File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / ntp / ntpd / ntp_crypto.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue May 29 12:08:37 2012 UTC (12 years, 2 months ago) by misho
Branches: ntp, MAIN
CVS tags: v4_2_6p5p0, v4_2_6p5, HEAD
ntp 4.2.6p5

    1: /*
    2:  * ntp_crypto.c - NTP version 4 public key routines
    3:  */
    4: #ifdef HAVE_CONFIG_H
    5: #include <config.h>
    6: #endif
    7: 
    8: #ifdef OPENSSL
    9: #include <stdio.h>
   10: #include <sys/types.h>
   11: #include <sys/param.h>
   12: #include <unistd.h>
   13: #include <fcntl.h>
   14: 
   15: #include "ntpd.h"
   16: #include "ntp_stdlib.h"
   17: #include "ntp_unixtime.h"
   18: #include "ntp_string.h"
   19: #include "ntp_random.h"
   20: #include "ntp_assert.h"
   21: 
   22: #include "openssl/asn1_mac.h"
   23: #include "openssl/bn.h"
   24: #include "openssl/err.h"
   25: #include "openssl/evp.h"
   26: #include "openssl/pem.h"
   27: #include "openssl/rand.h"
   28: #include "openssl/x509v3.h"
   29: 
   30: #ifdef KERNEL_PLL
   31: #include "ntp_syscall.h"
   32: #endif /* KERNEL_PLL */
   33: 
   34: /*
   35:  * Extension field message format
   36:  *
   37:  * These are always signed and saved before sending in network byte
   38:  * order. They must be converted to and from host byte order for
   39:  * processing.
   40:  *
   41:  * +-------+-------+
   42:  * |   op  |  len  | <- extension pointer
   43:  * +-------+-------+
   44:  * |    associd    |
   45:  * +---------------+
   46:  * |   timestamp   | <- value pointer
   47:  * +---------------+
   48:  * |   filestamp   |
   49:  * +---------------+
   50:  * |   value len   |
   51:  * +---------------+
   52:  * |               |
   53:  * =     value     =
   54:  * |               |
   55:  * +---------------+
   56:  * | signature len |
   57:  * +---------------+
   58:  * |               |
   59:  * =   signature   =
   60:  * |               |
   61:  * +---------------+
   62:  *
   63:  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
   64:  * Requests carry the association ID of the receiver; responses carry
   65:  * the association ID of the sender. Some messages include only the
   66:  * operation/length and association ID words and so have length 8
   67:  * octets. Ohers include the value structure and associated value and
   68:  * signature fields. These messages include the timestamp, filestamp,
   69:  * value and signature words and so have length at least 24 octets. The
   70:  * signature and/or value fields can be empty, in which case the
   71:  * respective length words are zero. An empty value with nonempty
   72:  * signature is syntactically valid, but semantically questionable.
   73:  *
   74:  * The filestamp represents the time when a cryptographic data file such
   75:  * as a public/private key pair is created. It follows every reference
   76:  * depending on that file and serves as a means to obsolete earlier data
   77:  * of the same type. The timestamp represents the time when the
   78:  * cryptographic data of the message were last signed. Creation of a
   79:  * cryptographic data file or signing a message can occur only when the
   80:  * creator or signor is synchronized to an authoritative source and
   81:  * proventicated to a trusted authority.
   82:  *
   83:  * Note there are several conditions required for server trust. First,
   84:  * the public key on the server certificate must be verified, which can
   85:  * involve a hike along the certificate trail to a trusted host. Next,
   86:  * the server trust must be confirmed by one of several identity
   87:  * schemes. Valid cryptographic values are signed with attached
   88:  * timestamp and filestamp. Individual packet trust is confirmed
   89:  * relative to these values by a message digest with keys generated by a
   90:  * reverse-order pseudorandom hash.
   91:  *
   92:  * State decomposition. These flags are lit in the order given. They are
   93:  * dim only when the association is demobilized.
   94:  *
   95:  * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
   96:  * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
   97:  *			accepted.
   98:  * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
   99:  * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
  100:  * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
  101:  * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
  102:  * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
  103:  *			accepted.
  104:  * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
  105:  */
  106: /*
  107:  * Cryptodefines
  108:  */
  109: #define TAI_1972	10	/* initial TAI offset (s) */
  110: #define MAX_LEAP	100	/* max UTC leapseconds (s) */
  111: #define VALUE_LEN	(6 * 4) /* min response field length */
  112: #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
  113: 
  114: /*
  115:  * Global cryptodata in host byte order
  116:  */
  117: u_int32	crypto_flags = 0x0;	/* status word */
  118: int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
  119: char	*sys_hostname = NULL;	/* host name */
  120: char	*sys_groupname = NULL;	/* group name */
  121: 
  122: /*
  123:  * Global cryptodata in network byte order
  124:  */
  125: struct cert_info *cinfo = NULL;	/* certificate info/value cache */
  126: struct cert_info *cert_host = NULL; /* host certificate */
  127: struct pkey_info *pkinfo = NULL; /* key info/value cache */
  128: struct value hostval;		/* host value */
  129: struct value pubkey;		/* public key */
  130: struct value tai_leap;		/* leapseconds values */
  131: struct pkey_info *iffkey_info = NULL; /* IFF keys */
  132: struct pkey_info *gqkey_info = NULL; /* GQ keys */
  133: struct pkey_info *mvkey_info = NULL; /* MV keys */
  134: 
  135: /*
  136:  * Private cryptodata in host byte order
  137:  */
  138: static char *passwd = NULL;	/* private key password */
  139: static EVP_PKEY *host_pkey = NULL; /* host key */
  140: static EVP_PKEY *sign_pkey = NULL; /* sign key */
  141: static const EVP_MD *sign_digest = NULL; /* sign digest */
  142: static u_int sign_siglen;	/* sign key length */
  143: static char *rand_file = NULL;	/* random seed file */
  144: 
  145: /*
  146:  * Cryptotypes
  147:  */
  148: static	int	crypto_verify	(struct exten *, struct value *,
  149: 				    struct peer *);
  150: static	int	crypto_encrypt	(struct exten *, struct value *,
  151: 				    keyid_t *);
  152: static	int	crypto_alice	(struct peer *, struct value *);
  153: static	int	crypto_alice2	(struct peer *, struct value *);
  154: static	int	crypto_alice3	(struct peer *, struct value *);
  155: static	int	crypto_bob	(struct exten *, struct value *);
  156: static	int	crypto_bob2	(struct exten *, struct value *);
  157: static	int	crypto_bob3	(struct exten *, struct value *);
  158: static	int	crypto_iff	(struct exten *, struct peer *);
  159: static	int	crypto_gq	(struct exten *, struct peer *);
  160: static	int	crypto_mv	(struct exten *, struct peer *);
  161: static	int	crypto_send	(struct exten *, struct value *, int);
  162: static	tstamp_t crypto_time	(void);
  163: static	u_long	asn2ntp		(ASN1_TIME *);
  164: static	struct cert_info *cert_parse (u_char *, long, tstamp_t);
  165: static	int	cert_sign	(struct exten *, struct value *);
  166: static	struct cert_info *cert_install (struct exten *, struct peer *);
  167: static	int	cert_hike	(struct peer *, struct cert_info *);
  168: static	void	cert_free	(struct cert_info *);
  169: static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
  170: static	void	bighash		(BIGNUM *, BIGNUM *);
  171: static	struct cert_info *crypto_cert (char *);
  172: 
  173: #ifdef SYS_WINNT
  174: int
  175: readlink(char * link, char * file, int len) {
  176: 	return (-1);
  177: }
  178: #endif
  179: 
  180: /*
  181:  * session_key - generate session key
  182:  *
  183:  * This routine generates a session key from the source address,
  184:  * destination address, key ID and private value. The value of the
  185:  * session key is the MD5 hash of these values, while the next key ID is
  186:  * the first four octets of the hash.
  187:  *
  188:  * Returns the next key ID or 0 if there is no destination address.
  189:  */
  190: keyid_t
  191: session_key(
  192: 	sockaddr_u *srcadr, 	/* source address */
  193: 	sockaddr_u *dstadr, 	/* destination address */
  194: 	keyid_t	keyno,		/* key ID */
  195: 	keyid_t	private,	/* private value */
  196: 	u_long	lifetime 	/* key lifetime */
  197: 	)
  198: {
  199: 	EVP_MD_CTX ctx;		/* message digest context */
  200: 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
  201: 	keyid_t	keyid;		/* key identifer */
  202: 	u_int32	header[10];	/* data in network byte order */
  203: 	u_int	hdlen, len;
  204: 
  205: 	if (!dstadr)
  206: 		return 0;
  207: 	
  208: 	/*
  209: 	 * Generate the session key and key ID. If the lifetime is
  210: 	 * greater than zero, install the key and call it trusted.
  211: 	 */
  212: 	hdlen = 0;
  213: 	switch(AF(srcadr)) {
  214: 	case AF_INET:
  215: 		header[0] = NSRCADR(srcadr);
  216: 		header[1] = NSRCADR(dstadr);
  217: 		header[2] = htonl(keyno);
  218: 		header[3] = htonl(private);
  219: 		hdlen = 4 * sizeof(u_int32);
  220: 		break;
  221: 
  222: 	case AF_INET6:
  223: 		memcpy(&header[0], PSOCK_ADDR6(srcadr),
  224: 		    sizeof(struct in6_addr));
  225: 		memcpy(&header[4], PSOCK_ADDR6(dstadr),
  226: 		    sizeof(struct in6_addr));
  227: 		header[8] = htonl(keyno);
  228: 		header[9] = htonl(private);
  229: 		hdlen = 10 * sizeof(u_int32);
  230: 		break;
  231: 	}
  232: 	EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid));
  233: 	EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
  234: 	EVP_DigestFinal(&ctx, dgst, &len);
  235: 	memcpy(&keyid, dgst, 4);
  236: 	keyid = ntohl(keyid);
  237: 	if (lifetime != 0) {
  238: 		MD5auth_setkey(keyno, crypto_nid, dgst, len);
  239: 		authtrust(keyno, lifetime);
  240: 	}
  241: 	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
  242: 		    stoa(srcadr), stoa(dstadr), keyno,
  243: 		    private, keyid, lifetime));
  244: 
  245: 	return (keyid);
  246: }
  247: 
  248: 
  249: /*
  250:  * make_keylist - generate key list
  251:  *
  252:  * Returns
  253:  * XEVNT_OK	success
  254:  * XEVNT_ERR	protocol error
  255:  *
  256:  * This routine constructs a pseudo-random sequence by repeatedly
  257:  * hashing the session key starting from a given source address,
  258:  * destination address, private value and the next key ID of the
  259:  * preceeding session key. The last entry on the list is saved along
  260:  * with its sequence number and public signature.
  261:  */
  262: int
  263: make_keylist(
  264: 	struct peer *peer,	/* peer structure pointer */
  265: 	struct interface *dstadr /* interface */
  266: 	)
  267: {
  268: 	EVP_MD_CTX ctx;		/* signature context */
  269: 	tstamp_t tstamp;	/* NTP timestamp */
  270: 	struct autokey *ap;	/* autokey pointer */
  271: 	struct value *vp;	/* value pointer */
  272: 	keyid_t	keyid = 0;	/* next key ID */
  273: 	keyid_t	cookie;		/* private value */
  274: 	long	lifetime;
  275: 	u_int	len, mpoll;
  276: 	int	i;
  277: 
  278: 	if (!dstadr)
  279: 		return XEVNT_ERR;
  280: 	
  281: 	/*
  282: 	 * Allocate the key list if necessary.
  283: 	 */
  284: 	tstamp = crypto_time();
  285: 	if (peer->keylist == NULL)
  286: 		peer->keylist = emalloc(sizeof(keyid_t) *
  287: 		    NTP_MAXSESSION);
  288: 
  289: 	/*
  290: 	 * Generate an initial key ID which is unique and greater than
  291: 	 * NTP_MAXKEY.
  292: 	 */
  293: 	while (1) {
  294: 		keyid = ntp_random() & 0xffffffff;
  295: 		if (keyid <= NTP_MAXKEY)
  296: 			continue;
  297: 
  298: 		if (authhavekey(keyid))
  299: 			continue;
  300: 		break;
  301: 	}
  302: 
  303: 	/*
  304: 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
  305: 	 * next one would not be unique or not a session key ID or if
  306: 	 * it would expire before the next poll. The private value
  307: 	 * included in the hash is zero if broadcast mode, the peer
  308: 	 * cookie if client mode or the host cookie if symmetric modes.
  309: 	 */
  310: 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
  311: 	lifetime = min(1 << sys_automax, NTP_MAXSESSION * mpoll);
  312: 	if (peer->hmode == MODE_BROADCAST)
  313: 		cookie = 0;
  314: 	else
  315: 		cookie = peer->pcookie;
  316: 	for (i = 0; i < NTP_MAXSESSION; i++) {
  317: 		peer->keylist[i] = keyid;
  318: 		peer->keynumber = i;
  319: 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
  320: 		    cookie, lifetime + mpoll);
  321: 		lifetime -= mpoll;
  322: 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
  323: 		    lifetime < 0 || tstamp == 0)
  324: 			break;
  325: 	}
  326: 
  327: 	/*
  328: 	 * Save the last session key ID, sequence number and timestamp,
  329: 	 * then sign these values for later retrieval by the clients. Be
  330: 	 * careful not to use invalid key media. Use the public values
  331: 	 * timestamp as filestamp. 
  332: 	 */
  333: 	vp = &peer->sndval;
  334: 	if (vp->ptr == NULL)
  335: 		vp->ptr = emalloc(sizeof(struct autokey));
  336: 	ap = (struct autokey *)vp->ptr;
  337: 	ap->seq = htonl(peer->keynumber);
  338: 	ap->key = htonl(keyid);
  339: 	vp->tstamp = htonl(tstamp);
  340: 	vp->fstamp = hostval.tstamp;
  341: 	vp->vallen = htonl(sizeof(struct autokey));
  342: 	vp->siglen = 0;
  343: 	if (tstamp != 0) {
  344: 		if (vp->sig == NULL)
  345: 			vp->sig = emalloc(sign_siglen);
  346: 		EVP_SignInit(&ctx, sign_digest);
  347: 		EVP_SignUpdate(&ctx, (u_char *)vp, 12);
  348: 		EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
  349: 		if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
  350: 			vp->siglen = htonl(sign_siglen);
  351: 			peer->flags |= FLAG_ASSOC;
  352: 		}
  353: 	}
  354: #ifdef DEBUG
  355: 	if (debug)
  356: 		printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
  357: 		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
  358: 		    ntohl(vp->fstamp), peer->hpoll);
  359: #endif
  360: 	return (XEVNT_OK);
  361: }
  362: 
  363: 
  364: /*
  365:  * crypto_recv - parse extension fields
  366:  *
  367:  * This routine is called when the packet has been matched to an
  368:  * association and passed sanity, format and MAC checks. We believe the
  369:  * extension field values only if the field has proper format and
  370:  * length, the timestamp and filestamp are valid and the signature has
  371:  * valid length and is verified. There are a few cases where some values
  372:  * are believed even if the signature fails, but only if the proventic
  373:  * bit is not set.
  374:  *
  375:  * Returns
  376:  * XEVNT_OK	success
  377:  * XEVNT_ERR	protocol error
  378:  * XEVNT_LEN	bad field format or length
  379:  */
  380: int
  381: crypto_recv(
  382: 	struct peer *peer,	/* peer structure pointer */
  383: 	struct recvbuf *rbufp	/* packet buffer pointer */
  384: 	)
  385: {
  386: 	const EVP_MD *dp;	/* message digest algorithm */
  387: 	u_int32	*pkt;		/* receive packet pointer */
  388: 	struct autokey *ap, *bp; /* autokey pointer */
  389: 	struct exten *ep, *fp;	/* extension pointers */
  390: 	struct cert_info *xinfo; /* certificate info pointer */
  391: 	int	has_mac;	/* length of MAC field */
  392: 	int	authlen;	/* offset of MAC field */
  393: 	associd_t associd;	/* association ID */
  394: 	tstamp_t tstamp = 0;	/* timestamp */
  395: 	tstamp_t fstamp = 0;	/* filestamp */
  396: 	u_int	len;		/* extension field length */
  397: 	u_int	code;		/* extension field opcode */
  398: 	u_int	vallen = 0;	/* value length */
  399: 	X509	*cert;		/* X509 certificate */
  400: 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
  401: 	keyid_t	cookie;		/* crumbles */
  402: 	int	hismode;	/* packet mode */
  403: 	int	rval = XEVNT_OK;
  404: 	u_char	*ptr;
  405: 	u_int32 temp32;
  406: 
  407: 	/*
  408: 	 * Initialize. Note that the packet has already been checked for
  409: 	 * valid format and extension field lengths. First extract the
  410: 	 * field length, command code and association ID in host byte
  411: 	 * order. These are used with all commands and modes. Then check
  412: 	 * the version number, which must be 2, and length, which must
  413: 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
  414: 	 * Packets that fail either test sink without a trace. The
  415: 	 * association ID is saved only if nonzero.
  416: 	 */
  417: 	authlen = LEN_PKT_NOMAC;
  418: 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
  419: 	while ((has_mac = rbufp->recv_length - authlen) > MAX_MAC_LEN) {
  420: 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
  421: 		ep = (struct exten *)pkt;
  422: 		code = ntohl(ep->opcode) & 0xffff0000;
  423: 		len = ntohl(ep->opcode) & 0x0000ffff;
  424: 		associd = (associd_t)ntohl(pkt[1]);
  425: 		rval = XEVNT_OK;
  426: #ifdef DEBUG
  427: 		if (debug)
  428: 			printf(
  429: 			    "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
  430: 			    peer->crypto, authlen, len, code >> 16,
  431: 			    associd);
  432: #endif
  433: 
  434: 		/*
  435: 		 * Check version number and field length. If bad,
  436: 		 * quietly ignore the packet.
  437: 		 */
  438: 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
  439: 			sys_badlength++;
  440: 			code |= CRYPTO_ERROR;
  441: 		}
  442: 
  443: 		if (len >= VALUE_LEN) {
  444: 			tstamp = ntohl(ep->tstamp);
  445: 			fstamp = ntohl(ep->fstamp);
  446: 			vallen = ntohl(ep->vallen);
  447: 		}
  448: 		switch (code) {
  449: 
  450: 		/*
  451: 		 * Install status word, host name, signature scheme and
  452: 		 * association ID. In OpenSSL the signature algorithm is
  453: 		 * bound to the digest algorithm, so the NID completely
  454: 		 * defines the signature scheme. Note the request and
  455: 		 * response are identical, but neither is validated by
  456: 		 * signature. The request is processed here only in
  457: 		 * symmetric modes. The server name field might be
  458: 		 * useful to implement access controls in future.
  459: 		 */
  460: 		case CRYPTO_ASSOC:
  461: 
  462: 			/*
  463: 			 * If our state machine is running when this
  464: 			 * message arrives, the other fellow might have
  465: 			 * restarted. However, this could be an
  466: 			 * intruder, so just clamp the poll interval and
  467: 			 * find out for ourselves. Otherwise, pass the
  468: 			 * extension field to the transmit side.
  469: 			 */
  470: 			if (peer->crypto & CRYPTO_FLAG_CERT) {
  471: 				rval = XEVNT_ERR;
  472: 				break;
  473: 			}
  474: 			if (peer->cmmd) {
  475: 				if (peer->assoc != associd) {
  476: 					rval = XEVNT_ERR;
  477: 					break;
  478: 				}
  479: 			}
  480: 			fp = emalloc(len);
  481: 			memcpy(fp, ep, len);
  482: 			fp->associd = htonl(peer->associd);
  483: 			peer->cmmd = fp;
  484: 			/* fall through */
  485: 
  486: 		case CRYPTO_ASSOC | CRYPTO_RESP:
  487: 
  488: 			/*
  489: 			 * Discard the message if it has already been
  490: 			 * stored or the message has been amputated.
