File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / ntp / ntpd / refclock_chu.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue May 29 12:08:38 2012 UTC (12 years, 2 months ago) by misho
Branches: ntp, MAIN
CVS tags: v4_2_6p5p0, v4_2_6p5, HEAD
ntp 4.2.6p5

    1: /*
    2:  * refclock_chu - clock driver for Canadian CHU time/frequency station
    3:  */
    4: #ifdef HAVE_CONFIG_H
    5: #include <config.h>
    6: #endif
    7: 
    8: #if defined(REFCLOCK) && defined(CLOCK_CHU)
    9: 
   10: #include "ntpd.h"
   11: #include "ntp_io.h"
   12: #include "ntp_refclock.h"
   13: #include "ntp_calendar.h"
   14: #include "ntp_stdlib.h"
   15: 
   16: #include <stdio.h>
   17: #include <ctype.h>
   18: #include <math.h>
   19: 
   20: #ifdef HAVE_AUDIO
   21: #include "audio.h"
   22: #endif /* HAVE_AUDIO */
   23: 
   24: #define ICOM 	1		/* undefine to suppress ICOM code */
   25: 
   26: #ifdef ICOM
   27: #include "icom.h"
   28: #endif /* ICOM */
   29: /*
   30:  * Audio CHU demodulator/decoder
   31:  *
   32:  * This driver synchronizes the computer time using data encoded in
   33:  * radio transmissions from Canadian time/frequency station CHU in
   34:  * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
   35:  * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
   36:  * ordinary shortwave receiver can be tuned manually to one of these
   37:  * frequencies or, in the case of ICOM receivers, the receiver can be
   38:  * tuned automatically as propagation conditions change throughout the
   39:  * day and season.
   40:  *
   41:  * The driver requires an audio codec or sound card with sampling rate 8
   42:  * kHz and mu-law companding. This is the same standard as used by the
   43:  * telephone industry and is supported by most hardware and operating
   44:  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
   45:  * implementation, only one audio driver and codec can be supported on a
   46:  * single machine.
   47:  *
   48:  * The driver can be compiled to use a Bell 103 compatible modem or
   49:  * modem chip to receive the radio signal and demodulate the data.
   50:  * Alternatively, the driver can be compiled to use the audio codec of
   51:  * the workstation or another with compatible audio drivers. In the
   52:  * latter case, the driver implements the modem using DSP routines, so
   53:  * the radio can be connected directly to either the microphone on line
   54:  * input port. In either case, the driver decodes the data using a
   55:  * maximum-likelihood technique which exploits the considerable degree
   56:  * of redundancy available to maximize accuracy and minimize errors.
   57:  *
   58:  * The CHU time broadcast includes an audio signal compatible with the
   59:  * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
   60:  * consists of nine, ten-character bursts transmitted at 300 bps between
   61:  * seconds 31 and 39 of each minute. Each character consists of eight
   62:  * data bits plus one start bit and two stop bits to encode two hex
   63:  * digits. The burst data consist of five characters (ten hex digits)
   64:  * followed by a repeat of these characters. In format A, the characters
   65:  * are repeated in the same polarity; in format B, the characters are
   66:  * repeated in the opposite polarity.
   67:  *
   68:  * Format A bursts are sent at seconds 32 through 39 of the minute in
   69:  * hex digits (nibble swapped)
   70:  *
   71:  *	6dddhhmmss6dddhhmmss
   72:  *
   73:  * The first ten digits encode a frame marker (6) followed by the day
   74:  * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
   75:  * format A bursts are sent during the third decade of seconds the tens
   76:  * digit of ss is always 3. The driver uses this to determine correct
   77:  * burst synchronization. These digits are then repeated with the same
   78:  * polarity.
   79:  *
   80:  * Format B bursts are sent at second 31 of the minute in hex digits
   81:  *
   82:  *	xdyyyyttaaxdyyyyttaa
   83:  *
   84:  * The first ten digits encode a code (x described below) followed by
   85:  * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
   86:  * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
   87:  * digits are then repeated with inverted polarity.
   88:  *
   89:  * The x is coded
   90:  *
   91:  * 1 Sign of DUT (0 = +)
   92:  * 2 Leap second warning. One second will be added.
   93:  * 4 Leap second warning. One second will be subtracted.
   94:  * 8 Even parity bit for this nibble.
   95:  *
   96:  * By design, the last stop bit of the last character in the burst
   97:  * coincides with 0.5 second. Since characters have 11 bits and are
   98:  * transmitted at 300 bps, the last stop bit of the first character
   99:  * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
  100:  * UART, character interrupts can vary somewhere between the end of bit
  101:  * 9 and end of bit 11. These eccentricities can be corrected along with
  102:  * the radio propagation delay using fudge time 1.
  103:  *
  104:  * Debugging aids
  105:  *
  106:  * The timecode format used for debugging and data recording includes
  107:  * data helpful in diagnosing problems with the radio signal and serial
  108:  * connections. With debugging enabled (-d on the ntpd command line),
  109:  * the driver produces one line for each burst in two formats
  110:  * corresponding to format A and B.Each line begins with the format code
  111:  * chuA or chuB followed by the status code and signal level (0-9999).
  112:  * The remainder of the line is as follows.
  113:  *
  114:  * Following is format A:
  115:  *
  116:  *	n b f s m code
  117:  *
  118:  * where n is the number of characters in the burst (0-10), b the burst
  119:  * distance (0-40), f the field alignment (-1, 0, 1), s the
  120:  * synchronization distance (0-16), m the burst number (2-9) and code
  121:  * the burst characters as received. Note that the hex digits in each
  122:  * character are reversed, so the burst
  123:  *
  124:  *	10 38 0 16 9 06851292930685129293
  125:  *
  126:  * is interpreted as containing 10 characters with burst distance 38,
  127:  * field alignment 0, synchronization distance 16 and burst number 9.
  128:  * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
  129:  * second 39.
  130:  *
  131:  * Following is format B:
  132:  * 
  133:  *	n b s code
  134:  *
  135:  * where n is the number of characters in the burst (0-10), b the burst
  136:  * distance (0-40), s the synchronization distance (0-40) and code the
  137:  * burst characters as received. Note that the hex digits in each
  138:  * character are reversed and the last ten digits inverted, so the burst
  139:  *
  140:  *	10 40 1091891300ef6e76ec
  141:  *
  142:  * is interpreted as containing 10 characters with burst distance 40.
  143:  * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
  144:  * - UTC 31 seconds.
  145:  *
  146:  * Each line is preceeded by the code chuA or chuB, as appropriate. If
  147:  * the audio driver is compiled, the current gain (0-255) and relative
  148:  * signal level (0-9999) follow the code. The receiver volume control
  149:  * should be set so that the gain is somewhere near the middle of the
  150:  * range 0-255, which results in a signal level near 1000.
  151:  *
  152:  * In addition to the above, the reference timecode is updated and
  153:  * written to the clockstats file and debug score after the last burst
  154:  * received in the minute. The format is
  155:  *
  156:  *	sq yyyy ddd hh:mm:ss l s dd t agc ident m b      
  157:  *
  158:  * s	'?' before first synchronized and ' ' after that
  159:  * q	status code (see below)
  160:  * yyyy	year
  161:  * ddd	day of year
  162:  * hh:mm:ss time of day
  163:  * l	leap second indicator (space, L or D)
  164:  * dst	Canadian daylight code (opaque)
  165:  * t	number of minutes since last synchronized
  166:  * agc	audio gain (0 - 255)
  167:  * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
  168:  * m	signal metric (0 - 100)
  169:  * b	number of timecodes for the previous minute (0 - 59)
  170:  *
  171:  * Fudge factors
  172:  *
  173:  * For accuracies better than the low millisceconds, fudge time1 can be
  174:  * set to the radio propagation delay from CHU to the receiver. This can
  175:  * be done conviently using the minimuf program.
  176:  *
  177:  * Fudge flag4 causes the dubugging output described above to be
  178:  * recorded in the clockstats file. When the audio driver is compiled,
  179:  * fudge flag2 selects the audio input port, where 0 is the mike port
  180:  * (default) and 1 is the line-in port. It does not seem useful to
  181:  * select the compact disc player port. Fudge flag3 enables audio
  182:  * monitoring of the input signal. For this purpose, the monitor gain is
  183:  * set to a default value.
