138: }
  139: #ifdef WIN32
  140: #define REVERSE64(w,x)	{ \
  141: 	isc_uint64_t tmp = (w); \
  142: 	tmp = (tmp >> 32) | (tmp << 32); \
  143: 	tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | \
  144: 	      ((tmp & 0x00ff00ff00ff00ffUL) << 8); \
  145: 	(x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | \
  146: 	      ((tmp & 0x0000ffff0000ffffUL) << 16); \
  147: }
  148: #else
  149: #define REVERSE64(w,x)	{ \
  150: 	isc_uint64_t tmp = (w); \
  151: 	tmp = (tmp >> 32) | (tmp << 32); \
  152: 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  153: 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  154: 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  155: 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
  156: }
  157: #endif
  158: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  159: 
  160: /*
  161:  * Macro for incrementally adding the unsigned 64-bit integer n to the
  162:  * unsigned 128-bit integer (represented using a two-element array of
  163:  * 64-bit words):
  164:  */
  165: #define ADDINC128(w,n)	{ \
  166: 	(w)[0] += (isc_uint64_t)(n); \
  167: 	if ((w)[0] < (n)) { \
  168: 		(w)[1]++; \
  169: 	} \
  170: }
  171: 
  172: /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  173: /*
  174:  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  175:  *
  176:  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
  177:  *   S is a ROTATION) because the SHA-256/384/512 description document
  178:  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  179:  *   same "backwards" definition.
  180:  */
  181: /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  182: #define R(b,x) 		((x) >> (b))
  183: /* 32-bit Rotate-right (used in SHA-256): */
  184: #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
  185: /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  186: #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
  187: 
  188: /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  189: #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
  190: #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  191: 
  192: /* Four of six logical functions used in SHA-256: */
  193: #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  194: #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  195: #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
  196: #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
  197: 
  198: /* Four of six logical functions used in SHA-384 and SHA-512: */
  199: #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  200: #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  201: #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
  202: #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
  203: 
  204: /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  205: /* NOTE: These should not be accessed directly from outside this
  206:  * library -- they are intended for private internal visibility/use
  207:  * only.
  208:  */
  209: void isc_sha512_last(isc_sha512_t *);
  210: void isc_sha256_transform(isc_sha256_t *, const isc_uint32_t*);
  211: void isc_sha512_transform(isc_sha512_t *, const isc_uint64_t*);
  212: 
  213: 
  214: /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  215: /* Hash constant words K for SHA-224 and SHA-256: */
  216: static const isc_uint32_t K256[64] = {
  217: 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  218: 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  219: 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  220: 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  221: 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  222: 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  223: 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  224: 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  225: 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  226: 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  227: 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  228: 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  229: 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  230: 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  231: 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  232: 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  233: };
  234: 
  235: /* Initial hash value H for SHA-224: */
  236: static const isc_uint32_t sha224_initial_hash_value[8] = {
  237: 	0xc1059ed8UL,
  238: 	0x367cd507UL,
  239: 	0x3070dd17UL,
  240: 	0xf70e5939UL,
  241: 	0xffc00b31UL,
  242: 	0x68581511UL,
  243: 	0x64f98fa7UL,
  244: 	0xbefa4fa4UL
  245: };
  246: 
  247: /* Initial hash value H for SHA-256: */
  248: static const isc_uint32_t sha256_initial_hash_value[8] = {
  249: 	0x6a09e667UL,
  250: 	0xbb67ae85UL,
  251: 	0x3c6ef372UL,
  252: 	0xa54ff53aUL,
  253: 	0x510e527fUL,
  254: 	0x9b05688cUL,
  255: 	0x1f83d9abUL,
