Annotation of embedaddon/ntp/ntpd/refclock_irig.c, revision 1.1.1.1

1.1       misho       1: /*
                      2:  * refclock_irig - audio IRIG-B/E demodulator/decoder
                      3:  */
                      4: #ifdef HAVE_CONFIG_H
                      5: #include <config.h>
                      6: #endif
                      7: 
                      8: #if defined(REFCLOCK) && defined(CLOCK_IRIG)
                      9: 
                     10: #include "ntpd.h"
                     11: #include "ntp_io.h"
                     12: #include "ntp_refclock.h"
                     13: #include "ntp_calendar.h"
                     14: #include "ntp_stdlib.h"
                     15: 
                     16: #include <stdio.h>
                     17: #include <ctype.h>
                     18: #include <math.h>
                     19: #ifdef HAVE_SYS_IOCTL_H
                     20: #include <sys/ioctl.h>
                     21: #endif /* HAVE_SYS_IOCTL_H */
                     22: 
                     23: #include "audio.h"
                     24: 
                     25: /*
                     26:  * Audio IRIG-B/E demodulator/decoder
                     27:  *
                     28:  * This driver synchronizes the computer time using data encoded in
                     29:  * IRIG-B/E signals commonly produced by GPS receivers and other timing
                     30:  * devices. The IRIG signal is an amplitude-modulated carrier with
                     31:  * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
                     32:  * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
                     33:  * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
                     34:  & format is in use.
                     35:  *
                     36:  * The driver requires an audio codec or sound card with sampling rate 8
                     37:  * kHz and mu-law companding. This is the same standard as used by the
                     38:  * telephone industry and is supported by most hardware and operating
                     39:  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
                     40:  * implementation, only one audio driver and codec can be supported on a
                     41:  * single machine.
                     42:  *
                     43:  * The program processes 8000-Hz mu-law companded samples using separate
                     44:  * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
                     45:  * detector and automatic threshold corrector. Cycle crossings relative
                     46:  * to the corrected slice level determine the width of each pulse and
                     47:  * its value - zero, one or position identifier.
                     48:  *
                     49:  * The data encode 20 BCD digits which determine the second, minute,
                     50:  * hour and day of the year and sometimes the year and synchronization
                     51:  * condition. The comb filter exponentially averages the corresponding
                     52:  * samples of successive baud intervals in order to reliably identify
                     53:  * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
                     54:  * additional integration and interpolation to accurately determine the
                     55:  * zero crossing of that cycle, which determines the reference
                     56:  * timestamp. A pulse-width discriminator demodulates the data pulses,
                     57:  * which are then encoded as the BCD digits of the timecode.
                     58:  *
                     59:  * The timecode and reference timestamp are updated once each second
                     60:  * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
                     61:  * saved for later processing. At poll intervals of 64 s, the saved
                     62:  * samples are processed by a trimmed-mean filter and used to update the
                     63:  * system clock.
                     64:  *
                     65:  * An automatic gain control feature provides protection against
                     66:  * overdriven or underdriven input signal amplitudes. It is designed to
                     67:  * maintain adequate demodulator signal amplitude while avoiding
                     68:  * occasional noise spikes. In order to assure reliable capture, the
                     69:  * decompanded input signal amplitude must be greater than 100 units and
                     70:  * the codec sample frequency error less than 250 PPM (.025 percent).
                     71:  *
                     72:  * Monitor Data
                     73:  *
                     74:  * The timecode format used for debugging and data recording includes
                     75:  * data helpful in diagnosing problems with the IRIG signal and codec
                     76:  * connections. The driver produces one line for each timecode in the
                     77:  * following format:
                     78:  *
                     79:  * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
                     80:  *
                     81:  * If clockstats is enabled, the most recent line is written to the
                     82:  * clockstats file every 64 s. If verbose recording is enabled (fudge
                     83:  * flag 4) each line is written as generated.
                     84:  *
                     85:  * The first field containes the error flags in hex, where the hex bits
                     86:  * are interpreted as below. This is followed by the year of century,
                     87:  * day of year and time of day. Note that the time of day is for the
                     88:  * previous minute, not the current time. The status indicator and year
                     89:  * are not produced by some IRIG devices and appear as zeros. Following
                     90:  * these fields are the carrier amplitude (0-3000), codec gain (0-255),
                     91:  * modulation index (0-1), time constant (4-10), carrier phase error
                     92:  * +-.5) and carrier frequency error (PPM). The last field is the on-
                     93:  * time timestamp in NTP format.
                     94:  *
                     95:  * The error flags are defined as follows in hex:
                     96:  *
                     97:  * x01 Low signal. The carrier amplitude is less than 100 units. This
                     98:  *     is usually the result of no signal or wrong input port.
                     99:  * x02 Frequency error. The codec frequency error is greater than 250
                    100:  *     PPM. This may be due to wrong signal format or (rarely)
                    101:  *     defective codec.
                    102:  * x04 Modulation error. The IRIG modulation index is less than 0.5.
                    103:  *     This is usually the result of an overdriven codec, wrong signal
                    104:  *     format or wrong input port.