  184:  *
  185:  * The audio codec code is normally compiled in the driver if the
  186:  * architecture supports it (HAVE_AUDIO defined), but is used only if
  187:  * the link /dev/chu_audio is defined and valid. The serial port code is
  188:  * always compiled in the driver, but is used only if the autdio codec
  189:  * is not available and the link /dev/chu%d is defined and valid.
  190:  *
  191:  * The ICOM code is normally compiled in the driver if selected (ICOM
  192:  * defined), but is used only if the link /dev/icom%d is defined and
  193:  * valid and the mode keyword on the server configuration command
  194:  * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
  195:  * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
  196:  * if one. The C-IV trace is turned on if the debug level is greater
  197:  * than one.
  198:  *
  199:  * Alarm codes
  200:  *
  201:  * CEVNT_BADTIME	invalid date or time
  202:  * CEVNT_PROP		propagation failure - no stations heard
  203:  */
  204: /*
  205:  * Interface definitions
  206:  */
  207: #define	SPEED232	B300	/* uart speed (300 baud) */
  208: #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
  209: #define	REFID		"CHU"	/* reference ID */
  210: #define	DEVICE		"/dev/chu%d" /* device name and unit */
  211: #define	SPEED232	B300	/* UART speed (300 baud) */
  212: #ifdef ICOM
  213: #define TUNE		.001	/* offset for narrow filter (MHz) */
  214: #define DWELL		5	/* minutes in a dwell */
  215: #define NCHAN		3	/* number of channels */
  216: #define ISTAGE		3	/* number of integrator stages */
  217: #endif /* ICOM */
  218: 
  219: #ifdef HAVE_AUDIO
  220: /*
  221:  * Audio demodulator definitions
  222:  */
  223: #define SECOND		8000	/* nominal sample rate (Hz) */
  224: #define BAUD		300	/* modulation rate (bps) */
  225: #define OFFSET		128	/* companded sample offset */
  226: #define SIZE		256	/* decompanding table size */
  227: #define	MAXAMP		6000.	/* maximum signal level */
  228: #define	MAXCLP		100	/* max clips above reference per s */
  229: #define	SPAN		800.	/* min envelope span */
  230: #define LIMIT		1000.	/* soft limiter threshold */
  231: #define AGAIN		6.	/* baseband gain */
  232: #define LAG		10	/* discriminator lag */
  233: #define	DEVICE_AUDIO	"/dev/audio" /* device name */
  234: #define	DESCRIPTION	"CHU Audio/Modem Receiver" /* WRU */
  235: #define	AUDIO_BUFSIZ	240	/* audio buffer size (30 ms) */
  236: #else
  237: #define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
  238: #endif /* HAVE_AUDIO */
  239: 
  240: /*
  241:  * Decoder definitions
  242:  */
  243: #define CHAR		(11. / 300.) /* character time (s) */
  244: #define BURST		11	/* max characters per burst */
  245: #define MINCHAR		9	/* min characters per burst */
  246: #define MINDIST		28	/* min burst distance (of 40)  */
  247: #define MINSYNC		8	/* min sync distance (of 16) */
  248: #define MINSTAMP	20	/* min timestamps (of 60) */
  249: #define MINMETRIC	50	/* min channel metric (of 160) */
  250: 
  251: /*
  252:  * The on-time synchronization point for the driver is the last stop bit
  253:  * of the first character 170 ms. The modem delay is 0.8 ms, while the
  254:  * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
  255:  * ms due to the codec and other causes was determined by calibrating to
  256:  * a PPS signal from a GPS receiver. The additional propagation delay
  257:  * specific to each receiver location can be programmed in the fudge
  258:  * time1. 
  259:  *
  260:  * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
  261:  * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
  262:  * offsets vary up to 0.3 ms due to ionospheric layer height variations.
  263:  * The processor load due to the driver is 0.4 percent.
  264:  */
  265: #define	PDELAY	((170 + .8 + 4.7 + 1.3) / 1000)	/* system delay (s) */
  266: 
  267: /*
  268:  * Status bits (status)
  269:  */
  270: #define RUNT		0x0001	/* runt burst */
  271: #define NOISE		0x0002	/* noise burst */
  272: #define BFRAME		0x0004	/* invalid format B frame sync */
  273: #define BFORMAT		0x0008	/* invalid format B data */
  274: #define AFRAME		0x0010	/* invalid format A frame sync */
  275: #define AFORMAT		0x0020	/* invalid format A data */
  276: #define DECODE		0x0040	/* invalid data decode */
  277: #define STAMP		0x0080	/* too few timestamps */
  278: #define AVALID		0x0100	/* valid A frame */
  279: #define BVALID		0x0200	/* valid B frame */
  280: #define INSYNC		0x0400	/* clock synchronized */
  281: #define	METRIC		0x0800	/* one or more stations heard */
  282: 
  283: /*
  284:  * Alarm status bits (alarm)
  285:  *
  286:  * These alarms are set at the end of a minute in which at least one
  287:  * burst was received. SYNERR is raised if the AFRAME or BFRAME status
  288:  * bits are set during the minute, FMTERR is raised if the AFORMAT or
  289:  * BFORMAT status bits are set, DECERR is raised if the DECODE status
  290:  * bit is set and TSPERR is raised if the STAMP status bit is set.
  291:  */
  292: #define SYNERR		0x01	/* frame sync error */
  293: #define FMTERR		0x02	/* data format error */
  294: #define DECERR		0x04	/* data decoding error */
  295: #define TSPERR		0x08	/* insufficient data */
  296: 
  297: #ifdef HAVE_AUDIO
  298: /*
  299:  * Maximum-likelihood UART structure. There are eight of these
  300:  * corresponding to the number of phases.
  301:  */ 
  302: struct surv {
  303: 	l_fp	cstamp;		/* last bit timestamp */
  304: 	double	shift[12];	/* sample shift register */
  305: 	double	span;		/* shift register envelope span */
  306: 	double	dist;		/* sample distance */
  307: 	int	uart;		/* decoded character */
  308: };
  309: #endif /* HAVE_AUDIO */
  310: 
  311: #ifdef ICOM
  312: /*
  313:  * CHU station structure. There are three of these corresponding to the
  314:  * three frequencies.