  256: 	0x5be0cd19UL
  257: };
  258: 
  259: #ifdef WIN32
  260: /* Hash constant words K for SHA-384 and SHA-512: */
  261: static const isc_uint64_t K512[80] = {
  262: 	0x428a2f98d728ae22UL, 0x7137449123ef65cdUL,
  263: 	0xb5c0fbcfec4d3b2fUL, 0xe9b5dba58189dbbcUL,
  264: 	0x3956c25bf348b538UL, 0x59f111f1b605d019UL,
  265: 	0x923f82a4af194f9bUL, 0xab1c5ed5da6d8118UL,
  266: 	0xd807aa98a3030242UL, 0x12835b0145706fbeUL,
  267: 	0x243185be4ee4b28cUL, 0x550c7dc3d5ffb4e2UL,
  268: 	0x72be5d74f27b896fUL, 0x80deb1fe3b1696b1UL,
  269: 	0x9bdc06a725c71235UL, 0xc19bf174cf692694UL,
  270: 	0xe49b69c19ef14ad2UL, 0xefbe4786384f25e3UL,
  271: 	0x0fc19dc68b8cd5b5UL, 0x240ca1cc77ac9c65UL,
  272: 	0x2de92c6f592b0275UL, 0x4a7484aa6ea6e483UL,
  273: 	0x5cb0a9dcbd41fbd4UL, 0x76f988da831153b5UL,
  274: 	0x983e5152ee66dfabUL, 0xa831c66d2db43210UL,
  275: 	0xb00327c898fb213fUL, 0xbf597fc7beef0ee4UL,
  276: 	0xc6e00bf33da88fc2UL, 0xd5a79147930aa725UL,
  277: 	0x06ca6351e003826fUL, 0x142929670a0e6e70UL,
  278: 	0x27b70a8546d22ffcUL, 0x2e1b21385c26c926UL,
  279: 	0x4d2c6dfc5ac42aedUL, 0x53380d139d95b3dfUL,
  280: 	0x650a73548baf63deUL, 0x766a0abb3c77b2a8UL,
  281: 	0x81c2c92e47edaee6UL, 0x92722c851482353bUL,
  282: 	0xa2bfe8a14cf10364UL, 0xa81a664bbc423001UL,
  283: 	0xc24b8b70d0f89791UL, 0xc76c51a30654be30UL,
  284: 	0xd192e819d6ef5218UL, 0xd69906245565a910UL,
  285: 	0xf40e35855771202aUL, 0x106aa07032bbd1b8UL,
  286: 	0x19a4c116b8d2d0c8UL, 0x1e376c085141ab53UL,
  287: 	0x2748774cdf8eeb99UL, 0x34b0bcb5e19b48a8UL,
  288: 	0x391c0cb3c5c95a63UL, 0x4ed8aa4ae3418acbUL,
  289: 	0x5b9cca4f7763e373UL, 0x682e6ff3d6b2b8a3UL,
  290: 	0x748f82ee5defb2fcUL, 0x78a5636f43172f60UL,
  291: 	0x84c87814a1f0ab72UL, 0x8cc702081a6439ecUL,
  292: 	0x90befffa23631e28UL, 0xa4506cebde82bde9UL,
  293: 	0xbef9a3f7b2c67915UL, 0xc67178f2e372532bUL,
  294: 	0xca273eceea26619cUL, 0xd186b8c721c0c207UL,
  295: 	0xeada7dd6cde0eb1eUL, 0xf57d4f7fee6ed178UL,
  296: 	0x06f067aa72176fbaUL, 0x0a637dc5a2c898a6UL,
  297: 	0x113f9804bef90daeUL, 0x1b710b35131c471bUL,
  298: 	0x28db77f523047d84UL, 0x32caab7b40c72493UL,
  299: 	0x3c9ebe0a15c9bebcUL, 0x431d67c49c100d4cUL,
  300: 	0x4cc5d4becb3e42b6UL, 0x597f299cfc657e2aUL,
  301: 	0x5fcb6fab3ad6faecUL, 0x6c44198c4a475817UL
  302: };
  303: 
  304: /* Initial hash value H for SHA-384: */
  305: static const isc_uint64_t sha384_initial_hash_value[8] = {
  306: 	0xcbbb9d5dc1059ed8UL,
  307: 	0x629a292a367cd507UL,
  308: 	0x9159015a3070dd17UL,
  309: 	0x152fecd8f70e5939UL,
  310: 	0x67332667ffc00b31UL,
  311: 	0x8eb44a8768581511UL,
  312: 	0xdb0c2e0d64f98fa7UL,
  313: 	0x47b5481dbefa4fa4UL
  314: };
  315: 
  316: /* Initial hash value H for SHA-512: */
  317: static const isc_uint64_t sha512_initial_hash_value[8] = {
  318: 	0x6a09e667f3bcc908U,
  319: 	0xbb67ae8584caa73bUL,
  320: 	0x3c6ef372fe94f82bUL,
  321: 	0xa54ff53a5f1d36f1UL,
  322: 	0x510e527fade682d1UL,
  323: 	0x9b05688c2b3e6c1fUL,
  324: 	0x1f83d9abfb41bd6bUL,
  325: 	0x5be0cd19137e2179UL
  326: };
  327: #else
  328: /* Hash constant words K for SHA-384 and SHA-512: */
  329: static const isc_uint64_t K512[80] = {
  330: 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  331: 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  332: 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  333: 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  334: 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  335: 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  336: 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  337: 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  338: 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  339: 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  340: 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  341: 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  342: 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  343: 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  344: 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  345: 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  346: 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  347: 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  348: 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  349: 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  350: 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  351: 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  352: 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  353: 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  354: 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  355: 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  356: 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  357: 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  358: 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  359: 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  360: 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  361: 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  362: 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  363: 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  364: 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  365: 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  366: 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  367: 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  368: 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  369: 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  370: };