  491: 			 */
  492: 			if (peer->crypto) {
  493: 				if (peer->assoc != associd)
  494: 					rval = XEVNT_ERR;
  495: 				break;
  496: 			}
  497: 			if (vallen == 0 || vallen > MAXHOSTNAME ||
  498: 			    len < VALUE_LEN + vallen) {
  499: 				rval = XEVNT_LEN;
  500: 				break;
  501: 			}
  502: #ifdef DEBUG
  503: 			if (debug)
  504: 				printf(
  505: 				    "crypto_recv: ident host 0x%x %d server 0x%x %d\n",
  506: 				    crypto_flags, peer->associd, fstamp,
  507: 				    peer->assoc);
  508: #endif
  509: 			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
  510: 
  511: 			/*
  512: 			 * If the client scheme is PC, the server scheme
  513: 			 * must be PC. The public key and identity are
  514: 			 * presumed valid, so we skip the certificate
  515: 			 * and identity exchanges and move immediately
  516: 			 * to the cookie exchange which confirms the
  517: 			 * server signature.
  518: 			 */
  519: 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
  520: 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
  521: 					rval = XEVNT_KEY;
  522: 					break;
  523: 				}
  524: 				fstamp |= CRYPTO_FLAG_CERT |
  525: 				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
  526: 
  527: 			/*
  528: 			 * It is an error if either peer supports
  529: 			 * identity, but the other does not.
  530: 			 */
  531: 			} else if (hismode == MODE_ACTIVE || hismode ==
  532: 			    MODE_PASSIVE) {
  533: 				if ((temp32 && !(fstamp &
  534: 				    CRYPTO_FLAG_MASK)) ||
  535: 				    (!temp32 && (fstamp &
  536: 				    CRYPTO_FLAG_MASK))) {
  537: 					rval = XEVNT_KEY;
  538: 					break;
  539: 				}
  540: 			}
  541: 
  542: 			/*
  543: 			 * Discard the message if the signature digest
  544: 			 * NID is not supported.
  545: 			 */
  546: 			temp32 = (fstamp >> 16) & 0xffff;
  547: 			dp =
  548: 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
  549: 			if (dp == NULL) {
  550: 				rval = XEVNT_MD;
  551: 				break;
  552: 			}
  553: 
  554: 			/*
  555: 			 * Save status word, host name and message
  556: 			 * digest/signature type. If this is from a
  557: 			 * broadcast and the association ID has changed,
  558: 			 * request the autokey values.
  559: 			 */
  560: 			peer->assoc = associd;
  561: 			if (hismode == MODE_SERVER)
  562: 				fstamp |= CRYPTO_FLAG_AUTO;
  563: 			if (!(fstamp & CRYPTO_FLAG_TAI))
  564: 				fstamp |= CRYPTO_FLAG_LEAP;
  565: 			RAND_bytes((u_char *)&peer->hcookie, 4);
  566: 			peer->crypto = fstamp;
  567: 			peer->digest = dp;
  568: 			if (peer->subject != NULL)
  569: 				free(peer->subject);
  570: 			peer->subject = emalloc(vallen + 1);
  571: 			memcpy(peer->subject, ep->pkt, vallen);
  572: 			peer->subject[vallen] = '\0';
  573: 			if (peer->issuer != NULL)
  574: 				free(peer->issuer);
  575: 			peer->issuer = emalloc(vallen + 1);
  576: 			strcpy(peer->issuer, peer->subject);
  577: 			snprintf(statstr, NTP_MAXSTRLEN,
  578: 			    "assoc %d %d host %s %s", peer->associd,
  579: 			    peer->assoc, peer->subject,
  580: 			    OBJ_nid2ln(temp32));
  581: 			record_crypto_stats(&peer->srcadr, statstr);
  582: #ifdef DEBUG
  583: 			if (debug)
  584: 				printf("crypto_recv: %s\n", statstr);
  585: #endif
  586: 			break;
  587: 
  588: 		/*
  589: 		 * Decode X509 certificate in ASN.1 format and extract
  590: 		 * the data containing, among other things, subject
  591: 		 * name and public key. In the default identification
  592: 		 * scheme, the certificate trail is followed to a self
  593: 		 * signed trusted certificate.
  594: 		 */
  595: 		case CRYPTO_CERT | CRYPTO_RESP:
  596: 
  597: 			/*
  598: 			 * Discard the message if empty or invalid.
  599: 			 */
  600: 			if (len < VALUE_LEN)
  601: 				break;
  602: 
  603: 			if ((rval = crypto_verify(ep, NULL, peer)) !=
  604: 			    XEVNT_OK)
  605: 				break;
  606: 
  607: 			/*
  608: 			 * Scan the certificate list to delete old
  609: 			 * versions and link the newest version first on
  610: 			 * the list. Then, verify the signature. If the
  611: 			 * certificate is bad or missing, just ignore
  612: 			 * it.
  613: 			 */
  614: 			if ((xinfo = cert_install(ep, peer)) == NULL) {
  615: 				rval = XEVNT_CRT;
  616: 				break;
  617: 			}
  618: 			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
  619: 				break;
  620: 
  621: 			/*
  622: 			 * We plug in the public key and lifetime from
  623: 			 * the first certificate received. However, note
  624: 			 * that this certificate might not be signed by
  625: 			 * the server, so we can't check the
  626: 			 * signature/digest NID.
  627: 			 */
  628: 			if (peer->pkey == NULL) {
  629: 				ptr = (u_char *)xinfo->cert.ptr;
  630: 				cert = d2i_X509(NULL, &ptr,
  631: 				    ntohl(xinfo->cert.vallen));
  632: 				peer->pkey = X509_get_pubkey(cert);
  633: 				X509_free(cert);
  634: 			}
  635: 			peer->flash &= ~TEST8;
  636: 			temp32 = xinfo->nid;
  637: 			snprintf(statstr, NTP_MAXSTRLEN,
  638: 			    "cert %s %s 0x%x %s (%u) fs %u",
  639: 			    xinfo->subject, xinfo->issuer, xinfo->flags,
  640: 			    OBJ_nid2ln(temp32), temp32,
  641: 			    ntohl(ep->fstamp));
  642: 			record_crypto_stats(&peer->srcadr, statstr);
  643: #ifdef DEBUG
  644: 			if (debug)
  645: 				printf("crypto_recv: %s\n", statstr);
  646: #endif
  647: 			break;
  648: 
  649: 		/*
  650: 		 * Schnorr (IFF) identity scheme. This scheme is
  651: 		 * designed for use with shared secret server group keys
  652: 		 * and where the certificate may be generated by a third
  653: 		 * party. The client sends a challenge to the server,
  654: 		 * which performs a calculation and returns the result.
  655: 		 * A positive result is possible only if both client and
  656: 		 * server contain the same secret group key.
  657: 		 */
  658: 		case CRYPTO_IFF | CRYPTO_RESP:
  659: 
  660: 			/*
  661: 			 * Discard the message if invalid.
  662: 			 */
  663: 			if ((rval = crypto_verify(ep, NULL, peer)) !=
  664: 			    XEVNT_OK)
  665: 				break;
  666: 
  667: 			/*
  668: 			 * If the challenge matches the response, the
  669: 			 * server public key, signature and identity are
  670: 			 * all verified at the same time. The server is
  671: 			 * declared trusted, so we skip further
  672: 			 * certificate exchanges and move immediately to
  673: 			 * the cookie exchange.
  674: 			 */
  675: 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
  676: 				break;
  677: 
  678: 			peer->crypto |= CRYPTO_FLAG_VRFY;
  679: 			peer->flash &= ~TEST8;
  680: 			snprintf(statstr, NTP_MAXSTRLEN, "iff %s fs %u",
  681: 			    peer->issuer, ntohl(ep->fstamp));
  682: 			record_crypto_stats(&peer->srcadr, statstr);
  683: #ifdef DEBUG
  684: 			if (debug)
  685: 				printf("crypto_recv: %s\n", statstr);
  686: #endif
  687: 			break;
  688: 
  689: 		/*
  690: 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
  691: 		 * is designed for use with public certificates carrying
  692: 		 * the GQ public key in an extension field. The client
  693: 		 * sends a challenge to the server, which performs a
  694: 		 * calculation and returns the result. A positive result
  695: 		 * is possible only if both client and server contain
  696: 		 * the same group key and the server has the matching GQ
  697: 		 * private key.
  698: 		 */
  699: 		case CRYPTO_GQ | CRYPTO_RESP:
  700: 
  701: 			/*
  702: 			 * Discard the message if invalid
  703: 			 */
  704: 			if ((rval = crypto_verify(ep, NULL, peer)) !=
  705: 			    XEVNT_OK)
  706: 				break;
  707: 
  708: 			/*
  709: 			 * If the challenge matches the response, the
  710: 			 * server public key, signature and identity are
  711: 			 * all verified at the same time. The server is
  712: 			 * declared trusted, so we skip further
  713: 			 * certificate exchanges and move immediately to
  714: 			 * the cookie exchange.
  715: 			 */
  716: 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
  717: 				break;
  718: 
  719: 			peer->crypto |= CRYPTO_FLAG_VRFY;
  720: 			peer->flash &= ~TEST8;
  721: 			snprintf(statstr, NTP_MAXSTRLEN, "gq %s fs %u",
  722: 			    peer->issuer, ntohl(ep->fstamp));
  723: 			record_crypto_stats(&peer->srcadr, statstr);
  724: #ifdef DEBUG
  725: 			if (debug)
  726: 				printf("crypto_recv: %s\n", statstr);
  727: #endif
  728: 			break;
  729: 
  730: 		/*
  731: 		 * Mu-Varadharajan (MV) identity scheme. This scheme is
  732: 		 * designed for use with three levels of trust, trusted
  733: 		 * host, server and client. The trusted host key is
  734: 		 * opaque to servers and clients; the server keys are
  735: 		 * opaque to clients and each client key is different.
  736: 		 * Client keys can be revoked without requiring new key
  737: 		 * generations.
  738: 		 */
  739: 		case CRYPTO_MV | CRYPTO_RESP:
  740: 
  741: 			/*
  742: 			 * Discard the message if invalid.
  743: 			 */
  744: 			if ((rval = crypto_verify(ep, NULL, peer)) !=
  745: 			    XEVNT_OK)
  746: 				break;
  747: 
  748: 			/*
  749: 			 * If the challenge matches the response, the
  750: 			 * server public key, signature and identity are
  751: 			 * all verified at the same time. The server is
  752: 			 * declared trusted, so we skip further
  753: 			 * certificate exchanges and move immediately to
  754: 			 * the cookie exchange.
  755: 			 */
  756: 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
  757: 				break;
  758: 
  759: 			peer->crypto |= CRYPTO_FLAG_VRFY;
  760: 			peer->flash &= ~TEST8;
  761: 			snprintf(statstr, NTP_MAXSTRLEN, "mv %s fs %u",
  762: 			    peer->issuer, ntohl(ep->fstamp));
  763: 			record_crypto_stats(&peer->srcadr, statstr);
  764: #ifdef DEBUG
  765: 			if (debug)
  766: 				printf("crypto_recv: %s\n", statstr);
  767: #endif
  768: 			break;
  769: 
  770: 
  771: 		/*
  772: 		 * Cookie response in client and symmetric modes. If the
  773: 		 * cookie bit is set, the working cookie is the EXOR of
  774: 		 * the current and new values.
  775: 		 */
  776: 		case CRYPTO_COOK | CRYPTO_RESP:
  777: 
  778: 			/*
  779: 			 * Discard the message if invalid or signature
  780: 			 * not verified with respect to the cookie
  781: 			 * values.
  782: 			 */
  783: 			if ((rval = crypto_verify(ep, &peer->cookval,
  784: 			    peer)) != XEVNT_OK)
  785: 				break;
  786: 
  787: 			/*
  788: 			 * Decrypt the cookie, hunting all the time for
  789: 			 * errors.
  790: 			 */
  791: 			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
  792: 				if (RSA_private_decrypt(vallen,
  793: 				    (u_char *)ep->pkt,
  794: 				    (u_char *)&temp32,
  795: 				    host_pkey->pkey.rsa,
  796: 				    RSA_PKCS1_OAEP_PADDING) <= 0) {
  797: 					rval = XEVNT_CKY;
  798: 					break;
  799: 				} else {
  800: 					cookie = ntohl(temp32);
  801: 				}
  802: 			} else {
  803: 				rval = XEVNT_CKY;
  804: 				break;
  805: 			}
  806: 
  807: 			/*
  808: 			 * Install cookie values and light the cookie
  809: 			 * bit. If this is not broadcast client mode, we
  810: 			 * are done here.
  811: 			 */
  812: 			key_expire(peer);
  813: 			if (hismode == MODE_ACTIVE || hismode ==
  814: 			    MODE_PASSIVE)
  815: 				peer->pcookie = peer->hcookie ^ cookie;
  816: 			else
  817: 				peer->pcookie = cookie;
  818: 			peer->crypto |= CRYPTO_FLAG_COOK;
  819: 			peer->flash &= ~TEST8;
  820: 			snprintf(statstr, NTP_MAXSTRLEN,
  821: 			    "cook %x ts %u fs %u", peer->pcookie,
  822: 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
  823: 			record_crypto_stats(&peer->srcadr, statstr);
  824: #ifdef DEBUG
  825: 			if (debug)
  826: 				printf("crypto_recv: %s\n", statstr);
  827: #endif
  828: 			break;
  829: 
  830: 		/*
  831: 		 * Install autokey values in broadcast client and
  832: 		 * symmetric modes. We have to do this every time the
  833: 		 * sever/peer cookie changes or a new keylist is
  834: 		 * rolled. Ordinarily, this is automatic as this message
  835: 		 * is piggybacked on the first NTP packet sent upon
  836: 		 * either of these events. Note that a broadcast client
  837: 		 * or symmetric peer can receive this response without a
  838: 		 * matching request.
  839: 		 */
  840: 		case CRYPTO_AUTO | CRYPTO_RESP:
  841: 
  842: 			/*
  843: 			 * Discard the message if invalid or signature
  844: 			 * not verified with respect to the receive
  845: 			 * autokey values.
  846: 			 */
  847: 			if ((rval = crypto_verify(ep, &peer->recval,
  848: 			    peer)) != XEVNT_OK) 
  849: 				break;
  850: 
  851: 			/*
  852: 			 * Discard the message if a broadcast client and
  853: 			 * the association ID does not match. This might
  854: 			 * happen if a broacast server restarts the
  855: 			 * protocol. A protocol restart will occur at
  856: 			 * the next ASSOC message.
  857: 			 */
  858: 			if ((peer->cast_flags & MDF_BCLNT) &&
  859: 			    peer->assoc != associd)
  860: 				break;
  861: 
  862: 			/*
  863: 			 * Install autokey values and light the
  864: 			 * autokey bit. This is not hard.
  865: 			 */
  866: 			if (ep->tstamp == 0)
  867: 				break;
  868: 
  869: 			if (peer->recval.ptr == NULL)
  870: 				peer->recval.ptr =
  871: 				    emalloc(sizeof(struct autokey));
  872: 			bp = (struct autokey *)peer->recval.ptr;
  873: 			peer->recval.tstamp = ep->tstamp;
  874: 			peer->recval.fstamp = ep->fstamp;
  875: 			ap = (struct autokey *)ep->pkt;
  876: 			bp->seq = ntohl(ap->seq);
  877: 			bp->key = ntohl(ap->key);
  878: 			peer->pkeyid = bp->key;
  879: 			peer->crypto |= CRYPTO_FLAG_AUTO;
  880: 			peer->flash &= ~TEST8;
  881: 			snprintf(statstr, NTP_MAXSTRLEN, 
  882: 			    "auto seq %d key %x ts %u fs %u", bp->seq,
  883: 			    bp->key, ntohl(ep->tstamp),
  884: 			    ntohl(ep->fstamp));
  885: 			record_crypto_stats(&peer->srcadr, statstr);
  886: #ifdef DEBUG
  887: 			if (debug)
  888: 				printf("crypto_recv: %s\n", statstr);
  889: #endif
  890: 			break;
  891: 	
  892: 		/*
  893: 		 * X509 certificate sign response. Validate the
  894: 		 * certificate signed by the server and install. Later
  895: 		 * this can be provided to clients of this server in
  896: 		 * lieu of the self signed certificate in order to
  897: 		 * validate the public key.
  898: 		 */
  899: 		case CRYPTO_SIGN | CRYPTO_RESP:
  900: 
  901: 			/*
  902: 			 * Discard the message if invalid.
  903: 			 */
  904: 			if ((rval = crypto_verify(ep, NULL, peer)) !=
  905: 			    XEVNT_OK)
  906: 				break;
  907: 
  908: 			/*
  909: 			 * Scan the certificate list to delete old
  910: 			 * versions and link the newest version first on
  911: 			 * the list.
  912: 			 */
  913: 			if ((xinfo = cert_install(ep, peer)) == NULL) {
  914: 				rval = XEVNT_CRT;
  915: 				break;
  916: 			}
  917: 			peer->crypto |= CRYPTO_FLAG_SIGN;
  918: 			peer->flash &= ~TEST8;
  919: 			temp32 = xinfo->nid;
  920: 			snprintf(statstr, NTP_MAXSTRLEN,
  921: 			    "sign %s %s 0x%x %s (%u) fs %u",
  922: 			    xinfo->subject, xinfo->issuer, xinfo->flags,
  923: 			    OBJ_nid2ln(temp32), temp32,
  924: 			    ntohl(ep->fstamp));
  925: 			record_crypto_stats(&peer->srcadr, statstr);
  926: #ifdef DEBUG
  927: 			if (debug)
  928: 				printf("crypto_recv: %s\n", statstr);
  929: #endif
  930: 			break;
  931: 
  932: 		/*
  933: 		 * Install leapseconds values. While the leapsecond
  934: 		 * values epoch, TAI offset and values expiration epoch
  935: 		 * are retained, only the current TAI offset is provided
  936: 		 * via the kernel to other applications.
  937: 		 */
  938: 		case CRYPTO_LEAP | CRYPTO_RESP:
  939: 
  940: 			/*
  941: 			 * Discard the message if invalid. We can't
  942: 			 * compare the value timestamps here, as they
  943: 			 * can be updated by different servers.
  944: 			 */
  945: 			if ((rval = crypto_verify(ep, NULL, peer)) !=
  946: 			    XEVNT_OK)
  947: 				break;
  948: 
  949: 			/*
  950: 			 * If the packet leap values are more recent
  951: 			 * than the stored ones, install the new leap
  952: 			 * values and recompute the signatures.
  953: 			 */
  954: 			if (ntohl(ep->pkt[2]) > leap_expire) {
  955: 				char	tbuf[80], str1 [20], str2[20];
  956: 
  957: 				tai_leap.tstamp = ep->tstamp;
  958: 				tai_leap.fstamp = ep->fstamp;
  959: 				tai_leap.vallen = ep->vallen;
  960: 				leap_tai = ntohl(ep->pkt[0]);
  961: 				leap_sec = ntohl(ep->pkt[1]);
  962: 				leap_expire = ntohl(ep->pkt[2]);
  963: 				crypto_update();
  964: 				strcpy(str1, fstostr(leap_sec));
  965: 				strcpy(str2, fstostr(leap_expire));
  966: 				snprintf(tbuf, sizeof(tbuf),
  967: 				    "%d leap %s expire %s", leap_tai, str1,
  968: 				    str2);
  969: 				    report_event(EVNT_TAI, peer, tbuf);
  970: 			}
  971: 			peer->crypto |= CRYPTO_FLAG_LEAP;
  972: 			peer->flash &= ~TEST8;
  973: 			snprintf(statstr, NTP_MAXSTRLEN,
  974: 			    "leap TAI offset %d at %u expire %u fs %u",
  975: 			    ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
  976: 			    ntohl(ep->pkt[2]), ntohl(ep->fstamp));
  977: 			record_crypto_stats(&peer->srcadr, statstr);
  978: #ifdef DEBUG
  979: 			if (debug)
  980: 				printf("crypto_recv: %s\n", statstr);
  981: #endif
  982: 			break;
  983: 
  984: 		/*
  985: 		 * We come here in symmetric modes for miscellaneous
  986: 		 * commands that have value fields but are processed on
  987: 		 * the transmit side. All we need do here is check for
  988: 		 * valid field length. Note that ASSOC is handled
  989: 		 * separately.
