Annotation of embedaddon/ntp/ntpd/refclock_irig.c, revision 1.1

1.1     ! misho       1: /*
        !             2:  * refclock_irig - audio IRIG-B/E demodulator/decoder
        !             3:  */
        !             4: #ifdef HAVE_CONFIG_H
        !             5: #include <config.h>
        !             6: #endif
        !             7: 
        !             8: #if defined(REFCLOCK) && defined(CLOCK_IRIG)
        !             9: 
        !            10: #include "ntpd.h"
        !            11: #include "ntp_io.h"
        !            12: #include "ntp_refclock.h"
        !            13: #include "ntp_calendar.h"
        !            14: #include "ntp_stdlib.h"
        !            15: 
        !            16: #include <stdio.h>
        !            17: #include <ctype.h>
        !            18: #include <math.h>
        !            19: #ifdef HAVE_SYS_IOCTL_H
        !            20: #include <sys/ioctl.h>
        !            21: #endif /* HAVE_SYS_IOCTL_H */
        !            22: 
        !            23: #include "audio.h"
        !            24: 
        !            25: /*
        !            26:  * Audio IRIG-B/E demodulator/decoder
        !            27:  *
        !            28:  * This driver synchronizes the computer time using data encoded in
        !            29:  * IRIG-B/E signals commonly produced by GPS receivers and other timing
        !            30:  * devices. The IRIG signal is an amplitude-modulated carrier with
        !            31:  * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
        !            32:  * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
        !            33:  * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
        !            34:  & format is in use.
        !            35:  *
        !            36:  * The driver requires an audio codec or sound card with sampling rate 8
        !            37:  * kHz and mu-law companding. This is the same standard as used by the
        !            38:  * telephone industry and is supported by most hardware and operating
        !            39:  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
        !            40:  * implementation, only one audio driver and codec can be supported on a
        !            41:  * single machine.
        !            42:  *
        !            43:  * The program processes 8000-Hz mu-law companded samples using separate
        !            44:  * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
        !            45:  * detector and automatic threshold corrector. Cycle crossings relative
        !            46:  * to the corrected slice level determine the width of each pulse and
        !            47:  * its value - zero, one or position identifier.
        !            48:  *
        !            49:  * The data encode 20 BCD digits which determine the second, minute,
        !            50:  * hour and day of the year and sometimes the year and synchronization
        !            51:  * condition. The comb filter exponentially averages the corresponding
        !            52:  * samples of successive baud intervals in order to reliably identify
        !            53:  * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
        !            54:  * additional integration and interpolation to accurately determine the
        !            55:  * zero crossing of that cycle, which determines the reference
        !            56:  * timestamp. A pulse-width discriminator demodulates the data pulses,
        !            57:  * which are then encoded as the BCD digits of the timecode.
        !            58:  *
        !            59:  * The timecode and reference timestamp are updated once each second
        !            60:  * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
        !            61:  * saved for later processing. At poll intervals of 64 s, the saved
        !            62:  * samples are processed by a trimmed-mean filter and used to update the
        !            63:  * system clock.
        !            64:  *
        !            65:  * An automatic gain control feature provides protection against
        !            66:  * overdriven or underdriven input signal amplitudes. It is designed to
        !            67:  * maintain adequate demodulator signal amplitude while avoiding
        !            68:  * occasional noise spikes. In order to assure reliable capture, the
        !            69:  * decompanded input signal amplitude must be greater than 100 units and
        !            70:  * the codec sample frequency error less than 250 PPM (.025 percent).
        !            71:  *
        !            72:  * Monitor Data
        !            73:  *
        !            74:  * The timecode format used for debugging and data recording includes
        !            75:  * data helpful in diagnosing problems with the IRIG signal and codec
        !            76:  * connections. The driver produces one line for each timecode in the
        !            77:  * following format:
        !            78:  *
        !            79:  * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
        !            80:  *
        !            81:  * If clockstats is enabled, the most recent line is written to the
        !            82:  * clockstats file every 64 s. If verbose recording is enabled (fudge
        !            83:  * flag 4) each line is written as generated.
        !            84:  *
        !            85:  * The first field containes the error flags in hex, where the hex bits
        !            86:  * are interpreted as below. This is followed by the year of century,
        !            87:  * day of year and time of day. Note that the time of day is for the
        !            88:  * previous minute, not the current time. The status indicator and year
        !            89:  * are not produced by some IRIG devices and appear as zeros. Following
        !            90:  * these fields are the carrier amplitude (0-3000), codec gain (0-255),
        !            91:  * modulation index (0-1), time constant (4-10), carrier phase error
        !            92:  * +-.5) and carrier frequency error (PPM). The last field is the on-
        !            93:  * time timestamp in NTP format.
        !            94:  *
        !            95:  * The error flags are defined as follows in hex:
        !            96:  *
        !            97:  * x01 Low signal. The carrier amplitude is less than 100 units. This
        !            98:  *     is usually the result of no signal or wrong input port.
        !            99:  * x02 Frequency error. The codec frequency error is greater than 250
        !           100:  *     PPM. This may be due to wrong signal format or (rarely)
        !           101:  *     defective codec.
        !           102:  * x04 Modulation error. The IRIG modulation index is less than 0.5.
        !           103:  *     This is usually the result of an overdriven codec, wrong signal
        !           104:  *     format or wrong input port.
        !           105:  * x08 Frame synch error. The decoder frame does not match the IRIG
        !           106:  *     frame. This is usually the result of an overdriven codec, wrong
        !           107:  *     signal format or noisy IRIG signal. It may also be the result of
        !           108:  *     an IRIG signature check which indicates a failure of the IRIG
        !           109:  *     signal synchronization source.
        !           110:  * x10 Data bit error. The data bit length is out of tolerance. This is
        !           111:  *     usually the result of an overdriven codec, wrong signal format
        !           112:  *     or noisy IRIG signal.