  371: 
  372: /* Initial hash value H for SHA-384: */
  373: static const isc_uint64_t sha384_initial_hash_value[8] = {
  374: 	0xcbbb9d5dc1059ed8ULL,
  375: 	0x629a292a367cd507ULL,
  376: 	0x9159015a3070dd17ULL,
  377: 	0x152fecd8f70e5939ULL,
  378: 	0x67332667ffc00b31ULL,
  379: 	0x8eb44a8768581511ULL,
  380: 	0xdb0c2e0d64f98fa7ULL,
  381: 	0x47b5481dbefa4fa4ULL
  382: };
  383: 
  384: /* Initial hash value H for SHA-512: */
  385: static const isc_uint64_t sha512_initial_hash_value[8] = {
  386: 	0x6a09e667f3bcc908ULL,
  387: 	0xbb67ae8584caa73bULL,
  388: 	0x3c6ef372fe94f82bULL,
  389: 	0xa54ff53a5f1d36f1ULL,
  390: 	0x510e527fade682d1ULL,
  391: 	0x9b05688c2b3e6c1fULL,
  392: 	0x1f83d9abfb41bd6bULL,
  393: 	0x5be0cd19137e2179ULL
  394: };
  395: #endif
  396: 
  397: /*
  398:  * Constant used by SHA256/384/512_End() functions for converting the
  399:  * digest to a readable hexadecimal character string:
  400:  */
  401: static const char *sha2_hex_digits = "0123456789abcdef";
  402: 
  403: 
  404: 
  405: /*** SHA-224: *********************************************************/
  406: void
  407: isc_sha224_init(isc_sha224_t *context) {
  408: 	if (context == (isc_sha256_t *)0) {
  409: 		return;
  410: 	}
  411: 	memcpy(context->state, sha224_initial_hash_value,
  412: 	       ISC_SHA256_DIGESTLENGTH);
  413: 	memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH);
  414: 	context->bitcount = 0;
  415: }
  416: 
  417: void
  418: isc_sha224_update(isc_sha224_t *context, const isc_uint8_t* data, size_t len) {
  419: 	isc_sha256_update((isc_sha256_t *)context, data, len);
  420: }
  421: 
  422: void
  423: isc_sha224_final(isc_uint8_t digest[], isc_sha224_t *context) {
  424: 	isc_uint8_t sha256_digest[ISC_SHA256_DIGESTLENGTH];
  425: 	isc_sha256_final(sha256_digest, (isc_sha256_t *)context);
  426: 	memcpy(digest, sha256_digest, ISC_SHA224_DIGESTLENGTH);
  427: 	memset(sha256_digest, 0, ISC_SHA256_DIGESTLENGTH);
  428: }
  429: 
  430: char *
  431: isc_sha224_end(isc_sha224_t *context, char buffer[]) {
  432: 	isc_uint8_t	digest[ISC_SHA224_DIGESTLENGTH], *d = digest;
  433: 	unsigned int	i;
  434: 
  435: 	/* Sanity check: */
  436: 	REQUIRE(context != (isc_sha224_t *)0);
  437: 
  438: 	if (buffer != (char*)0) {
  439: 		isc_sha224_final(digest, context);
  440: 
  441: 		for (i = 0; i < ISC_SHA224_DIGESTLENGTH; i++) {
  442: 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  443: 			*buffer++ = sha2_hex_digits[*d & 0x0f];
  444: 			d++;
  445: 		}
  446: 		*buffer = (char)0;
  447: 	} else {
  448: 		memset(context, 0, sizeof(context));
  449: 	}
  450: 	memset(digest, 0, ISC_SHA224_DIGESTLENGTH);
  451: 	return buffer;
  452: }
  453: 
  454: char*
  455: isc_sha224_data(const isc_uint8_t *data, size_t len,
  456: 		char digest[ISC_SHA224_DIGESTSTRINGLENGTH])
  457: {
  458: 	isc_sha224_t context;
  459: 
  460: 	isc_sha224_init(&context);
  461: 	isc_sha224_update(&context, data, len);
  462: 	return (isc_sha224_end(&context, digest));
  463: }
  464: 
  465: /*** SHA-256: *********************************************************/
  466: void
  467: isc_sha256_init(isc_sha256_t *context) {
  468: 	if (context == (isc_sha256_t *)0) {
  469: 		return;
  470: 	}
  471: 	memcpy(context->state, sha256_initial_hash_value,
  472: 	       ISC_SHA256_DIGESTLENGTH);
  473: 	memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH);
  474: 	context->bitcount = 0;
  475: }
  476: 
  477: #ifdef ISC_SHA2_UNROLL_TRANSFORM
  478: 
  479: /* Unrolled SHA-256 round macros: */
  480: 
  481: #if BYTE_ORDER == LITTLE_ENDIAN
  482: 
  483: #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
  484: 	REVERSE32(*data++, W256[j]); \
  485: 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  486: 	     K256[j] + W256[j]; \
  487: 	(d) += T1; \
  488: 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  489: 	j++
  490: 
  491: 
  492: #else /* BYTE_ORDER == LITTLE_ENDIAN */
  493: 
  494: #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
  495: 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  496: 	     K256[j] + (W256[j] = *data++); \
  497: 	(d) += T1; \
  498: 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  499: 	j++
  500: 
  501: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  502: 