                    105:  * x08 Frame synch error. The decoder frame does not match the IRIG
                    106:  *     frame. This is usually the result of an overdriven codec, wrong
                    107:  *     signal format or noisy IRIG signal. It may also be the result of
                    108:  *     an IRIG signature check which indicates a failure of the IRIG
                    109:  *     signal synchronization source.
                    110:  * x10 Data bit error. The data bit length is out of tolerance. This is
                    111:  *     usually the result of an overdriven codec, wrong signal format
                    112:  *     or noisy IRIG signal.
                    113:  * x20 Seconds numbering discrepancy. The decoder second does not match
                    114:  *     the IRIG second. This is usually the result of an overdriven
                    115:  *     codec, wrong signal format or noisy IRIG signal.
                    116:  * x40 Codec error (overrun). The machine is not fast enough to keep up
                    117:  *     with the codec.
                    118:  * x80 Device status error (Spectracom).
                    119:  *
                    120:  *
                    121:  * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
                    122:  * within a few tens of microseconds relative to the IRIG-B signal.
                    123:  * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
                    124:  * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
                    125:  * modulation.
                    126:  *
                    127:  * Unlike other drivers, which can have multiple instantiations, this
                    128:  * one supports only one. It does not seem likely that more than one
                    129:  * audio codec would be useful in a single machine. More than one would
                    130:  * probably chew up too much CPU time anyway.
                    131:  *
                    132:  * Fudge factors
                    133:  *
                    134:  * Fudge flag4 causes the dubugging output described above to be
                    135:  * recorded in the clockstats file. Fudge flag2 selects the audio input
                    136:  * port, where 0 is the mike port (default) and 1 is the line-in port.
                    137:  * It does not seem useful to select the compact disc player port. Fudge
                    138:  * flag3 enables audio monitoring of the input signal. For this purpose,
                    139:  * the monitor gain is set t a default value. Fudgetime2 is used as a
                    140:  * frequency vernier for broken codec sample frequency.
                    141:  *
                    142:  * Alarm codes
                    143:  *
                    144:  * CEVNT_BADTIME       invalid date or time
                    145:  * CEVNT_TIMEOUT       no IRIG data since last poll
                    146:  */
                    147: /*
                    148:  * Interface definitions
                    149:  */
                    150: #define        DEVICE_AUDIO    "/dev/audio" /* audio device name */
                    151: #define        PRECISION       (-17)   /* precision assumed (about 10 us) */
                    152: #define        REFID           "IRIG"  /* reference ID */
                    153: #define        DESCRIPTION     "Generic IRIG Audio Driver" /* WRU */
                    154: #define        AUDIO_BUFSIZ    320     /* audio buffer size (40 ms) */
                    155: #define SECOND         8000    /* nominal sample rate (Hz) */
                    156: #define BAUD           80      /* samples per baud interval */
                    157: #define OFFSET         128     /* companded sample offset */
                    158: #define SIZE           256     /* decompanding table size */
                    159: #define CYCLE          8       /* samples per bit */
                    160: #define SUBFLD         10      /* bits per frame */
                    161: #define FIELD          100     /* bits per second */
                    162: #define MINTC          2       /* min PLL time constant */
                    163: #define MAXTC          10      /* max PLL time constant max */
                    164: #define        MAXAMP          3000.   /* maximum signal amplitude */
                    165: #define        MINAMP          2000.   /* minimum signal amplitude */
                    166: #define DRPOUT         100.    /* dropout signal amplitude */
                    167: #define MODMIN         0.5     /* minimum modulation index */
                    168: #define MAXFREQ                (250e-6 * SECOND) /* freq tolerance (.025%) */
                    169: 
                    170: /*
                    171:  * The on-time synchronization point is the positive-going zero crossing
                    172:  * of the first cycle of the second. The IIR baseband filter phase delay
                    173:  * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
                    174:  * due to the codec and other causes was determined by calibrating to a
                    175:  * PPS signal from a GPS receiver.
                    176:  *
                    177:  * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
                    178:  * within .02 ms short-term with .02 ms jitter. The processor load due
                    179:  * to the driver is 0.51 percent.