  315:  */
  316: struct xmtr {
  317: 	double	integ[ISTAGE];	/* circular integrator */
  318: 	double	metric;		/* integrator sum */
  319: 	int	iptr;		/* integrator pointer */
  320: 	int	probe;		/* dwells since last probe */
  321: };
  322: #endif /* ICOM */
  323: 
  324: /*
  325:  * CHU unit control structure
  326:  */
  327: struct chuunit {
  328: 	u_char	decode[20][16];	/* maximum-likelihood decoding matrix */
  329: 	l_fp	cstamp[BURST];	/* character timestamps */
  330: 	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
  331: 	l_fp	timestamp;	/* current buffer timestamp */
  332: 	l_fp	laststamp;	/* last buffer timestamp */
  333: 	l_fp	charstamp;	/* character time as a l_fp */
  334: 	int	second;		/* counts the seconds of the minute */
  335: 	int	errflg;		/* error flags */
  336: 	int	status;		/* status bits */
  337: 	char	ident[5];	/* station ID and channel */
  338: #ifdef ICOM
  339: 	int	fd_icom;	/* ICOM file descriptor */
  340: 	int	chan;		/* radio channel */
  341: 	int	dwell;		/* dwell cycle */
  342: 	struct xmtr xmtr[NCHAN]; /* station metric */
  343: #endif /* ICOM */
  344: 
  345: 	/*
  346: 	 * Character burst variables
  347: 	 */
  348: 	int	cbuf[BURST];	/* character buffer */
  349: 	int	ntstamp;	/* number of timestamp samples */
  350: 	int	ndx;		/* buffer start index */
  351: 	int	prevsec;	/* previous burst second */
  352: 	int	burdist;	/* burst distance */
  353: 	int	syndist;	/* sync distance */
  354: 	int	burstcnt;	/* format A bursts this minute */
  355: 	double	maxsignal;	/* signal level (modem only) */
  356: 	int	gain;		/* codec gain (modem only) */
  357: 
  358: 	/*
  359: 	 * Format particulars
  360: 	 */
  361: 	int	leap;		/* leap/dut code */
  362: 	int	dut;		/* UTC1 correction */
  363: 	int	tai;		/* TAI - UTC correction */
  364: 	int	dst;		/* Canadian DST code */
  365: 
  366: #ifdef HAVE_AUDIO
  367: 	/*
  368: 	 * Audio codec variables
  369: 	 */
  370: 	int	fd_audio;	/* audio port file descriptor */
  371: 	double	comp[SIZE];	/* decompanding table */
  372: 	int	port;		/* codec port */
  373: 	int	mongain;	/* codec monitor gain */
  374: 	int	clipcnt;	/* sample clip count */
  375: 	int	seccnt;		/* second interval counter */
  376: 
  377: 	/*
  378: 	 * Modem variables
  379: 	 */
  380: 	l_fp	tick;		/* audio sample increment */
  381: 	double	bpf[9];		/* IIR bandpass filter */
  382: 	double	disc[LAG];	/* discriminator shift register */
  383: 	double	lpf[27];	/* FIR lowpass filter */
  384: 	double	monitor;	/* audio monitor */
  385: 	int	discptr;	/* discriminator pointer */
  386: 
  387: 	/*
  388: 	 * Maximum-likelihood UART variables
  389: 	 */
  390: 	double	baud;		/* baud interval */
  391: 	struct surv surv[8];	/* UART survivor structures */
  392: 	int	decptr;		/* decode pointer */
  393: 	int	decpha;		/* decode phase */
  394: 	int	dbrk;		/* holdoff counter */
  395: #endif /* HAVE_AUDIO */
  396: };
  397: 
  398: /*
  399:  * Function prototypes
  400:  */
  401: static	int	chu_start	(int, struct peer *);
  402: static	void	chu_shutdown	(int, struct peer *);
  403: static	void	chu_receive	(struct recvbuf *);
  404: static	void	chu_second	(int, struct peer *);
  405: static	void	chu_poll	(int, struct peer *);
  406: 
  407: /*
  408:  * More function prototypes
  409:  */
  410: static	void	chu_decode	(struct peer *, int, l_fp);
  411: static	void	chu_burst	(struct peer *);
  412: static	void	chu_clear	(struct peer *);
  413: static	void	chu_a		(struct peer *, int);
  414: static	void	chu_b		(struct peer *, int);
  415: static	int	chu_dist	(int, int);
  416: static	double	chu_major	(struct peer *);
  417: #ifdef HAVE_AUDIO
  418: static	void	chu_uart	(struct surv *, double);
  419: static	void	chu_rf		(struct peer *, double);
  420: static	void	chu_gain	(struct peer *);
  421: static	void	chu_audio_receive (struct recvbuf *rbufp);
  422: #endif /* HAVE_AUDIO */
  423: #ifdef ICOM
  424: static	int	chu_newchan	(struct peer *, double);
  425: #endif /* ICOM */
  426: static	void	chu_serial_receive (struct recvbuf *rbufp);
  427: 
  428: /*
  429:  * Global variables
  430:  */
  431: static char hexchar[] = "0123456789abcdef_*=";
  432: 
  433: #ifdef ICOM
  434: /*
  435:  * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
  436:  * transmits on USB with carrier so we can use AM and the narrow SSB
  437:  * filter.
  438:  */
  439: static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
  440: #endif /* ICOM */
  441: 
  442: /*
  443:  * Transfer vector
  444:  */
  445: struct	refclock refclock_chu = {
  446: 	chu_start,		/* start up driver */
  447: 	chu_shutdown,		/* shut down driver */
  448: 	chu_poll,		/* transmit poll message */
  449: 	noentry,		/* not used (old chu_control) */
  450: 	noentry,		/* initialize driver (not used) */
  451: 	noentry,		/* not used (old chu_buginfo) */
  452: 	chu_second		/* housekeeping timer */
  453: };
  454: 
  455: 
  456: /*
  457:  * chu_start - open the devices and initialize data for processing
  458:  */
  459: static int
  460: chu_start(
  461: 	int	unit,		/* instance number (not used) */
  462: 	struct peer *peer	/* peer structure pointer */
  463: 	)
  464: {
  465: 	struct chuunit *up;
  466: 	struct refclockproc *pp;
  467: 	char device[20];	/* device name */
  468: 	int	fd;		/* file descriptor */
  469: #ifdef ICOM
  470: 	int	temp;
  471: #endif /* ICOM */
  472: #ifdef HAVE_AUDIO
  473: 	int	fd_audio;	/* audio port file descriptor */
  474: 	int	i;		/* index */
  475: 	double	step;		/* codec adjustment */
  476: 
  477: 	/*
  478: 	 * Open audio device. Don't complain if not there.
  479: 	 */
  480: 	fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
  481: #ifdef DEBUG
  482: 	if (fd_audio > 0 && debug)
  483: 		audio_show();
  484: #endif
  485: 
  486: 	/*
  487: 	 * If audio is unavailable, Open serial port in raw mode.
  488: 	 */
  489: 	if (fd_audio > 0) {
  490: 		fd = fd_audio;
  491: 	} else {
  492: 		snprintf(device, sizeof(device), DEVICE, unit);
  493: 		fd = refclock_open(device, SPEED232, LDISC_RAW);
  494: 	}
  495: #else /* HAVE_AUDIO */
  496: 
  497: 	/*
  498: 	 * Open serial port in raw mode.
  499: 	 */
  500: 	snprintf(device, sizeof(device), DEVICE, unit);
  501: 	fd = refclock_open(device, SPEED232, LDISC_RAW);
  502: #endif /* HAVE_AUDIO */
  503: 	if (fd <= 0)
  504: 		return (0);
  505: 
  506: 	/*
  507: 	 * Allocate and initialize unit structure
  508: 	 */
  509: 	up = emalloc(sizeof(*up));
  510: 	memset(up, 0, sizeof(*up));
  511: 	pp = peer->procptr;
  512: 	pp->unitptr = (caddr_t)up;
  513: 	pp->io.clock_recv = chu_receive;
  514: 	pp->io.srcclock = (caddr_t)peer;
  515: 	pp->io.datalen = 0;
  516: 	pp->io.fd = fd;
  517: 	if (!io_addclock(&pp->io)) {
  518: 		close(fd);
  519: 		pp->io.fd = -1;
  520: 		free(up);
  521: 		pp->unitptr = NULL;
  522: 		return (0);
  523: 	}
  524: 
  525: 	/*
  526: 	 * Initialize miscellaneous variables
  527: 	 */
  528: 	peer->precision = PRECISION;
  529: 	pp->clockdesc = DESCRIPTION;
  530: 	strcpy(up->ident, "CHU");
  531: 	memcpy(&pp->refid, up->ident, 4); 
  532: 	DTOLFP(CHAR, &up->charstamp);
  533: #ifdef HAVE_AUDIO
  534: 
  535: 	/*
  536: 	 * The companded samples are encoded sign-magnitude. The table
  537: 	 * contains all the 256 values in the interest of speed. We do
  538: 	 * this even if the audio codec is not available. C'est la lazy.
  539: 	 */
  540: 	up->fd_audio = fd_audio;
  541: 	up->gain = 127;
  542: 	up->comp[0] = up->comp[OFFSET] = 0.;
  543: 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
  544: 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
  545: 	step = 2.;
  546: 	for (i = 3; i < OFFSET; i++) {
  547: 		up->comp[i] = up->comp[i - 1] + step;
  548: 		up->comp[OFFSET + i] = -up->comp[i];
  549:                 if (i % 16 == 0)
  550:                 	step *= 2.;
  551: 	}
  552: 	DTOLFP(1. / SECOND, &up->tick);
  553: #endif /* HAVE_AUDIO */
  554: #ifdef ICOM
  555: 	temp = 0;
  556: #ifdef DEBUG
  557: 	if (debug > 1)
  558: 		temp = P_TRACE;
  559: #endif
  560: 	if (peer->ttl > 0) {
  561: 		if (peer->ttl & 0x80)
  562: 			up->fd_icom = icom_init("/dev/icom", B1200,
  563: 			    temp);
  564: 		else
  565: 			up->fd_icom = icom_init("/dev/icom", B9600,
  566: 			    temp);
  567: 	}
  568: 	if (up->fd_icom > 0) {
  569: 		if (chu_newchan(peer, 0) != 0) {
  570: 			msyslog(LOG_NOTICE, "icom: radio not found");
  571: 			close(up->fd_icom);
  572: 			up->fd_icom = 0;
  573: 		} else {
  574: 			msyslog(LOG_NOTICE, "icom: autotune enabled");
  575: 		}
  576: 	}
  577: #endif /* ICOM */
  578: 	return (1);
  579: }
  580: 
  581: 
  582: /*
  583:  * chu_shutdown - shut down the clock
  584:  */
  585: static void
  586: chu_shutdown(
  587: 	int	unit,		/* instance number (not used) */
  588: 	struct peer *peer	/* peer structure pointer */
  589: 	)
  590: {
  591: 	struct chuunit *up;
  592: 	struct refclockproc *pp;
  593: 
  594: 	pp = peer->procptr;
  595: 	up = (struct chuunit *)pp->unitptr;
  596: 	if (up == NULL)
  597: 		return;
  598: 
  599: 	io_closeclock(&pp->io);
  600: #ifdef ICOM
  601: 	if (up->fd_icom > 0)
  602: 		close(up->fd_icom);
  603: #endif /* ICOM */
  604: 	free(up);
  605: }
  606: 
  607: 
  608: /*
  609:  * chu_receive - receive data from the audio or serial device
  610:  */
  611: static void
  612: chu_receive(
  613: 	struct recvbuf *rbufp	/* receive buffer structure pointer */
  614: 	)
  615: {
  616: #ifdef HAVE_AUDIO
  617: 	struct chuunit *up;
  618: 	struct refclockproc *pp;
  619: 	struct peer *peer;
  620: 
  621: 	peer = (struct peer *)rbufp->recv_srcclock;
  622: 	pp = peer->procptr;
  623: 	up = (struct chuunit *)pp->unitptr;
  624: 
  625: 	/*
  626: 	 * If the audio codec is warmed up, the buffer contains codec
  627: 	 * samples which need to be demodulated and decoded into CHU
  628: 	 * characters using the software UART. Otherwise, the buffer
  629: 	 * contains CHU characters from the serial port, so the software
  630: 	 * UART is bypassed. In this case the CPU will probably run a
  631: 	 * few degrees cooler.