  503: #define ROUND256(a,b,c,d,e,f,g,h)	\
  504: 	s0 = W256[(j+1)&0x0f]; \
  505: 	s0 = sigma0_256(s0); \
  506: 	s1 = W256[(j+14)&0x0f]; \
  507: 	s1 = sigma1_256(s1); \
  508: 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  509: 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  510: 	(d) += T1; \
  511: 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  512: 	j++
  513: 
  514: void isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) {
  515: 	isc_uint32_t	a, b, c, d, e, f, g, h, s0, s1;
  516: 	isc_uint32_t	T1, *W256;
  517: 	int		j;
  518: 
  519: 	W256 = (isc_uint32_t*)context->buffer;
  520: 
  521: 	/* Initialize registers with the prev. intermediate value */
  522: 	a = context->state[0];
  523: 	b = context->state[1];
  524: 	c = context->state[2];
  525: 	d = context->state[3];
  526: 	e = context->state[4];
  527: 	f = context->state[5];
  528: 	g = context->state[6];
  529: 	h = context->state[7];
  530: 
  531: 	j = 0;
  532: 	do {
  533: 		/* Rounds 0 to 15 (unrolled): */
  534: 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  535: 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  536: 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  537: 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  538: 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  539: 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  540: 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  541: 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  542: 	} while (j < 16);
  543: 
  544: 	/* Now for the remaining rounds to 64: */
  545: 	do {
  546: 		ROUND256(a,b,c,d,e,f,g,h);
  547: 		ROUND256(h,a,b,c,d,e,f,g);
  548: 		ROUND256(g,h,a,b,c,d,e,f);
  549: 		ROUND256(f,g,h,a,b,c,d,e);
  550: 		ROUND256(e,f,g,h,a,b,c,d);
  551: 		ROUND256(d,e,f,g,h,a,b,c);
  552: 		ROUND256(c,d,e,f,g,h,a,b);
  553: 		ROUND256(b,c,d,e,f,g,h,a);
  554: 	} while (j < 64);
  555: 
  556: 	/* Compute the current intermediate hash value */
  557: 	context->state[0] += a;
  558: 	context->state[1] += b;
  559: 	context->state[2] += c;
  560: 	context->state[3] += d;
  561: 	context->state[4] += e;
  562: 	context->state[5] += f;
  563: 	context->state[6] += g;
  564: 	context->state[7] += h;
  565: 
  566: 	/* Clean up */
  567: 	a = b = c = d = e = f = g = h = T1 = 0;
  568: }
  569: 
  570: #else /* ISC_SHA2_UNROLL_TRANSFORM */
  571: 
  572: void
  573: isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) {
  574: 	isc_uint32_t	a, b, c, d, e, f, g, h, s0, s1;
  575: 	isc_uint32_t	T1, T2, *W256;
  576: 	int		j;
  577: 
  578: 	W256 = (isc_uint32_t*)context->buffer;
  579: 
  580: 	/* Initialize registers with the prev. intermediate value */
  581: 	a = context->state[0];
  582: 	b = context->state[1];
  583: 	c = context->state[2];
  584: 	d = context->state[3];
  585: 	e = context->state[4];
  586: 	f = context->state[5];
  587: 	g = context->state[6];
  588: 	h = context->state[7];
  589: 
  590: 	j = 0;
  591: 	do {
  592: #if BYTE_ORDER == LITTLE_ENDIAN
  593: 		/* Copy data while converting to host byte order */
  594: 		REVERSE32(*data++,W256[j]);
  595: 		/* Apply the SHA-256 compression function to update a..h */
  596: 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  597: #else /* BYTE_ORDER == LITTLE_ENDIAN */
  598: 		/* Apply the SHA-256 compression function to update a..h with copy */
  599: 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  600: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  601: 		T2 = Sigma0_256(a) + Maj(a, b, c);
  602: 		h = g;
  603: 		g = f;
  604: 		f = e;
  605: 		e = d + T1;
  606: 		d = c;
  607: 		c = b;
  608: 		b = a;
  609: 		a = T1 + T2;
  610: 
  611: 		j++;
  612: 	} while (j < 16);
  613: 
  614: 	do {
  615: 		/* Part of the message block expansion: */
  616: 		s0 = W256[(j+1)&0x0f];
  617: 		s0 = sigma0_256(s0);
  618: 		s1 = W256[(j+14)&0x0f];
  619: 		s1 = sigma1_256(s1);
  620: 
  621: 		/* Apply the SHA-256 compression function to update a..h */
  622: 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
  623: 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  624: 		T2 = Sigma0_256(a) + Maj(a, b, c);
  625: 		h = g;
  626: 		g = f;
  627: 		f = e;
  628: 		e = d + T1;
  629: 		d = c;
  630: 		c = b;
  631: 		b = a;
  632: 		a = T1 + T2;
  633: 
  634: 		j++;
  635: 	} while (j < 64);
  636: 
  637: 	/* Compute the current intermediate hash value */
  638: 	context->state[0] += a;
  639: 	context->state[1] += b;
  640: 	context->state[2] += c;
  641: 	context->state[3] += d;
  642: 	context->state[4] += e;
  643: 	context->state[5] += f;
  644: 	context->state[6] += g;
  645: 	context->state[7] += h;
  646: 
  647: 	/* Clean up */
  648: 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
  649: }
  650: 
  651: #endif /* ISC_SHA2_UNROLL_TRANSFORM */
  652: 
  653: void
  654: isc_sha256_update(isc_sha256_t *context, const isc_uint8_t *data, size_t len) {