  990: 		 */
  991: 		case CRYPTO_CERT:
  992: 		case CRYPTO_IFF:
  993: 		case CRYPTO_GQ:
  994: 		case CRYPTO_MV:
  995: 		case CRYPTO_COOK:
  996: 		case CRYPTO_SIGN:
  997: 			if (len < VALUE_LEN) {
  998: 				rval = XEVNT_LEN;
  999: 				break;
 1000: 			}
 1001: 			/* fall through */
 1002: 
 1003: 		/*
 1004: 		 * We come here in symmetric modes for requests
 1005: 		 * requiring a response (above plus AUTO and LEAP) and
 1006: 		 * for responses. If a request, save the extension field
 1007: 		 * for later; invalid requests will be caught on the
 1008: 		 * transmit side. If an error or invalid response,
 1009: 		 * declare a protocol error.
 1010: 		 */
 1011: 		default:
 1012: 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
 1013: 				rval = XEVNT_ERR;
 1014: 			} else if (peer->cmmd == NULL) {
 1015: 				fp = emalloc(len);
 1016: 				memcpy(fp, ep, len);
 1017: 				peer->cmmd = fp;
 1018: 			}
 1019: 		}
 1020: 
 1021: 		/*
 1022: 		 * The first error found terminates the extension field
 1023: 		 * scan and we return the laundry to the caller.
 1024: 		 */
 1025: 		if (rval != XEVNT_OK) {
 1026: 			snprintf(statstr, NTP_MAXSTRLEN,
 1027: 			    "%04x %d %02x %s", htonl(ep->opcode),
 1028: 			    associd, rval, eventstr(rval));
 1029: 			record_crypto_stats(&peer->srcadr, statstr);
 1030: #ifdef DEBUG
 1031: 			if (debug)
 1032: 				printf("crypto_recv: %s\n", statstr);
 1033: #endif
 1034: 			return (rval);
 1035: 		}
 1036: 		authlen += (len + 3) / 4 * 4;
 1037: 	}
 1038: 	return (rval);
 1039: }
 1040: 
 1041: 
 1042: /*
 1043:  * crypto_xmit - construct extension fields
 1044:  *
 1045:  * This routine is called both when an association is configured and
 1046:  * when one is not. The only case where this matters is to retrieve the
 1047:  * autokey information, in which case the caller has to provide the
 1048:  * association ID to match the association.
 1049:  *
 1050:  * Side effect: update the packet offset.
 1051:  *
 1052:  * Errors
 1053:  * XEVNT_OK	success
 1054:  * XEVNT_CRT	bad or missing certificate
 1055:  * XEVNT_ERR	protocol error
 1056:  * XEVNT_LEN	bad field format or length
 1057:  * XEVNT_PER	host certificate expired
 1058:  */
 1059: int
 1060: crypto_xmit(
 1061: 	struct peer *peer,	/* peer structure pointer */
 1062: 	struct pkt *xpkt,	/* transmit packet pointer */
 1063: 	struct recvbuf *rbufp,	/* receive buffer pointer */
 1064: 	int	start,		/* offset to extension field */
 1065: 	struct exten *ep,	/* extension pointer */
 1066: 	keyid_t cookie		/* session cookie */
 1067: 	)
 1068: {
 1069: 	struct exten *fp;	/* extension pointers */
 1070: 	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
 1071: 	sockaddr_u *srcadr_sin; /* source address */
 1072: 	u_int32	*pkt;		/* packet pointer */
 1073: 	u_int	opcode;		/* extension field opcode */
 1074: 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
 1075: 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
 1076: 	tstamp_t tstamp;
 1077: 	u_int	vallen;
 1078: 	struct value vtemp;
 1079: 	associd_t associd;
 1080: 	int	rval;
 1081: 	int	len;
 1082: 	keyid_t tcookie;
 1083: 
 1084: 	/*
 1085: 	 * Generate the requested extension field request code, length
 1086: 	 * and association ID. If this is a response and the host is not
 1087: 	 * synchronized, light the error bit and go home.
 1088: 	 */
 1089: 	pkt = (u_int32 *)xpkt + start / 4;
 1090: 	fp = (struct exten *)pkt;
 1091: 	opcode = ntohl(ep->opcode);
 1092: 	if (peer != NULL) {
 1093: 		srcadr_sin = &peer->srcadr;
 1094: 		if (!(opcode & CRYPTO_RESP))
 1095: 			peer->opcode = ep->opcode;
 1096: 	} else {
 1097: 		srcadr_sin = &rbufp->recv_srcadr;
 1098: 	}
 1099: 	associd = (associd_t) ntohl(ep->associd);
 1100: 	len = 8;
 1101: 	fp->opcode = htonl((opcode & 0xffff0000) | len);
 1102: 	fp->associd = ep->associd;
 1103: 	rval = XEVNT_OK;
 1104: 	tstamp = crypto_time();
 1105: 	switch (opcode & 0xffff0000) {
 1106: 
 1107: 	/*
 1108: 	 * Send association request and response with status word and
 1109: 	 * host name. Note, this message is not signed and the filestamp
 1110: 	 * contains only the status word.
 1111: 	 */
 1112: 	case CRYPTO_ASSOC:
 1113: 	case CRYPTO_ASSOC | CRYPTO_RESP:
 1114: 		len = crypto_send(fp, &hostval, start);
 1115: 		fp->fstamp = htonl(crypto_flags);
 1116: 		break;
 1117: 
 1118: 	/*
 1119: 	 * Send certificate request. Use the values from the extension
 1120: 	 * field.
 1121: 	 */
 1122: 	case CRYPTO_CERT:
 1123: 		memset(&vtemp, 0, sizeof(vtemp));
 1124: 		vtemp.tstamp = ep->tstamp;
 1125: 		vtemp.fstamp = ep->fstamp;
 1126: 		vtemp.vallen = ep->vallen;
 1127: 		vtemp.ptr = (u_char *)ep->pkt;
 1128: 		len = crypto_send(fp, &vtemp, start);
 1129: 		break;
 1130: 
 1131: 	/*
 1132: 	 * Send sign request. Use the host certificate, which is self-
 1133: 	 * signed and may or may not be trusted.
 1134: 	 */
 1135: 	case CRYPTO_SIGN:
 1136: 		if (tstamp < cert_host->first || tstamp >
 1137: 		    cert_host->last)
 1138: 			rval = XEVNT_PER;
 1139: 		else
 1140: 			len = crypto_send(fp, &cert_host->cert, start);
 1141: 		break;
 1142: 
 1143: 	/*
 1144: 	 * Send certificate response. Use the name in the extension
 1145: 	 * field to find the certificate in the cache. If the request
 1146: 	 * contains no subject name, assume the name of this host. This
 1147: 	 * is for backwards compatibility. Private certificates are
 1148: 	 * never sent.
 1149: 	 *
 1150: 	 * There may be several certificates matching the request. First
 1151: 	 * choice is a self-signed trusted certificate; second choice is
 1152: 	 * any certificate signed by another host. There is no third
 1153: 	 * choice. 
 1154: 	 */
 1155: 	case CRYPTO_CERT | CRYPTO_RESP:
 1156: 		vallen = ntohl(ep->vallen);
 1157: 		if (vallen == 0 || vallen > MAXHOSTNAME) {
 1158: 			rval = XEVNT_LEN;
 1159: 			break;
 1160: 
 1161: 		} else {
 1162: 			memcpy(certname, ep->pkt, vallen);
 1163: 			certname[vallen] = '\0';
 1164: 		}
 1165: 
 1166: 		/*
 1167: 		 * Find all public valid certificates with matching
 1168: 		 * subject. If a self-signed, trusted certificate is
 1169: 		 * found, use that certificate. If not, use the last non
 1170: 		 * self-signed certificate.
 1171: 		 */
 1172: 		xp = yp = NULL;
 1173: 		for (cp = cinfo; cp != NULL; cp = cp->link) {
 1174: 			if (cp->flags & (CERT_PRIV | CERT_ERROR))
 1175: 				continue;
 1176: 
 1177: 			if (strcmp(certname, cp->subject) != 0)
 1178: 				continue;
 1179: 
 1180: 			if (strcmp(certname, cp->issuer) != 0)
 1181: 				yp = cp;
 1182: 			else if (cp ->flags & CERT_TRUST)
 1183: 				xp = cp;
 1184: 			continue;
 1185: 		}
 1186: 
 1187: 		/*
 1188: 		 * Be careful who you trust. If the certificate is not
 1189: 		 * found, return an empty response. Note that we dont
 1190: 		 * enforce lifetimes here.
 1191: 		 *
 1192: 		 * The timestamp and filestamp are taken from the
 1193: 		 * certificate value structure. For all certificates the
 1194: 		 * timestamp is the latest signature update time. For
 1195: 		 * host and imported certificates the filestamp is the
 1196: 		 * creation epoch. For signed certificates the filestamp
 1197: 		 * is the creation epoch of the trusted certificate at
 1198: 		 * the root of the certificate trail. In principle, this
 1199: 		 * allows strong checking for signature masquerade.
 1200: 		 */
 1201: 		if (xp == NULL)
 1202: 			xp = yp;
 1203: 		if (xp == NULL)
 1204: 			break;
 1205: 
 1206: 		if (tstamp == 0)
 1207: 			break;
 1208: 
 1209: 		len = crypto_send(fp, &xp->cert, start);
 1210: 		break;
 1211: 
 1212: 	/*
 1213: 	 * Send challenge in Schnorr (IFF) identity scheme.
 1214: 	 */
 1215: 	case CRYPTO_IFF:
 1216: 		if (peer == NULL)
 1217: 			break;		/* hack attack */
 1218: 
 1219: 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
 1220: 			len = crypto_send(fp, &vtemp, start);
 1221: 			value_free(&vtemp);
 1222: 		}
 1223: 		break;
 1224: 
 1225: 	/*
 1226: 	 * Send response in Schnorr (IFF) identity scheme.
 1227: 	 */
 1228: 	case CRYPTO_IFF | CRYPTO_RESP:
 1229: 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
 1230: 			len = crypto_send(fp, &vtemp, start);
 1231: 			value_free(&vtemp);
 1232: 		}
 1233: 		break;
 1234: 
 1235: 	/*
 1236: 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
 1237: 	 */
 1238: 	case CRYPTO_GQ:
 1239: 		if (peer == NULL)
 1240: 			break;		/* hack attack */
 1241: 
 1242: 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
 1243: 			len = crypto_send(fp, &vtemp, start);
 1244: 			value_free(&vtemp);
 1245: 		}
 1246: 		break;
 1247: 
 1248: 	/*
 1249: 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
 1250: 	 */
 1251: 	case CRYPTO_GQ | CRYPTO_RESP:
 1252: 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
 1253: 			len = crypto_send(fp, &vtemp, start);
 1254: 			value_free(&vtemp);
 1255: 		}
 1256: 		break;
 1257: 
 1258: 	/*
 1259: 	 * Send challenge in MV identity scheme.
 1260: 	 */
 1261: 	case CRYPTO_MV:
 1262: 		if (peer == NULL)
 1263: 			break;		/* hack attack */
 1264: 
 1265: 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
 1266: 			len = crypto_send(fp, &vtemp, start);
 1267: 			value_free(&vtemp);
 1268: 		}
 1269: 		break;
 1270: 
 1271: 	/*
 1272: 	 * Send response in MV identity scheme.
 1273: 	 */
 1274: 	case CRYPTO_MV | CRYPTO_RESP:
 1275: 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
 1276: 			len = crypto_send(fp, &vtemp, start);
 1277: 			value_free(&vtemp);
 1278: 		}
 1279: 		break;
 1280: 
 1281: 	/*
 1282: 	 * Send certificate sign response. The integrity of the request
 1283: 	 * certificate has already been verified on the receive side.
 1284: 	 * Sign the response using the local server key. Use the
 1285: 	 * filestamp from the request and use the timestamp as the
 1286: 	 * current time. Light the error bit if the certificate is
 1287: 	 * invalid or contains an unverified signature.
 1288: 	 */
 1289: 	case CRYPTO_SIGN | CRYPTO_RESP:
 1290: 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
 1291: 			len = crypto_send(fp, &vtemp, start);
 1292: 			value_free(&vtemp);
 1293: 		}
 1294: 		break;
 1295: 
 1296: 	/*
 1297: 	 * Send public key and signature. Use the values from the public
 1298: 	 * key.
 1299: 	 */
 1300: 	case CRYPTO_COOK:
 1301: 		len = crypto_send(fp, &pubkey, start);
 1302: 		break;
 1303: 
 1304: 	/*
 1305: 	 * Encrypt and send cookie and signature. Light the error bit if
 1306: 	 * anything goes wrong.
 1307: 	 */
 1308: 	case CRYPTO_COOK | CRYPTO_RESP:
 1309: 		if ((opcode & 0xffff) < VALUE_LEN) {
 1310: 			rval = XEVNT_LEN;
 1311: 			break;
 1312: 		}
 1313: 		if (peer == NULL)
 1314: 			tcookie = cookie;
 1315: 		else
 1316: 			tcookie = peer->hcookie;
 1317: 		if ((rval = crypto_encrypt(ep, &vtemp, &tcookie)) ==
 1318: 		    XEVNT_OK) {
 1319: 			len = crypto_send(fp, &vtemp, start);
 1320: 			value_free(&vtemp);
 1321: 		}
 1322: 		break;
 1323: 
 1324: 	/*
 1325: 	 * Find peer and send autokey data and signature in broadcast
 1326: 	 * server and symmetric modes. Use the values in the autokey
 1327: 	 * structure. If no association is found, either the server has
 1328: 	 * restarted with new associations or some perp has replayed an
 1329: 	 * old message, in which case light the error bit.
 1330: 	 */
 1331: 	case CRYPTO_AUTO | CRYPTO_RESP:
 1332: 		if (peer == NULL) {
 1333: 			if ((peer = findpeerbyassoc(associd)) == NULL) {
 1334: 				rval = XEVNT_ERR;
 1335: 				break;
 1336: 			}
 1337: 		}
 1338: 		peer->flags &= ~FLAG_ASSOC;
 1339: 		len = crypto_send(fp, &peer->sndval, start);
 1340: 		break;
 1341: 
 1342: 	/*
 1343: 	 * Send leapseconds values and signature. Use the values from
 1344: 	 * the tai structure. If no table has been loaded, just send an
 1345: 	 * empty request.
 1346: 	 */
 1347: 	case CRYPTO_LEAP | CRYPTO_RESP:
 1348: 		len = crypto_send(fp, &tai_leap, start);
 1349: 		break;
 1350: 
 1351: 	/*
 1352: 	 * Default - Send a valid command for unknown requests; send
 1353: 	 * an error response for unknown resonses.
 1354: 	 */
 1355: 	default:
 1356: 		if (opcode & CRYPTO_RESP)
 1357: 			rval = XEVNT_ERR;
 1358: 	}
 1359: 
 1360: 	/*
 1361: 	 * In case of error, flame the log. If a request, toss the
 1362: 	 * puppy; if a response, return so the sender can flame, too.
 1363: 	 */
 1364: 	if (rval != XEVNT_OK) {
 1365: 		u_int32	uint32;
 1366: 
 1367: 		uint32 = CRYPTO_ERROR;
 1368: 		opcode |= uint32;
 1369: 		fp->opcode |= htonl(uint32);
 1370: 		snprintf(statstr, NTP_MAXSTRLEN,
 1371: 		    "%04x %d %02x %s", opcode, associd, rval,
 1372: 		    eventstr(rval));
 1373: 		record_crypto_stats(srcadr_sin, statstr);
 1374: #ifdef DEBUG
 1375: 		if (debug)
 1376: 			printf("crypto_xmit: %s\n", statstr);
 1377: #endif
 1378: 		if (!(opcode & CRYPTO_RESP))
 1379: 			return (0);
 1380: 	}
 1381: #ifdef DEBUG
 1382: 	if (debug)
 1383: 		printf(
 1384: 		    "crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
 1385: 		    crypto_flags, start, len, opcode >> 16, associd);
 1386: #endif
 1387: 	return (len);
 1388: }
 1389: 
 1390: 
 1391: /*
 1392:  * crypto_verify - verify the extension field value and signature
 1393:  *
 1394:  * Returns
 1395:  * XEVNT_OK	success
 1396:  * XEVNT_ERR	protocol error
 1397:  * XEVNT_FSP	bad filestamp
 1398:  * XEVNT_LEN	bad field format or length
 1399:  * XEVNT_PUB	bad or missing public key
 1400:  * XEVNT_SGL	bad signature length
 1401:  * XEVNT_SIG	signature not verified
 1402:  * XEVNT_TSP	bad timestamp
 1403:  */
 1404: static int
 1405: crypto_verify(
 1406: 	struct exten *ep,	/* extension pointer */
 1407: 	struct value *vp,	/* value pointer */
 1408: 	struct peer *peer	/* peer structure pointer */
 1409: 	)
 1410: {
 1411: 	EVP_PKEY *pkey;		/* server public key */
 1412: 	EVP_MD_CTX ctx;		/* signature context */
 1413: 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
 1414: 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
 1415: 	u_int	vallen;		/* value length */
 1416: 	u_int	siglen;		/* signature length */
 1417: 	u_int	opcode, len;
 1418: 	int	i;
 1419: 
 1420: 	/*
 1421: 	 * We are extremely parannoyed. We require valid opcode, length,
 1422: 	 * association ID, timestamp, filestamp, public key, digest,
 1423: 	 * signature length and signature, where relevant. Note that
 1424: 	 * preliminary length checks are done in the main loop.
 1425: 	 */
 1426: 	len = ntohl(ep->opcode) & 0x0000ffff;
 1427: 	opcode = ntohl(ep->opcode) & 0xffff0000;
 1428: 
 1429: 	/*
 1430: 	 * Check for valid value header, association ID and extension
 1431: 	 * field length. Remember, it is not an error to receive an
 1432: 	 * unsolicited response; however, the response ID must match
 1433: 	 * the association ID.
 1434: 	 */
 1435: 	if (opcode & CRYPTO_ERROR)
 1436: 		return (XEVNT_ERR);
 1437: 
 1438:  	if (len < VALUE_LEN)
 1439: 		return (XEVNT_LEN);
 1440: 
 1441: 	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
 1442: 	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
 1443: 		if (ntohl(ep->associd) != peer->assoc)
 1444: 			return (XEVNT_ERR);
 1445: 	} else {
 1446: 		if (ntohl(ep->associd) != peer->associd)
 1447: 			return (XEVNT_ERR);
 1448: 	}
 1449: 
 1450: 	/*
 1451: 	 * We have a valid value header. Check for valid value and
 1452: 	 * signature field lengths. The extension field length must be
 1453: 	 * long enough to contain the value header, value and signature.
 1454: 	 * Note both the value and signature field lengths are rounded
 1455: 	 * up to the next word (4 octets).
 1456: 	 */
 1457: 	vallen = ntohl(ep->vallen);
 1458: 	if (vallen == 0)
 1459: 		return (XEVNT_LEN);
 1460: 
 1461: 	i = (vallen + 3) / 4;
 1462: 	siglen = ntohl(ep->pkt[i++]);
 1463: 	if (len < VALUE_LEN + ((vallen + 3) / 4) * 4 + ((siglen + 3) /
 1464: 	    4) * 4)
 1465: 		return (XEVNT_LEN);
 1466: 
 1467: 	/*
 1468: 	 * Check for valid timestamp and filestamp. If the timestamp is
 1469: 	 * zero, the sender is not synchronized and signatures are
 1470: 	 * not possible. If nonzero the timestamp must not precede the
 1471: 	 * filestamp. The timestamp and filestamp must not precede the
 1472: 	 * corresponding values in the value structure, if present.
 1473:  	 */
 1474: 	tstamp = ntohl(ep->tstamp);
 1475: 	fstamp = ntohl(ep->fstamp);
 1476: 	if (tstamp == 0)
 1477: 		return (XEVNT_TSP);
 1478: 
 1479: 	if (tstamp < fstamp)
 1480: 		return (XEVNT_TSP);
 1481: 
 1482: 	if (vp != NULL) {
 1483: 		tstamp1 = ntohl(vp->tstamp);
 1484: 		fstamp1 = ntohl(vp->fstamp);
 1485: 		if (tstamp1 != 0 && fstamp1 != 0) {
 1486: 			if (tstamp < tstamp1)
 1487: 				return (XEVNT_TSP);
 1488: 
 1489: 			if ((tstamp < fstamp1 || fstamp < fstamp1))
 1490: 				return (XEVNT_FSP);
 1491: 		}
 1492: 	}
 1493: 
 1494: 	/*
 1495: 	 * At the time the certificate message is validated, the public
 1496: 	 * key in the message is not available. Thus, don't try to
 1497: 	 * verify the signature.