        !           113:  * x20 Seconds numbering discrepancy. The decoder second does not match
        !           114:  *     the IRIG second. This is usually the result of an overdriven
        !           115:  *     codec, wrong signal format or noisy IRIG signal.
        !           116:  * x40 Codec error (overrun). The machine is not fast enough to keep up
        !           117:  *     with the codec.
        !           118:  * x80 Device status error (Spectracom).
        !           119:  *
        !           120:  *
        !           121:  * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
        !           122:  * within a few tens of microseconds relative to the IRIG-B signal.
        !           123:  * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
        !           124:  * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
        !           125:  * modulation.
        !           126:  *
        !           127:  * Unlike other drivers, which can have multiple instantiations, this
        !           128:  * one supports only one. It does not seem likely that more than one
        !           129:  * audio codec would be useful in a single machine. More than one would
        !           130:  * probably chew up too much CPU time anyway.
        !           131:  *
        !           132:  * Fudge factors
        !           133:  *
        !           134:  * Fudge flag4 causes the dubugging output described above to be
        !           135:  * recorded in the clockstats file. Fudge flag2 selects the audio input
        !           136:  * port, where 0 is the mike port (default) and 1 is the line-in port.
        !           137:  * It does not seem useful to select the compact disc player port. Fudge
        !           138:  * flag3 enables audio monitoring of the input signal. For this purpose,
        !           139:  * the monitor gain is set t a default value. Fudgetime2 is used as a
        !           140:  * frequency vernier for broken codec sample frequency.
        !           141:  *
        !           142:  * Alarm codes
        !           143:  *
        !           144:  * CEVNT_BADTIME       invalid date or time
        !           145:  * CEVNT_TIMEOUT       no IRIG data since last poll
        !           146:  */
        !           147: /*
        !           148:  * Interface definitions
        !           149:  */
        !           150: #define        DEVICE_AUDIO    "/dev/audio" /* audio device name */
        !           151: #define        PRECISION       (-17)   /* precision assumed (about 10 us) */
        !           152: #define        REFID           "IRIG"  /* reference ID */
        !           153: #define        DESCRIPTION     "Generic IRIG Audio Driver" /* WRU */
        !           154: #define        AUDIO_BUFSIZ    320     /* audio buffer size (40 ms) */
        !           155: #define SECOND         8000    /* nominal sample rate (Hz) */
        !           156: #define BAUD           80      /* samples per baud interval */
        !           157: #define OFFSET         128     /* companded sample offset */
        !           158: #define SIZE           256     /* decompanding table size */
        !           159: #define CYCLE          8       /* samples per bit */
        !           160: #define SUBFLD         10      /* bits per frame */
        !           161: #define FIELD          100     /* bits per second */
        !           162: #define MINTC          2       /* min PLL time constant */
        !           163: #define MAXTC          10      /* max PLL time constant max */
        !           164: #define        MAXAMP          3000.   /* maximum signal amplitude */
        !           165: #define        MINAMP          2000.   /* minimum signal amplitude */
        !           166: #define DRPOUT         100.    /* dropout signal amplitude */
        !           167: #define MODMIN         0.5     /* minimum modulation index */
        !           168: #define MAXFREQ                (250e-6 * SECOND) /* freq tolerance (.025%) */
        !           169: 
        !           170: /*
        !           171:  * The on-time synchronization point is the positive-going zero crossing
        !           172:  * of the first cycle of the second. The IIR baseband filter phase delay
        !           173:  * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
        !           174:  * due to the codec and other causes was determined by calibrating to a
        !           175:  * PPS signal from a GPS receiver.
        !           176:  *
        !           177:  * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
        !           178:  * within .02 ms short-term with .02 ms jitter. The processor load due
        !           179:  * to the driver is 0.51 percent.
        !           180:  */
        !           181: #define IRIG_B ((1.03 + 2.68) / 1000)  /* IRIG-B system delay (s) */
        !           182: #define IRIG_E ((3.47 + 2.68) / 1000)  /* IRIG-E system delay (s) */
        !           183: 
        !           184: /*
        !           185:  * Data bit definitions
        !           186:  */
        !           187: #define BIT0           0       /* zero */
        !           188: #define BIT1           1       /* one */
        !           189: #define BITP           2       /* position identifier */
        !           190: 
        !           191: /*
        !           192:  * Error flags
        !           193:  */
        !           194: #define IRIG_ERR_AMP   0x01    /* low carrier amplitude */
        !           195: #define IRIG_ERR_FREQ  0x02    /* frequency tolerance exceeded */
        !           196: #define IRIG_ERR_MOD   0x04    /* low modulation index */
        !           197: #define IRIG_ERR_SYNCH 0x08    /* frame synch error */
        !           198: #define IRIG_ERR_DECODE        0x10    /* frame decoding error */
        !           199: #define IRIG_ERR_CHECK 0x20    /* second numbering discrepancy */
        !           200: #define IRIG_ERR_ERROR 0x40    /* codec error (overrun) */
        !           201: #define IRIG_ERR_SIGERR        0x80    /* IRIG status error (Spectracom) */
        !           202: 
        !           203: static char    hexchar[] = "0123456789abcdef";
        !           204: 
        !           205: /*
        !           206:  * IRIG unit control structure
        !           207:  */
        !           208: struct irigunit {
        !           209:        u_char  timecode[2 * SUBFLD + 1]; /* timecode string */
        !           210:        l_fp    timestamp;      /* audio sample timestamp */
        !           211:        l_fp    tick;           /* audio sample increment */
        !           212:        l_fp    refstamp;       /* reference timestamp */
        !           213:        l_fp    chrstamp;       /* baud timestamp */
        !           214:        l_fp    prvstamp;       /* previous baud timestamp */
        !           215:        double  integ[BAUD];    /* baud integrator */
        !           216:        double  phase, freq;    /* logical clock phase and frequency */
        !           217:        double  zxing;          /* phase detector integrator */
        !           218:        double  yxing;          /* cycle phase */
        !           219:        double  exing;          /* envelope phase */
        !           220:        double  modndx;         /* modulation index */
        !           221:        double  irig_b;         /* IRIG-B signal amplitude */
        !           222:        double  irig_e;         /* IRIG-E signal amplitude */
        !           223:        int     errflg;         /* error flags */
        !           224:        /*
        !           225:         * Audio codec variables
        !           226:         */
        !           227:        double  comp[SIZE];     /* decompanding table */