  655: 	unsigned int	freespace, usedspace;
  656: 
  657: 	if (len == 0U) {
  658: 		/* Calling with no data is valid - we do nothing */
  659: 		return;
  660: 	}
  661: 
  662: 	/* Sanity check: */
  663: 	REQUIRE(context != (isc_sha256_t *)0 && data != (isc_uint8_t*)0);
  664: 
  665: 	usedspace = (unsigned int)((context->bitcount >> 3) %
  666: 				   ISC_SHA256_BLOCK_LENGTH);
  667: 	if (usedspace > 0) {
  668: 		/* Calculate how much free space is available in the buffer */
  669: 		freespace = ISC_SHA256_BLOCK_LENGTH - usedspace;
  670: 
  671: 		if (len >= freespace) {
  672: 			/* Fill the buffer completely and process it */
  673: 			memcpy(&context->buffer[usedspace], data, freespace);
  674: 			context->bitcount += freespace << 3;
  675: 			len -= freespace;
  676: 			data += freespace;
  677: 			isc_sha256_transform(context,
  678: 					     (isc_uint32_t*)context->buffer);
  679: 		} else {
  680: 			/* The buffer is not yet full */
  681: 			memcpy(&context->buffer[usedspace], data, len);
  682: 			context->bitcount += len << 3;
  683: 			/* Clean up: */
  684: 			usedspace = freespace = 0;
  685: 			return;
  686: 		}
  687: 	}
  688: 	while (len >= ISC_SHA256_BLOCK_LENGTH) {
  689: 		/* Process as many complete blocks as we can */
  690: 		memcpy(context->buffer, data, ISC_SHA256_BLOCK_LENGTH);
  691: 		isc_sha256_transform(context, (isc_uint32_t*)context->buffer);
  692: 		context->bitcount += ISC_SHA256_BLOCK_LENGTH << 3;
  693: 		len -= ISC_SHA256_BLOCK_LENGTH;
  694: 		data += ISC_SHA256_BLOCK_LENGTH;
  695: 	}
  696: 	if (len > 0U) {
  697: 		/* There's left-overs, so save 'em */
  698: 		memcpy(context->buffer, data, len);
  699: 		context->bitcount += len << 3;
  700: 	}
  701: 	/* Clean up: */
  702: 	usedspace = freespace = 0;
  703: }
  704: 
  705: void
  706: isc_sha256_final(isc_uint8_t digest[], isc_sha256_t *context) {
  707: 	isc_uint32_t	*d = (isc_uint32_t*)digest;
  708: 	unsigned int	usedspace;
  709: 
  710: 	/* Sanity check: */
  711: 	REQUIRE(context != (isc_sha256_t *)0);
  712: 
  713: 	/* If no digest buffer is passed, we don't bother doing this: */
  714: 	if (digest != (isc_uint8_t*)0) {
  715: 		usedspace = (unsigned int)((context->bitcount >> 3) %
  716: 					   ISC_SHA256_BLOCK_LENGTH);
  717: #if BYTE_ORDER == LITTLE_ENDIAN
  718: 		/* Convert FROM host byte order */
  719: 		REVERSE64(context->bitcount,context->bitcount);
  720: #endif
  721: 		if (usedspace > 0) {
  722: 			/* Begin padding with a 1 bit: */
  723: 			context->buffer[usedspace++] = 0x80;
  724: 
  725: 			if (usedspace <= ISC_SHA256_SHORT_BLOCK_LENGTH) {
  726: 				/* Set-up for the last transform: */
  727: 				memset(&context->buffer[usedspace], 0,
  728: 				       ISC_SHA256_SHORT_BLOCK_LENGTH - usedspace);
  729: 			} else {
  730: 				if (usedspace < ISC_SHA256_BLOCK_LENGTH) {
  731: 					memset(&context->buffer[usedspace], 0,
  732: 					       ISC_SHA256_BLOCK_LENGTH -
  733: 					       usedspace);
  734: 				}
  735: 				/* Do second-to-last transform: */
  736: 				isc_sha256_transform(context,
  737: 					       (isc_uint32_t*)context->buffer);
  738: 
  739: 				/* And set-up for the last transform: */
  740: 				memset(context->buffer, 0,
  741: 				       ISC_SHA256_SHORT_BLOCK_LENGTH);
  742: 			}
  743: 		} else {
  744: 			/* Set-up for the last transform: */
  745: 			memset(context->buffer, 0, ISC_SHA256_SHORT_BLOCK_LENGTH);
  746: 
  747: 			/* Begin padding with a 1 bit: */
  748: 			*context->buffer = 0x80;
  749: 		}
  750: 		/* Set the bit count: */
  751: 		*(isc_uint64_t*)&context->buffer[ISC_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
  752: 
  753: 		/* Final transform: */
  754: 		isc_sha256_transform(context, (isc_uint32_t*)context->buffer);
  755: 
  756: #if BYTE_ORDER == LITTLE_ENDIAN
  757: 		{
  758: 			/* Convert TO host byte order */
  759: 			int	j;
  760: 			for (j = 0; j < 8; j++) {
  761: 				REVERSE32(context->state[j],context->state[j]);
  762: 				*d++ = context->state[j];
  763: 			}
  764: 		}
  765: #else
  766: 		memcpy(d, context->state, ISC_SHA256_DIGESTLENGTH);
  767: #endif
  768: 	}
  769: 
  770: 	/* Clean up state data: */
  771: 	memset(context, 0, sizeof(context));
  772: 	usedspace = 0;
  773: }
  774: 
  775: char *
  776: isc_sha256_end(isc_sha256_t *context, char buffer[]) {
  777: 	isc_uint8_t	digest[ISC_SHA256_DIGESTLENGTH], *d = digest;
  778: 	unsigned int	i;
  779: 
  780: 	/* Sanity check: */
  781: 	REQUIRE(context != (isc_sha256_t *)0);
  782: 
  783: 	if (buffer != (char*)0) {
  784: 		isc_sha256_final(digest, context);
  785: 
  786: 		for (i = 0; i < ISC_SHA256_DIGESTLENGTH; i++) {
  787: 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  788: 			*buffer++ = sha2_hex_digits[*d & 0x0f];
  789: 			d++;
  790: 		}
  791: 		*buffer = (char)0;
  792: 	} else {
  793: 		memset(context, 0, sizeof(context));