 1498: 	 */
 1499: 	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
 1500: 		return (XEVNT_OK);
 1501: 
 1502: 	/*
 1503: 	 * Check for valid signature length, public key and digest
 1504: 	 * algorithm.
 1505: 	 */
 1506: 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
 1507: 		pkey = sign_pkey;
 1508: 	else
 1509: 		pkey = peer->pkey;
 1510: 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
 1511: 		return (XEVNT_ERR);
 1512: 
 1513: 	if (siglen != (u_int)EVP_PKEY_size(pkey))
 1514: 		return (XEVNT_SGL);
 1515: 
 1516: 	/*
 1517: 	 * Darn, I thought we would never get here. Verify the
 1518: 	 * signature. If the identity exchange is verified, light the
 1519: 	 * proventic bit. What a relief.
 1520: 	 */
 1521: 	EVP_VerifyInit(&ctx, peer->digest);
 1522: 	EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
 1523: 	if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen,
 1524: 	    pkey) <= 0)
 1525: 		return (XEVNT_SIG);
 1526: 
 1527: 	if (peer->crypto & CRYPTO_FLAG_VRFY)
 1528: 		peer->crypto |= CRYPTO_FLAG_PROV;
 1529: 	return (XEVNT_OK);
 1530: }
 1531: 
 1532: 
 1533: /*
 1534:  * crypto_encrypt - construct encrypted cookie and signature from
 1535:  * extension field and cookie
 1536:  *
 1537:  * Returns
 1538:  * XEVNT_OK	success
 1539:  * XEVNT_CKY	bad or missing cookie
 1540:  * XEVNT_PUB	bad or missing public key
 1541:  */
 1542: static int
 1543: crypto_encrypt(
 1544: 	struct exten *ep,	/* extension pointer */
 1545: 	struct value *vp,	/* value pointer */
 1546: 	keyid_t	*cookie		/* server cookie */
 1547: 	)
 1548: {
 1549: 	EVP_PKEY *pkey;		/* public key */
 1550: 	EVP_MD_CTX ctx;		/* signature context */
 1551: 	tstamp_t tstamp;	/* NTP timestamp */
 1552: 	u_int32	temp32;
 1553: 	u_int	len;
 1554: 	u_char	*ptr;
 1555: 
 1556: 	/*
 1557: 	 * Extract the public key from the request.
 1558: 	 */
 1559: 	len = ntohl(ep->vallen);
 1560: 	ptr = (u_char *)ep->pkt;
 1561: 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, len);
 1562: 	if (pkey == NULL) {
 1563: 		msyslog(LOG_ERR, "crypto_encrypt: %s",
 1564: 		    ERR_error_string(ERR_get_error(), NULL));
 1565: 		return (XEVNT_PUB);
 1566: 	}
 1567: 
 1568: 	/*
 1569: 	 * Encrypt the cookie, encode in ASN.1 and sign.
 1570: 	 */
 1571: 	memset(vp, 0, sizeof(struct value));
 1572: 	tstamp = crypto_time();
 1573: 	vp->tstamp = htonl(tstamp);
 1574: 	vp->fstamp = hostval.tstamp;
 1575: 	len = EVP_PKEY_size(pkey);
 1576: 	vp->vallen = htonl(len);
 1577: 	vp->ptr = emalloc(len);
 1578: 	ptr = vp->ptr;
 1579: 	temp32 = htonl(*cookie);
 1580: 	if (RSA_public_encrypt(4, (u_char *)&temp32, ptr,
 1581: 	    pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) {
 1582: 		msyslog(LOG_ERR, "crypto_encrypt: %s",
 1583: 		    ERR_error_string(ERR_get_error(), NULL));
 1584: 		free(vp->ptr);
 1585: 		EVP_PKEY_free(pkey);
 1586: 		return (XEVNT_CKY);
 1587: 	}
 1588: 	EVP_PKEY_free(pkey);
 1589: 	if (tstamp == 0)
 1590: 		return (XEVNT_OK);
 1591: 
 1592: 	vp->sig = emalloc(sign_siglen);
 1593: 	EVP_SignInit(&ctx, sign_digest);
 1594: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 1595: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 1596: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 1597: 		vp->siglen = htonl(sign_siglen);
 1598: 	return (XEVNT_OK);
 1599: }
 1600: 
 1601: 
 1602: /*
 1603:  * crypto_ident - construct extension field for identity scheme
 1604:  *
 1605:  * This routine determines which identity scheme is in use and
 1606:  * constructs an extension field for that scheme.
 1607:  *
 1608:  * Returns
 1609:  * CRYTPO_IFF	IFF scheme
 1610:  * CRYPTO_GQ	GQ scheme
 1611:  * CRYPTO_MV	MV scheme
 1612:  * CRYPTO_NULL	no available scheme
 1613:  */
 1614: u_int
 1615: crypto_ident(
 1616: 	struct peer *peer	/* peer structure pointer */
 1617: 	)
 1618: {
 1619: 	char	filename[MAXFILENAME];
 1620: 
 1621: 	/*
 1622: 	 * We come here after the group trusted host has been found; its
 1623: 	 * name defines the group name. Search the key cache for all
 1624: 	 * keys matching the same group name in order IFF, GQ and MV.
 1625: 	 * Use the first one available.
 1626: 	 */
 1627: 	if (peer->crypto & CRYPTO_FLAG_IFF) {
 1628: 		snprintf(filename, MAXFILENAME, "ntpkey_iffpar_%s",
 1629: 		    peer->issuer);
 1630: 		peer->ident_pkey = crypto_key(filename, NULL,
 1631: 		    &peer->srcadr);
 1632: 		if (peer->ident_pkey != NULL)
 1633: 			return (CRYPTO_IFF);
 1634: 	}
 1635: 	if (peer->crypto & CRYPTO_FLAG_GQ) {
 1636: 		snprintf(filename, MAXFILENAME, "ntpkey_gqpar_%s",
 1637: 		    peer->issuer);
 1638: 		peer->ident_pkey = crypto_key(filename, NULL,
 1639: 		    &peer->srcadr);
 1640: 		if (peer->ident_pkey != NULL)
 1641: 			return (CRYPTO_GQ);
 1642: 	}
 1643: 	if (peer->crypto & CRYPTO_FLAG_MV) {
 1644: 		snprintf(filename, MAXFILENAME, "ntpkey_mvpar_%s",
 1645: 		    peer->issuer);
 1646: 		peer->ident_pkey = crypto_key(filename, NULL,
 1647: 		    &peer->srcadr);
 1648: 		if (peer->ident_pkey != NULL)
 1649: 			return (CRYPTO_MV);
 1650: 	}
 1651: 	msyslog(LOG_NOTICE,
 1652: 	    "crypto_ident: no identity parameters found for group %s",
 1653: 	    peer->issuer);
 1654: 	return (CRYPTO_NULL);
 1655: }
 1656: 
 1657: 
 1658: /*
 1659:  * crypto_args - construct extension field from arguments
 1660:  *
 1661:  * This routine creates an extension field with current timestamps and
 1662:  * specified opcode, association ID and optional string. Note that the
 1663:  * extension field is created here, but freed after the crypto_xmit()
 1664:  * call in the protocol module.
 1665:  *
 1666:  * Returns extension field pointer (no errors)
 1667:  */
 1668: struct exten *
 1669: crypto_args(
 1670: 	struct peer *peer,	/* peer structure pointer */
 1671: 	u_int	opcode,		/* operation code */
 1672: 	associd_t associd,	/* association ID */
 1673: 	char	*str		/* argument string */
 1674: 	)
 1675: {
 1676: 	tstamp_t tstamp;	/* NTP timestamp */
 1677: 	struct exten *ep;	/* extension field pointer */
 1678: 	u_int	len;		/* extension field length */
 1679: 
 1680: 	tstamp = crypto_time();
 1681: 	len = sizeof(struct exten);
 1682: 	if (str != NULL)
 1683: 		len += strlen(str);
 1684: 	ep = emalloc(len);
 1685: 	memset(ep, 0, len);
 1686: 	if (opcode == 0)
 1687: 		return (ep);
 1688: 
 1689: 	ep->opcode = htonl(opcode + len);
 1690: 	ep->associd = htonl(associd);
 1691: 	ep->tstamp = htonl(tstamp);
 1692: 	ep->fstamp = hostval.tstamp;
 1693: 	ep->vallen = 0;
 1694: 	if (str != NULL) {
 1695: 		ep->vallen = htonl(strlen(str));
 1696: 		memcpy((char *)ep->pkt, str, strlen(str));
 1697: 	}
 1698: 	return (ep);
 1699: }
 1700: 
 1701: 
 1702: /*
 1703:  * crypto_send - construct extension field from value components
 1704:  *
 1705:  * The value and signature fields are zero-padded to a word boundary.
 1706:  * Note: it is not polite to send a nonempty signature with zero
 1707:  * timestamp or a nonzero timestamp with an empty signature, but those
 1708:  * rules are not enforced here.
 1709:  */
 1710: int
 1711: crypto_send(
 1712: 	struct exten *ep,	/* extension field pointer */
 1713: 	struct value *vp,	/* value pointer */
 1714: 	int	start		/* buffer offset */
 1715: 	)
 1716: {
 1717: 	u_int	len, vallen, siglen, opcode;
 1718: 	int	i, j;
 1719: 
 1720: 	/*
 1721: 	 * Calculate extension field length and check for buffer
 1722: 	 * overflow. Leave room for the MAC.
 1723: 	 */
 1724: 	len = 16;
 1725: 	vallen = ntohl(vp->vallen);
 1726: 	len += ((vallen + 3) / 4 + 1) * 4; 
 1727: 	siglen = ntohl(vp->siglen);
 1728: 	len += ((siglen + 3) / 4 + 1) * 4; 
 1729: 	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
 1730: 		return (0);
 1731: 
 1732: 	/*
 1733: 	 * Copy timestamps.
 1734: 	 */
 1735: 	ep->tstamp = vp->tstamp;
 1736: 	ep->fstamp = vp->fstamp;
 1737: 	ep->vallen = vp->vallen;
 1738: 
 1739: 	/*
 1740: 	 * Copy value. If the data field is empty or zero length,
 1741: 	 * encode an empty value with length zero.
 1742: 	 */
 1743: 	i = 0;
 1744: 	if (vallen > 0 && vp->ptr != NULL) {
 1745: 		j = vallen / 4;
 1746: 		if (j * 4 < vallen)
 1747: 			ep->pkt[i + j++] = 0;
 1748: 		memcpy(&ep->pkt[i], vp->ptr, vallen);
 1749: 		i += j;
 1750: 	}
 1751: 
 1752: 	/*
 1753: 	 * Copy signature. If the signature field is empty or zero
 1754: 	 * length, encode an empty signature with length zero.
 1755: 	 */
 1756: 	ep->pkt[i++] = vp->siglen;
 1757: 	if (siglen > 0 && vp->sig != NULL) {
 1758: 		j = vallen / 4;
 1759: 		if (j * 4 < siglen)
 1760: 			ep->pkt[i + j++] = 0;
 1761: 		memcpy(&ep->pkt[i], vp->sig, siglen);
 1762: 		i += j;
 1763: 	}
 1764: 	opcode = ntohl(ep->opcode);
 1765: 	ep->opcode = htonl((opcode & 0xffff0000) | len); 
 1766: 	return (len);
 1767: }
 1768: 
 1769: 
 1770: /*
 1771:  * crypto_update - compute new public value and sign extension fields
 1772:  *
 1773:  * This routine runs periodically, like once a day, and when something
 1774:  * changes. It updates the timestamps on three value structures and one
 1775:  * value structure list, then signs all the structures:
 1776:  *
 1777:  * hostval	host name (not signed)
 1778:  * pubkey	public key
 1779:  * cinfo	certificate info/value list
 1780:  * tai_leap	leap values
 1781:  *
 1782:  * Filestamps are proventic data, so this routine runs only when the
 1783:  * host is synchronized to a proventicated source. Thus, the timestamp
 1784:  * is proventic and can be used to deflect clogging attacks.
 1785:  *
 1786:  * Returns void (no errors)
 1787:  */
 1788: void
 1789: crypto_update(void)
 1790: {
 1791: 	EVP_MD_CTX ctx;		/* message digest context */
 1792: 	struct cert_info *cp;	/* certificate info/value */
 1793: 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
 1794: 	u_int32	*ptr;
 1795: 	u_int	len;
 1796: 
 1797: 	hostval.tstamp = htonl(crypto_time());
 1798: 	if (hostval.tstamp == 0)
 1799: 		return;
 1800: 
 1801: 
 1802: 	/*
 1803: 	 * Sign public key and timestamps. The filestamp is derived from
 1804: 	 * the host key file extension from wherever the file was
 1805: 	 * generated. 
 1806: 	 */
 1807: 	if (pubkey.vallen != 0) {
 1808: 		pubkey.tstamp = hostval.tstamp;
 1809: 		pubkey.siglen = 0;
 1810: 		if (pubkey.sig == NULL)
 1811: 			pubkey.sig = emalloc(sign_siglen);
 1812: 		EVP_SignInit(&ctx, sign_digest);
 1813: 		EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
 1814: 		EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
 1815: 		if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey))
 1816: 			pubkey.siglen = htonl(sign_siglen);
 1817: 	}
 1818: 
 1819: 	/*
 1820: 	 * Sign certificates and timestamps. The filestamp is derived
 1821: 	 * from the certificate file extension from wherever the file
 1822: 	 * was generated. Note we do not throw expired certificates
 1823: 	 * away; they may have signed younger ones.
 1824: 	 */
 1825: 	for (cp = cinfo; cp != NULL; cp = cp->link) {
 1826: 		cp->cert.tstamp = hostval.tstamp;
 1827: 		cp->cert.siglen = 0;
 1828: 		if (cp->cert.sig == NULL)
 1829: 			cp->cert.sig = emalloc(sign_siglen);
 1830: 		EVP_SignInit(&ctx, sign_digest);
 1831: 		EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
 1832: 		EVP_SignUpdate(&ctx, cp->cert.ptr,
 1833: 		    ntohl(cp->cert.vallen));
 1834: 		if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey))
 1835: 			cp->cert.siglen = htonl(sign_siglen);
 1836: 	}
 1837: 
 1838: 	/*
 1839: 	 * Sign leapseconds values and timestamps. Note it is not an
 1840: 	 * error to return null values.
 1841: 	 */
 1842: 	tai_leap.tstamp = hostval.tstamp;
 1843: 	tai_leap.fstamp = hostval.fstamp;
 1844: 	len = 3 * sizeof(u_int32);
 1845: 	if (tai_leap.ptr == NULL)
 1846: 		tai_leap.ptr = emalloc(len);
 1847: 	tai_leap.vallen = htonl(len);
 1848: 	ptr = (u_int32 *)tai_leap.ptr;
 1849: 	ptr[0] = htonl(leap_tai);
 1850: 	ptr[1] = htonl(leap_sec);
 1851: 	ptr[2] = htonl(leap_expire);
 1852: 	if (tai_leap.sig == NULL)
 1853: 		tai_leap.sig = emalloc(sign_siglen);
 1854: 	EVP_SignInit(&ctx, sign_digest);
 1855: 	EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
 1856: 	EVP_SignUpdate(&ctx, tai_leap.ptr, len);
 1857: 	if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey))
 1858: 		tai_leap.siglen = htonl(sign_siglen);
 1859: 	if (leap_sec > 0)
 1860: 		crypto_flags |= CRYPTO_FLAG_TAI;
 1861: 	snprintf(statstr, NTP_MAXSTRLEN, "signature update ts %u",
 1862: 	    ntohl(hostval.tstamp)); 
 1863: 	record_crypto_stats(NULL, statstr);
 1864: #ifdef DEBUG
 1865: 	if (debug)
 1866: 		printf("crypto_update: %s\n", statstr);
 1867: #endif
 1868: }
 1869: 
 1870: 
 1871: /*
 1872:  * value_free - free value structure components.
 1873:  *
 1874:  * Returns void (no errors)
 1875:  */
 1876: void
 1877: value_free(
 1878: 	struct value *vp	/* value structure */
 1879: 	)
 1880: {
 1881: 	if (vp->ptr != NULL)
 1882: 		free(vp->ptr);
 1883: 	if (vp->sig != NULL)
 1884: 		free(vp->sig);
 1885: 	memset(vp, 0, sizeof(struct value));
 1886: }
 1887: 
 1888: 
 1889: /*
 1890:  * crypto_time - returns current NTP time.
 1891:  *
 1892:  * Returns NTP seconds if in synch, 0 otherwise
 1893:  */
 1894: tstamp_t
 1895: crypto_time()
 1896: {
 1897: 	l_fp	tstamp;		/* NTP time */
 1898: 
 1899: 	L_CLR(&tstamp);
 1900: 	if (sys_leap != LEAP_NOTINSYNC)
 1901: 		get_systime(&tstamp);
 1902: 	return (tstamp.l_ui);
 1903: }
 1904: 
 1905: 
 1906: /*
 1907:  * asn2ntp - convert ASN1_TIME time structure to NTP time.
 1908:  *
 1909:  * Returns NTP seconds (no errors)
 1910:  */
 1911: u_long
 1912: asn2ntp	(
 1913: 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
 1914: 	)
 1915: {
 1916: 	char	*v;		/* pointer to ASN1_TIME string */
 1917: 	struct	tm tm;		/* used to convert to NTP time */
 1918: 
 1919: 	/*
 1920: 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
 1921: 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
 1922: 	 * SS fiels start with zero and the Z character is ignored.
 1923: 	 * Also note that years less than 50 map to years greater than
 1924: 	 * 100. Dontcha love ASN.1? Better than MIL-188.
 1925: 	 */
 1926: 	v = (char *)asn1time->data;
 1927: 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
 1928: 	if (tm.tm_year < 50)
 1929: 		tm.tm_year += 100;
 1930: 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
 1931: 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
 1932: 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
 1933: 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
 1934: 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
 1935: 	tm.tm_wday = 0;
 1936: 	tm.tm_yday = 0;
 1937: 	tm.tm_isdst = 0;
 1938: 	return ((u_long)timegm(&tm) + JAN_1970);
 1939: }
 1940: 
 1941: 
 1942: /*
 1943:  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
 1944:  *
 1945:  * Returns void (no errors)
 1946:  */
 1947: static void
 1948: bighash(
 1949: 	BIGNUM	*bn,		/* BIGNUM * from */
 1950: 	BIGNUM	*bk		/* BIGNUM * to */
 1951: 	)
 1952: {
 1953: 	EVP_MD_CTX ctx;		/* message digest context */
 1954: 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
 1955: 	u_char	*ptr;		/* a BIGNUM as binary string */
 1956: 	u_int	len;
 1957: 
 1958: 	len = BN_num_bytes(bn);
 1959: 	ptr = emalloc(len);
 1960: 	BN_bn2bin(bn, ptr);
 1961: 	EVP_DigestInit(&ctx, EVP_md5());
 1962: 	EVP_DigestUpdate(&ctx, ptr, len);
 1963: 	EVP_DigestFinal(&ctx, dgst, &len);
 1964: 	BN_bin2bn(dgst, len, bk);
 1965: 	free(ptr);
 1966: }
 1967: 
 1968: 
 1969: /*
 1970:  ***********************************************************************
 1971:  *								       *
 1972:  * The following routines implement the Schnorr (IFF) identity scheme  *
 1973:  *								       *
 1974:  ***********************************************************************
 1975:  *
 1976:  * The Schnorr (IFF) identity scheme is intended for use when
 1977:  * certificates are generated by some other trusted certificate
 1978:  * authority and the certificate cannot be used to convey public
 1979:  * parameters. There are two kinds of files: encrypted server files that
 1980:  * contain private and public values and nonencrypted client files that
 1981:  * contain only public values. New generations of server files must be
 1982:  * securely transmitted to all servers of the group; client files can be
 1983:  * distributed by any means. The scheme is self contained and
 1984:  * independent of new generations of host keys, sign keys and
 1985:  * certificates.