  632: 	 */
  633: 	if (up->fd_audio > 0)
  634: 		chu_audio_receive(rbufp);
  635: 	else
  636: 		chu_serial_receive(rbufp);
  637: #else
  638: 	chu_serial_receive(rbufp);
  639: #endif /* HAVE_AUDIO */
  640: }
  641: 
  642: 
  643: #ifdef HAVE_AUDIO
  644: /*
  645:  * chu_audio_receive - receive data from the audio device
  646:  */
  647: static void
  648: chu_audio_receive(
  649: 	struct recvbuf *rbufp	/* receive buffer structure pointer */
  650: 	)
  651: {
  652: 	struct chuunit *up;
  653: 	struct refclockproc *pp;
  654: 	struct peer *peer;
  655: 
  656: 	double	sample;		/* codec sample */
  657: 	u_char	*dpt;		/* buffer pointer */
  658: 	int	bufcnt;		/* buffer counter */
  659: 	l_fp	ltemp;		/* l_fp temp */
  660: 
  661: 	peer = (struct peer *)rbufp->recv_srcclock;
  662: 	pp = peer->procptr;
  663: 	up = (struct chuunit *)pp->unitptr;
  664: 
  665: 	/*
  666: 	 * Main loop - read until there ain't no more. Note codec
  667: 	 * samples are bit-inverted.
  668: 	 */
  669: 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
  670: 	L_SUB(&rbufp->recv_time, &ltemp);
  671: 	up->timestamp = rbufp->recv_time;
  672: 	dpt = rbufp->recv_buffer;
  673: 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
  674: 		sample = up->comp[~*dpt++ & 0xff];
  675: 
  676: 		/*
  677: 		 * Clip noise spikes greater than MAXAMP. If no clips,
  678: 		 * increase the gain a tad; if the clips are too high, 
  679: 		 * decrease a tad.
  680: 		 */
  681: 		if (sample > MAXAMP) {
  682: 			sample = MAXAMP;
  683: 			up->clipcnt++;
  684: 		} else if (sample < -MAXAMP) {
  685: 			sample = -MAXAMP;
  686: 			up->clipcnt++;
  687: 		}
  688: 		chu_rf(peer, sample);
  689: 		L_ADD(&up->timestamp, &up->tick);
  690: 
  691: 		/*
  692: 		 * Once each second ride gain.
  693: 		 */
  694: 		up->seccnt = (up->seccnt + 1) % SECOND;
  695: 		if (up->seccnt == 0) {
  696: 			chu_gain(peer);
  697: 		}
  698: 	}
  699: 
  700: 	/*
  701: 	 * Set the input port and monitor gain for the next buffer.
  702: 	 */
  703: 	if (pp->sloppyclockflag & CLK_FLAG2)
  704: 		up->port = 2;
  705: 	else
  706: 		up->port = 1;
  707: 	if (pp->sloppyclockflag & CLK_FLAG3)
  708: 		up->mongain = MONGAIN;
  709: 	else
  710: 		up->mongain = 0;
  711: }
  712: 
  713: 
  714: /*
  715:  * chu_rf - filter and demodulate the FSK signal
  716:  *
  717:  * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
  718:  * and space 2025 Hz. It uses a bandpass filter followed by a soft
  719:  * limiter, FM discriminator and lowpass filter. A maximum-likelihood
  720:  * decoder samples the baseband signal at eight times the baud rate and
  721:  * detects the start bit of each character.
  722:  *
  723:  * The filters are built for speed, which explains the rather clumsy
  724:  * code. Hopefully, the compiler will efficiently implement the move-
  725:  * and-muiltiply-and-add operations.
  726:  */
  727: static void
  728: chu_rf(
  729: 	struct peer *peer,	/* peer structure pointer */
  730: 	double	sample		/* analog sample */
  731: 	)
  732: {
  733: 	struct refclockproc *pp;
  734: 	struct chuunit *up;
  735: 	struct surv *sp;
  736: 
  737: 	/*
  738: 	 * Local variables
  739: 	 */
  740: 	double	signal;		/* bandpass signal */
  741: 	double	limit;		/* limiter signal */
  742: 	double	disc;		/* discriminator signal */
  743: 	double	lpf;		/* lowpass signal */
  744: 	double	dist;		/* UART signal distance */
  745: 	int	i, j;
  746: 
  747: 	pp = peer->procptr;
  748: 	up = (struct chuunit *)pp->unitptr;
  749: 
  750: 	/*
  751: 	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
  752: 	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
  753: 	 * phase delay 0.24 ms.
  754: 	 */
  755: 	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
  756: 	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
  757: 	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
  758: 	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
  759: 	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
  760: 	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
  761: 	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
  762: 	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
  763: 	up->bpf[0] = sample - signal;
  764: 	signal = up->bpf[0] * 6.176213e-03
  765: 	    + up->bpf[1] * 3.156599e-03
  766: 	    + up->bpf[2] * 7.567487e-03
  767: 	    + up->bpf[3] * 4.344580e-03
  768: 	    + up->bpf[4] * 1.190128e-02
  769: 	    + up->bpf[5] * 4.344580e-03
  770: 	    + up->bpf[6] * 7.567487e-03
  771: 	    + up->bpf[7] * 3.156599e-03
  772: 	    + up->bpf[8] * 6.176213e-03;
  773: 
  774: 	up->monitor = signal / 4.;	/* note monitor after filter */
  775: 
  776: 	/*
  777: 	 * Soft limiter/discriminator. The 11-sample discriminator lag
  778: 	 * interval corresponds to three cycles of 2125 Hz, which
  779: 	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
  780: 	 * Hz. The discriminator output varies +-0.5 interval for input
  781: 	 * frequency 2025-2225 Hz. However, we don't get to sample at
  782: 	 * this frequency, so the discriminator output is biased. Life
  783: 	 * at 8000 Hz sucks.
  784: 	 */
  785: 	limit = signal;
  786: 	if (limit > LIMIT)
  787: 		limit = LIMIT;
  788: 	else if (limit < -LIMIT)
  789: 		limit = -LIMIT;
  790: 	disc = up->disc[up->discptr] * -limit;
  791: 	up->disc[up->discptr] = limit;
  792: 	up->discptr = (up->discptr + 1 ) % LAG;
  793: 	if (disc >= 0)
  794: 		disc = SQRT(disc);
  795: 	else
  796: 		disc = -SQRT(-disc);
  797: 
  798: 	/*
  799: 	 * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
  800: 	 */
  801: 	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
  802: 	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
  803: 	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
  804: 	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
  805: 	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
  806: 	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
  807: 	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
  808: 	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
  809: 	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
  810: 	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
  811: 	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
  812: 	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
  813: 	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
  814: 	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
  815: 	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
  816: 	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
  817: 	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
  818: 	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
  819: 	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
  820: 	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
  821: 	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
  822: 	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
  823: 	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
  824: 	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
  825: 	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
  826: 	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
  827: 	lpf += up->lpf[0] = disc * 2.538771e-02;
  828: 
  829: 	/*
  830: 	 * Maximum-likelihood decoder. The UART updates each of the
  831: 	 * eight survivors and determines the span, slice level and
  832: 	 * tentative decoded character. Valid 11-bit characters are
  833: 	 * framed so that bit 10 and bit 11 (stop bits) are mark and bit
  834: 	 * 1 (start bit) is space. When a valid character is found, the
  835: 	 * survivor with maximum distance determines the final decoded
  836: 	 * character.