                    180:  */
                    181: #define IRIG_B ((1.03 + 2.68) / 1000)  /* IRIG-B system delay (s) */
                    182: #define IRIG_E ((3.47 + 2.68) / 1000)  /* IRIG-E system delay (s) */
                    183: 
                    184: /*
                    185:  * Data bit definitions
                    186:  */
                    187: #define BIT0           0       /* zero */
                    188: #define BIT1           1       /* one */
                    189: #define BITP           2       /* position identifier */
                    190: 
                    191: /*
                    192:  * Error flags
                    193:  */
                    194: #define IRIG_ERR_AMP   0x01    /* low carrier amplitude */
                    195: #define IRIG_ERR_FREQ  0x02    /* frequency tolerance exceeded */
                    196: #define IRIG_ERR_MOD   0x04    /* low modulation index */
                    197: #define IRIG_ERR_SYNCH 0x08    /* frame synch error */
                    198: #define IRIG_ERR_DECODE        0x10    /* frame decoding error */
                    199: #define IRIG_ERR_CHECK 0x20    /* second numbering discrepancy */
                    200: #define IRIG_ERR_ERROR 0x40    /* codec error (overrun) */
                    201: #define IRIG_ERR_SIGERR        0x80    /* IRIG status error (Spectracom) */
                    202: 
                    203: static char    hexchar[] = "0123456789abcdef";
                    204: 
                    205: /*
                    206:  * IRIG unit control structure
                    207:  */
                    208: struct irigunit {
                    209:        u_char  timecode[2 * SUBFLD + 1]; /* timecode string */
                    210:        l_fp    timestamp;      /* audio sample timestamp */
                    211:        l_fp    tick;           /* audio sample increment */
                    212:        l_fp    refstamp;       /* reference timestamp */
                    213:        l_fp    chrstamp;       /* baud timestamp */
                    214:        l_fp    prvstamp;       /* previous baud timestamp */
                    215:        double  integ[BAUD];    /* baud integrator */
                    216:        double  phase, freq;    /* logical clock phase and frequency */
                    217:        double  zxing;          /* phase detector integrator */
                    218:        double  yxing;          /* cycle phase */
                    219:        double  exing;          /* envelope phase */
                    220:        double  modndx;         /* modulation index */
                    221:        double  irig_b;         /* IRIG-B signal amplitude */
                    222:        double  irig_e;         /* IRIG-E signal amplitude */
                    223:        int     errflg;         /* error flags */
                    224:        /*
                    225:         * Audio codec variables
                    226:         */
                    227:        double  comp[SIZE];     /* decompanding table */
                    228:        double  signal;         /* peak signal for AGC */
                    229:        int     port;           /* codec port */
                    230:        int     gain;           /* codec gain */
                    231:        int     mongain;        /* codec monitor gain */
                    232:        int     seccnt;         /* second interval counter */
                    233: 
                    234:        /*
                    235:         * RF variables
                    236:         */
                    237:        double  bpf[9];         /* IRIG-B filter shift register */
                    238:        double  lpf[5];         /* IRIG-E filter shift register */
                    239:        double  envmin, envmax; /* envelope min and max */
                    240:        double  slice;          /* envelope slice level */
                    241:        double  intmin, intmax; /* integrated envelope min and max */
                    242:        double  maxsignal;      /* integrated peak amplitude */
                    243:        double  noise;          /* integrated noise amplitude */
                    244:        double  lastenv[CYCLE]; /* last cycle amplitudes */
                    245:        double  lastint[CYCLE]; /* last integrated cycle amplitudes */
                    246:        double  lastsig;        /* last carrier sample */
                    247:        double  fdelay;         /* filter delay */
                    248:        int     decim;          /* sample decimation factor */
                    249:        int     envphase;       /* envelope phase */
                    250:        int     envptr;         /* envelope phase pointer */
                    251:        int     envsw;          /* envelope state */
                    252:        int     envxing;        /* envelope slice crossing */
                    253:        int     tc;             /* time constant */
                    254:        int     tcount;         /* time constant counter */
                    255:        int     badcnt;         /* decimation interval counter */
                    256: 
                    257:        /*
                    258:         * Decoder variables
                    259:         */
                    260:        int     pulse;          /* cycle counter */
                    261:        int     cycles;         /* carrier cycles */
                    262:        int     dcycles;        /* data cycles */
                    263:        int     lastbit;        /* last code element */
                    264:        int     second;         /* previous second */
                    265:        int     bitcnt;         /* bit count in frame */
                    266:        int     frmcnt;         /* bit count in second */
                    267:        int     xptr;           /* timecode pointer */
                    268:        int     bits;           /* demodulated bits */
                    269: };
                    270: 
                    271: /*
                    272:  * Function prototypes
                    273:  */
                    274: static int     irig_start      (int, struct peer *);
                    275: static void    irig_shutdown   (int, struct peer *);
                    276: static void    irig_receive    (struct recvbuf *);
                    277: static void    irig_poll       (int, struct peer *);
                    278: 
                    279: /*
                    280:  * More function prototypes
                    281:  */
                    282: static void    irig_base       (struct peer *, double);
                    283: static void    irig_rf         (struct peer *, double);
                    284: static void    irig_baud       (struct peer *, int);
                    285: static void    irig_decode     (struct peer *, int);
                    286: static void    irig_gain       (struct peer *);
                    287: 
                    288: /*
                    289:  * Transfer vector
                    290:  */
                    291: struct refclock refclock_irig = {
                    292:        irig_start,             /* start up driver */
                    293:        irig_shutdown,          /* shut down driver */
                    294:        irig_poll,              /* transmit poll message */
                    295:        noentry,                /* not used (old irig_control) */
                    296:        noentry,                /* initialize driver (not used) */
                    297:        noentry,                /* not used (old irig_buginfo) */
                    298:        NOFLAGS                 /* not used */