 1986:  *
 1987:  * The IFF values hide in a DSA cuckoo structure which uses the same
 1988:  * parameters. The values are used by an identity scheme based on DSA
 1989:  * cryptography and described in Stimson p. 285. The p is a 512-bit
 1990:  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
 1991:  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
 1992:  * private random group key b (0 < b < q) and public key v = g^b, then
 1993:  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
 1994:  * Alice challenges Bob to confirm identity using the protocol described
 1995:  * below.
 1996:  *
 1997:  * How it works
 1998:  *
 1999:  * The scheme goes like this. Both Alice and Bob have the public primes
 2000:  * p, q and generator g. The TA gives private key b to Bob and public
 2001:  * key v to Alice.
 2002:  *
 2003:  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
 2004:  * the IFF request message. Bob rolls new random k (0 < k < q), then
 2005:  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
 2006:  * to Alice in the response message. Besides making the response
 2007:  * shorter, the hash makes it effectivey impossible for an intruder to
 2008:  * solve for b by observing a number of these messages.
 2009:  * 
 2010:  * Alice receives the response and computes g^y v^r mod p. After a bit
 2011:  * of algebra, this simplifies to g^k. If the hash of this result
 2012:  * matches hash(x), Alice knows that Bob has the group key b. The signed
 2013:  * response binds this knowledge to Bob's private key and the public key
 2014:  * previously received in his certificate.
 2015:  *
 2016:  * crypto_alice - construct Alice's challenge in IFF scheme
 2017:  *
 2018:  * Returns
 2019:  * XEVNT_OK	success
 2020:  * XEVNT_ID	bad or missing group key
 2021:  * XEVNT_PUB	bad or missing public key
 2022:  */
 2023: static int
 2024: crypto_alice(
 2025: 	struct peer *peer,	/* peer pointer */
 2026: 	struct value *vp	/* value pointer */
 2027: 	)
 2028: {
 2029: 	DSA	*dsa;		/* IFF parameters */
 2030: 	BN_CTX	*bctx;		/* BIGNUM context */
 2031: 	EVP_MD_CTX ctx;		/* signature context */
 2032: 	tstamp_t tstamp;
 2033: 	u_int	len;
 2034: 
 2035: 	/*
 2036: 	 * The identity parameters must have correct format and content.
 2037: 	 */
 2038: 	if (peer->ident_pkey == NULL)
 2039: 		return (XEVNT_ID);
 2040: 
 2041: 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
 2042: 		msyslog(LOG_NOTICE, "crypto_alice: defective key");
 2043: 		return (XEVNT_PUB);
 2044: 	}
 2045: 
 2046: 	/*
 2047: 	 * Roll new random r (0 < r < q).
 2048: 	 */
 2049: 	if (peer->iffval != NULL)
 2050: 		BN_free(peer->iffval);
 2051: 	peer->iffval = BN_new();
 2052: 	len = BN_num_bytes(dsa->q);
 2053: 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
 2054: 	bctx = BN_CTX_new();
 2055: 	BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
 2056: 	BN_CTX_free(bctx);
 2057: 
 2058: 	/*
 2059: 	 * Sign and send to Bob. The filestamp is from the local file.
 2060: 	 */
 2061: 	memset(vp, 0, sizeof(struct value));
 2062: 	tstamp = crypto_time();
 2063: 	vp->tstamp = htonl(tstamp);
 2064: 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
 2065: 	vp->vallen = htonl(len);
 2066: 	vp->ptr = emalloc(len);
 2067: 	BN_bn2bin(peer->iffval, vp->ptr);
 2068: 	if (tstamp == 0)
 2069: 		return (XEVNT_OK);
 2070: 
 2071: 	vp->sig = emalloc(sign_siglen);
 2072: 	EVP_SignInit(&ctx, sign_digest);
 2073: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 2074: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 2075: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 2076: 		vp->siglen = htonl(sign_siglen);
 2077: 	return (XEVNT_OK);
 2078: }
 2079: 
 2080: 
 2081: /*
 2082:  * crypto_bob - construct Bob's response to Alice's challenge
 2083:  *
 2084:  * Returns
 2085:  * XEVNT_OK	success
 2086:  * XEVNT_ERR	protocol error
 2087:  * XEVNT_ID	bad or missing group key
 2088:  */
 2089: static int
 2090: crypto_bob(
 2091: 	struct exten *ep,	/* extension pointer */
 2092: 	struct value *vp	/* value pointer */
 2093: 	)
 2094: {
 2095: 	DSA	*dsa;		/* IFF parameters */
 2096: 	DSA_SIG	*sdsa;		/* DSA signature context fake */
 2097: 	BN_CTX	*bctx;		/* BIGNUM context */
 2098: 	EVP_MD_CTX ctx;		/* signature context */
 2099: 	tstamp_t tstamp;	/* NTP timestamp */
 2100: 	BIGNUM	*bn, *bk, *r;
 2101: 	u_char	*ptr;
 2102: 	u_int	len;
 2103: 
 2104: 	/*
 2105: 	 * If the IFF parameters are not valid, something awful
 2106: 	 * happened or we are being tormented.
 2107: 	 */
 2108: 	if (iffkey_info == NULL) {
 2109: 		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
 2110: 		return (XEVNT_ID);
 2111: 	}
 2112: 	dsa = iffkey_info->pkey->pkey.dsa;
 2113: 
 2114: 	/*
 2115: 	 * Extract r from the challenge.
 2116: 	 */
 2117: 	len = ntohl(ep->vallen);
 2118: 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
 2119: 		msyslog(LOG_ERR, "crypto_bob: %s",
 2120: 		    ERR_error_string(ERR_get_error(), NULL));
 2121: 		return (XEVNT_ERR);
 2122: 	}
 2123: 
 2124: 	/*
 2125: 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
 2126: 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
 2127: 	 */
 2128: 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
 2129: 	sdsa = DSA_SIG_new();
 2130: 	BN_rand(bk, len * 8, -1, 1);		/* k */
 2131: 	BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
 2132: 	BN_add(bn, bn, bk);
 2133: 	BN_mod(bn, bn, dsa->q, bctx);		/* k + b r mod q */
 2134: 	sdsa->r = BN_dup(bn);
 2135: 	BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
 2136: 	bighash(bk, bk);
 2137: 	sdsa->s = BN_dup(bk);
 2138: 	BN_CTX_free(bctx);
 2139: 	BN_free(r); BN_free(bn); BN_free(bk);
 2140: #ifdef DEBUG
 2141: 	if (debug > 1)
 2142: 		DSA_print_fp(stdout, dsa, 0);
 2143: #endif
 2144: 
 2145: 	/*
 2146: 	 * Encode the values in ASN.1 and sign. The filestamp is from
 2147: 	 * the local file.
 2148: 	 */
 2149: 	len = i2d_DSA_SIG(sdsa, NULL);
 2150: 	if (len == 0) {
 2151: 		msyslog(LOG_ERR, "crypto_bob: %s",
 2152: 		    ERR_error_string(ERR_get_error(), NULL));
 2153: 		DSA_SIG_free(sdsa);
 2154: 		return (XEVNT_ERR);
 2155: 	}
 2156: 	memset(vp, 0, sizeof(struct value));
 2157: 	tstamp = crypto_time();
 2158: 	vp->tstamp = htonl(tstamp);
 2159: 	vp->fstamp = htonl(iffkey_info->fstamp);
 2160: 	vp->vallen = htonl(len);
 2161: 	ptr = emalloc(len);
 2162: 	vp->ptr = ptr;
 2163: 	i2d_DSA_SIG(sdsa, &ptr);
 2164: 	DSA_SIG_free(sdsa);
 2165: 	if (tstamp == 0)
 2166: 		return (XEVNT_OK);
 2167: 
 2168: 	vp->sig = emalloc(sign_siglen);
 2169: 	EVP_SignInit(&ctx, sign_digest);
 2170: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 2171: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 2172: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 2173: 		vp->siglen = htonl(sign_siglen);
 2174: 	return (XEVNT_OK);
 2175: }
 2176: 
 2177: 
 2178: /*
 2179:  * crypto_iff - verify Bob's response to Alice's challenge
 2180:  *
 2181:  * Returns
 2182:  * XEVNT_OK	success
 2183:  * XEVNT_FSP	bad filestamp
 2184:  * XEVNT_ID	bad or missing group key
 2185:  * XEVNT_PUB	bad or missing public key
 2186:  */
 2187: int
 2188: crypto_iff(
 2189: 	struct exten *ep,	/* extension pointer */
 2190: 	struct peer *peer	/* peer structure pointer */
 2191: 	)
 2192: {
 2193: 	DSA	*dsa;		/* IFF parameters */
 2194: 	BN_CTX	*bctx;		/* BIGNUM context */
 2195: 	DSA_SIG	*sdsa;		/* DSA parameters */
 2196: 	BIGNUM	*bn, *bk;
 2197: 	u_int	len;
 2198: 	const u_char *ptr;
 2199: 	int	temp;
 2200: 
 2201: 	/*
 2202: 	 * If the IFF parameters are not valid or no challenge was sent,
 2203: 	 * something awful happened or we are being tormented.
 2204: 	 */
 2205: 	if (peer->ident_pkey == NULL) {
 2206: 		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
 2207: 		return (XEVNT_ID);
 2208: 	}
 2209: 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
 2210: 		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
 2211: 		    ntohl(ep->fstamp));
 2212: 		return (XEVNT_FSP);
 2213: 	}
 2214: 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
 2215: 		msyslog(LOG_NOTICE, "crypto_iff: defective key");
 2216: 		return (XEVNT_PUB);
 2217: 	}
 2218: 	if (peer->iffval == NULL) {
 2219: 		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
 2220: 		return (XEVNT_ID);
 2221: 	}
 2222: 
 2223: 	/*
 2224: 	 * Extract the k + b r and g^k values from the response.
 2225: 	 */
 2226: 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
 2227: 	len = ntohl(ep->vallen);
 2228: 	ptr = (u_char *)ep->pkt;
 2229: 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
 2230: 		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
 2231: 		msyslog(LOG_ERR, "crypto_iff: %s",
 2232: 		    ERR_error_string(ERR_get_error(), NULL));
 2233: 		return (XEVNT_ERR);
 2234: 	}
 2235: 
 2236: 	/*
 2237: 	 * Compute g^(k + b r) g^(q - b)r mod p.
 2238: 	 */
 2239: 	BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
 2240: 	BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
 2241: 	BN_mod_mul(bn, bn, bk, dsa->p, bctx);
 2242: 
 2243: 	/*
 2244: 	 * Verify the hash of the result matches hash(x).
 2245: 	 */
 2246: 	bighash(bn, bn);
 2247: 	temp = BN_cmp(bn, sdsa->s);
 2248: 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
 2249: 	BN_free(peer->iffval);
 2250: 	peer->iffval = NULL;
 2251: 	DSA_SIG_free(sdsa);
 2252: 	if (temp == 0)
 2253: 		return (XEVNT_OK);
 2254: 
 2255: 	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
 2256: 	return (XEVNT_ID);
 2257: }
 2258: 
 2259: 
 2260: /*
 2261:  ***********************************************************************
 2262:  *								       *
 2263:  * The following routines implement the Guillou-Quisquater (GQ)        *
 2264:  * identity scheme                                                     *
 2265:  *								       *
 2266:  ***********************************************************************
 2267:  *
 2268:  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
 2269:  * the certificate can be used to convey public parameters. The scheme
 2270:  * uses a X509v3 certificate extension field do convey the public key of
 2271:  * a private key known only to servers. There are two kinds of files:
 2272:  * encrypted server files that contain private and public values and
 2273:  * nonencrypted client files that contain only public values. New
 2274:  * generations of server files must be securely transmitted to all
 2275:  * servers of the group; client files can be distributed by any means.
 2276:  * The scheme is self contained and independent of new generations of
 2277:  * host keys and sign keys. The scheme is self contained and independent
 2278:  * of new generations of host keys and sign keys.
 2279:  *
 2280:  * The GQ parameters hide in a RSA cuckoo structure which uses the same
 2281:  * parameters. The values are used by an identity scheme based on RSA
 2282:  * cryptography and described in Stimson p. 300 (with errors). The 512-
 2283:  * bit public modulus is n = p q, where p and q are secret large primes.
 2284:  * The TA rolls private random group key b as RSA exponent. These values
 2285:  * are known to all group members.
 2286:  *
 2287:  * When rolling new certificates, a server recomputes the private and
 2288:  * public keys. The private key u is a random roll, while the public key
 2289:  * is the inverse obscured by the group key v = (u^-1)^b. These values
 2290:  * replace the private and public keys normally generated by the RSA
 2291:  * scheme. Alice challenges Bob to confirm identity using the protocol
 2292:  * described below.
 2293:  *
 2294:  * How it works
 2295:  *
 2296:  * The scheme goes like this. Both Alice and Bob have the same modulus n
 2297:  * and some random b as the group key. These values are computed and
 2298:  * distributed in advance via secret means, although only the group key
 2299:  * b is truly secret. Each has a private random private key u and public
 2300:  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
 2301:  * can regenerate the key pair from time to time without affecting
 2302:  * operations. The public key is conveyed on the certificate in an
 2303:  * extension field; the private key is never revealed.
 2304:  *
 2305:  * Alice rolls new random challenge r and sends to Bob in the GQ
 2306:  * request message. Bob rolls new random k, then computes y = k u^r mod
 2307:  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
 2308:  * message. Besides making the response shorter, the hash makes it
 2309:  * effectivey impossible for an intruder to solve for b by observing
 2310:  * a number of these messages.
 2311:  * 
 2312:  * Alice receives the response and computes y^b v^r mod n. After a bit
 2313:  * of algebra, this simplifies to k^b. If the hash of this result
 2314:  * matches hash(x), Alice knows that Bob has the group key b. The signed
 2315:  * response binds this knowledge to Bob's private key and the public key
 2316:  * previously received in his certificate.
 2317:  *
 2318:  * crypto_alice2 - construct Alice's challenge in GQ scheme
 2319:  *
 2320:  * Returns
 2321:  * XEVNT_OK	success
 2322:  * XEVNT_ID	bad or missing group key
 2323:  * XEVNT_PUB	bad or missing public key
 2324:  */
 2325: static int
 2326: crypto_alice2(
 2327: 	struct peer *peer,	/* peer pointer */
 2328: 	struct value *vp	/* value pointer */
 2329: 	)
 2330: {
 2331: 	RSA	*rsa;		/* GQ parameters */
 2332: 	BN_CTX	*bctx;		/* BIGNUM context */
 2333: 	EVP_MD_CTX ctx;		/* signature context */
 2334: 	tstamp_t tstamp;
 2335: 	u_int	len;
 2336: 
 2337: 	/*
 2338: 	 * The identity parameters must have correct format and content.
 2339: 	 */
 2340: 	if (peer->ident_pkey == NULL)
 2341: 		return (XEVNT_ID);
 2342: 
 2343: 	if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
 2344: 		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
 2345: 		return (XEVNT_PUB);
 2346: 	}
 2347: 
 2348: 	/*
 2349: 	 * Roll new random r (0 < r < n).
 2350: 	 */
 2351: 	if (peer->iffval != NULL)
 2352: 		BN_free(peer->iffval);
 2353: 	peer->iffval = BN_new();
 2354: 	len = BN_num_bytes(rsa->n);
 2355: 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
 2356: 	bctx = BN_CTX_new();
 2357: 	BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
 2358: 	BN_CTX_free(bctx);
 2359: 
 2360: 	/*
 2361: 	 * Sign and send to Bob. The filestamp is from the local file.
 2362: 	 */
 2363: 	memset(vp, 0, sizeof(struct value));
 2364: 	tstamp = crypto_time();
 2365: 	vp->tstamp = htonl(tstamp);
 2366: 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
 2367: 	vp->vallen = htonl(len);
 2368: 	vp->ptr = emalloc(len);
 2369: 	BN_bn2bin(peer->iffval, vp->ptr);
 2370: 	if (tstamp == 0)
 2371: 		return (XEVNT_OK);
 2372: 
 2373: 	vp->sig = emalloc(sign_siglen);
 2374: 	EVP_SignInit(&ctx, sign_digest);
 2375: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 2376: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 2377: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 2378: 		vp->siglen = htonl(sign_siglen);
 2379: 	return (XEVNT_OK);
 2380: }
 2381: 
 2382: 
 2383: /*
 2384:  * crypto_bob2 - construct Bob's response to Alice's challenge
 2385:  *
 2386:  * Returns
 2387:  * XEVNT_OK	success
 2388:  * XEVNT_ERR	protocol error
 2389:  * XEVNT_ID	bad or missing group key
 2390:  */
 2391: static int
 2392: crypto_bob2(
 2393: 	struct exten *ep,	/* extension pointer */
 2394: 	struct value *vp	/* value pointer */
 2395: 	)
 2396: {
 2397: 	RSA	*rsa;		/* GQ parameters */
 2398: 	DSA_SIG	*sdsa;		/* DSA parameters */
 2399: 	BN_CTX	*bctx;		/* BIGNUM context */
 2400: 	EVP_MD_CTX ctx;		/* signature context */
 2401: 	tstamp_t tstamp;	/* NTP timestamp */
 2402: 	BIGNUM	*r, *k, *g, *y;
 2403: 	u_char	*ptr;
 2404: 	u_int	len;
 2405: 
 2406: 	/*
 2407: 	 * If the GQ parameters are not valid, something awful
 2408: 	 * happened or we are being tormented.
 2409: 	 */
 2410: 	if (gqkey_info == NULL) {
 2411: 		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
 2412: 		return (XEVNT_ID);
 2413: 	}
 2414: 	rsa = gqkey_info->pkey->pkey.rsa;
 2415: 
 2416: 	/*
 2417: 	 * Extract r from the challenge.
 2418: 	 */
 2419: 	len = ntohl(ep->vallen);
 2420: 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
 2421: 		msyslog(LOG_ERR, "crypto_bob2: %s",
 2422: 		    ERR_error_string(ERR_get_error(), NULL));
 2423: 		return (XEVNT_ERR);
 2424: 	}
 2425: 
 2426: 	/*
 2427: 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
 2428: 	 * x = k^b mod n, then sends (y, hash(x)) to Alice. 
 2429: 	 */
 2430: 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
 2431: 	sdsa = DSA_SIG_new();
 2432: 	BN_rand(k, len * 8, -1, 1);		/* k */
 2433: 	BN_mod(k, k, rsa->n, bctx);
 2434: 	BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
 2435: 	BN_mod_mul(y, k, y, rsa->n, bctx);	/* k u^r mod n */
 2436: 	sdsa->r = BN_dup(y);
 2437: 	BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
 2438: 	bighash(g, g);
 2439: 	sdsa->s = BN_dup(g);
 2440: 	BN_CTX_free(bctx);
 2441: 	BN_free(r); BN_free(k); BN_free(g); BN_free(y);
 2442: #ifdef DEBUG
 2443: 	if (debug > 1)
 2444: 		RSA_print_fp(stdout, rsa, 0);
 2445: #endif
 2446:  
 2447: 	/*
 2448: 	 * Encode the values in ASN.1 and sign. The filestamp is from
 2449: 	 * the local file.