  794: 	}
  795: 	memset(digest, 0, ISC_SHA256_DIGESTLENGTH);
  796: 	return buffer;
  797: }
  798: 
  799: char *
  800: isc_sha256_data(const isc_uint8_t* data, size_t len,
  801: 		char digest[ISC_SHA256_DIGESTSTRINGLENGTH])
  802: {
  803: 	isc_sha256_t context;
  804: 
  805: 	isc_sha256_init(&context);
  806: 	isc_sha256_update(&context, data, len);
  807: 	return (isc_sha256_end(&context, digest));
  808: }
  809: 
  810: 
  811: /*** SHA-512: *********************************************************/
  812: void
  813: isc_sha512_init(isc_sha512_t *context) {
  814: 	if (context == (isc_sha512_t *)0) {
  815: 		return;
  816: 	}
  817: 	memcpy(context->state, sha512_initial_hash_value,
  818: 	       ISC_SHA512_DIGESTLENGTH);
  819: 	memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH);
  820: 	context->bitcount[0] = context->bitcount[1] =  0;
  821: }
  822: 
  823: #ifdef ISC_SHA2_UNROLL_TRANSFORM
  824: 
  825: /* Unrolled SHA-512 round macros: */
  826: #if BYTE_ORDER == LITTLE_ENDIAN
  827: 
  828: #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
  829: 	REVERSE64(*data++, W512[j]); \
  830: 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  831: 	     K512[j] + W512[j]; \
  832: 	(d) += T1, \
  833: 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  834: 	j++
  835: 
  836: 
  837: #else /* BYTE_ORDER == LITTLE_ENDIAN */
  838: 
  839: #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
  840: 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  841: 	     K512[j] + (W512[j] = *data++); \
  842: 	(d) += T1; \
  843: 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  844: 	j++
  845: 
  846: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  847: 
  848: #define ROUND512(a,b,c,d,e,f,g,h)	\
  849: 	s0 = W512[(j+1)&0x0f]; \
  850: 	s0 = sigma0_512(s0); \
  851: 	s1 = W512[(j+14)&0x0f]; \
  852: 	s1 = sigma1_512(s1); \
  853: 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  854: 	     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  855: 	(d) += T1; \
  856: 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  857: 	j++
  858: 
  859: void isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) {
  860: 	isc_uint64_t	a, b, c, d, e, f, g, h, s0, s1;
  861: 	isc_uint64_t	T1, *W512 = (isc_uint64_t*)context->buffer;
  862: 	int		j;
  863: 
  864: 	/* Initialize registers with the prev. intermediate value */
  865: 	a = context->state[0];
  866: 	b = context->state[1];
  867: 	c = context->state[2];
  868: 	d = context->state[3];
  869: 	e = context->state[4];
  870: 	f = context->state[5];
  871: 	g = context->state[6];
  872: 	h = context->state[7];
  873: 
  874: 	j = 0;
  875: 	do {
  876: 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  877: 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  878: 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  879: 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  880: 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  881: 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  882: 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  883: 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  884: 	} while (j < 16);
  885: 
  886: 	/* Now for the remaining rounds up to 79: */
  887: 	do {
  888: 		ROUND512(a,b,c,d,e,f,g,h);
  889: 		ROUND512(h,a,b,c,d,e,f,g);
  890: 		ROUND512(g,h,a,b,c,d,e,f);
  891: 		ROUND512(f,g,h,a,b,c,d,e);
  892: 		ROUND512(e,f,g,h,a,b,c,d);
  893: 		ROUND512(d,e,f,g,h,a,b,c);
  894: 		ROUND512(c,d,e,f,g,h,a,b);
  895: 		ROUND512(b,c,d,e,f,g,h,a);
  896: 	} while (j < 80);
  897: 
  898: 	/* Compute the current intermediate hash value */
  899: 	context->state[0] += a;
  900: 	context->state[1] += b;
  901: 	context->state[2] += c;
  902: 	context->state[3] += d;
  903: 	context->state[4] += e;
  904: 	context->state[5] += f;
  905: 	context->state[6] += g;
  906: 	context->state[7] += h;
  907: 
  908: 	/* Clean up */
  909: 	a = b = c = d = e = f = g = h = T1 = 0;
  910: }
  911: 
  912: #else /* ISC_SHA2_UNROLL_TRANSFORM */
  913: 
  914: void
  915: isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) {
  916: 	isc_uint64_t	a, b, c, d, e, f, g, h, s0, s1;
  917: 	isc_uint64_t	T1, T2, *W512 = (isc_uint64_t*)context->buffer;
  918: 	int		j;
  919: 
  920: 	/* Initialize registers with the prev. intermediate value */
  921: 	a = context->state[0];
  922: 	b = context->state[1];
  923: 	c = context->state[2];
  924: 	d = context->state[3];
  925: 	e = context->state[4];
  926: 	f = context->state[5];
  927: 	g = context->state[6];
  928: 	h = context->state[7];
  929: 
  930: 	j = 0;
  931: 	do {
  932: #if BYTE_ORDER == LITTLE_ENDIAN
  933: 		/* Convert TO host byte order */
  934: 		REVERSE64(*data++, W512[j]);
  935: 		/* Apply the SHA-512 compression function to update a..h */
  936: 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  937: #else /* BYTE_ORDER == LITTLE_ENDIAN */