        !           228:        double  signal;         /* peak signal for AGC */
        !           229:        int     port;           /* codec port */
        !           230:        int     gain;           /* codec gain */
        !           231:        int     mongain;        /* codec monitor gain */
        !           232:        int     seccnt;         /* second interval counter */
        !           233: 
        !           234:        /*
        !           235:         * RF variables
        !           236:         */
        !           237:        double  bpf[9];         /* IRIG-B filter shift register */
        !           238:        double  lpf[5];         /* IRIG-E filter shift register */
        !           239:        double  envmin, envmax; /* envelope min and max */
        !           240:        double  slice;          /* envelope slice level */
        !           241:        double  intmin, intmax; /* integrated envelope min and max */
        !           242:        double  maxsignal;      /* integrated peak amplitude */
        !           243:        double  noise;          /* integrated noise amplitude */
        !           244:        double  lastenv[CYCLE]; /* last cycle amplitudes */
        !           245:        double  lastint[CYCLE]; /* last integrated cycle amplitudes */
        !           246:        double  lastsig;        /* last carrier sample */
        !           247:        double  fdelay;         /* filter delay */
        !           248:        int     decim;          /* sample decimation factor */
        !           249:        int     envphase;       /* envelope phase */
        !           250:        int     envptr;         /* envelope phase pointer */
        !           251:        int     envsw;          /* envelope state */
        !           252:        int     envxing;        /* envelope slice crossing */
        !           253:        int     tc;             /* time constant */
        !           254:        int     tcount;         /* time constant counter */
        !           255:        int     badcnt;         /* decimation interval counter */
        !           256: 
        !           257:        /*
        !           258:         * Decoder variables
        !           259:         */
        !           260:        int     pulse;          /* cycle counter */
        !           261:        int     cycles;         /* carrier cycles */
        !           262:        int     dcycles;        /* data cycles */
        !           263:        int     lastbit;        /* last code element */
        !           264:        int     second;         /* previous second */
        !           265:        int     bitcnt;         /* bit count in frame */
        !           266:        int     frmcnt;         /* bit count in second */
        !           267:        int     xptr;           /* timecode pointer */
        !           268:        int     bits;           /* demodulated bits */
        !           269: };
        !           270: 
        !           271: /*
        !           272:  * Function prototypes
        !           273:  */
        !           274: static int     irig_start      (int, struct peer *);
        !           275: static void    irig_shutdown   (int, struct peer *);
        !           276: static void    irig_receive    (struct recvbuf *);
        !           277: static void    irig_poll       (int, struct peer *);
        !           278: 
        !           279: /*
        !           280:  * More function prototypes
        !           281:  */
        !           282: static void    irig_base       (struct peer *, double);
        !           283: static void    irig_rf         (struct peer *, double);
        !           284: static void    irig_baud       (struct peer *, int);
        !           285: static void    irig_decode     (struct peer *, int);
        !           286: static void    irig_gain       (struct peer *);
        !           287: 
        !           288: /*
        !           289:  * Transfer vector
        !           290:  */
        !           291: struct refclock refclock_irig = {
        !           292:        irig_start,             /* start up driver */
        !           293:        irig_shutdown,          /* shut down driver */
        !           294:        irig_poll,              /* transmit poll message */
        !           295:        noentry,                /* not used (old irig_control) */
        !           296:        noentry,                /* initialize driver (not used) */
        !           297:        noentry,                /* not used (old irig_buginfo) */
        !           298:        NOFLAGS                 /* not used */
        !           299: };
        !           300: 
        !           301: 
        !           302: /*
        !           303:  * irig_start - open the devices and initialize data for processing
        !           304:  */
        !           305: static int
        !           306: irig_start(
        !           307:        int     unit,           /* instance number (used for PCM) */
        !           308:        struct peer *peer       /* peer structure pointer */
        !           309:        )
        !           310: {
        !           311:        struct refclockproc *pp;
        !           312:        struct irigunit *up;
        !           313: 
        !           314:        /*
        !           315:         * Local variables
        !           316:         */
        !           317:        int     fd;             /* file descriptor */
        !           318:        int     i;              /* index */
        !           319:        double  step;           /* codec adjustment */
        !           320: 
        !           321:        /*
        !           322:         * Open audio device
        !           323:         */
        !           324:        fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
        !           325:        if (fd < 0)
        !           326:                return (0);
        !           327: #ifdef DEBUG
        !           328:        if (debug)
        !           329:                audio_show();
        !           330: #endif
        !           331: 
        !           332:        /*
        !           333:         * Allocate and initialize unit structure
        !           334:         */
        !           335:        up = emalloc(sizeof(*up));
        !           336:        memset(up, 0, sizeof(*up));
        !           337:        pp = peer->procptr;
        !           338:        pp->unitptr = (caddr_t)up;
        !           339:        pp->io.clock_recv = irig_receive;
        !           340:        pp->io.srcclock = (caddr_t)peer;
        !           341:        pp->io.datalen = 0;
        !           342:        pp->io.fd = fd;
        !           343:        if (!io_addclock(&pp->io)) {
        !           344:                close(fd);
        !           345:                pp->io.fd = -1;
        !           346:                free(up);
        !           347:                pp->unitptr = NULL;
        !           348:                return (0);
        !           349:        }
        !           350: 
        !           351:        /*
        !           352:         * Initialize miscellaneous variables
        !           353:         */
        !           354:        peer->precision = PRECISION;
        !           355:        pp->clockdesc = DESCRIPTION;
        !           356:        memcpy((char *)&pp->refid, REFID, 4);
        !           357:        up->tc = MINTC;
        !           358:        up->decim = 1;
        !           359:        up->gain = 127;
        !           360: 
        !           361:        /*
        !           362:         * The companded samples are encoded sign-magnitude. The table
        !           363:         * contains all the 256 values in the interest of speed.