 2450: 	 */
 2451: 	len = i2d_DSA_SIG(sdsa, NULL);
 2452: 	if (len <= 0) {
 2453: 		msyslog(LOG_ERR, "crypto_bob2: %s",
 2454: 		    ERR_error_string(ERR_get_error(), NULL));
 2455: 		DSA_SIG_free(sdsa);
 2456: 		return (XEVNT_ERR);
 2457: 	}
 2458: 	memset(vp, 0, sizeof(struct value));
 2459: 	tstamp = crypto_time();
 2460: 	vp->tstamp = htonl(tstamp);
 2461: 	vp->fstamp = htonl(gqkey_info->fstamp);
 2462: 	vp->vallen = htonl(len);
 2463: 	ptr = emalloc(len);
 2464: 	vp->ptr = ptr;
 2465: 	i2d_DSA_SIG(sdsa, &ptr);
 2466: 	DSA_SIG_free(sdsa);
 2467: 	if (tstamp == 0)
 2468: 		return (XEVNT_OK);
 2469: 
 2470: 	vp->sig = emalloc(sign_siglen);
 2471: 	EVP_SignInit(&ctx, sign_digest);
 2472: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 2473: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 2474: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 2475: 		vp->siglen = htonl(sign_siglen);
 2476: 	return (XEVNT_OK);
 2477: }
 2478: 
 2479: 
 2480: /*
 2481:  * crypto_gq - verify Bob's response to Alice's challenge
 2482:  *
 2483:  * Returns
 2484:  * XEVNT_OK	success
 2485:  * XEVNT_ERR	protocol error
 2486:  * XEVNT_FSP	bad filestamp
 2487:  * XEVNT_ID	bad or missing group keys
 2488:  * XEVNT_PUB	bad or missing public key
 2489:  */
 2490: int
 2491: crypto_gq(
 2492: 	struct exten *ep,	/* extension pointer */
 2493: 	struct peer *peer	/* peer structure pointer */
 2494: 	)
 2495: {
 2496: 	RSA	*rsa;		/* GQ parameters */
 2497: 	BN_CTX	*bctx;		/* BIGNUM context */
 2498: 	DSA_SIG	*sdsa;		/* RSA signature context fake */
 2499: 	BIGNUM	*y, *v;
 2500: 	const u_char *ptr;
 2501: 	long	len;
 2502: 	u_int	temp;
 2503: 
 2504: 	/*
 2505: 	 * If the GQ parameters are not valid or no challenge was sent,
 2506: 	 * something awful happened or we are being tormented. Note that
 2507: 	 * the filestamp on the local key file can be greater than on
 2508: 	 * the remote parameter file if the keys have been refreshed.
 2509: 	 */
 2510: 	if (peer->ident_pkey == NULL) {
 2511: 		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
 2512: 		return (XEVNT_ID);
 2513: 	}
 2514: 	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
 2515: 		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
 2516: 		    ntohl(ep->fstamp));
 2517: 		return (XEVNT_FSP);
 2518: 	}
 2519: 	if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
 2520: 		msyslog(LOG_NOTICE, "crypto_gq: defective key");
 2521: 		return (XEVNT_PUB);
 2522: 	}
 2523: 	if (peer->iffval == NULL) {
 2524: 		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
 2525: 		return (XEVNT_ID);
 2526: 	}
 2527: 
 2528: 	/*
 2529: 	 * Extract the y = k u^r and hash(x = k^b) values from the
 2530: 	 * response.
 2531: 	 */
 2532: 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
 2533: 	len = ntohl(ep->vallen);
 2534: 	ptr = (u_char *)ep->pkt;
 2535: 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
 2536: 		BN_CTX_free(bctx); BN_free(y); BN_free(v);
 2537: 		msyslog(LOG_ERR, "crypto_gq: %s",
 2538: 		    ERR_error_string(ERR_get_error(), NULL));
 2539: 		return (XEVNT_ERR);
 2540: 	}
 2541: 
 2542: 	/*
 2543: 	 * Compute v^r y^b mod n.
 2544: 	 */
 2545: 	if (peer->grpkey == NULL) {
 2546: 		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
 2547: 		return (XEVNT_ID);
 2548: 	}
 2549: 	BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
 2550: 						/* v^r mod n */
 2551: 	BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
 2552: 	BN_mod_mul(y, v, y, rsa->n, bctx);	/* v^r y^b mod n */
 2553: 
 2554: 	/*
 2555: 	 * Verify the hash of the result matches hash(x).
 2556: 	 */
 2557: 	bighash(y, y);
 2558: 	temp = BN_cmp(y, sdsa->s);
 2559: 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
 2560: 	BN_free(peer->iffval);
 2561: 	peer->iffval = NULL;
 2562: 	DSA_SIG_free(sdsa);
 2563: 	if (temp == 0)
 2564: 		return (XEVNT_OK);
 2565: 
 2566: 	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
 2567: 	return (XEVNT_ID);
 2568: }
 2569: 
 2570: 
 2571: /*
 2572:  ***********************************************************************
 2573:  *								       *
 2574:  * The following routines implement the Mu-Varadharajan (MV) identity  *
 2575:  * scheme                                                              *
 2576:  *								       *
 2577:  ***********************************************************************
 2578:  *
 2579:  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
 2580:  * servers broadcast messages to clients, but clients never send
 2581:  * messages to servers. There is one encryption key for the server and a
 2582:  * separate decryption key for each client. It operated something like a
 2583:  * pay-per-view satellite broadcasting system where the session key is
 2584:  * encrypted by the broadcaster and the decryption keys are held in a
 2585:  * tamperproof set-top box.
 2586:  *
 2587:  * The MV parameters and private encryption key hide in a DSA cuckoo
 2588:  * structure which uses the same parameters, but generated in a
 2589:  * different way. The values are used in an encryption scheme similar to
 2590:  * El Gamal cryptography and a polynomial formed from the expansion of
 2591:  * product terms (x - x[j]), as described in Mu, Y., and V.
 2592:  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
 2593:  * 223-231. The paper has significant errors and serious omissions.
 2594:  *
 2595:  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
 2596:  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
 2597:  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
 2598:  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
 2599:  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
 2600:  * project into Zp* as exponents of g. Sometimes we have to compute an
 2601:  * inverse b^-1 of random b in Zq, but for that purpose we require
 2602:  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
 2603:  * relatively small, like 30. These are the parameters of the scheme and
 2604:  * they are expensive to compute.
 2605:  *
 2606:  * We set up an instance of the scheme as follows. A set of random
 2607:  * values x[j] mod q (j = 1...n), are generated as the zeros of a
 2608:  * polynomial of order n. The product terms (x - x[j]) are expanded to
 2609:  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
 2610:  * used as exponents of the generator g mod p to generate the private
 2611:  * encryption key A. The pair (gbar, ghat) of public server keys and the
 2612:  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
 2613:  * to construct the decryption keys. The devil is in the details.
 2614:  *
 2615:  * This routine generates a private server encryption file including the
 2616:  * private encryption key E and partial decryption keys gbar and ghat.
 2617:  * It then generates public client decryption files including the public
 2618:  * keys xbar[j] and xhat[j] for each client j. The partial decryption
 2619:  * files are used to compute the inverse of E. These values are suitably
 2620:  * blinded so secrets are not revealed.
 2621:  *
 2622:  * The distinguishing characteristic of this scheme is the capability to
 2623:  * revoke keys. Included in the calculation of E, gbar and ghat is the
 2624:  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
 2625:  * subsequently removed from the product and E, gbar and ghat
 2626:  * recomputed, the jth client will no longer be able to compute E^-1 and
 2627:  * thus unable to decrypt the messageblock.
 2628:  *
 2629:  * How it works
 2630:  *
 2631:  * The scheme goes like this. Bob has the server values (p, E, q, gbar,
 2632:  * ghat) and Alice has the client values (p, xbar, xhat).
 2633:  *
 2634:  * Alice rolls new random nonce r mod p and sends to Bob in the MV
 2635:  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
 2636:  * mod p and sends (y, gbar^k, ghat^k) to Alice.
 2637:  * 
 2638:  * Alice receives the response and computes the inverse (E^k)^-1 from
 2639:  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
 2640:  * decrypts y and verifies it matches the original r. The signed
 2641:  * response binds this knowledge to Bob's private key and the public key
 2642:  * previously received in his certificate.
 2643:  *
 2644:  * crypto_alice3 - construct Alice's challenge in MV scheme
 2645:  *
 2646:  * Returns
 2647:  * XEVNT_OK	success
 2648:  * XEVNT_ID	bad or missing group key
 2649:  * XEVNT_PUB	bad or missing public key
 2650:  */
 2651: static int
 2652: crypto_alice3(
 2653: 	struct peer *peer,	/* peer pointer */
 2654: 	struct value *vp	/* value pointer */
 2655: 	)
 2656: {
 2657: 	DSA	*dsa;		/* MV parameters */
 2658: 	BN_CTX	*bctx;		/* BIGNUM context */
 2659: 	EVP_MD_CTX ctx;		/* signature context */
 2660: 	tstamp_t tstamp;
 2661: 	u_int	len;
 2662: 
 2663: 	/*
 2664: 	 * The identity parameters must have correct format and content.
 2665: 	 */
 2666: 	if (peer->ident_pkey == NULL)
 2667: 		return (XEVNT_ID);
 2668: 
 2669: 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
 2670: 		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
 2671: 		return (XEVNT_PUB);
 2672: 	}
 2673: 
 2674: 	/*
 2675: 	 * Roll new random r (0 < r < q).
 2676: 	 */
 2677: 	if (peer->iffval != NULL)
 2678: 		BN_free(peer->iffval);
 2679: 	peer->iffval = BN_new();
 2680: 	len = BN_num_bytes(dsa->p);
 2681: 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
 2682: 	bctx = BN_CTX_new();
 2683: 	BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
 2684: 	BN_CTX_free(bctx);
 2685: 
 2686: 	/*
 2687: 	 * Sign and send to Bob. The filestamp is from the local file.
 2688: 	 */
 2689: 	memset(vp, 0, sizeof(struct value));
 2690: 	tstamp = crypto_time();
 2691: 	vp->tstamp = htonl(tstamp);
 2692: 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
 2693: 	vp->vallen = htonl(len);
 2694: 	vp->ptr = emalloc(len);
 2695: 	BN_bn2bin(peer->iffval, vp->ptr);
 2696: 	if (tstamp == 0)
 2697: 		return (XEVNT_OK);
 2698: 
 2699: 	vp->sig = emalloc(sign_siglen);
 2700: 	EVP_SignInit(&ctx, sign_digest);
 2701: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 2702: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 2703: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 2704: 		vp->siglen = htonl(sign_siglen);
 2705: 	return (XEVNT_OK);
 2706: }
 2707: 
 2708: 
 2709: /*
 2710:  * crypto_bob3 - construct Bob's response to Alice's challenge
 2711:  *
 2712:  * Returns
 2713:  * XEVNT_OK	success
 2714:  * XEVNT_ERR	protocol error
 2715:  */
 2716: static int
 2717: crypto_bob3(
 2718: 	struct exten *ep,	/* extension pointer */
 2719: 	struct value *vp	/* value pointer */
 2720: 	)
 2721: {
 2722: 	DSA	*dsa;		/* MV parameters */
 2723: 	DSA	*sdsa;		/* DSA signature context fake */
 2724: 	BN_CTX	*bctx;		/* BIGNUM context */
 2725: 	EVP_MD_CTX ctx;		/* signature context */
 2726: 	tstamp_t tstamp;	/* NTP timestamp */
 2727: 	BIGNUM	*r, *k, *u;
 2728: 	u_char	*ptr;
 2729: 	u_int	len;
 2730: 
 2731: 	/*
 2732: 	 * If the MV parameters are not valid, something awful
 2733: 	 * happened or we are being tormented.
 2734: 	 */
 2735: 	if (mvkey_info == NULL) {
 2736: 		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
 2737: 		return (XEVNT_ID);
 2738: 	}
 2739: 	dsa = mvkey_info->pkey->pkey.dsa;
 2740: 
 2741: 	/*
 2742: 	 * Extract r from the challenge.
 2743: 	 */
 2744: 	len = ntohl(ep->vallen);
 2745: 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
 2746: 		msyslog(LOG_ERR, "crypto_bob3: %s",
 2747: 		    ERR_error_string(ERR_get_error(), NULL));
 2748: 		return (XEVNT_ERR);
 2749: 	}
 2750: 
 2751: 	/*
 2752: 	 * Bob rolls random k (0 < k < q), making sure it is not a
 2753: 	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
 2754: 	 * and ghat^k) to Alice.
 2755: 	 */
 2756: 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
 2757: 	sdsa = DSA_new();
 2758: 	sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
 2759: 	while (1) {
 2760: 		BN_rand(k, BN_num_bits(dsa->q), 0, 0);
 2761: 		BN_mod(k, k, dsa->q, bctx);
 2762: 		BN_gcd(u, k, dsa->q, bctx);
 2763: 		if (BN_is_one(u))
 2764: 			break;
 2765: 	}
 2766: 	BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */
 2767: 	BN_mod_mul(sdsa->p, u, r, dsa->p, bctx);
 2768: 	BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
 2769: 	BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
 2770: 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
 2771: #ifdef DEBUG
 2772: 	if (debug > 1)
 2773: 		DSA_print_fp(stdout, sdsa, 0);
 2774: #endif
 2775: 
 2776: 	/*
 2777: 	 * Encode the values in ASN.1 and sign. The filestamp is from
 2778: 	 * the local file.
 2779: 	 */
 2780: 	memset(vp, 0, sizeof(struct value));
 2781: 	tstamp = crypto_time();
 2782: 	vp->tstamp = htonl(tstamp);
 2783: 	vp->fstamp = htonl(mvkey_info->fstamp);
 2784: 	len = i2d_DSAparams(sdsa, NULL);
 2785: 	if (len == 0) {
 2786: 		msyslog(LOG_ERR, "crypto_bob3: %s",
 2787: 		    ERR_error_string(ERR_get_error(), NULL));
 2788: 		DSA_free(sdsa);
 2789: 		return (XEVNT_ERR);
 2790: 	}
 2791: 	vp->vallen = htonl(len);
 2792: 	ptr = emalloc(len);
 2793: 	vp->ptr = ptr;
 2794: 	i2d_DSAparams(sdsa, &ptr);
 2795: 	DSA_free(sdsa);
 2796: 	if (tstamp == 0)
 2797: 		return (XEVNT_OK);
 2798: 
 2799: 	vp->sig = emalloc(sign_siglen);
 2800: 	EVP_SignInit(&ctx, sign_digest);
 2801: 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
 2802: 	EVP_SignUpdate(&ctx, vp->ptr, len);
 2803: 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 2804: 		vp->siglen = htonl(sign_siglen);
 2805: 	return (XEVNT_OK);
 2806: }
 2807: 
 2808: 
 2809: /*
 2810:  * crypto_mv - verify Bob's response to Alice's challenge
 2811:  *
 2812:  * Returns
 2813:  * XEVNT_OK	success
 2814:  * XEVNT_ERR	protocol error
 2815:  * XEVNT_FSP	bad filestamp
 2816:  * XEVNT_ID	bad or missing group key
 2817:  * XEVNT_PUB	bad or missing public key
 2818:  */
 2819: int
 2820: crypto_mv(
 2821: 	struct exten *ep,	/* extension pointer */
 2822: 	struct peer *peer	/* peer structure pointer */
 2823: 	)
 2824: {
 2825: 	DSA	*dsa;		/* MV parameters */
 2826: 	DSA	*sdsa;		/* DSA parameters */
 2827: 	BN_CTX	*bctx;		/* BIGNUM context */
 2828: 	BIGNUM	*k, *u, *v;
 2829: 	u_int	len;
 2830: 	const u_char *ptr;
 2831: 	int	temp;
 2832: 
 2833: 	/*
 2834: 	 * If the MV parameters are not valid or no challenge was sent,
 2835: 	 * something awful happened or we are being tormented.
 2836: 	 */
 2837: 	if (peer->ident_pkey == NULL) {
 2838: 		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
 2839: 		return (XEVNT_ID);
 2840: 	}
 2841: 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
 2842: 		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
 2843: 		    ntohl(ep->fstamp));
 2844: 		return (XEVNT_FSP);
 2845: 	}
 2846: 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
 2847: 		msyslog(LOG_NOTICE, "crypto_mv: defective key");
 2848: 		return (XEVNT_PUB);
 2849: 	}
 2850: 	if (peer->iffval == NULL) {
 2851: 		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
 2852: 		return (XEVNT_ID);
 2853: 	}
 2854: 
 2855: 	/*
 2856: 	 * Extract the y, gbar and ghat values from the response.
 2857: 	 */
 2858: 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
 2859: 	len = ntohl(ep->vallen);
 2860: 	ptr = (u_char *)ep->pkt;
 2861: 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
 2862: 		msyslog(LOG_ERR, "crypto_mv: %s",
 2863: 		    ERR_error_string(ERR_get_error(), NULL));
 2864: 		return (XEVNT_ERR);
 2865: 	}
 2866: 
 2867: 	/*
 2868: 	 * Compute (gbar^xhat ghat^xbar) mod p.
 2869: 	 */
 2870: 	BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
 2871: 	BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
 2872: 	BN_mod_mul(u, u, v, dsa->p, bctx);
 2873: 	BN_mod_mul(u, u, sdsa->p, dsa->p, bctx);
 2874: 
 2875: 	/*
 2876: 	 * The result should match r.
 2877: 	 */
 2878: 	temp = BN_cmp(u, peer->iffval);
 2879: 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
 2880: 	BN_free(peer->iffval);
 2881: 	peer->iffval = NULL;
 2882: 	DSA_free(sdsa);
 2883: 	if (temp == 0)
 2884: 		return (XEVNT_OK);
 2885: 
 2886: 	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
 2887: 	return (XEVNT_ID);
 2888: }
 2889: 
 2890: 
 2891: /*
 2892:  ***********************************************************************
 2893:  *								       *
 2894:  * The following routines are used to manipulate certificates          *
 2895:  *								       *
 2896:  ***********************************************************************
 2897:  */
 2898: /*
 2899:  * cert_sign - sign x509 certificate equest and update value structure.
 2900:  *
 2901:  * The certificate request includes a copy of the host certificate,
 2902:  * which includes the version number, subject name and public key of the
 2903:  * host. The resulting certificate includes these values plus the
 2904:  * serial number, issuer name and valid interval of the server. The
 2905:  * valid interval extends from the current time to the same time one
 2906:  * year hence. This may extend the life of the signed certificate beyond
 2907:  * that of the signer certificate.
 2908:  *
 2909:  * It is convenient to use the NTP seconds of the current time as the
 2910:  * serial number. In the value structure the timestamp is the current
 2911:  * time and the filestamp is taken from the extension field. Note this
 2912:  * routine is called only when the client clock is synchronized to a
 2913:  * proventic source, so timestamp comparisons are valid.
 2914:  *
 2915:  * The host certificate is valid from the time it was generated for a
 2916:  * period of one year. A signed certificate is valid from the time of
 2917:  * signature for a period of one year, but only the host certificate (or
 2918:  * sign certificate if used) is actually used to encrypt and decrypt
 2919:  * signatures. The signature trail is built from the client via the
 2920:  * intermediate servers to the trusted server. Each signature on the
 2921:  * trail must be valid at the time of signature, but it could happen
 2922:  * that a signer certificate expire before the signed certificate, which
 2923:  * remains valid until its expiration. 
 2924:  *
 2925:  * Returns
 2926:  * XEVNT_OK	success
 2927:  * XEVNT_CRT	bad or missing certificate
 2928:  * XEVNT_PER	host certificate expired
 2929:  * XEVNT_PUB	bad or missing public key
 2930:  * XEVNT_VFY	certificate not verified
 2931:  */
 2932: static int
 2933: cert_sign(
 2934: 	struct exten *ep,	/* extension field pointer */
 2935: 	struct value *vp	/* value pointer */
 2936: 	)
 2937: {
 2938: 	X509	*req;		/* X509 certificate request */
 2939: 	X509	*cert;		/* X509 certificate */
 2940: 	X509_EXTENSION *ext;	/* certificate extension */
 2941: 	ASN1_INTEGER *serial;	/* serial number */
 2942: 	X509_NAME *subj;	/* distinguished (common) name */
 2943: 	EVP_PKEY *pkey;		/* public key */
 2944: 	EVP_MD_CTX ctx;		/* message digest context */
 2945: 	tstamp_t tstamp;	/* NTP timestamp */
 2946: 	u_int	len;
 2947: 	u_char	*ptr;
 2948: 	int	i, temp;
 2949: 
 2950: 	/*
 2951: 	 * Decode ASN.1 objects and construct certificate structure.
 2952: 	 * Make sure the system clock is synchronized to a proventic
 2953: 	 * source.