  837: 	 */
  838: 	up->baud += 1. / SECOND;
  839: 	if (up->baud > 1. / (BAUD * 8.)) {
  840: 		up->baud -= 1. / (BAUD * 8.);
  841: 		up->decptr = (up->decptr + 1) % 8;
  842: 		sp = &up->surv[up->decptr];
  843: 		sp->cstamp = up->timestamp;
  844: 		chu_uart(sp, -lpf * AGAIN);
  845: 		if (up->dbrk > 0) {
  846: 			up->dbrk--;
  847: 			if (up->dbrk > 0)
  848: 				return;
  849: 
  850: 			up->decpha = up->decptr;
  851: 		}
  852: 		if (up->decptr != up->decpha)
  853: 			return;
  854: 
  855: 		dist = 0;
  856: 		j = -1;
  857: 		for (i = 0; i < 8; i++) {
  858: 
  859: 			/*
  860: 			 * The timestamp is taken at the last bit, so
  861: 			 * for correct decoding we reqire sufficient
  862: 			 * span and correct start bit and two stop bits.
  863: 			 */
  864: 			if ((up->surv[i].uart & 0x601) != 0x600 ||
  865: 			    up->surv[i].span < SPAN)
  866: 				continue;
  867: 
  868: 			if (up->surv[i].dist > dist) {
  869: 				dist = up->surv[i].dist;
  870: 				j = i;
  871: 			}
  872: 		}
  873: 		if (j < 0)
  874: 			return;
  875: 
  876: 		/*
  877: 		 * Process the character, then blank the decoder until
  878: 		 * the end of the next character.This sets the decoding
  879: 		 * phase of the entire burst from the phase of the first
  880: 		 * character.
  881: 		 */
  882: 		up->maxsignal = up->surv[j].span;
  883: 		chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
  884: 		    up->surv[j].cstamp);
  885: 		up->dbrk = 88;
  886: 	}
  887: }
  888: 
  889: 
  890: /*
  891:  * chu_uart - maximum-likelihood UART
  892:  *
  893:  * This routine updates a shift register holding the last 11 envelope
  894:  * samples. It then computes the slice level and span over these samples
  895:  * and determines the tentative data bits and distance. The calling
  896:  * program selects over the last eight survivors the one with maximum
  897:  * distance to determine the decoded character.
  898:  */
  899: static void
  900: chu_uart(
  901: 	struct surv *sp,	/* survivor structure pointer */
  902: 	double	sample		/* baseband signal */
  903: 	)
  904: {
  905: 	double	es_max, es_min;	/* max/min envelope */
  906: 	double	slice;		/* slice level */
  907: 	double	dist;		/* distance */
  908: 	double	dtemp;
  909: 	int	i;
  910: 
  911: 	/*
  912: 	 * Save the sample and shift right. At the same time, measure
  913: 	 * the maximum and minimum over all eleven samples.
  914: 	 */
  915: 	es_max = -1e6;
  916: 	es_min = 1e6;
  917: 	sp->shift[0] = sample;
  918: 	for (i = 11; i > 0; i--) {
  919: 		sp->shift[i] = sp->shift[i - 1];
  920: 		if (sp->shift[i] > es_max)
  921: 			es_max = sp->shift[i];
  922: 		if (sp->shift[i] < es_min)
  923: 			es_min = sp->shift[i];
  924: 	}
  925: 
  926: 	/*
  927: 	 * Determine the span as the maximum less the minimum and the
  928: 	 * slice level as the minimum plus a fraction of the span. Note
  929: 	 * the slight bias toward mark to correct for the modem tendency
  930: 	 * to make more mark than space errors. Compute the distance on
  931: 	 * the assumption the last two bits must be mark, the first
  932: 	 * space and the rest either mark or space. 
  933: 	 */ 
  934: 	sp->span = es_max - es_min;
  935: 	slice = es_min + .45 * sp->span;
  936: 	dist = 0;
  937: 	sp->uart = 0;
  938: 	for (i = 1; i < 12; i++) {
  939: 		sp->uart <<= 1;
  940: 		dtemp = sp->shift[i];
  941: 		if (dtemp > slice)
  942: 			sp->uart |= 0x1;
  943: 		if (i == 1 || i == 2) {
  944: 			dist += dtemp - es_min;
  945: 		} else if (i == 11) {
  946: 			dist += es_max - dtemp;
  947: 		} else {
  948: 			if (dtemp > slice)
  949: 				dist += dtemp - es_min;
  950: 			else
  951: 				dist += es_max - dtemp;
  952: 		}
  953: 	}
  954: 	sp->dist = dist / (11 * sp->span);
  955: }
  956: #endif /* HAVE_AUDIO */
  957: 
  958: 
  959: /*
  960:  * chu_serial_receive - receive data from the serial device
  961:  */
  962: static void
  963: chu_serial_receive(
  964: 	struct recvbuf *rbufp	/* receive buffer structure pointer */
  965: 	)
  966: {
  967: 	struct chuunit *up;
  968: 	struct refclockproc *pp;
  969: 	struct peer *peer;
  970: 
  971: 	u_char	*dpt;		/* receive buffer pointer */
  972: 
  973: 	peer = (struct peer *)rbufp->recv_srcclock;
  974: 	pp = peer->procptr;
  975: 	up = (struct chuunit *)pp->unitptr;
  976: 
  977: 	dpt = (u_char *)&rbufp->recv_space;
  978: 	chu_decode(peer, *dpt, rbufp->recv_time);
  979: }
  980: 
  981: 
  982: /*
  983:  * chu_decode - decode the character data
  984:  */
  985: static void
  986: chu_decode(
  987: 	struct peer *peer,	/* peer structure pointer */
  988: 	int	hexhex,		/* data character */
  989: 	l_fp	cstamp		/* data character timestamp */
  990: 	)
  991: {
  992: 	struct refclockproc *pp;
  993: 	struct chuunit *up;
  994: 
  995: 	l_fp	tstmp;		/* timestamp temp */
  996: 	double	dtemp;
  997: 
  998: 	pp = peer->procptr;
  999: 	up = (struct chuunit *)pp->unitptr;
 1000: 
 1001: 	/*
 1002: 	 * If the interval since the last character is greater than the
 1003: 	 * longest burst, process the last burst and start a new one. If
 1004: 	 * the interval is less than this but greater than two
 1005: 	 * characters, consider this a noise burst and reject it.
 1006: 	 */
 1007: 	tstmp = up->timestamp;
 1008: 	if (L_ISZERO(&up->laststamp))
 1009: 		up->laststamp = up->timestamp;
 1010: 	L_SUB(&tstmp, &up->laststamp);
 1011: 	up->laststamp = up->timestamp;
 1012: 	LFPTOD(&tstmp, dtemp);
 1013: 	if (dtemp > BURST * CHAR) {
 1014: 		chu_burst(peer);
 1015: 		up->ndx = 0;
 1016: 	} else if (dtemp > 2.5 * CHAR) {
 1017: 		up->ndx = 0;
 1018: 	}
 1019: 
 1020: 	/*
 1021: 	 * Append the character to the current burst and append the
 1022: 	 * character timestamp to the timestamp list.
 1023: 	 */
 1024: 	if (up->ndx < BURST) {
 1025: 		up->cbuf[up->ndx] = hexhex & 0xff;
 1026: 		up->cstamp[up->ndx] = cstamp;
 1027: 		up->ndx++;
 1028: 
 1029: 	}
 1030: }
 1031: 
 1032: 
 1033: /*
 1034:  * chu_burst - search for valid burst format
 1035:  */
 1036: static void
 1037: chu_burst(
 1038: 	struct peer *peer
 1039: 	)
 1040: {
 1041: 	struct chuunit *up;
 1042: 	struct refclockproc *pp;
 1043: 
 1044: 	int	i;
 1045: 
 1046: 	pp = peer->procptr;
 1047: 	up = (struct chuunit *)pp->unitptr;
 1048: 
 1049: 	/*
 1050: 	 * Correlate a block of five characters with the next block of
 1051: 	 * five characters. The burst distance is defined as the number
 1052: 	 * of bits that match in the two blocks for format A and that
 1053: 	 * match the inverse for format B.