                    299: };
                    300: 
                    301: 
                    302: /*
                    303:  * irig_start - open the devices and initialize data for processing
                    304:  */
                    305: static int
                    306: irig_start(
                    307:        int     unit,           /* instance number (used for PCM) */
                    308:        struct peer *peer       /* peer structure pointer */
                    309:        )
                    310: {
                    311:        struct refclockproc *pp;
                    312:        struct irigunit *up;
                    313: 
                    314:        /*
                    315:         * Local variables
                    316:         */
                    317:        int     fd;             /* file descriptor */
                    318:        int     i;              /* index */
                    319:        double  step;           /* codec adjustment */
                    320: 
                    321:        /*
                    322:         * Open audio device
                    323:         */
                    324:        fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
                    325:        if (fd < 0)
                    326:                return (0);
                    327: #ifdef DEBUG
                    328:        if (debug)
                    329:                audio_show();
                    330: #endif
                    331: 
                    332:        /*
                    333:         * Allocate and initialize unit structure
                    334:         */
                    335:        up = emalloc(sizeof(*up));
                    336:        memset(up, 0, sizeof(*up));
                    337:        pp = peer->procptr;
                    338:        pp->unitptr = (caddr_t)up;
                    339:        pp->io.clock_recv = irig_receive;
                    340:        pp->io.srcclock = (caddr_t)peer;
                    341:        pp->io.datalen = 0;
                    342:        pp->io.fd = fd;
                    343:        if (!io_addclock(&pp->io)) {
                    344:                close(fd);
                    345:                pp->io.fd = -1;
                    346:                free(up);
                    347:                pp->unitptr = NULL;
                    348:                return (0);
                    349:        }
                    350: 
                    351:        /*
                    352:         * Initialize miscellaneous variables
                    353:         */
                    354:        peer->precision = PRECISION;
                    355:        pp->clockdesc = DESCRIPTION;
                    356:        memcpy((char *)&pp->refid, REFID, 4);
                    357:        up->tc = MINTC;
                    358:        up->decim = 1;
                    359:        up->gain = 127;
                    360: 
                    361:        /*
                    362:         * The companded samples are encoded sign-magnitude. The table
                    363:         * contains all the 256 values in the interest of speed.
                    364:         */
                    365:        up->comp[0] = up->comp[OFFSET] = 0.;
                    366:        up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
                    367:        up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
                    368:        step = 2.;
                    369:        for (i = 3; i < OFFSET; i++) {
                    370:                up->comp[i] = up->comp[i - 1] + step;
                    371:                up->comp[OFFSET + i] = -up->comp[i];
                    372:                if (i % 16 == 0)
                    373:                        step *= 2.;
                    374:        }
                    375:        DTOLFP(1. / SECOND, &up->tick);
                    376:        return (1);
                    377: }
                    378: 
                    379: 
                    380: /*
                    381:  * irig_shutdown - shut down the clock
                    382:  */
                    383: static void
                    384: irig_shutdown(
                    385:        int     unit,           /* instance number (not used) */
                    386:        struct peer *peer       /* peer structure pointer */
                    387:        )
                    388: {
                    389:        struct refclockproc *pp;
                    390:        struct irigunit *up;
                    391: 
                    392:        pp = peer->procptr;
                    393:        up = (struct irigunit *)pp->unitptr;
                    394:        if (-1 != pp->io.fd)
                    395:                io_closeclock(&pp->io);
                    396:        if (NULL != up)
                    397:                free(up);
                    398: }
                    399: 
                    400: 
                    401: /*
                    402:  * irig_receive - receive data from the audio device
                    403:  *
                    404:  * This routine reads input samples and adjusts the logical clock to
                    405:  * track the irig clock by dropping or duplicating codec samples.
                    406:  */
                    407: static void
                    408: irig_receive(
                    409:        struct recvbuf *rbufp   /* receive buffer structure pointer */
                    410:        )
                    411: {
                    412:        struct peer *peer;
                    413:        struct refclockproc *pp;
                    414:        struct irigunit *up;
                    415: 
                    416:        /*
                    417:         * Local variables
                    418:         */
                    419:        double  sample;         /* codec sample */
                    420:        u_char  *dpt;           /* buffer pointer */
                    421:        int     bufcnt;         /* buffer counter */
                    422:        l_fp    ltemp;          /* l_fp temp */
                    423: 
                    424:        peer = (struct peer *)rbufp->recv_srcclock;
                    425:        pp = peer->procptr;
                    426:        up = (struct irigunit *)pp->unitptr;
                    427: 
                    428:        /*
                    429:         * Main loop - read until there ain't no more. Note codec
                    430:         * samples are bit-inverted.
                    431:         */
                    432:        DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
                    433:        L_SUB(&rbufp->recv_time, &ltemp);
                    434:        up->timestamp = rbufp->recv_time;
                    435:        dpt = rbufp->recv_buffer;
                    436:        for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
                    437:                sample = up->comp[~*dpt++ & 0xff];
                    438: 
                    439:                /*
                    440:                 * Variable frequency oscillator. The codec oscillator
                    441:                 * runs at the nominal rate of 8000 samples per second,
                    442:                 * or 125 us per sample. A frequency change of one unit
                    443:                 * results in either duplicating or deleting one sample
                    444:                 * per second, which results in a frequency change of
                    445:                 * 125 PPM.