        !           364:         */
        !           365:        up->comp[0] = up->comp[OFFSET] = 0.;
        !           366:        up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
        !           367:        up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
        !           368:        step = 2.;
        !           369:        for (i = 3; i < OFFSET; i++) {
        !           370:                up->comp[i] = up->comp[i - 1] + step;
        !           371:                up->comp[OFFSET + i] = -up->comp[i];
        !           372:                if (i % 16 == 0)
        !           373:                        step *= 2.;
        !           374:        }
        !           375:        DTOLFP(1. / SECOND, &up->tick);
        !           376:        return (1);
        !           377: }
        !           378: 
        !           379: 
        !           380: /*
        !           381:  * irig_shutdown - shut down the clock
        !           382:  */
        !           383: static void
        !           384: irig_shutdown(
        !           385:        int     unit,           /* instance number (not used) */
        !           386:        struct peer *peer       /* peer structure pointer */
        !           387:        )
        !           388: {
        !           389:        struct refclockproc *pp;
        !           390:        struct irigunit *up;
        !           391: 
        !           392:        pp = peer->procptr;
        !           393:        up = (struct irigunit *)pp->unitptr;
        !           394:        if (-1 != pp->io.fd)
        !           395:                io_closeclock(&pp->io);
        !           396:        if (NULL != up)
        !           397:                free(up);
        !           398: }
        !           399: 
        !           400: 
        !           401: /*
        !           402:  * irig_receive - receive data from the audio device
        !           403:  *
        !           404:  * This routine reads input samples and adjusts the logical clock to
        !           405:  * track the irig clock by dropping or duplicating codec samples.
        !           406:  */
        !           407: static void
        !           408: irig_receive(
        !           409:        struct recvbuf *rbufp   /* receive buffer structure pointer */
        !           410:        )
        !           411: {
        !           412:        struct peer *peer;
        !           413:        struct refclockproc *pp;
        !           414:        struct irigunit *up;
        !           415: 
        !           416:        /*
        !           417:         * Local variables
        !           418:         */
        !           419:        double  sample;         /* codec sample */
        !           420:        u_char  *dpt;           /* buffer pointer */
        !           421:        int     bufcnt;         /* buffer counter */
        !           422:        l_fp    ltemp;          /* l_fp temp */
        !           423: 
        !           424:        peer = (struct peer *)rbufp->recv_srcclock;
        !           425:        pp = peer->procptr;
        !           426:        up = (struct irigunit *)pp->unitptr;
        !           427: 
        !           428:        /*
        !           429:         * Main loop - read until there ain't no more. Note codec
        !           430:         * samples are bit-inverted.
        !           431:         */
        !           432:        DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
        !           433:        L_SUB(&rbufp->recv_time, &ltemp);
        !           434:        up->timestamp = rbufp->recv_time;
        !           435:        dpt = rbufp->recv_buffer;
        !           436:        for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
        !           437:                sample = up->comp[~*dpt++ & 0xff];
        !           438: 
        !           439:                /*
        !           440:                 * Variable frequency oscillator. The codec oscillator
        !           441:                 * runs at the nominal rate of 8000 samples per second,
        !           442:                 * or 125 us per sample. A frequency change of one unit
        !           443:                 * results in either duplicating or deleting one sample
        !           444:                 * per second, which results in a frequency change of
        !           445:                 * 125 PPM.
        !           446:                 */
        !           447:                up->phase += (up->freq + clock_codec) / SECOND;
        !           448:                up->phase += pp->fudgetime2 / 1e6;
        !           449:                if (up->phase >= .5) {
        !           450:                        up->phase -= 1.;
        !           451:                } else if (up->phase < -.5) {
        !           452:                        up->phase += 1.;
        !           453:                        irig_rf(peer, sample);
        !           454:                        irig_rf(peer, sample);
        !           455:                } else {
        !           456:                        irig_rf(peer, sample);
        !           457:                }
        !           458:                L_ADD(&up->timestamp, &up->tick);
        !           459:                sample = fabs(sample);
        !           460:                if (sample > up->signal)
        !           461:                        up->signal = sample;
        !           462:                        up->signal += (sample - up->signal) /
        !           463:                            1000;
        !           464: 
        !           465:                /*
        !           466:                 * Once each second, determine the IRIG format and gain.
        !           467:                 */
        !           468:                up->seccnt = (up->seccnt + 1) % SECOND;
        !           469:                if (up->seccnt == 0) {
        !           470:                        if (up->irig_b > up->irig_e) {
        !           471:                                up->decim = 1;
        !           472:                                up->fdelay = IRIG_B;
        !           473:                        } else {
        !           474:                                up->decim = 10;
        !           475:                                up->fdelay = IRIG_E;
        !           476:                        }
        !           477:                        up->irig_b = up->irig_e = 0;
        !           478:                        irig_gain(peer);
        !           479: 
        !           480:                }
        !           481:        }
        !           482: 
        !           483:        /*
        !           484:         * Set the input port and monitor gain for the next buffer.
        !           485:         */
        !           486:        if (pp->sloppyclockflag & CLK_FLAG2)
        !           487:                up->port = 2;
        !           488:        else
        !           489:                up->port = 1;
        !           490:        if (pp->sloppyclockflag & CLK_FLAG3)
        !           491:                up->mongain = MONGAIN;
        !           492:        else
        !           493:                up->mongain = 0;
        !           494: }
        !           495: 
        !           496: 
        !           497: /*
        !           498:  * irig_rf - RF processing
        !           499:  *
        !           500:  * This routine filters the RF signal using a bandass filter for IRIG-B
        !           501:  * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
        !           502:  * decimated by a factor of ten. Note that the codec filters function as
        !           503:  * roofing filters to attenuate both the high and low ends of the
        !           504:  * passband. IIR filter coefficients were determined using Matlab Signal
        !           505:  * Processing Toolkit.