 1054: 	 */
 1055: 	if (up->ndx < MINCHAR) {
 1056: 		up->status |= RUNT;
 1057: 		return;
 1058: 	}
 1059: 	up->burdist = 0;
 1060: 	for (i = 0; i < 5 && i < up->ndx - 5; i++)
 1061: 		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
 1062: 
 1063: 	/*
 1064: 	 * If the burst distance is at least MINDIST, this must be a
 1065: 	 * format A burst; if the value is not greater than -MINDIST, it
 1066: 	 * must be a format B burst. If the B burst is perfect, we
 1067: 	 * believe it; otherwise, it is a noise burst and of no use to
 1068: 	 * anybody.
 1069: 	 */
 1070: 	if (up->burdist >= MINDIST) {
 1071: 		chu_a(peer, up->ndx);
 1072: 	} else if (up->burdist <= -MINDIST) {
 1073: 		chu_b(peer, up->ndx);
 1074: 	} else {
 1075: 		up->status |= NOISE;
 1076: 		return;
 1077: 	}
 1078: 
 1079: 	/*
 1080: 	 * If this is a valid burst, wait a guard time of ten seconds to
 1081: 	 * allow for more bursts, then arm the poll update routine to
 1082: 	 * process the minute. Don't do this if this is called from the
 1083: 	 * timer interrupt routine.
 1084: 	 */
 1085: 	if (peer->outdate != current_time)
 1086: 		peer->nextdate = current_time + 10;
 1087: }
 1088: 
 1089: 
 1090: /*
 1091:  * chu_b - decode format B burst
 1092:  */
 1093: static void
 1094: chu_b(
 1095: 	struct peer *peer,
 1096: 	int	nchar
 1097: 	)
 1098: {
 1099: 	struct	refclockproc *pp;
 1100: 	struct	chuunit *up;
 1101: 
 1102: 	u_char	code[11];	/* decoded timecode */
 1103: 	char	tbuf[80];	/* trace buffer */
 1104: 	char *	p;
 1105: 	size_t	chars;
 1106: 	size_t	cb;
 1107: 	int	i;
 1108: 
 1109: 	pp = peer->procptr;
 1110: 	up = (struct chuunit *)pp->unitptr;
 1111: 
 1112: 	/*
 1113: 	 * In a format B burst, a character is considered valid only if
 1114: 	 * the first occurence matches the last occurence. The burst is
 1115: 	 * considered valid only if all characters are valid; that is,
 1116: 	 * only if the distance is 40. Note that once a valid frame has
 1117: 	 * been found errors are ignored.
 1118: 	 */
 1119: 	snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ",
 1120: 		 up->status, up->maxsignal, nchar, -up->burdist);
 1121: 	cb = sizeof(tbuf);
 1122: 	p = tbuf;
 1123: 	for (i = 0; i < nchar; i++) {
 1124: 		chars = strlen(p);
 1125: 		if (cb < chars + 1) {
 1126: 			msyslog(LOG_ERR, "chu_b() fatal out buffer");
 1127: 			exit(1);
 1128: 		}
 1129: 		cb -= chars;
 1130: 		p += chars;
 1131: 		snprintf(p, cb, "%02x", up->cbuf[i]);
 1132: 	}
 1133: 	if (pp->sloppyclockflag & CLK_FLAG4)
 1134: 		record_clock_stats(&peer->srcadr, tbuf);
 1135: #ifdef DEBUG
 1136: 	if (debug)
 1137: 		printf("%s\n", tbuf);
 1138: #endif
 1139: 	if (up->burdist > -40) {
 1140: 		up->status |= BFRAME;
 1141: 		return;
 1142: 	}
 1143: 
 1144: 	/*
 1145: 	 * Convert the burst data to internal format. Don't bother with
 1146: 	 * the timestamps.
 1147: 	 */
 1148: 	for (i = 0; i < 5; i++) {
 1149: 		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
 1150: 		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
 1151: 		    4) & 0xf];
 1152: 	}
 1153: 	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
 1154: 	    &pp->year, &up->tai, &up->dst) != 5) {
 1155: 		up->status |= BFORMAT;
 1156: 		return;
 1157: 	}
 1158: 	up->status |= BVALID;
 1159: 	if (up->leap & 0x8)
 1160: 		up->dut = -up->dut;
 1161: }
 1162: 
 1163: 
 1164: /*
 1165:  * chu_a - decode format A burst
 1166:  */
 1167: static void
 1168: chu_a(
 1169: 	struct peer *peer,
 1170: 	int nchar
 1171: 	)
 1172: {
 1173: 	struct refclockproc *pp;
 1174: 	struct chuunit *up;
 1175: 
 1176: 	char	tbuf[80];	/* trace buffer */
 1177: 	char *	p;
 1178: 	size_t	chars;
 1179: 	size_t	cb;
 1180: 	l_fp	offset;		/* timestamp offset */
 1181: 	int	val;		/* distance */
 1182: 	int	temp;
 1183: 	int	i, j, k;
 1184: 
 1185: 	pp = peer->procptr;
 1186: 	up = (struct chuunit *)pp->unitptr;
 1187: 
 1188: 	/*
 1189: 	 * Determine correct burst phase. There are three cases
 1190: 	 * corresponding to in-phase, one character early or one
 1191: 	 * character late. These cases are distinguished by the position
 1192: 	 * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
 1193: 	 * positions 4 and 9. The correct phase is when the distance
 1194: 	 * relative to the framing digits is maximum. The burst is valid
 1195: 	 * only if the maximum distance is at least MINSYNC.
 1196: 	 */
 1197: 	up->syndist = k = 0;
 1198: 	val = -16;
 1199: 	for (i = -1; i < 2; i++) {
 1200: 		temp = up->cbuf[i + 4] & 0xf;
 1201: 		if (i >= 0)
 1202: 			temp |= (up->cbuf[i] & 0xf) << 4;
 1203: 		val = chu_dist(temp, 0x63);
 1204: 		temp = (up->cbuf[i + 5] & 0xf) << 4;
 1205: 		if (i + 9 < nchar)
 1206: 			temp |= up->cbuf[i + 9] & 0xf;
 1207: 		val += chu_dist(temp, 0x63);
 1208: 		if (val > up->syndist) {
 1209: 			up->syndist = val;
 1210: 			k = i;
 1211: 		}
 1212: 	}
 1213: 
 1214: 	/*
 1215: 	 * Extract the second number; it must be in the range 2 through
 1216: 	 * 9 and the two repititions must be the same.
 1217: 	 */
 1218: 	temp = (up->cbuf[k + 4] >> 4) & 0xf;
 1219: 	if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
 1220: 	    ((up->cbuf[k + 9] >> 4) & 0xf))
 1221: 		temp = 0;
 1222: 	snprintf(tbuf, sizeof(tbuf),
 1223: 		 "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status,
 1224: 		 up->maxsignal, nchar, up->burdist, k, up->syndist,
 1225: 		 temp);
 1226: 	cb = sizeof(tbuf);
 1227: 	p = tbuf;
 1228: 	for (i = 0; i < nchar; i++) {
 1229: 		chars = strlen(p);
 1230: 		if (cb < chars + 1) {
 1231: 			msyslog(LOG_ERR, "chu_a() fatal out buffer");
 1232: 			exit(1);
 1233: 		}
 1234: 		cb -= chars;
 1235: 		p += chars;
 1236: 		snprintf(p, cb, "%02x", up->cbuf[i]);
 1237: 	}
 1238: 	if (pp->sloppyclockflag & CLK_FLAG4)
 1239: 		record_clock_stats(&peer->srcadr, tbuf);
 1240: #ifdef DEBUG
 1241: 	if (debug)
 1242: 		printf("%s\n", tbuf);
 1243: #endif
 1244: 	if (up->syndist < MINSYNC) {
 1245: 		up->status |= AFRAME;
 1246: 		return;
 1247: 	}
 1248: 
 1249: 	/*
 1250: 	 * A valid burst requires the first seconds number to match the
 1251: 	 * last seconds number. If so, the burst timestamps are
 1252: 	 * corrected to the current minute and saved for later
 1253: 	 * processing. In addition, the seconds decode is advanced from
 1254: 	 * the previous burst to the current one.