 2954: 	 */
 2955: 	tstamp = crypto_time();
 2956: 	if (tstamp == 0)
 2957: 		return (XEVNT_TSP);
 2958: 
 2959: 	ptr = (u_char *)ep->pkt;
 2960: 	if ((req = d2i_X509(NULL, &ptr, ntohl(ep->vallen))) == NULL) {
 2961: 		msyslog(LOG_ERR, "cert_sign: %s",
 2962: 		    ERR_error_string(ERR_get_error(), NULL));
 2963: 		return (XEVNT_CRT);
 2964: 	}
 2965: 	/*
 2966: 	 * Extract public key and check for errors.
 2967: 	 */
 2968: 	if ((pkey = X509_get_pubkey(req)) == NULL) {
 2969: 		msyslog(LOG_ERR, "cert_sign: %s",
 2970: 		    ERR_error_string(ERR_get_error(), NULL));
 2971: 		X509_free(req);
 2972: 		return (XEVNT_PUB);
 2973: 	}
 2974: 
 2975: 	/*
 2976: 	 * Generate X509 certificate signed by this server. If this is a
 2977: 	 * trusted host, the issuer name is the group name; otherwise,
 2978: 	 * it is the host name. Also copy any extensions that might be
 2979: 	 * present.
 2980: 	 */
 2981: 	cert = X509_new();
 2982: 	X509_set_version(cert, X509_get_version(req));
 2983: 	serial = ASN1_INTEGER_new();
 2984: 	ASN1_INTEGER_set(serial, tstamp);
 2985: 	X509_set_serialNumber(cert, serial);
 2986: 	X509_gmtime_adj(X509_get_notBefore(cert), 0L);
 2987: 	X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
 2988: 	subj = X509_get_issuer_name(cert);
 2989: 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
 2990: 	    hostval.ptr, strlen(hostval.ptr), -1, 0);
 2991: 	subj = X509_get_subject_name(req);
 2992: 	X509_set_subject_name(cert, subj);
 2993: 	X509_set_pubkey(cert, pkey);
 2994: 	ext = X509_get_ext(req, 0);
 2995: 	temp = X509_get_ext_count(req);
 2996: 	for (i = 0; i < temp; i++) {
 2997: 		ext = X509_get_ext(req, i);
 2998: 		X509_add_ext(cert, ext, -1);
 2999: 	}
 3000: 	X509_free(req);
 3001: 
 3002: 	/*
 3003: 	 * Sign and verify the client certificate, but only if the host
 3004: 	 * certificate has not expired.
 3005: 	 */
 3006: 	if (tstamp < cert_host->first || tstamp > cert_host->last) {
 3007: 		X509_free(cert);
 3008: 		return (XEVNT_PER);
 3009: 	}
 3010: 	X509_sign(cert, sign_pkey, sign_digest);
 3011: 	if (X509_verify(cert, sign_pkey) <= 0) {
 3012: 		msyslog(LOG_ERR, "cert_sign: %s",
 3013: 		    ERR_error_string(ERR_get_error(), NULL));
 3014: 		X509_free(cert);
 3015: 		return (XEVNT_VFY);
 3016: 	}
 3017: 	len = i2d_X509(cert, NULL);
 3018: 
 3019: 	/*
 3020: 	 * Build and sign the value structure. We have to sign it here,
 3021: 	 * since the response has to be returned right away. This is a
 3022: 	 * clogging hazard.
 3023: 	 */
 3024: 	memset(vp, 0, sizeof(struct value));
 3025: 	vp->tstamp = htonl(tstamp);
 3026: 	vp->fstamp = ep->fstamp;
 3027: 	vp->vallen = htonl(len);
 3028: 	vp->ptr = emalloc(len);
 3029: 	ptr = vp->ptr;
 3030: 	i2d_X509(cert, &ptr);
 3031: 	vp->siglen = 0;
 3032: 	if (tstamp != 0) {
 3033: 		vp->sig = emalloc(sign_siglen);
 3034: 		EVP_SignInit(&ctx, sign_digest);
 3035: 		EVP_SignUpdate(&ctx, (u_char *)vp, 12);
 3036: 		EVP_SignUpdate(&ctx, vp->ptr, len);
 3037: 		if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
 3038: 			vp->siglen = htonl(sign_siglen);
 3039: 	}
 3040: #ifdef DEBUG
 3041: 	if (debug > 1)
 3042: 		X509_print_fp(stdout, cert);
 3043: #endif
 3044: 	X509_free(cert);
 3045: 	return (XEVNT_OK);
 3046: }
 3047: 
 3048: 
 3049: /*
 3050:  * cert_install - install certificate in certificate cache
 3051:  *
 3052:  * This routine encodes an extension field into a certificate info/value
 3053:  * structure. It searches the certificate list for duplicates and
 3054:  * expunges whichever is older. Finally, it inserts this certificate
 3055:  * first on the list.
 3056:  *
 3057:  * Returns certificate info pointer if valid, NULL if not.
 3058:  */
 3059: struct cert_info *
 3060: cert_install(
 3061: 	struct exten *ep,	/* cert info/value */
 3062: 	struct peer *peer	/* peer structure */
 3063: 	)
 3064: {
 3065: 	struct cert_info *cp, *xp, **zp;
 3066: 
 3067: 	/*
 3068: 	 * Parse and validate the signed certificate. If valid,
 3069: 	 * construct the info/value structure; otherwise, scamper home
 3070: 	 * empty handed.
 3071: 	 */
 3072: 	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
 3073: 	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
 3074: 		return (NULL);
 3075: 
 3076: 	/*
 3077: 	 * Scan certificate list looking for another certificate with
 3078: 	 * the same subject and issuer. If another is found with the
 3079: 	 * same or older filestamp, unlink it and return the goodies to
 3080: 	 * the heap. If another is found with a later filestamp, discard
 3081: 	 * the new one and leave the building with the old one.
 3082: 	 *
 3083: 	 * Make a note to study this issue again. An earlier certificate
 3084: 	 * with a long lifetime might be overtaken by a later
 3085: 	 * certificate with a short lifetime, thus invalidating the
 3086: 	 * earlier signature. However, we gotta find a way to leak old
 3087: 	 * stuff from the cache, so we do it anyway. 
 3088: 	 */
 3089: 	zp = &cinfo;
 3090: 	for (xp = cinfo; xp != NULL; xp = xp->link) {
 3091: 		if (strcmp(cp->subject, xp->subject) == 0 &&
 3092: 		    strcmp(cp->issuer, xp->issuer) == 0) {
 3093: 			if (ntohl(cp->cert.fstamp) <=
 3094: 			    ntohl(xp->cert.fstamp)) {
 3095: 				cert_free(cp);
 3096: 				cp = xp;
 3097: 			} else {
 3098: 				*zp = xp->link;
 3099: 				cert_free(xp);
 3100: 				xp = NULL;
 3101: 			}
 3102: 			break;
 3103: 		}
 3104: 		zp = &xp->link;
 3105: 	}
 3106: 	if (xp == NULL) {
 3107: 		cp->link = cinfo;
 3108: 		cinfo = cp;
 3109: 	}
 3110: 	cp->flags |= CERT_VALID;
 3111: 	crypto_update();
 3112: 	return (cp);
 3113: }
 3114: 
 3115: 
 3116: /*
 3117:  * cert_hike - verify the signature using the issuer public key
 3118:  *
 3119:  * Returns
 3120:  * XEVNT_OK	success
 3121:  * XEVNT_CRT	bad or missing certificate
 3122:  * XEVNT_PER	host certificate expired
 3123:  * XEVNT_VFY	certificate not verified
 3124:  */
 3125: int
 3126: cert_hike(
 3127: 	struct peer *peer,	/* peer structure pointer */
 3128: 	struct cert_info *yp	/* issuer certificate */
 3129: 	)
 3130: {
 3131: 	struct cert_info *xp;	/* subject certificate */
 3132: 	X509	*cert;		/* X509 certificate */
 3133: 	u_char	*ptr;
 3134: 
 3135: 	/*
 3136: 	 * Save the issuer on the new certificate, but remember the old
 3137: 	 * one.
 3138: 	 */
 3139: 	if (peer->issuer != NULL)
 3140: 		free(peer->issuer);
 3141: 	peer->issuer = emalloc(strlen(yp->issuer) + 1);
 3142: 	strcpy(peer->issuer, yp->issuer);
 3143: 	xp = peer->xinfo;
 3144: 	peer->xinfo = yp;
 3145: 
 3146: 	/*
 3147: 	 * If subject Y matches issuer Y, then the certificate trail is
 3148: 	 * complete. If Y is not trusted, the server certificate has yet
 3149: 	 * been signed, so keep trying. Otherwise, save the group key
 3150: 	 * and light the valid bit. If the host certificate is trusted,
 3151: 	 * do not execute a sign exchange. If no identity scheme is in
 3152: 	 * use, light the identity and proventic bits.
 3153: 	 */
 3154: 	if (strcmp(yp->subject, yp->issuer) == 0) {
 3155: 		if (!(yp->flags & CERT_TRUST))
 3156: 			return (XEVNT_OK);
 3157: 
 3158: 		peer->grpkey = yp->grpkey;
 3159: 		peer->crypto |= CRYPTO_FLAG_CERT;
 3160: 		if (!(peer->crypto & CRYPTO_FLAG_MASK))
 3161: 			peer->crypto |= CRYPTO_FLAG_VRFY |
 3162: 			    CRYPTO_FLAG_PROV;
 3163: 
 3164: 		/*
 3165: 		 * If the server has an an identity scheme, fetch the
 3166: 		 * identity credentials. If not, the identity is
 3167: 		 * verified only by the trusted certificate. The next
 3168: 		 * signature will set the server proventic.
 3169: 		 */
 3170: 		if (!(peer->crypto & CRYPTO_FLAG_MASK) ||
 3171: 		    sys_groupname == NULL)
 3172: 			peer->crypto |= CRYPTO_FLAG_VRFY;
 3173: 	}
 3174: 
 3175: 	/*
 3176: 	 * If X exists, verify signature X using public key Y.
 3177: 	 */
 3178: 	if (xp == NULL)
 3179: 		return (XEVNT_OK);
 3180: 
 3181: 	ptr = (u_char *)xp->cert.ptr;
 3182: 	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
 3183: 	if (cert == NULL) {
 3184: 		xp->flags |= CERT_ERROR;
 3185: 		return (XEVNT_CRT);
 3186: 	}
 3187: 	if (X509_verify(cert, yp->pkey) <= 0) {
 3188: 		X509_free(cert);
 3189: 		xp->flags |= CERT_ERROR;
 3190: 		return (XEVNT_VFY);
 3191: 	}
 3192: 	X509_free(cert);
 3193: 
 3194: 	/*
 3195: 	 * Signature X is valid only if it begins during the
 3196: 	 * lifetime of Y. 
 3197: 	 */
 3198: 	if (xp->first < yp->first || xp->first > yp->last) {
 3199: 		xp->flags |= CERT_ERROR;
 3200: 		return (XEVNT_PER);
 3201: 	}
 3202: 	xp->flags |= CERT_SIGN;
 3203: 	return (XEVNT_OK);
 3204: }
 3205: 
 3206: 
 3207: /*
 3208:  * cert_parse - parse x509 certificate and create info/value structures.
 3209:  *
 3210:  * The server certificate includes the version number, issuer name,
 3211:  * subject name, public key and valid date interval. If the issuer name
 3212:  * is the same as the subject name, the certificate is self signed and
 3213:  * valid only if the server is configured as trustable. If the names are
 3214:  * different, another issuer has signed the server certificate and
 3215:  * vouched for it. In this case the server certificate is valid if
 3216:  * verified by the issuer public key.
 3217:  *
 3218:  * Returns certificate info/value pointer if valid, NULL if not.
 3219:  */
 3220: struct cert_info *		/* certificate information structure */
 3221: cert_parse(
 3222: 	u_char	*asn1cert,	/* X509 certificate */
 3223: 	long	len,		/* certificate length */
 3224: 	tstamp_t fstamp		/* filestamp */
 3225: 	)
 3226: {
 3227: 	X509	*cert;		/* X509 certificate */
 3228: 	X509_EXTENSION *ext;	/* X509v3 extension */
 3229: 	struct cert_info *ret;	/* certificate info/value */
 3230: 	BIO	*bp;
 3231: 	char	pathbuf[MAXFILENAME];
 3232: 	u_char	*ptr;
 3233: 	int	temp, cnt, i;
 3234: 
 3235: 	/*
 3236: 	 * Decode ASN.1 objects and construct certificate structure.
 3237: 	 */
 3238: 	ptr = asn1cert;
 3239: 	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
 3240: 		msyslog(LOG_ERR, "cert_parse: %s",
 3241: 		    ERR_error_string(ERR_get_error(), NULL));
 3242: 		return (NULL);
 3243: 	}
 3244: #ifdef DEBUG
 3245: 	if (debug > 1)
 3246: 		X509_print_fp(stdout, cert);
 3247: #endif
 3248: 
 3249: 	/*
 3250: 	 * Extract version, subject name and public key.
 3251: 	 */
 3252: 	ret = emalloc(sizeof(struct cert_info));
 3253: 	memset(ret, 0, sizeof(struct cert_info));
 3254: 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
 3255: 		msyslog(LOG_ERR, "cert_parse: %s",
 3256: 		    ERR_error_string(ERR_get_error(), NULL));
 3257: 		cert_free(ret);
 3258: 		X509_free(cert);
 3259: 		return (NULL);
 3260: 	}
 3261: 	ret->version = X509_get_version(cert);
 3262: 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
 3263: 	    MAXFILENAME);
 3264: 	ptr = strstr(pathbuf, "CN=");
 3265: 	if (ptr == NULL) {
 3266: 		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
 3267: 		    pathbuf);
 3268: 		cert_free(ret);
 3269: 		X509_free(cert);
 3270: 		return (NULL);
 3271: 	}
 3272: 	ret->subject = estrdup(ptr + 3);
 3273: 
 3274: 	/*
 3275: 	 * Extract remaining objects. Note that the NTP serial number is
 3276: 	 * the NTP seconds at the time of signing, but this might not be
 3277: 	 * the case for other authority. We don't bother to check the
 3278: 	 * objects at this time, since the real crunch can happen only
 3279: 	 * when the time is valid but not yet certificated.
 3280: 	 */
 3281: 	ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
 3282: 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
 3283: 	ret->serial =
 3284: 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
 3285: 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
 3286: 	    MAXFILENAME);
 3287: 	if ((ptr = strstr(pathbuf, "CN=")) == NULL) {
 3288: 		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
 3289: 		    pathbuf);
 3290: 		cert_free(ret);
 3291: 		X509_free(cert);
 3292: 		return (NULL);
 3293: 	}
 3294: 	ret->issuer = estrdup(ptr + 3);
 3295: 	ret->first = asn2ntp(X509_get_notBefore(cert));
 3296: 	ret->last = asn2ntp(X509_get_notAfter(cert));
 3297: 
 3298: 	/*
 3299: 	 * Extract extension fields. These are ad hoc ripoffs of
 3300: 	 * currently assigned functions and will certainly be changed
 3301: 	 * before prime time.
 3302: 	 */
 3303: 	cnt = X509_get_ext_count(cert);
 3304: 	for (i = 0; i < cnt; i++) {
 3305: 		ext = X509_get_ext(cert, i);
 3306: 		temp = OBJ_obj2nid(ext->object);
 3307: 		switch (temp) {
 3308: 
 3309: 		/*
 3310: 		 * If a key_usage field is present, we decode whether
 3311: 		 * this is a trusted or private certificate. This is
 3312: 		 * dorky; all we want is to compare NIDs, but OpenSSL
 3313: 		 * insists on BIO text strings.
 3314: 		 */
 3315: 		case NID_ext_key_usage:
 3316: 			bp = BIO_new(BIO_s_mem());
 3317: 			X509V3_EXT_print(bp, ext, 0, 0);
 3318: 			BIO_gets(bp, pathbuf, MAXFILENAME);
 3319: 			BIO_free(bp);
 3320: 			if (strcmp(pathbuf, "Trust Root") == 0)
 3321: 				ret->flags |= CERT_TRUST;
 3322: 			else if (strcmp(pathbuf, "Private") == 0)
 3323: 				ret->flags |= CERT_PRIV;
 3324: #if DEBUG
 3325: 			if (debug)
 3326: 				printf("cert_parse: %s: %s\n",
 3327: 				    OBJ_nid2ln(temp), pathbuf);
 3328: #endif
 3329: 			break;
 3330: 
 3331: 		/*
 3332: 		 * If a NID_subject_key_identifier field is present, it
 3333: 		 * contains the GQ public key.
 3334: 		 */
 3335: 		case NID_subject_key_identifier:
 3336: 			ret->grpkey = BN_bin2bn(&ext->value->data[2],
 3337: 			    ext->value->length - 2, NULL);
 3338: 			/* fall through */
 3339: #if DEBUG
 3340: 		default:
 3341: 			if (debug)
 3342: 				printf("cert_parse: %s\n",
 3343: 				    OBJ_nid2ln(temp));
 3344: #endif
 3345: 		}
 3346: 	}
 3347: 	if (strcmp(ret->subject, ret->issuer) == 0) {
 3348: 
 3349: 		/*
 3350: 		 * If certificate is self signed, verify signature.
 3351: 		 */
 3352: 		if (X509_verify(cert, ret->pkey) <= 0) {
 3353: 			msyslog(LOG_NOTICE,
 3354: 			    "cert_parse: signature not verified %s",
 3355: 			    ret->subject);
 3356: 			cert_free(ret);
 3357: 			X509_free(cert);
 3358: 			return (NULL);
 3359: 		}
 3360: 	} else {
 3361: 
 3362: 		/*
 3363: 		 * Check for a certificate loop.
 3364: 		 */
 3365: 		if (strcmp(hostval.ptr, ret->issuer) == 0) {
 3366: 			msyslog(LOG_NOTICE,
 3367: 			    "cert_parse: certificate trail loop %s",
 3368: 			    ret->subject);
 3369: 			cert_free(ret);
 3370: 			X509_free(cert);
 3371: 			return (NULL);
 3372: 		}
 3373: 	}
 3374: 
 3375: 	/*
 3376: 	 * Verify certificate valid times. Note that certificates cannot
 3377: 	 * be retroactive.
 3378: 	 */
 3379: 	if (ret->first > ret->last || ret->first < fstamp) {
 3380: 		msyslog(LOG_NOTICE,
 3381: 		    "cert_parse: invalid times %s first %u last %u fstamp %u",
 3382: 		    ret->subject, ret->first, ret->last, fstamp);
 3383: 		cert_free(ret);
 3384: 		X509_free(cert);
 3385: 		return (NULL);
 3386: 	}
 3387: 
 3388: 	/*
 3389: 	 * Build the value structure to sign and send later.
 3390: 	 */
 3391: 	ret->cert.fstamp = htonl(fstamp);
 3392: 	ret->cert.vallen = htonl(len);
 3393: 	ret->cert.ptr = emalloc(len);
 3394: 	memcpy(ret->cert.ptr, asn1cert, len);
 3395: 	X509_free(cert);
 3396: 	return (ret);
 3397: }
 3398: 
 3399: 
 3400: /*
 3401:  * cert_free - free certificate information structure
 3402:  */
 3403: void
 3404: cert_free(
 3405: 	struct cert_info *cinf	/* certificate info/value structure */ 
 3406: 	)
 3407: {
 3408: 	if (cinf->pkey != NULL)
 3409: 		EVP_PKEY_free(cinf->pkey);
 3410: 	if (cinf->subject != NULL)
 3411: 		free(cinf->subject);
 3412: 	if (cinf->issuer != NULL)
 3413: 		free(cinf->issuer);
 3414: 	if (cinf->grpkey != NULL)
 3415: 		BN_free(cinf->grpkey);
 3416: 	value_free(&cinf->cert);
 3417: 	free(cinf);
 3418: }
 3419: 
 3420: 
 3421: /*
 3422:  * crypto_key - load cryptographic parameters and keys
 3423:  *
 3424:  * This routine searches the key cache for matching name in the form
 3425:  * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
 3426:  * and <name> is the host/group name. If not found, it tries to load a
 3427:  * PEM-encoded file of the same name and extracts the filestamp from
 3428:  * the first line of the file name. It returns the key pointer if valid,
 3429:  * NULL if not.