  938: 		/* Apply the SHA-512 compression function to update a..h with copy */
  939: 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  940: #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  941: 		T2 = Sigma0_512(a) + Maj(a, b, c);
  942: 		h = g;
  943: 		g = f;
  944: 		f = e;
  945: 		e = d + T1;
  946: 		d = c;
  947: 		c = b;
  948: 		b = a;
  949: 		a = T1 + T2;
  950: 
  951: 		j++;
  952: 	} while (j < 16);
  953: 
  954: 	do {
  955: 		/* Part of the message block expansion: */
  956: 		s0 = W512[(j+1)&0x0f];
  957: 		s0 = sigma0_512(s0);
  958: 		s1 = W512[(j+14)&0x0f];
  959: 		s1 =  sigma1_512(s1);
  960: 
  961: 		/* Apply the SHA-512 compression function to update a..h */
  962: 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  963: 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  964: 		T2 = Sigma0_512(a) + Maj(a, b, c);
  965: 		h = g;
  966: 		g = f;
  967: 		f = e;
  968: 		e = d + T1;
  969: 		d = c;
  970: 		c = b;
  971: 		b = a;
  972: 		a = T1 + T2;
  973: 
  974: 		j++;
  975: 	} while (j < 80);
  976: 
  977: 	/* Compute the current intermediate hash value */
  978: 	context->state[0] += a;
  979: 	context->state[1] += b;
  980: 	context->state[2] += c;
  981: 	context->state[3] += d;
  982: 	context->state[4] += e;
  983: 	context->state[5] += f;
  984: 	context->state[6] += g;
  985: 	context->state[7] += h;
  986: 
  987: 	/* Clean up */
  988: 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
  989: }
  990: 
  991: #endif /* ISC_SHA2_UNROLL_TRANSFORM */
  992: 
  993: void isc_sha512_update(isc_sha512_t *context, const isc_uint8_t *data, size_t len) {
  994: 	unsigned int	freespace, usedspace;
  995: 
  996: 	if (len == 0U) {
  997: 		/* Calling with no data is valid - we do nothing */
  998: 		return;
  999: 	}
 1000: 
 1001: 	/* Sanity check: */
 1002: 	REQUIRE(context != (isc_sha512_t *)0 && data != (isc_uint8_t*)0);
 1003: 
 1004: 	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
 1005: 				   ISC_SHA512_BLOCK_LENGTH);
 1006: 	if (usedspace > 0) {
 1007: 		/* Calculate how much free space is available in the buffer */
 1008: 		freespace = ISC_SHA512_BLOCK_LENGTH - usedspace;
 1009: 
 1010: 		if (len >= freespace) {
 1011: 			/* Fill the buffer completely and process it */
 1012: 			memcpy(&context->buffer[usedspace], data, freespace);
 1013: 			ADDINC128(context->bitcount, freespace << 3);
 1014: 			len -= freespace;
 1015: 			data += freespace;
 1016: 			isc_sha512_transform(context,
 1017: 					     (isc_uint64_t*)context->buffer);
 1018: 		} else {
 1019: 			/* The buffer is not yet full */
 1020: 			memcpy(&context->buffer[usedspace], data, len);
 1021: 			ADDINC128(context->bitcount, len << 3);
 1022: 			/* Clean up: */
 1023: 			usedspace = freespace = 0;
 1024: 			return;
 1025: 		}
 1026: 	}
 1027: 	while (len >= ISC_SHA512_BLOCK_LENGTH) {
 1028: 		/* Process as many complete blocks as we can */
 1029: 		memcpy(context->buffer, data, ISC_SHA512_BLOCK_LENGTH);
 1030: 		isc_sha512_transform(context, (isc_uint64_t*)context->buffer);
 1031: 		ADDINC128(context->bitcount, ISC_SHA512_BLOCK_LENGTH << 3);
 1032: 		len -= ISC_SHA512_BLOCK_LENGTH;
 1033: 		data += ISC_SHA512_BLOCK_LENGTH;
 1034: 	}
 1035: 	if (len > 0U) {
 1036: 		/* There's left-overs, so save 'em */
 1037: 		memcpy(context->buffer, data, len);
 1038: 		ADDINC128(context->bitcount, len << 3);
 1039: 	}
 1040: 	/* Clean up: */
 1041: 	usedspace = freespace = 0;
 1042: }
 1043: 
 1044: void isc_sha512_last(isc_sha512_t *context) {
 1045: 	unsigned int	usedspace;
 1046: 
 1047: 	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
 1048: 				    ISC_SHA512_BLOCK_LENGTH);
 1049: #if BYTE_ORDER == LITTLE_ENDIAN
 1050: 	/* Convert FROM host byte order */
 1051: 	REVERSE64(context->bitcount[0],context->bitcount[0]);
 1052: 	REVERSE64(context->bitcount[1],context->bitcount[1]);
 1053: #endif
 1054: 	if (usedspace > 0) {
 1055: 		/* Begin padding with a 1 bit: */
 1056: 		context->buffer[usedspace++] = 0x80;
 1057: 
 1058: 		if (usedspace <= ISC_SHA512_SHORT_BLOCK_LENGTH) {
 1059: 			/* Set-up for the last transform: */
 1060: 			memset(&context->buffer[usedspace], 0,
 1061: 			       ISC_SHA512_SHORT_BLOCK_LENGTH - usedspace);
 1062: 		} else {
 1063: 			if (usedspace < ISC_SHA512_BLOCK_LENGTH) {
 1064: 				memset(&context->buffer[usedspace], 0,
 1065: 				       ISC_SHA512_BLOCK_LENGTH - usedspace);
 1066: 			}
 1067: 			/* Do second-to-last transform: */
 1068: 			isc_sha512_transform(context,
 1069: 					    (isc_uint64_t*)context->buffer);
 1070: 
 1071: 			/* And set-up for the last transform: */
 1072: 			memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH - 2);
 1073: 		}
 1074: 	} else {
 1075: 		/* Prepare for final transform: */
 1076: 		memset(context->buffer, 0, ISC_SHA512_SHORT_BLOCK_LENGTH);
 1077: 
 1078: 		/* Begin padding with a 1 bit: */
 1079: 		*context->buffer = 0x80;