 1255: 	 */
 1256: 	if (temp == 0) {
 1257: 		up->status |= AFORMAT;
 1258: 	} else {
 1259: 		up->status |= AVALID;
 1260: 		up->second = pp->second = 30 + temp;
 1261: 		offset.l_ui = 30 + temp;
 1262: 		offset.l_f = 0;
 1263: 		i = 0;
 1264: 		if (k < 0)
 1265: 			offset = up->charstamp;
 1266: 		else if (k > 0)
 1267: 			i = 1;
 1268: 		for (; i < nchar && i < k + 10; i++) {
 1269: 			up->tstamp[up->ntstamp] = up->cstamp[i];
 1270: 			L_SUB(&up->tstamp[up->ntstamp], &offset);
 1271: 			L_ADD(&offset, &up->charstamp);
 1272: 			if (up->ntstamp < MAXSTAGE - 1)
 1273: 				up->ntstamp++;
 1274: 		}
 1275: 		while (temp > up->prevsec) {
 1276: 			for (j = 15; j > 0; j--) {
 1277: 				up->decode[9][j] = up->decode[9][j - 1];
 1278: 				up->decode[19][j] =
 1279: 				    up->decode[19][j - 1];
 1280: 			}
 1281: 			up->decode[9][j] = up->decode[19][j] = 0;
 1282: 			up->prevsec++;
 1283: 		}
 1284: 	}
 1285: 
 1286: 	/*
 1287: 	 * Stash the data in the decoding matrix.
 1288: 	 */
 1289: 	i = -(2 * k);
 1290: 	for (j = 0; j < nchar; j++) {
 1291: 		if (i < 0 || i > 18) {
 1292: 			i += 2;
 1293: 			continue;
 1294: 		}
 1295: 		up->decode[i][up->cbuf[j] & 0xf]++;
 1296: 		i++;
 1297: 		up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
 1298: 		i++;
 1299: 	}
 1300: 	up->burstcnt++;
 1301: }
 1302: 
 1303: 
 1304: /*
 1305:  * chu_poll - called by the transmit procedure
 1306:  */
 1307: static void
 1308: chu_poll(
 1309: 	int unit,
 1310: 	struct peer *peer	/* peer structure pointer */
 1311: 	)
 1312: {
 1313: 	struct refclockproc *pp;
 1314: 
 1315: 	pp = peer->procptr;
 1316: 	pp->polls++;
 1317: }
 1318: 
 1319: 
 1320: /*
 1321:  * chu_second - process minute data
 1322:  */
 1323: static void
 1324: chu_second(
 1325: 	int unit,
 1326: 	struct peer *peer	/* peer structure pointer */
 1327: 	)
 1328: {
 1329: 	struct refclockproc *pp;
 1330: 	struct chuunit *up;
 1331: 	l_fp	offset;
 1332: 	char	synchar, qual, leapchar;
 1333: 	int	minset, i;
 1334: 	double	dtemp;
 1335: 
 1336: 	pp = peer->procptr;
 1337: 	up = (struct chuunit *)pp->unitptr;
 1338: 
 1339: 	/*
 1340: 	 * This routine is called once per minute to process the
 1341: 	 * accumulated burst data. We do a bit of fancy footwork so that
 1342: 	 * this doesn't run while burst data are being accumulated.
 1343: 	 */
 1344: 	up->second = (up->second + 1) % 60;
 1345: 	if (up->second != 0)
 1346: 		return;
 1347: 
 1348: 	/*
 1349: 	 * Process the last burst, if still in the burst buffer.
 1350: 	 * If the minute contains a valid B frame with sufficient A
 1351: 	 * frame metric, it is considered valid. However, the timecode
 1352: 	 * is sent to clockstats even if invalid.
 1353: 	 */
 1354: 	chu_burst(peer);
 1355: 	minset = ((current_time - peer->update) + 30) / 60;
 1356: 	dtemp = chu_major(peer);
 1357: 	qual = 0;
 1358: 	if (up->status & (BFRAME | AFRAME))
 1359: 		qual |= SYNERR;
 1360: 	if (up->status & (BFORMAT | AFORMAT))
 1361: 		qual |= FMTERR;
 1362: 	if (up->status & DECODE)
 1363: 		qual |= DECERR;
 1364: 	if (up->status & STAMP)
 1365: 		qual |= TSPERR;
 1366: 	if (up->status & BVALID && dtemp >= MINMETRIC)
 1367: 		up->status |= INSYNC;
 1368: 	synchar = leapchar = ' ';
 1369: 	if (!(up->status & INSYNC)) {
 1370: 		pp->leap = LEAP_NOTINSYNC;
 1371: 		synchar = '?';
 1372: 	} else if (up->leap & 0x2) {
 1373: 		pp->leap = LEAP_ADDSECOND;
 1374: 		leapchar = 'L';
 1375: 	} else if (up->leap & 0x4) {
 1376: 		pp->leap = LEAP_DELSECOND;
 1377: 		leapchar = 'l';
 1378: 	} else {
 1379: 		pp->leap = LEAP_NOWARNING;
 1380: 	}
 1381: 	snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
 1382: 	    "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
 1383: 	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
 1384: 	    pp->second, leapchar, up->dst, up->dut, minset, up->gain,
 1385: 	    up->ident, dtemp, up->ntstamp);
 1386: 	pp->lencode = strlen(pp->a_lastcode);
 1387: 
 1388: 	/*
 1389: 	 * If in sync and the signal metric is above threshold, the
 1390: 	 * timecode is ipso fatso valid and can be selected to
 1391: 	 * discipline the clock.
 1392: 	 */
 1393: 	if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
 1394: 	    dtemp > MINMETRIC) {
 1395: 		if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
 1396: 		    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
 1397: 			up->errflg = CEVNT_BADTIME;
 1398: 		} else {
 1399: 			offset.l_uf = 0;
 1400: 			for (i = 0; i < up->ntstamp; i++)
 1401: 				refclock_process_offset(pp, offset,
 1402: 				up->tstamp[i], PDELAY +
 1403: 				    pp->fudgetime1);
 1404: 			pp->lastref = up->timestamp;
 1405: 			refclock_receive(peer);
 1406: 		}
 1407: 	}
 1408: 	if (dtemp > 0)
 1409: 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
 1410: #ifdef DEBUG
 1411: 	if (debug)
 1412: 		printf("chu: timecode %d %s\n", pp->lencode,
 1413: 		    pp->a_lastcode);
 1414: #endif
 1415: #ifdef ICOM
 1416: 	chu_newchan(peer, dtemp);
 1417: #endif /* ICOM */
 1418: 	chu_clear(peer);
 1419: 	if (up->errflg)
 1420: 		refclock_report(peer, up->errflg);
 1421: 	up->errflg = 0;
 1422: }
 1423: 
 1424: 
 1425: /*
 1426:  * chu_major - majority decoder
 1427:  */
 1428: static double
 1429: chu_major(
 1430: 	struct peer *peer	/* peer structure pointer */
 1431: 	)
 1432: {
 1433: 	struct refclockproc *pp;
 1434: 	struct chuunit *up;
 1435: 
 1436: 	u_char	code[11];	/* decoded timecode */
 1437: 	int	metric;		/* distance metric */
 1438: 	int	val1;		/* maximum distance */
 1439: 	int	synchar;	/* stray cat */
 1440: 	int	temp;
 1441: 	int	i, j, k;
 1442: 
 1443: 	pp = peer->procptr;
 1444: 	up = (struct chuunit *)pp->unitptr;
 1445: 
 1446: 	/*
 1447: 	 * Majority decoder. Each burst encodes two replications at each
 1448: 	 * digit position in the timecode. Each row of the decoding
 1449: 	 * matrix encodes the number of occurences of each digit found
 1450: 	 * at the corresponding position. The maximum over all
 1451: 	 * occurrences at each position is the distance for this
 1452: 	 * position and the corresponding digit is the maximum-
 1453: 	 * likelihood candidate. If the distance is not more than half
 1454: 	 * the total number of occurences, a majority has not been found
 1455: 	 * and the data are discarded. The decoding distance is defined
 1456: 	 * as the sum of the distances over the first nine digits. The
 1457: 	 * tenth digit varies over the seconds, so we don't count it.