        !           506:  */
        !           507: static void
        !           508: irig_rf(
        !           509:        struct peer *peer,      /* peer structure pointer */
        !           510:        double  sample          /* current signal sample */
        !           511:        )
        !           512: {
        !           513:        struct refclockproc *pp;
        !           514:        struct irigunit *up;
        !           515: 
        !           516:        /*
        !           517:         * Local variables
        !           518:         */
        !           519:        double  irig_b, irig_e; /* irig filter outputs */
        !           520: 
        !           521:        pp = peer->procptr;
        !           522:        up = (struct irigunit *)pp->unitptr;
        !           523: 
        !           524:        /*
        !           525:         * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
        !           526:         * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
        !           527:         * phase delay 1.03 ms.
        !           528:         */
        !           529:        irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
        !           530:        irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
        !           531:        irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
        !           532:        irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
        !           533:        irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
        !           534:        irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
        !           535:        irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
        !           536:        irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
        !           537:        up->bpf[0] = sample - irig_b;
        !           538:        irig_b = up->bpf[0] * 4.952157e-003
        !           539:            + up->bpf[1] * -2.055878e-002
        !           540:            + up->bpf[2] * 4.401413e-002
        !           541:            + up->bpf[3] * -6.558851e-002
        !           542:            + up->bpf[4] * 7.462108e-002
        !           543:            + up->bpf[5] * -6.558851e-002
        !           544:            + up->bpf[6] * 4.401413e-002
        !           545:            + up->bpf[7] * -2.055878e-002
        !           546:            + up->bpf[8] * 4.952157e-003;
        !           547:        up->irig_b += irig_b * irig_b;
        !           548: 
        !           549:        /*
        !           550:         * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
        !           551:         * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
        !           552:         * 3.47 ms.
        !           553:         */
        !           554:        irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
        !           555:        irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
        !           556:        irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
        !           557:        irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
        !           558:        up->lpf[0] = sample - irig_e;
        !           559:        irig_e = up->lpf[0] * 3.215696e-003
        !           560:            + up->lpf[1] * -1.174951e-002
        !           561:            + up->lpf[2] * 1.712074e-002
        !           562:            + up->lpf[3] * -1.174951e-002
        !           563:            + up->lpf[4] * 3.215696e-003;
        !           564:        up->irig_e += irig_e * irig_e;
        !           565: 
        !           566:        /*
        !           567:         * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
        !           568:         */
        !           569:        up->badcnt = (up->badcnt + 1) % up->decim;
        !           570:        if (up->badcnt == 0) {
        !           571:                if (up->decim == 1)
        !           572:                        irig_base(peer, irig_b);
        !           573:                else
        !           574:                        irig_base(peer, irig_e);
        !           575:        }
        !           576: }
        !           577: 
        !           578: /*
        !           579:  * irig_base - baseband processing
        !           580:  *
        !           581:  * This routine processes the baseband signal and demodulates the AM
        !           582:  * carrier using a synchronous detector. It then synchronizes to the
        !           583:  * data frame at the baud rate and decodes the width-modulated data
        !           584:  * pulses.
        !           585:  */
        !           586: static void
        !           587: irig_base(
        !           588:        struct peer *peer,      /* peer structure pointer */
        !           589:        double  sample          /* current signal sample */
        !           590:        )
        !           591: {
        !           592:        struct refclockproc *pp;
        !           593:        struct irigunit *up;
        !           594: 
        !           595:        /*
        !           596:         * Local variables
        !           597:         */
        !           598:        double  lope;           /* integrator output */
        !           599:        double  env;            /* envelope detector output */
        !           600:        double  dtemp;
        !           601:        int     carphase;       /* carrier phase */
        !           602: 
        !           603:        pp = peer->procptr;
        !           604:        up = (struct irigunit *)pp->unitptr;
        !           605: 
        !           606:        /*
        !           607:         * Synchronous baud integrator. Corresponding samples of current
        !           608:         * and past baud intervals are integrated to refine the envelope
        !           609:         * amplitude and phase estimate. We keep one cycle (1 ms) of the
        !           610:         * raw data and one baud (10 ms) of the integrated data.
        !           611:         */
        !           612:        up->envphase = (up->envphase + 1) % BAUD;
        !           613:        up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
        !           614:            (5 * up->tc);
        !           615:        lope = up->integ[up->envphase];
        !           616:        carphase = up->envphase % CYCLE;
        !           617:        up->lastenv[carphase] = sample;
        !           618:        up->lastint[carphase] = lope;
        !           619: 
        !           620:        /*
        !           621:         * Phase detector. Find the negative-going zero crossing
        !           622:         * relative to sample 4 in the 8-sample sycle. A phase change of
        !           623:         * 360 degrees produces an output change of one unit.
        !           624:         */ 
        !           625:        if (up->lastsig > 0 && lope <= 0)
        !           626:                up->zxing += (double)(carphase - 4) / CYCLE;
        !           627:        up->lastsig = lope;
        !           628: 
        !           629:        /*
        !           630:         * End of the baud. Update signal/noise estimates and PLL
        !           631:         * phase, frequency and time constant.