                    446:                 */
                    447:                up->phase += (up->freq + clock_codec) / SECOND;
                    448:                up->phase += pp->fudgetime2 / 1e6;
                    449:                if (up->phase >= .5) {
                    450:                        up->phase -= 1.;
                    451:                } else if (up->phase < -.5) {
                    452:                        up->phase += 1.;
                    453:                        irig_rf(peer, sample);
                    454:                        irig_rf(peer, sample);
                    455:                } else {
                    456:                        irig_rf(peer, sample);
                    457:                }
                    458:                L_ADD(&up->timestamp, &up->tick);
                    459:                sample = fabs(sample);
                    460:                if (sample > up->signal)
                    461:                        up->signal = sample;
                    462:                        up->signal += (sample - up->signal) /
                    463:                            1000;
                    464: 
                    465:                /*
                    466:                 * Once each second, determine the IRIG format and gain.
                    467:                 */
                    468:                up->seccnt = (up->seccnt + 1) % SECOND;
                    469:                if (up->seccnt == 0) {
                    470:                        if (up->irig_b > up->irig_e) {
                    471:                                up->decim = 1;
                    472:                                up->fdelay = IRIG_B;
                    473:                        } else {
                    474:                                up->decim = 10;
                    475:                                up->fdelay = IRIG_E;
                    476:                        }
                    477:                        up->irig_b = up->irig_e = 0;
                    478:                        irig_gain(peer);
                    479: 
                    480:                }
                    481:        }
                    482: 
                    483:        /*
                    484:         * Set the input port and monitor gain for the next buffer.
                    485:         */
                    486:        if (pp->sloppyclockflag & CLK_FLAG2)
                    487:                up->port = 2;
                    488:        else
                    489:                up->port = 1;
                    490:        if (pp->sloppyclockflag & CLK_FLAG3)
                    491:                up->mongain = MONGAIN;
                    492:        else
                    493:                up->mongain = 0;
                    494: }
                    495: 
                    496: 
                    497: /*
                    498:  * irig_rf - RF processing
                    499:  *
                    500:  * This routine filters the RF signal using a bandass filter for IRIG-B
                    501:  * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
                    502:  * decimated by a factor of ten. Note that the codec filters function as
                    503:  * roofing filters to attenuate both the high and low ends of the
                    504:  * passband. IIR filter coefficients were determined using Matlab Signal
                    505:  * Processing Toolkit.
                    506:  */
                    507: static void
                    508: irig_rf(
                    509:        struct peer *peer,      /* peer structure pointer */
                    510:        double  sample          /* current signal sample */
                    511:        )
                    512: {
                    513:        struct refclockproc *pp;
                    514:        struct irigunit *up;
                    515: 
                    516:        /*
                    517:         * Local variables
                    518:         */
                    519:        double  irig_b, irig_e; /* irig filter outputs */
                    520: 
                    521:        pp = peer->procptr;
                    522:        up = (struct irigunit *)pp->unitptr;
                    523: 
                    524:        /*
                    525:         * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
                    526:         * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
                    527:         * phase delay 1.03 ms.
                    528:         */
                    529:        irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
                    530:        irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
                    531:        irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
                    532:        irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
                    533:        irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
                    534:        irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
                    535:        irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
                    536:        irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
                    537:        up->bpf[0] = sample - irig_b;
                    538:        irig_b = up->bpf[0] * 4.952157e-003
                    539:            + up->bpf[1] * -2.055878e-002
                    540:            + up->bpf[2] * 4.401413e-002
                    541:            + up->bpf[3] * -6.558851e-002
                    542:            + up->bpf[4] * 7.462108e-002
                    543:            + up->bpf[5] * -6.558851e-002
                    544:            + up->bpf[6] * 4.401413e-002
                    545:            + up->bpf[7] * -2.055878e-002
                    546:            + up->bpf[8] * 4.952157e-003;
                    547:        up->irig_b += irig_b * irig_b;
                    548: 
                    549:        /*
                    550:         * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
                    551:         * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
                    552:         * 3.47 ms.
                    553:         */
                    554:        irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
                    555:        irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
                    556:        irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
                    557:        irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
                    558:        up->lpf[0] = sample - irig_e;
                    559:        irig_e = up->lpf[0] * 3.215696e-003
                    560:            + up->lpf[1] * -1.174951e-002
                    561:            + up->lpf[2] * 1.712074e-002
                    562:            + up->lpf[3] * -1.174951e-002
                    563:            + up->lpf[4] * 3.215696e-003;
                    564:        up->irig_e += irig_e * irig_e;
                    565: 
                    566:        /*
                    567:         * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
                    568:         */
                    569:        up->badcnt = (up->badcnt + 1) % up->decim;
                    570:        if (up->badcnt == 0) {
                    571:                if (up->decim == 1)
                    572:                        irig_base(peer, irig_b);
                    573:                else
                    574:                        irig_base(peer, irig_e);
                    575:        }
                    576: }
                    577: 
                    578: /*
                    579:  * irig_base - baseband processing
                    580:  *
                    581:  * This routine processes the baseband signal and demodulates the AM
                    582:  * carrier using a synchronous detector. It then synchronizes to the
                    583:  * data frame at the baud rate and decodes the width-modulated data
                    584:  * pulses.