 3430:  */
 3431: static struct pkey_info *
 3432: crypto_key(
 3433: 	char	*cp,		/* file name */
 3434: 	char	*passwd1,	/* password */
 3435: 	sockaddr_u *addr 	/* IP address */
 3436: 	)
 3437: {
 3438: 	FILE	*str;		/* file handle */
 3439: 	struct pkey_info *pkp;	/* generic key */
 3440: 	EVP_PKEY *pkey = NULL;	/* public/private key */
 3441: 	tstamp_t fstamp;
 3442: 	char	filename[MAXFILENAME]; /* name of key file */
 3443: 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
 3444: 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
 3445: 	char	*ptr;
 3446: 
 3447: 	/*
 3448: 	 * Search the key cache for matching key and name.
 3449: 	 */
 3450: 	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
 3451: 		if (strcmp(cp, pkp->name) == 0)
 3452: 			return (pkp);
 3453: 	}  
 3454: 
 3455: 	/*
 3456: 	 * Open the key file. If the first character of the file name is
 3457: 	 * not '/', prepend the keys directory string. If something goes
 3458: 	 * wrong, abandon ship.
 3459: 	 */
 3460: 	if (*cp == '/')
 3461: 		strcpy(filename, cp);
 3462: 	else
 3463: 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
 3464: 	str = fopen(filename, "r");
 3465: 	if (str == NULL)
 3466: 		return (NULL);
 3467: 
 3468: 	/*
 3469: 	 * Read the filestamp, which is contained in the first line.
 3470: 	 */
 3471: 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
 3472: 		msyslog(LOG_ERR, "crypto_key: empty file %s",
 3473: 		    filename);
 3474: 		fclose(str);
 3475: 		return (NULL);
 3476: 	}
 3477: 	if ((ptr = strrchr(ptr, '.')) == NULL) {
 3478: 		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
 3479: 		    filename);
 3480: 		fclose(str);
 3481: 		return (NULL);
 3482: 	}
 3483: 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
 3484: 		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
 3485: 		    filename);
 3486: 		fclose(str);
 3487: 		return (NULL);
 3488: 	}
 3489: 
 3490: 	/*
 3491: 	 * Read and decrypt PEM-encoded private key. If it fails to
 3492: 	 * decrypt, game over.
 3493: 	 */
 3494: 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
 3495: 	fclose(str);
 3496: 	if (pkey == NULL) {
 3497: 		msyslog(LOG_ERR, "crypto_key: %s",
 3498: 		    ERR_error_string(ERR_get_error(), NULL));
 3499: 		exit (-1);
 3500: 	}
 3501: 
 3502: 	/*
 3503: 	 * Make a new entry in the key cache.
 3504: 	 */
 3505: 	pkp = emalloc(sizeof(struct pkey_info));
 3506: 	pkp->link = pkinfo;
 3507: 	pkinfo = pkp;
 3508: 	pkp->pkey = pkey;
 3509: 	pkp->name = emalloc(strlen(cp) + 1);
 3510: 	pkp->fstamp = fstamp;
 3511: 	strcpy(pkp->name, cp);
 3512: 
 3513: 	/*
 3514: 	 * Leave tracks in the cryptostats.
 3515: 	 */
 3516: 	if ((ptr = strrchr(linkname, '\n')) != NULL)
 3517: 		*ptr = '\0'; 
 3518: 	snprintf(statstr, NTP_MAXSTRLEN, "%s mod %d", &linkname[2],
 3519: 	    EVP_PKEY_size(pkey) * 8);
 3520: 	record_crypto_stats(addr, statstr);
 3521: #ifdef DEBUG
 3522: 	if (debug)
 3523: 		printf("crypto_key: %s\n", statstr);
 3524: 	if (debug > 1) {
 3525: 		if (pkey->type == EVP_PKEY_DSA)
 3526: 			DSA_print_fp(stdout, pkey->pkey.dsa, 0);
 3527: 		else if (pkey->type == EVP_PKEY_RSA)
 3528: 			RSA_print_fp(stdout, pkey->pkey.rsa, 0);
 3529: 	}
 3530: #endif
 3531: 	return (pkp);
 3532: }
 3533: 
 3534: 
 3535: /*
 3536:  ***********************************************************************
 3537:  *								       *
 3538:  * The following routines are used only at initialization time         *
 3539:  *								       *
 3540:  ***********************************************************************
 3541:  */
 3542: /*
 3543:  * crypto_cert - load certificate from file
 3544:  *
 3545:  * This routine loads an X.509 RSA or DSA certificate from a file and
 3546:  * constructs a info/cert value structure for this machine. The
 3547:  * structure includes a filestamp extracted from the file name. Later
 3548:  * the certificate can be sent to another machine on request.
 3549:  *
 3550:  * Returns certificate info/value pointer if valid, NULL if not.
 3551:  */
 3552: static struct cert_info *	/* certificate information */
 3553: crypto_cert(
 3554: 	char	*cp		/* file name */
 3555: 	)
 3556: {
 3557: 	struct cert_info *ret; /* certificate information */
 3558: 	FILE	*str;		/* file handle */
 3559: 	char	filename[MAXFILENAME]; /* name of certificate file */
 3560: 	char	linkname[MAXFILENAME]; /* filestamp buffer */
 3561: 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
 3562: 	tstamp_t fstamp;	/* filestamp */
 3563: 	long	len;
 3564: 	char	*ptr;
 3565: 	char	*name, *header;
 3566: 	u_char	*data;
 3567: 
 3568: 	/*
 3569: 	 * Open the certificate file. If the first character of the file
 3570: 	 * name is not '/', prepend the keys directory string. If
 3571: 	 * something goes wrong, abandon ship.
 3572: 	 */
 3573: 	if (*cp == '/')
 3574: 		strcpy(filename, cp);
 3575: 	else
 3576: 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
 3577: 	str = fopen(filename, "r");
 3578: 	if (str == NULL)
 3579: 		return (NULL);
 3580: 
 3581: 	/*
 3582: 	 * Read the filestamp, which is contained in the first line.
 3583: 	 */
 3584: 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
 3585: 		msyslog(LOG_ERR, "crypto_cert: empty file %s",
 3586: 		    filename);
 3587: 		fclose(str);
 3588: 		return (NULL);
 3589: 	}
 3590: 	if ((ptr = strrchr(ptr, '.')) == NULL) {
 3591: 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s\n",
 3592: 		    filename);
 3593: 		fclose(str);
 3594: 		return (NULL);
 3595: 	}
 3596: 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
 3597: 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s\n",
 3598: 		    filename);
 3599: 		fclose(str);
 3600: 		return (NULL);
 3601: 	}
 3602: 
 3603: 	/*
 3604: 	 * Read PEM-encoded certificate and install.
 3605: 	 */
 3606: 	if (!PEM_read(str, &name, &header, &data, &len)) {
 3607: 		msyslog(LOG_ERR, "crypto_cert: %s\n",
 3608: 		    ERR_error_string(ERR_get_error(), NULL));
 3609: 		fclose(str);
 3610: 		return (NULL);
 3611: 	}
 3612: 	fclose(str);
 3613: 	free(header);
 3614: 	if (strcmp(name, "CERTIFICATE") != 0) {
 3615: 		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
 3616: 		    name);
 3617: 		free(name);
 3618: 		free(data);
 3619: 		return (NULL);
 3620: 	}
 3621: 	free(name);
 3622: 
 3623: 	/*
 3624: 	 * Parse certificate and generate info/value structure. The
 3625: 	 * pointer and copy nonsense is due something broken in Solaris.
 3626: 	 */
 3627: 	ret = cert_parse(data, len, fstamp);
 3628: 	free(data);
 3629: 	if (ret == NULL)
 3630: 		return (NULL);
 3631: 
 3632: 	if ((ptr = strrchr(linkname, '\n')) != NULL)
 3633: 		*ptr = '\0'; 
 3634: 	snprintf(statstr, NTP_MAXSTRLEN, "%s 0x%x len %lu",
 3635: 	    &linkname[2], ret->flags, len);
 3636: 	record_crypto_stats(NULL, statstr);
 3637: #ifdef DEBUG
 3638: 	if (debug)
 3639: 		printf("crypto_cert: %s\n", statstr);
 3640: #endif
 3641: 	return (ret);
 3642: }
 3643: 
 3644: 
 3645: /*
 3646:  * crypto_setup - load keys, certificate and identity parameters
 3647:  *
 3648:  * This routine loads the public/private host key and certificate. If
 3649:  * available, it loads the public/private sign key, which defaults to
 3650:  * the host key. The host key must be RSA, but the sign key can be
 3651:  * either RSA or DSA. If a trusted certificate, it loads the identity
 3652:  * parameters. In either case, the public key on the certificate must
 3653:  * agree with the sign key.
 3654:  *
 3655:  * Required but missing files and inconsistent data and errors are
 3656:  * fatal. Allowing configuration to continue would be hazardous and
 3657:  * require really messy error checks.
 3658:  */
 3659: void
 3660: crypto_setup(void)
 3661: {
 3662: 	struct pkey_info *pinfo; /* private/public key */
 3663: 	char	filename[MAXFILENAME]; /* file name buffer */
 3664: 	char *	randfile;
 3665: 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
 3666: 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
 3667: 	u_int	len;
 3668: 	int	bytes;
 3669: 	u_char	*ptr;
 3670: 
 3671: 	/*
 3672: 	 * Check for correct OpenSSL version and avoid initialization in
 3673: 	 * the case of multiple crypto commands.
 3674: 	 */
 3675: 	if (crypto_flags & CRYPTO_FLAG_ENAB) {
 3676: 		msyslog(LOG_NOTICE,
 3677: 		    "crypto_setup: spurious crypto command");
 3678: 		return;
 3679: 	}
 3680: 	ssl_check_version();
 3681: 
 3682: 	/*
 3683: 	 * Load required random seed file and seed the random number
 3684: 	 * generator. Be default, it is found as .rnd in the user home
 3685: 	 * directory. The root home directory may be / or /root,
 3686: 	 * depending on the system. Wiggle the contents a bit and write
 3687: 	 * it back so the sequence does not repeat when we next restart.
 3688: 	 */
 3689: 	if (!RAND_status()) {
 3690: 		if (rand_file == NULL) {
 3691: 			RAND_file_name(filename, sizeof(filename));
 3692: 			randfile = filename;
 3693: 		} else if (*rand_file != '/') {
 3694: 			snprintf(filename, sizeof(filename), "%s/%s",
 3695: 			    keysdir, rand_file);
 3696: 			randfile = filename;
 3697: 		} else
 3698: 			randfile = rand_file;
 3699: 
 3700: 		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
 3701: 			msyslog(LOG_ERR,
 3702: 			    "crypto_setup: random seed file %s missing",
 3703: 			    randfile);
 3704: 			exit (-1);
 3705: 		}
 3706: 		get_systime(&seed);
 3707: 		RAND_seed(&seed, sizeof(l_fp));
 3708: 		RAND_write_file(randfile);
 3709: #ifdef DEBUG
 3710: 		if (debug)
 3711: 			printf(
 3712: 			    "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
 3713: 			    SSLeay(), randfile, bytes);
 3714: #endif
 3715: 	}
 3716: 
 3717: 	/*
 3718: 	 * Initialize structures.
 3719: 	 */
 3720: 	if (sys_hostname == NULL) {
 3721: 		gethostname(filename, MAXFILENAME);
 3722: 		sys_hostname = emalloc(strlen(filename) + 1);
 3723: 		strcpy(sys_hostname, filename);
 3724: 	}
 3725: 	if (passwd == NULL)
 3726: 		passwd = sys_hostname;
 3727: 	memset(&hostval, 0, sizeof(hostval));
 3728: 	memset(&pubkey, 0, sizeof(pubkey));
 3729: 	memset(&tai_leap, 0, sizeof(tai_leap));
 3730: 
 3731: 	/*
 3732: 	 * Load required host key from file "ntpkey_host_<hostname>". If
 3733: 	 * no host key file is not found or has invalid password, life
 3734: 	 * as we know it ends. The host key also becomes the default
 3735: 	 * sign key. 
 3736: 	 */
 3737: 	snprintf(filename, MAXFILENAME, "ntpkey_host_%s", sys_hostname);
 3738: 	pinfo = crypto_key(filename, passwd, NULL);
 3739: 	if (pinfo == NULL) {
 3740: 		msyslog(LOG_ERR,
 3741: 		    "crypto_setup: host key file %s not found or corrupt",
 3742: 		    filename);
 3743: 		exit (-1);
 3744: 	}
 3745: 	if (pinfo->pkey->type != EVP_PKEY_RSA) {
 3746: 		msyslog(LOG_ERR,
 3747: 		    "crypto_setup: host key is not RSA key type");
 3748: 		exit (-1);
 3749: 	}
 3750: 	host_pkey = pinfo->pkey;
 3751: 	sign_pkey = host_pkey;
 3752: 	hostval.fstamp = htonl(pinfo->fstamp);
 3753: 	
 3754: 	/*
 3755: 	 * Construct public key extension field for agreement scheme.
 3756: 	 */
 3757: 	len = i2d_PublicKey(host_pkey, NULL);
 3758: 	ptr = emalloc(len);
 3759: 	pubkey.ptr = ptr;
 3760: 	i2d_PublicKey(host_pkey, &ptr);
 3761: 	pubkey.fstamp = hostval.fstamp;
 3762: 	pubkey.vallen = htonl(len);
 3763: 
 3764: 	/*
 3765: 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
 3766: 	 * available, it becomes the sign key.
 3767: 	 */
 3768: 	snprintf(filename, MAXFILENAME, "ntpkey_sign_%s", sys_hostname);
 3769: 	pinfo = crypto_key(filename, passwd, NULL); if (pinfo != NULL)
 3770: 	 	sign_pkey = pinfo->pkey;
 3771: 
 3772: 	/*
 3773: 	 * Load required certificate from file "ntpkey_cert_<hostname>".
 3774: 	 */
 3775: 	snprintf(filename, MAXFILENAME, "ntpkey_cert_%s", sys_hostname);
 3776: 	cinfo = crypto_cert(filename);
 3777: 	if (cinfo == NULL) {
 3778: 		msyslog(LOG_ERR,
 3779: 		    "crypto_setup: certificate file %s not found or corrupt",
 3780: 		    filename);
 3781: 		exit (-1);
 3782: 	}
 3783: 	cert_host = cinfo;
 3784: 	sign_digest = cinfo->digest;
 3785: 	sign_siglen = EVP_PKEY_size(sign_pkey);
 3786: 	if (cinfo->flags & CERT_PRIV)
 3787: 		crypto_flags |= CRYPTO_FLAG_PRIV;
 3788: 
 3789: 	/*
 3790: 	 * The certificate must be self-signed.
 3791: 	 */
 3792: 	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
 3793: 		msyslog(LOG_ERR,
 3794: 		    "crypto_setup: certificate %s is not self-signed",
 3795: 		    filename);
 3796: 		exit (-1);
 3797: 	}
 3798: 	hostval.vallen = htonl(strlen(cinfo->subject));
 3799: 	hostval.ptr = cinfo->subject;
 3800: 
 3801: 	/*
 3802: 	 * If trusted certificate, the subject name must match the group
 3803: 	 * name.
 3804: 	 */
 3805: 	if (cinfo->flags & CERT_TRUST) {
 3806: 		if (sys_groupname == NULL) {
 3807: 			sys_groupname = hostval.ptr;
 3808: 		} else if (strcmp(hostval.ptr, sys_groupname) != 0) {
 3809: 			msyslog(LOG_ERR,
 3810: 			    "crypto_setup: trusted certificate name %s does not match group name %s",
 3811: 			    hostval.ptr, sys_groupname);
 3812: 			exit (-1);
 3813: 		}
 3814: 	}
 3815: 	if (sys_groupname != NULL) {
 3816: 
 3817: 		/*
 3818: 		 * Load optional IFF parameters from file
 3819: 		 * "ntpkey_iffkey_<groupname>".
 3820: 		 */
 3821: 		snprintf(filename, MAXFILENAME, "ntpkey_iffkey_%s",
 3822: 		    sys_groupname);
 3823: 		iffkey_info = crypto_key(filename, passwd, NULL);
 3824: 		if (iffkey_info != NULL)
 3825: 			crypto_flags |= CRYPTO_FLAG_IFF;
 3826: 
 3827: 		/*
 3828: 		 * Load optional GQ parameters from file
 3829: 		 * "ntpkey_gqkey_<groupname>".
 3830: 		 */
 3831: 		snprintf(filename, MAXFILENAME, "ntpkey_gqkey_%s",
 3832: 		    sys_groupname);
 3833: 		gqkey_info = crypto_key(filename, passwd, NULL);
 3834: 		if (gqkey_info != NULL)
 3835: 			crypto_flags |= CRYPTO_FLAG_GQ;
 3836: 
 3837: 		/*
 3838: 		 * Load optional MV parameters from file
 3839: 		 * "ntpkey_mvkey_<groupname>".
 3840: 		 */
 3841: 		snprintf(filename, MAXFILENAME, "ntpkey_mvkey_%s",
 3842: 		    sys_groupname);
 3843: 		mvkey_info = crypto_key(filename, passwd, NULL);
 3844: 		if (mvkey_info != NULL)
 3845: 			crypto_flags |= CRYPTO_FLAG_MV;
 3846: 	}
 3847: 
 3848: 	/*
 3849: 	 * We met the enemy and he is us. Now strike up the dance.
 3850: 	 */
 3851: 	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
 3852: 	snprintf(statstr, NTP_MAXSTRLEN,
 3853: 	    "setup 0x%x host %s %s", crypto_flags, sys_hostname,
 3854: 	    OBJ_nid2ln(cinfo->nid));
 3855: 	record_crypto_stats(NULL, statstr);
 3856: #ifdef DEBUG
 3857: 	if (debug)
 3858: 		printf("crypto_setup: %s\n", statstr);
 3859: #endif
 3860: }
 3861: 
 3862: 
 3863: /*
 3864:  * crypto_config - configure data from the crypto command.
 3865:  */
 3866: void
 3867: crypto_config(
 3868: 	int	item,		/* configuration item */
 3869: 	char	*cp		/* item name */
 3870: 	)
 3871: {
 3872: 	int	nid;
 3873: 
 3874: #ifdef DEBUG
 3875: 	if (debug > 1)
 3876: 		printf("crypto_config: item %d %s\n", item, cp);
 3877: #endif
 3878: 	switch (item) {
 3879: 
 3880: 	/*
 3881: 	 * Set host name (host).
 3882: 	 */
 3883: 	case CRYPTO_CONF_PRIV:
 3884: 		sys_hostname = emalloc(strlen(cp) + 1);
 3885: 		strcpy(sys_hostname, cp);
 3886: 		break;
 3887: 
 3888: 	/*
 3889: 	 * Set group name (ident).
 3890: 	 */
 3891: 	case CRYPTO_CONF_IDENT:
 3892: 		sys_groupname = emalloc(strlen(cp) + 1);
 3893: 		strcpy(sys_groupname, cp);
 3894: 		break;
 3895: 
 3896: 	/*
 3897: 	 * Set private key password (pw).
 3898: 	 */
 3899: 	case CRYPTO_CONF_PW:
 3900: 		passwd = emalloc(strlen(cp) + 1);
 3901: 		strcpy(passwd, cp);
 3902: 		break;
 3903: 
 3904: 	/*
 3905: 	 * Set random seed file name (randfile).
 3906: 	 */
 3907: 	case CRYPTO_CONF_RAND:
 3908: 		rand_file = emalloc(strlen(cp) + 1);
 3909: 		strcpy(rand_file, cp);
 3910: 		break;
 3911: 
 3912: 	/*
 3913: 	 * Set message digest NID.
 3914: 	 */
 3915: 	case CRYPTO_CONF_NID:
 3916: 		nid = OBJ_sn2nid(cp);
 3917: 		if (nid == 0)
 3918: 			msyslog(LOG_ERR,
 3919: 			    "crypto_config: invalid digest name %s", cp);
 3920: 		else
 3921: 			crypto_nid = nid;
 3922: 		break;
 3923: 	}
 3924: }
 3925: # else
 3926: int ntp_crypto_bs_pubkey;
 3927: # endif /* OPENSSL */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>