        !           632:         */
        !           633:        if (up->envphase == 0) {
        !           634:                up->maxsignal = up->intmax; up->noise = up->intmin;
        !           635:                up->intmin = 1e6; up->intmax = -1e6;
        !           636:                if (up->maxsignal < DRPOUT)
        !           637:                        up->errflg |= IRIG_ERR_AMP;
        !           638:                if (up->maxsignal > 0)
        !           639:                        up->modndx = (up->maxsignal - up->noise) /
        !           640:                            up->maxsignal;
        !           641:                else
        !           642:                        up->modndx = 0;
        !           643:                if (up->modndx < MODMIN)
        !           644:                        up->errflg |= IRIG_ERR_MOD;
        !           645:                if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
        !           646:                   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
        !           647:                        up->tc = MINTC;
        !           648:                        up->tcount = 0;
        !           649:                }
        !           650: 
        !           651:                /*
        !           652:                 * Update PLL phase and frequency. The PLL time constant
        !           653:                 * is set initially to stabilize the frequency within a
        !           654:                 * minute or two, then increases to the maximum. The
        !           655:                 * frequency is clamped so that the PLL capture range
        !           656:                 * cannot be exceeded.
        !           657:                 */
        !           658:                dtemp = up->zxing * up->decim / BAUD;
        !           659:                up->yxing = dtemp;
        !           660:                up->zxing = 0.;
        !           661:                up->phase += dtemp / up->tc;
        !           662:                up->freq += dtemp / (4. * up->tc * up->tc);
        !           663:                if (up->freq > MAXFREQ) {
        !           664:                        up->freq = MAXFREQ;
        !           665:                        up->errflg |= IRIG_ERR_FREQ;
        !           666:                } else if (up->freq < -MAXFREQ) {
        !           667:                        up->freq = -MAXFREQ;
        !           668:                        up->errflg |= IRIG_ERR_FREQ;
        !           669:                }
        !           670:        }
        !           671: 
        !           672:        /*
        !           673:         * Synchronous demodulator. There are eight samples in the cycle
        !           674:         * and ten cycles in the baud. Since the PLL has aligned the
        !           675:         * negative-going zero crossing at sample 4, the maximum
        !           676:         * amplitude is at sample 2 and minimum at sample 6. The
        !           677:         * beginning of the data pulse is determined from the integrated
        !           678:         * samples, while the end of the pulse is determined from the
        !           679:         * raw samples. The raw data bits are demodulated relative to
        !           680:         * the slice level and left-shifted in the decoding register.
        !           681:         */
        !           682:        if (carphase != 7)
        !           683:                return;
        !           684: 
        !           685:        lope = (up->lastint[2] - up->lastint[6]) / 2.;
        !           686:        if (lope > up->intmax)
        !           687:                up->intmax = lope;
        !           688:        if (lope < up->intmin)
        !           689:                up->intmin = lope;
        !           690: 
        !           691:        /*
        !           692:         * Pulse code demodulator and reference timestamp. The decoder
        !           693:         * looks for a sequence of ten bits; the first two bits must be
        !           694:         * one, the last two bits must be zero. Frame synch is asserted
        !           695:         * when three correct frames have been found.
        !           696:         */
        !           697:        up->pulse = (up->pulse + 1) % 10;
        !           698:        up->cycles <<= 1;
        !           699:        if (lope >= (up->maxsignal + up->noise) / 2.)
        !           700:                up->cycles |= 1;
        !           701:        if ((up->cycles & 0x303c0f03) == 0x300c0300) {
        !           702:                if (up->pulse != 0)
        !           703:                        up->errflg |= IRIG_ERR_SYNCH;
        !           704:                up->pulse = 0;
        !           705:        }
        !           706: 
        !           707:        /*
        !           708:         * Assemble the baud and max/min to get the slice level for the
        !           709:         * next baud. The slice level is based on the maximum over the
        !           710:         * first two bits and the minimum over the last two bits, with
        !           711:         * the slice level halfway between the maximum and minimum.
        !           712:         */
        !           713:        env = (up->lastenv[2] - up->lastenv[6]) / 2.;
        !           714:        up->dcycles <<= 1;
        !           715:        if (env >= up->slice)
        !           716:                up->dcycles |= 1;
        !           717:        switch(up->pulse) {
        !           718: 
        !           719:        case 0:
        !           720:                irig_baud(peer, up->dcycles);
        !           721:                if (env < up->envmin)
        !           722:                        up->envmin = env;
        !           723:                up->slice = (up->envmax + up->envmin) / 2;
        !           724:                up->envmin = 1e6; up->envmax = -1e6;
        !           725:                break;
        !           726: 
        !           727:        case 1:
        !           728:                up->envmax = env;
        !           729:                break;
        !           730: 
        !           731:        case 2:
        !           732:                if (env > up->envmax)
        !           733:                        up->envmax = env;
        !           734:                break;
        !           735: 
        !           736:        case 9:
        !           737:                up->envmin = env;
        !           738:                break;
        !           739:        }
        !           740: }
        !           741: 
        !           742: /*
        !           743:  * irig_baud - update the PLL and decode the pulse-width signal
        !           744:  */
        !           745: static void
        !           746: irig_baud(
        !           747:        struct peer *peer,      /* peer structure pointer */
        !           748:        int     bits            /* decoded bits */
        !           749:        )
        !           750: {
        !           751:        struct refclockproc *pp;
        !           752:        struct irigunit *up;
        !           753:        double  dtemp;
        !           754:        l_fp    ltemp;
        !           755: 
        !           756:         pp = peer->procptr;
        !           757:        up = (struct irigunit *)pp->unitptr;
        !           758: 
        !           759:        /*
        !           760:         * The PLL time constant starts out small, in order to
        !           761:         * sustain a frequency tolerance of 250 PPM. It
        !           762:         * gradually increases as the loop settles down. Note
        !           763:         * that small wiggles are not believed, unless they
        !           764:         * persist for lots of samples.
        !           765:         */
        !           766:        up->exing = -up->yxing;
        !           767:        if (fabs(up->envxing - up->envphase) <= 1) {
        !           768:                up->tcount++;
        !           769:                if (up->tcount > 20 * up->tc) {
        !           770:                        up->tc++;
        !           771:                        if (up->tc > MAXTC)
        !           772:                                up->tc = MAXTC;
        !           773:                        up->tcount = 0;
        !           774:                        up->envxing = up->envphase;
        !           775:                } else {
        !           776:                        up->exing -= up->envxing - up->envphase;
        !           777:                }
        !           778:        } else {
        !           779:                up->tcount = 0;
        !           780:                up->envxing = up->envphase;
        !           781:        }
        !           782: 
        !           783:        /*
        !           784:         * Strike the baud timestamp as the positive zero crossing of
        !           785:         * the first bit, accounting for the codec delay and filter
        !           786:         * delay.