                    585:  */
                    586: static void
                    587: irig_base(
                    588:        struct peer *peer,      /* peer structure pointer */
                    589:        double  sample          /* current signal sample */
                    590:        )
                    591: {
                    592:        struct refclockproc *pp;
                    593:        struct irigunit *up;
                    594: 
                    595:        /*
                    596:         * Local variables
                    597:         */
                    598:        double  lope;           /* integrator output */
                    599:        double  env;            /* envelope detector output */
                    600:        double  dtemp;
                    601:        int     carphase;       /* carrier phase */
                    602: 
                    603:        pp = peer->procptr;
                    604:        up = (struct irigunit *)pp->unitptr;
                    605: 
                    606:        /*
                    607:         * Synchronous baud integrator. Corresponding samples of current
                    608:         * and past baud intervals are integrated to refine the envelope
                    609:         * amplitude and phase estimate. We keep one cycle (1 ms) of the
                    610:         * raw data and one baud (10 ms) of the integrated data.
                    611:         */
                    612:        up->envphase = (up->envphase + 1) % BAUD;
                    613:        up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
                    614:            (5 * up->tc);
                    615:        lope = up->integ[up->envphase];
                    616:        carphase = up->envphase % CYCLE;
                    617:        up->lastenv[carphase] = sample;
                    618:        up->lastint[carphase] = lope;
                    619: 
                    620:        /*
                    621:         * Phase detector. Find the negative-going zero crossing
                    622:         * relative to sample 4 in the 8-sample sycle. A phase change of
                    623:         * 360 degrees produces an output change of one unit.
                    624:         */ 
                    625:        if (up->lastsig > 0 && lope <= 0)
                    626:                up->zxing += (double)(carphase - 4) / CYCLE;
                    627:        up->lastsig = lope;
                    628: 
                    629:        /*
                    630:         * End of the baud. Update signal/noise estimates and PLL
                    631:         * phase, frequency and time constant.
                    632:         */
                    633:        if (up->envphase == 0) {
                    634:                up->maxsignal = up->intmax; up->noise = up->intmin;
                    635:                up->intmin = 1e6; up->intmax = -1e6;
                    636:                if (up->maxsignal < DRPOUT)
                    637:                        up->errflg |= IRIG_ERR_AMP;
                    638:                if (up->maxsignal > 0)
                    639:                        up->modndx = (up->maxsignal - up->noise) /
                    640:                            up->maxsignal;
                    641:                else
                    642:                        up->modndx = 0;
                    643:                if (up->modndx < MODMIN)
                    644:                        up->errflg |= IRIG_ERR_MOD;
                    645:                if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
                    646:                   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
                    647:                        up->tc = MINTC;
                    648:                        up->tcount = 0;
                    649:                }
                    650: 
                    651:                /*
                    652:                 * Update PLL phase and frequency. The PLL time constant
                    653:                 * is set initially to stabilize the frequency within a
                    654:                 * minute or two, then increases to the maximum. The
                    655:                 * frequency is clamped so that the PLL capture range
                    656:                 * cannot be exceeded.
                    657:                 */
                    658:                dtemp = up->zxing * up->decim / BAUD;
                    659:                up->yxing = dtemp;
                    660:                up->zxing = 0.;
                    661:                up->phase += dtemp / up->tc;
                    662:                up->freq += dtemp / (4. * up->tc * up->tc);
                    663:                if (up->freq > MAXFREQ) {
                    664:                        up->freq = MAXFREQ;
                    665:                        up->errflg |= IRIG_ERR_FREQ;
                    666:                } else if (up->freq < -MAXFREQ) {
                    667:                        up->freq = -MAXFREQ;
                    668:                        up->errflg |= IRIG_ERR_FREQ;
                    669:                }
                    670:        }
                    671: 
                    672:        /*
                    673:         * Synchronous demodulator. There are eight samples in the cycle
                    674:         * and ten cycles in the baud. Since the PLL has aligned the
                    675:         * negative-going zero crossing at sample 4, the maximum
                    676:         * amplitude is at sample 2 and minimum at sample 6. The
                    677:         * beginning of the data pulse is determined from the integrated
                    678:         * samples, while the end of the pulse is determined from the
                    679:         * raw samples. The raw data bits are demodulated relative to
                    680:         * the slice level and left-shifted in the decoding register.
                    681:         */
                    682:        if (carphase != 7)
                    683:                return;
                    684: 
                    685:        lope = (up->lastint[2] - up->lastint[6]) / 2.;
                    686:        if (lope > up->intmax)
                    687:                up->intmax = lope;
                    688:        if (lope < up->intmin)
                    689:                up->intmin = lope;
                    690: 
                    691:        /*
                    692:         * Pulse code demodulator and reference timestamp. The decoder
                    693:         * looks for a sequence of ten bits; the first two bits must be
                    694:         * one, the last two bits must be zero. Frame synch is asserted
                    695:         * when three correct frames have been found.