 1080: 	}
 1081: 	/* Store the length of input data (in bits): */
 1082: 	*(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
 1083: 	*(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
 1084: 
 1085: 	/* Final transform: */
 1086: 	isc_sha512_transform(context, (isc_uint64_t*)context->buffer);
 1087: }
 1088: 
 1089: void isc_sha512_final(isc_uint8_t digest[], isc_sha512_t *context) {
 1090: 	isc_uint64_t	*d = (isc_uint64_t*)digest;
 1091: 
 1092: 	/* Sanity check: */
 1093: 	REQUIRE(context != (isc_sha512_t *)0);
 1094: 
 1095: 	/* If no digest buffer is passed, we don't bother doing this: */
 1096: 	if (digest != (isc_uint8_t*)0) {
 1097: 		isc_sha512_last(context);
 1098: 
 1099: 		/* Save the hash data for output: */
 1100: #if BYTE_ORDER == LITTLE_ENDIAN
 1101: 		{
 1102: 			/* Convert TO host byte order */
 1103: 			int	j;
 1104: 			for (j = 0; j < 8; j++) {
 1105: 				REVERSE64(context->state[j],context->state[j]);
 1106: 				*d++ = context->state[j];
 1107: 			}
 1108: 		}
 1109: #else
 1110: 		memcpy(d, context->state, ISC_SHA512_DIGESTLENGTH);
 1111: #endif
 1112: 	}
 1113: 
 1114: 	/* Zero out state data */
 1115: 	memset(context, 0, sizeof(context));
 1116: }
 1117: 
 1118: char *
 1119: isc_sha512_end(isc_sha512_t *context, char buffer[]) {
 1120: 	isc_uint8_t	digest[ISC_SHA512_DIGESTLENGTH], *d = digest;
 1121: 	unsigned int	i;
 1122: 
 1123: 	/* Sanity check: */
 1124: 	REQUIRE(context != (isc_sha512_t *)0);
 1125: 
 1126: 	if (buffer != (char*)0) {
 1127: 		isc_sha512_final(digest, context);
 1128: 
 1129: 		for (i = 0; i < ISC_SHA512_DIGESTLENGTH; i++) {
 1130: 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
 1131: 			*buffer++ = sha2_hex_digits[*d & 0x0f];
 1132: 			d++;
 1133: 		}
 1134: 		*buffer = (char)0;
 1135: 	} else {
 1136: 		memset(context, 0, sizeof(context));
 1137: 	}
 1138: 	memset(digest, 0, ISC_SHA512_DIGESTLENGTH);
 1139: 	return buffer;
 1140: }
 1141: 
 1142: char *
 1143: isc_sha512_data(const isc_uint8_t *data, size_t len,
 1144: 		char digest[ISC_SHA512_DIGESTSTRINGLENGTH])
 1145: {
 1146: 	isc_sha512_t 	context;
 1147: 
 1148: 	isc_sha512_init(&context);
 1149: 	isc_sha512_update(&context, data, len);
 1150: 	return (isc_sha512_end(&context, digest));
 1151: }
 1152: 
 1153: 
 1154: /*** SHA-384: *********************************************************/
 1155: void
 1156: isc_sha384_init(isc_sha384_t *context) {
 1157: 	if (context == (isc_sha384_t *)0) {
 1158: 		return;
 1159: 	}
 1160: 	memcpy(context->state, sha384_initial_hash_value,
 1161: 	       ISC_SHA512_DIGESTLENGTH);
 1162: 	memset(context->buffer, 0, ISC_SHA384_BLOCK_LENGTH);
 1163: 	context->bitcount[0] = context->bitcount[1] = 0;
 1164: }
 1165: 
 1166: void
 1167: isc_sha384_update(isc_sha384_t *context, const isc_uint8_t* data, size_t len) {
 1168: 	isc_sha512_update((isc_sha512_t *)context, data, len);
 1169: }
 1170: 
 1171: void
 1172: isc_sha384_final(isc_uint8_t digest[], isc_sha384_t *context) {
 1173: 	isc_uint64_t	*d = (isc_uint64_t*)digest;
 1174: 
 1175: 	/* Sanity check: */
 1176: 	REQUIRE(context != (isc_sha384_t *)0);
 1177: 
 1178: 	/* If no digest buffer is passed, we don't bother doing this: */
 1179: 	if (digest != (isc_uint8_t*)0) {
 1180: 		isc_sha512_last((isc_sha512_t *)context);
 1181: 
 1182: 		/* Save the hash data for output: */
 1183: #if BYTE_ORDER == LITTLE_ENDIAN
 1184: 		{
 1185: 			/* Convert TO host byte order */
 1186: 			int	j;
 1187: 			for (j = 0; j < 6; j++) {
 1188: 				REVERSE64(context->state[j],context->state[j]);
 1189: 				*d++ = context->state[j];
 1190: 			}
 1191: 		}
 1192: #else
 1193: 		memcpy(d, context->state, ISC_SHA384_DIGESTLENGTH);
 1194: #endif
 1195: 	}
 1196: 
 1197: 	/* Zero out state data */
 1198: 	memset(context, 0, sizeof(context));
 1199: }
 1200: 
 1201: char *
 1202: isc_sha384_end(isc_sha384_t *context, char buffer[]) {
 1203: 	isc_uint8_t	digest[ISC_SHA384_DIGESTLENGTH], *d = digest;
 1204: 	unsigned int	i;
 1205: 
 1206: 	/* Sanity check: */
 1207: 	REQUIRE(context != (isc_sha384_t *)0);
 1208: 
 1209: 	if (buffer != (char*)0) {
 1210: 		isc_sha384_final(digest, context);
 1211: 
 1212: 		for (i = 0; i < ISC_SHA384_DIGESTLENGTH; i++) {
 1213: 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
 1214: 			*buffer++ = sha2_hex_digits[*d & 0x0f];
 1215: 			d++;
 1216: 		}
 1217: 		*buffer = (char)0;
 1218: 	} else {
 1219: 		memset(context, 0, sizeof(context));
 1220: 	}
 1221: 	memset(digest, 0, ISC_SHA384_DIGESTLENGTH);
 1222: 	return buffer;
 1223: }
 1224: 
 1225: char*
 1226: isc_sha384_data(const isc_uint8_t *data, size_t len,
 1227: 		char digest[ISC_SHA384_DIGESTSTRINGLENGTH])
 1228: {
 1229: 	isc_sha384_t context;
 1230: 
 1231: 	isc_sha384_init(&context);
 1232: 	isc_sha384_update(&context, data, len);
 1233: 	return (isc_sha384_end(&context, digest));
 1234: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>