        !           787:         */
        !           788:        up->prvstamp = up->chrstamp;
        !           789:        dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
        !           790:        DTOLFP(dtemp, &ltemp);
        !           791:        up->chrstamp = up->timestamp;
        !           792:        L_SUB(&up->chrstamp, &ltemp);
        !           793: 
        !           794:        /*
        !           795:         * The data bits are collected in ten-bit bauds. The first two
        !           796:         * bits are not used. The resulting patterns represent runs of
        !           797:         * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
        !           798:         * 8-bit run represents a soft error and is treated as 0.
        !           799:         */
        !           800:        switch (up->dcycles & 0xff) {
        !           801: 
        !           802:        case 0x00:              /* 0-1 bits (0) */
        !           803:        case 0x80:
        !           804:                irig_decode(peer, BIT0);
        !           805:                break;
        !           806: 
        !           807:        case 0xc0:              /* 2-4 bits (1) */
        !           808:        case 0xe0:
        !           809:        case 0xf0:
        !           810:                irig_decode(peer, BIT1);
        !           811:                break;
        !           812: 
        !           813:        case 0xf8:              /* (5-7 bits (PI) */
        !           814:        case 0xfc:
        !           815:        case 0xfe:
        !           816:                irig_decode(peer, BITP);
        !           817:                break;
        !           818: 
        !           819:        default:                /* 8 bits (error) */
        !           820:                irig_decode(peer, BIT0);
        !           821:                up->errflg |= IRIG_ERR_DECODE;
        !           822:        }
        !           823: }
        !           824: 
        !           825: 
        !           826: /*
        !           827:  * irig_decode - decode the data
        !           828:  *
        !           829:  * This routine assembles bauds into digits, digits into frames and
        !           830:  * frames into the timecode fields. Bits can have values of zero, one
        !           831:  * or position identifier. There are four bits per digit, ten digits per
        !           832:  * frame and ten frames per second.
        !           833:  */
        !           834: static void
        !           835: irig_decode(
        !           836:        struct  peer *peer,     /* peer structure pointer */
        !           837:        int     bit             /* data bit (0, 1 or 2) */
        !           838:        )
        !           839: {
        !           840:        struct refclockproc *pp;
        !           841:        struct irigunit *up;
        !           842: 
        !           843:        /*
        !           844:         * Local variables
        !           845:         */
        !           846:        int     syncdig;        /* sync digit (Spectracom) */
        !           847:        char    sbs[6 + 1];     /* binary seconds since 0h */
        !           848:        char    spare[2 + 1];   /* mulligan digits */
        !           849:        int     temp;
        !           850: 
        !           851:        pp = peer->procptr;
        !           852:        up = (struct irigunit *)pp->unitptr;
        !           853: 
        !           854:        /*
        !           855:         * Assemble frame bits.
        !           856:         */
        !           857:        up->bits >>= 1;
        !           858:        if (bit == BIT1) {
        !           859:                up->bits |= 0x200;
        !           860:        } else if (bit == BITP && up->lastbit == BITP) {
        !           861: 
        !           862:                /*
        !           863:                 * Frame sync - two adjacent position identifiers, which
        !           864:                 * mark the beginning of the second. The reference time
        !           865:                 * is the beginning of the second position identifier,
        !           866:                 * so copy the character timestamp to the reference
        !           867:                 * timestamp.
        !           868:                 */
        !           869:                if (up->frmcnt != 1)
        !           870:                        up->errflg |= IRIG_ERR_SYNCH;
        !           871:                up->frmcnt = 1;
        !           872:                up->refstamp = up->prvstamp;
        !           873:        }
        !           874:        up->lastbit = bit;
        !           875:        if (up->frmcnt % SUBFLD == 0) {
        !           876: 
        !           877:                /*
        !           878:                 * End of frame. Encode two hexadecimal digits in
        !           879:                 * little-endian timecode field. Note frame 1 is shifted
        !           880:                 * right one bit to account for the marker PI.
        !           881:                 */
        !           882:                temp = up->bits;
        !           883:                if (up->frmcnt == 10)
        !           884:                        temp >>= 1;
        !           885:                if (up->xptr >= 2) {
        !           886:                        up->timecode[--up->xptr] = hexchar[temp & 0xf];
        !           887:                        up->timecode[--up->xptr] = hexchar[(temp >> 5) &
        !           888:                            0xf];
        !           889:                }
        !           890:                if (up->frmcnt == 0) {
        !           891: 
        !           892:                        /*
        !           893:                         * End of second. Decode the timecode and wind
        !           894:                         * the clock. Not all IRIG generators have the
        !           895:                         * year; if so, it is nonzero after year 2000.
        !           896:                         * Not all have the hardware status bit; if so,
        !           897:                         * it is lit when the source is okay and dim
        !           898:                         * when bad. We watch this only if the year is
        !           899:                         * nonzero. Not all are configured for signature
        !           900:                         * control. If so, all BCD digits are set to
        !           901:                         * zero if the source is bad. In this case the
        !           902:                         * refclock_process() will reject the timecode
        !           903:                         * as invalid.