                    696:         */
                    697:        up->pulse = (up->pulse + 1) % 10;
                    698:        up->cycles <<= 1;
                    699:        if (lope >= (up->maxsignal + up->noise) / 2.)
                    700:                up->cycles |= 1;
                    701:        if ((up->cycles & 0x303c0f03) == 0x300c0300) {
                    702:                if (up->pulse != 0)
                    703:                        up->errflg |= IRIG_ERR_SYNCH;
                    704:                up->pulse = 0;
                    705:        }
                    706: 
                    707:        /*
                    708:         * Assemble the baud and max/min to get the slice level for the
                    709:         * next baud. The slice level is based on the maximum over the
                    710:         * first two bits and the minimum over the last two bits, with
                    711:         * the slice level halfway between the maximum and minimum.
                    712:         */
                    713:        env = (up->lastenv[2] - up->lastenv[6]) / 2.;
                    714:        up->dcycles <<= 1;
                    715:        if (env >= up->slice)
                    716:                up->dcycles |= 1;
                    717:        switch(up->pulse) {
                    718: 
                    719:        case 0:
                    720:                irig_baud(peer, up->dcycles);
                    721:                if (env < up->envmin)
                    722:                        up->envmin = env;
                    723:                up->slice = (up->envmax + up->envmin) / 2;
                    724:                up->envmin = 1e6; up->envmax = -1e6;
                    725:                break;
                    726: 
                    727:        case 1:
                    728:                up->envmax = env;
                    729:                break;
                    730: 
                    731:        case 2:
                    732:                if (env > up->envmax)
                    733:                        up->envmax = env;
                    734:                break;
                    735: 
                    736:        case 9:
                    737:                up->envmin = env;
                    738:                break;
                    739:        }
                    740: }
                    741: 
                    742: /*
                    743:  * irig_baud - update the PLL and decode the pulse-width signal
                    744:  */
                    745: static void
                    746: irig_baud(
                    747:        struct peer *peer,      /* peer structure pointer */
                    748:        int     bits            /* decoded bits */
                    749:        )
                    750: {
                    751:        struct refclockproc *pp;
                    752:        struct irigunit *up;
                    753:        double  dtemp;
                    754:        l_fp    ltemp;
                    755: 
                    756:         pp = peer->procptr;
                    757:        up = (struct irigunit *)pp->unitptr;
                    758: 
                    759:        /*
                    760:         * The PLL time constant starts out small, in order to
                    761:         * sustain a frequency tolerance of 250 PPM. It
                    762:         * gradually increases as the loop settles down. Note
                    763:         * that small wiggles are not believed, unless they
                    764:         * persist for lots of samples.
                    765:         */
                    766:        up->exing = -up->yxing;
                    767:        if (fabs(up->envxing - up->envphase) <= 1) {
                    768:                up->tcount++;
                    769:                if (up->tcount > 20 * up->tc) {
                    770:                        up->tc++;
                    771:                        if (up->tc > MAXTC)
                    772:                                up->tc = MAXTC;
                    773:                        up->tcount = 0;
                    774:                        up->envxing = up->envphase;
                    775:                } else {
                    776:                        up->exing -= up->envxing - up->envphase;
                    777:                }
                    778:        } else {
                    779:                up->tcount = 0;
                    780:                up->envxing = up->envphase;
                    781:        }
                    782: 
                    783:        /*
                    784:         * Strike the baud timestamp as the positive zero crossing of
                    785:         * the first bit, accounting for the codec delay and filter
                    786:         * delay.
                    787:         */
                    788:        up->prvstamp = up->chrstamp;
                    789:        dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
                    790:        DTOLFP(dtemp, &ltemp);
                    791:        up->chrstamp = up->timestamp;
                    792:        L_SUB(&up->chrstamp, &ltemp);
                    793: 
                    794:        /*
                    795:         * The data bits are collected in ten-bit bauds. The first two
                    796:         * bits are not used. The resulting patterns represent runs of
                    797:         * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
                    798:         * 8-bit run represents a soft error and is treated as 0.
                    799:         */
                    800:        switch (up->dcycles & 0xff) {
                    801: 
                    802:        case 0x00:              /* 0-1 bits (0) */
                    803:        case 0x80:
                    804:                irig_decode(peer, BIT0);
                    805:                break;
                    806: 
                    807:        case 0xc0:              /* 2-4 bits (1) */
                    808:        case 0xe0:
                    809:        case 0xf0:
                    810:                irig_decode(peer, BIT1);
                    811:                break;
                    812: 
                    813:        case 0xf8:              /* (5-7 bits (PI) */
                    814:        case 0xfc:
                    815:        case 0xfe:
                    816:                irig_decode(peer, BITP);
                    817:                break;
                    818: 
                    819:        default:                /* 8 bits (error) */
                    820:                irig_decode(peer, BIT0);
                    821:                up->errflg |= IRIG_ERR_DECODE;
                    822:        }
                    823: }
                    824: 
                    825: 
                    826: /*
                    827:  * irig_decode - decode the data
                    828:  *
                    829:  * This routine assembles bauds into digits, digits into frames and
                    830:  * frames into the timecode fields. Bits can have values of zero, one
                    831:  * or position identifier. There are four bits per digit, ten digits per
                    832:  * frame and ten frames per second.