 1458: 	 */
 1459: 	metric = 0;
 1460: 	for (i = 0; i < 9; i++) {
 1461: 		val1 = 0;
 1462: 		k = 0;
 1463: 		for (j = 0; j < 16; j++) {
 1464: 			temp = up->decode[i][j] + up->decode[i + 10][j];
 1465: 			if (temp > val1) {
 1466: 				val1 = temp;
 1467: 				k = j;
 1468: 			}
 1469: 		}
 1470: 		if (val1 <= up->burstcnt)
 1471: 			up->status |= DECODE;
 1472: 		metric += val1;
 1473: 		code[i] = hexchar[k];
 1474: 	}
 1475: 
 1476: 	/*
 1477: 	 * Compute the timecode timestamp from the days, hours and
 1478: 	 * minutes of the timecode. Use clocktime() for the aggregate
 1479: 	 * minutes and the minute offset computed from the burst
 1480: 	 * seconds. Note that this code relies on the filesystem time
 1481: 	 * for the years and does not use the years of the timecode.
 1482: 	 */
 1483: 	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
 1484: 	    &pp->hour, &pp->minute) != 4)
 1485: 		up->status |= DECODE;
 1486: 	if (up->ntstamp < MINSTAMP)
 1487: 		up->status |= STAMP;
 1488: 	return (metric);
 1489: }
 1490: 
 1491: 
 1492: /*
 1493:  * chu_clear - clear decoding matrix
 1494:  */
 1495: static void
 1496: chu_clear(
 1497: 	struct peer *peer	/* peer structure pointer */
 1498: 	)
 1499: {
 1500: 	struct refclockproc *pp;
 1501: 	struct chuunit *up;
 1502: 	int	i, j;
 1503: 
 1504: 	pp = peer->procptr;
 1505: 	up = (struct chuunit *)pp->unitptr;
 1506: 
 1507: 	/*
 1508: 	 * Clear stuff for the minute.
 1509: 	 */
 1510: 	up->ndx = up->prevsec = 0;
 1511: 	up->burstcnt = up->ntstamp = 0;
 1512: 	up->status &= INSYNC | METRIC;
 1513: 	for (i = 0; i < 20; i++) {
 1514: 		for (j = 0; j < 16; j++)
 1515: 			up->decode[i][j] = 0;
 1516: 	}
 1517: }
 1518: 
 1519: #ifdef ICOM
 1520: /*
 1521:  * chu_newchan - called once per minute to find the best channel;
 1522:  * returns zero on success, nonzero if ICOM error.
 1523:  */
 1524: static int
 1525: chu_newchan(
 1526: 	struct peer *peer,
 1527: 	double	met
 1528: 	)
 1529: {
 1530: 	struct chuunit *up;
 1531: 	struct refclockproc *pp;
 1532: 	struct xmtr *sp;
 1533: 	int	rval;
 1534: 	double	metric;
 1535: 	int	i;
 1536: 
 1537: 	pp = peer->procptr;
 1538: 	up = (struct chuunit *)pp->unitptr;
 1539: 
 1540: 	/*
 1541: 	 * The radio can be tuned to three channels: 0 (3330 kHz), 1
 1542: 	 * (7850 kHz) and 2 (14670 kHz). There are five one-minute
 1543: 	 * dwells in each cycle. During the first dwell the radio is
 1544: 	 * tuned to one of the three channels to measure the channel
 1545: 	 * metric. The channel is selected as the one least recently
 1546: 	 * measured. During the remaining four dwells the radio is tuned
 1547: 	 * to the channel with the highest channel metric. 
 1548: 	 */
 1549: 	if (up->fd_icom <= 0)
 1550: 		return (0);
 1551: 
 1552: 	/*
 1553: 	 * Update the current channel metric and age of all channels.
 1554: 	 * Scan all channels for the highest metric.
 1555: 	 */
 1556: 	sp = &up->xmtr[up->chan];
 1557: 	sp->metric -= sp->integ[sp->iptr];
 1558: 	sp->integ[sp->iptr] = met;
 1559: 	sp->metric += sp->integ[sp->iptr];
 1560: 	sp->probe = 0;
 1561: 	sp->iptr = (sp->iptr + 1) % ISTAGE;
 1562: 	metric = 0;
 1563: 	for (i = 0; i < NCHAN; i++) {
 1564: 		up->xmtr[i].probe++;
 1565: 		if (up->xmtr[i].metric > metric) {
 1566: 			up->status |= METRIC;
 1567: 			metric = up->xmtr[i].metric;
 1568: 			up->chan = i;
 1569: 		}
 1570: 	}
 1571: 
 1572: 	/*
 1573: 	 * Start the next dwell. If the first dwell or no stations have
 1574: 	 * been heard, continue round-robin scan.
 1575: 	 */
 1576: 	up->dwell = (up->dwell + 1) % DWELL;
 1577: 	if (up->dwell == 0 || metric == 0) {
 1578: 		rval = 0;
 1579: 		for (i = 0; i < NCHAN; i++) {
 1580: 			if (up->xmtr[i].probe > rval) {
 1581: 				rval = up->xmtr[i].probe;
 1582: 				up->chan = i;
 1583: 			}
 1584: 		}
 1585: 	}
 1586: 
 1587: 	/* Retune the radio at each dwell in case somebody nudges the
 1588: 	 * tuning knob.
 1589: 	 */
 1590: 	rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
 1591: 	    TUNE);
 1592: 	snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan);
 1593: 	memcpy(&pp->refid, up->ident, 4); 
 1594: 	memcpy(&peer->refid, up->ident, 4);
 1595: 	if (metric == 0 && up->status & METRIC) {
 1596: 		up->status &= ~METRIC;
 1597: 		refclock_report(peer, CEVNT_PROP);
 1598: 	} 
 1599: 	return (rval);
 1600: }
 1601: #endif /* ICOM */
 1602: 
 1603: 
 1604: /*
 1605:  * chu_dist - determine the distance of two octet arguments
 1606:  */
 1607: static int
 1608: chu_dist(
 1609: 	int	x,		/* an octet of bits */
 1610: 	int	y		/* another octet of bits */
 1611: 	)
 1612: {
 1613: 	int	val;		/* bit count */ 
 1614: 	int	temp;
 1615: 	int	i;
 1616: 
 1617: 	/*
 1618: 	 * The distance is determined as the weight of the exclusive OR
 1619: 	 * of the two arguments. The weight is determined by the number
 1620: 	 * of one bits in the result. Each one bit increases the weight,
 1621: 	 * while each zero bit decreases it.
 1622: 	 */
 1623: 	temp = x ^ y;
 1624: 	val = 0;
 1625: 	for (i = 0; i < 8; i++) {
 1626: 		if ((temp & 0x1) == 0)
 1627: 			val++;
 1628: 		else
 1629: 			val--;
 1630: 		temp >>= 1;
 1631: 	}
 1632: 	return (val);
 1633: }
 1634: 
 1635: 
 1636: #ifdef HAVE_AUDIO
 1637: /*
 1638:  * chu_gain - adjust codec gain
 1639:  *
 1640:  * This routine is called at the end of each second. During the second
 1641:  * the number of signal clips above the MAXAMP threshold (6000). If
 1642:  * there are no clips, the gain is bumped up; if there are more than
 1643:  * MAXCLP clips (100), it is bumped down. The decoder is relatively
 1644:  * insensitive to amplitude, so this crudity works just peachy. The
 1645:  * routine also jiggles the input port and selectively mutes the
 1646:  */
 1647: static void
 1648: chu_gain(
 1649: 	struct peer *peer	/* peer structure pointer */
 1650: 	)
 1651: {
 1652: 	struct refclockproc *pp;
 1653: 	struct chuunit *up;
 1654: 
 1655: 	pp = peer->procptr;
 1656: 	up = (struct chuunit *)pp->unitptr;
 1657: 
 1658: 	/*
 1659: 	 * Apparently, the codec uses only the high order bits of the
 1660: 	 * gain control field. Thus, it may take awhile for changes to
 1661: 	 * wiggle the hardware bits.
 1662: 	 */
 1663: 	if (up->clipcnt == 0) {
 1664: 		up->gain += 4;
 1665: 		if (up->gain > MAXGAIN)
 1666: 			up->gain = MAXGAIN;
 1667: 	} else if (up->clipcnt > MAXCLP) {
 1668: 		up->gain -= 4;
 1669: 		if (up->gain < 0)
 1670: 			up->gain = 0;
 1671: 	}
 1672: 	audio_gain(up->gain, up->mongain, up->port);
 1673: 	up->clipcnt = 0;
 1674: }
 1675: #endif /* HAVE_AUDIO */
 1676: 
 1677: 
 1678: #else
 1679: int refclock_chu_bs;
 1680: #endif /* REFCLOCK */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>