        !           904:                         */
        !           905:                        up->xptr = 2 * SUBFLD;
        !           906:                        if (sscanf((char *)up->timecode,
        !           907:                           "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
        !           908:                            &syncdig, spare, &pp->day, &pp->hour,
        !           909:                            &pp->minute, &pp->second) != 8)
        !           910:                                pp->leap = LEAP_NOTINSYNC;
        !           911:                        else
        !           912:                                pp->leap = LEAP_NOWARNING;
        !           913:                        up->second = (up->second + up->decim) % 60;
        !           914: 
        !           915:                        /*
        !           916:                         * Raise an alarm if the day field is zero,
        !           917:                         * which happens when signature control is
        !           918:                         * enabled and the device has lost
        !           919:                         * synchronization. Raise an alarm if the year
        !           920:                         * field is nonzero and the sync indicator is
        !           921:                         * zero, which happens when a Spectracom radio
        !           922:                         * has lost synchronization. Raise an alarm if
        !           923:                         * the expected second does not agree with the
        !           924:                         * decoded second, which happens with a garbled
        !           925:                         * IRIG signal. We are very particular.
        !           926:                         */
        !           927:                        if (pp->day == 0 || (pp->year != 0 && syncdig ==
        !           928:                            0))
        !           929:                                up->errflg |= IRIG_ERR_SIGERR;
        !           930:                        if (pp->second != up->second)
        !           931:                                up->errflg |= IRIG_ERR_CHECK;
        !           932:                        up->second = pp->second;
        !           933: 
        !           934:                        /*
        !           935:                         * Wind the clock only if there are no errors
        !           936:                         * and the time constant has reached the
        !           937:                         * maximum.
        !           938:                         */
        !           939:                        if (up->errflg == 0 && up->tc == MAXTC) {
        !           940:                                pp->lastref = pp->lastrec;
        !           941:                                pp->lastrec = up->refstamp;
        !           942:                                if (!refclock_process(pp))
        !           943:                                        refclock_report(peer,
        !           944:                                            CEVNT_BADTIME);
        !           945:                        }
        !           946:                        snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
        !           947:                            "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
        !           948:                            up->errflg, pp->year, pp->day,
        !           949:                            pp->hour, pp->minute, pp->second,
        !           950:                            up->maxsignal, up->gain, up->modndx,
        !           951:                            up->tc, up->exing * 1e6 / SECOND, up->freq *
        !           952:                            1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
        !           953:                        pp->lencode = strlen(pp->a_lastcode);
        !           954:                        up->errflg = 0;
        !           955:                        if (pp->sloppyclockflag & CLK_FLAG4) {
        !           956:                                record_clock_stats(&peer->srcadr,
        !           957:                                    pp->a_lastcode);
        !           958: #ifdef DEBUG
        !           959:                                if (debug)
        !           960:                                        printf("irig %s\n",
        !           961:                                            pp->a_lastcode);
        !           962: #endif /* DEBUG */
        !           963:                        }
        !           964:                }
        !           965:        }
        !           966:        up->frmcnt = (up->frmcnt + 1) % FIELD;
        !           967: }
        !           968: 
        !           969: 
        !           970: /*
        !           971:  * irig_poll - called by the transmit procedure
        !           972:  *
        !           973:  * This routine sweeps up the timecode updates since the last poll. For
        !           974:  * IRIG-B there should be at least 60 updates; for IRIG-E there should
        !           975:  * be at least 6. If nothing is heard, a timeout event is declared. 
        !           976:  */
        !           977: static void
        !           978: irig_poll(
        !           979:        int     unit,           /* instance number (not used) */
        !           980:        struct peer *peer       /* peer structure pointer */
        !           981:        )
        !           982: {
        !           983:        struct refclockproc *pp;
        !           984:        struct irigunit *up;
        !           985: 
        !           986:        pp = peer->procptr;
        !           987:        up = (struct irigunit *)pp->unitptr;
        !           988: 
        !           989:        if (pp->coderecv == pp->codeproc) {
        !           990:                refclock_report(peer, CEVNT_TIMEOUT);
        !           991:                return;
        !           992: 
        !           993:        }
        !           994:        refclock_receive(peer);
        !           995:        if (!(pp->sloppyclockflag & CLK_FLAG4)) {
        !           996:                record_clock_stats(&peer->srcadr, pp->a_lastcode);
        !           997: #ifdef DEBUG
        !           998:                if (debug)
        !           999:                        printf("irig %s\n", pp->a_lastcode);
        !          1000: #endif /* DEBUG */
        !          1001:        }
        !          1002:        pp->polls++;
        !          1003:        
        !          1004: }
        !          1005: 
        !          1006: 
        !          1007: /*
        !          1008:  * irig_gain - adjust codec gain
        !          1009:  *
        !          1010:  * This routine is called at the end of each second. It uses the AGC to
        !          1011:  * bradket the maximum signal level between MINAMP and MAXAMP to avoid
        !          1012:  * hunting. The routine also jiggles the input port and selectively
        !          1013:  * mutes the monitor.
        !          1014:  */
        !          1015: static void
        !          1016: irig_gain(
        !          1017:        struct peer *peer       /* peer structure pointer */
        !          1018:        )
        !          1019: {
        !          1020:        struct refclockproc *pp;
        !          1021:        struct irigunit *up;
        !          1022: 
        !          1023:        pp = peer->procptr;
        !          1024:        up = (struct irigunit *)pp->unitptr;
        !          1025: 
        !          1026:        /*
        !          1027:         * Apparently, the codec uses only the high order bits of the
        !          1028:         * gain control field. Thus, it may take awhile for changes to
        !          1029:         * wiggle the hardware bits.
        !          1030:         */
        !          1031:        if (up->maxsignal < MINAMP) {
        !          1032:                up->gain += 4;
        !          1033:                if (up->gain > MAXGAIN)
        !          1034:                        up->gain = MAXGAIN;
        !          1035:        } else if (up->maxsignal > MAXAMP) {
        !          1036:                up->gain -= 4;
        !          1037:                if (up->gain < 0)
        !          1038:                        up->gain = 0;
        !          1039:        }
        !          1040:        audio_gain(up->gain, up->mongain, up->port);
        !          1041: }
        !          1042: 
        !          1043: 
        !          1044: #else
        !          1045: int refclock_irig_bs;
        !          1046: #endif /* REFCLOCK */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>