                    833:  */
                    834: static void
                    835: irig_decode(
                    836:        struct  peer *peer,     /* peer structure pointer */
                    837:        int     bit             /* data bit (0, 1 or 2) */
                    838:        )
                    839: {
                    840:        struct refclockproc *pp;
                    841:        struct irigunit *up;
                    842: 
                    843:        /*
                    844:         * Local variables
                    845:         */
                    846:        int     syncdig;        /* sync digit (Spectracom) */
                    847:        char    sbs[6 + 1];     /* binary seconds since 0h */
                    848:        char    spare[2 + 1];   /* mulligan digits */
                    849:        int     temp;
                    850: 
                    851:        pp = peer->procptr;
                    852:        up = (struct irigunit *)pp->unitptr;
                    853: 
                    854:        /*
                    855:         * Assemble frame bits.
                    856:         */
                    857:        up->bits >>= 1;
                    858:        if (bit == BIT1) {
                    859:                up->bits |= 0x200;
                    860:        } else if (bit == BITP && up->lastbit == BITP) {
                    861: 
                    862:                /*
                    863:                 * Frame sync - two adjacent position identifiers, which
                    864:                 * mark the beginning of the second. The reference time
                    865:                 * is the beginning of the second position identifier,
                    866:                 * so copy the character timestamp to the reference
                    867:                 * timestamp.
                    868:                 */
                    869:                if (up->frmcnt != 1)
                    870:                        up->errflg |= IRIG_ERR_SYNCH;
                    871:                up->frmcnt = 1;
                    872:                up->refstamp = up->prvstamp;
                    873:        }
                    874:        up->lastbit = bit;
                    875:        if (up->frmcnt % SUBFLD == 0) {
                    876: 
                    877:                /*
                    878:                 * End of frame. Encode two hexadecimal digits in
                    879:                 * little-endian timecode field. Note frame 1 is shifted
                    880:                 * right one bit to account for the marker PI.
                    881:                 */
                    882:                temp = up->bits;
                    883:                if (up->frmcnt == 10)
                    884:                        temp >>= 1;
                    885:                if (up->xptr >= 2) {
                    886:                        up->timecode[--up->xptr] = hexchar[temp & 0xf];
                    887:                        up->timecode[--up->xptr] = hexchar[(temp >> 5) &
                    888:                            0xf];
                    889:                }
                    890:                if (up->frmcnt == 0) {
                    891: 
                    892:                        /*
                    893:                         * End of second. Decode the timecode and wind
                    894:                         * the clock. Not all IRIG generators have the
                    895:                         * year; if so, it is nonzero after year 2000.
                    896:                         * Not all have the hardware status bit; if so,
                    897:                         * it is lit when the source is okay and dim
                    898:                         * when bad. We watch this only if the year is
                    899:                         * nonzero. Not all are configured for signature
                    900:                         * control. If so, all BCD digits are set to
                    901:                         * zero if the source is bad. In this case the
                    902:                         * refclock_process() will reject the timecode
                    903:                         * as invalid.
                    904:                         */
                    905:                        up->xptr = 2 * SUBFLD;
                    906:                        if (sscanf((char *)up->timecode,
                    907:                           "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
                    908:                            &syncdig, spare, &pp->day, &pp->hour,
                    909:                            &pp->minute, &pp->second) != 8)
                    910:                                pp->leap = LEAP_NOTINSYNC;
                    911:                        else
                    912:                                pp->leap = LEAP_NOWARNING;
                    913:                        up->second = (up->second + up->decim) % 60;
                    914: 
                    915:                        /*
                    916:                         * Raise an alarm if the day field is zero,
                    917:                         * which happens when signature control is
                    918:                         * enabled and the device has lost
                    919:                         * synchronization. Raise an alarm if the year
                    920:                         * field is nonzero and the sync indicator is
                    921:                         * zero, which happens when a Spectracom radio
                    922:                         * has lost synchronization. Raise an alarm if
                    923:                         * the expected second does not agree with the
                    924:                         * decoded second, which happens with a garbled
                    925:                         * IRIG signal. We are very particular.
                    926:                         */
                    927:                        if (pp->day == 0 || (pp->year != 0 && syncdig ==
                    928:                            0))
                    929:                                up->errflg |= IRIG_ERR_SIGERR;
                    930:                        if (pp->second != up->second)
                    931:                                up->errflg |= IRIG_ERR_CHECK;
                    932:                        up->second = pp->second;
                    933: 
                    934:                        /*
                    935:                         * Wind the clock only if there are no errors
                    936:                         * and the time constant has reached the
                    937:                         * maximum.
                    938:                         */
                    939:                        if (up->errflg == 0 && up->tc == MAXTC) {
                    940:                                pp->lastref = pp->lastrec;
                    941:                                pp->lastrec = up->refstamp;
                    942:                                if (!refclock_process(pp))
                    943:                                        refclock_report(peer,
                    944:                                            CEVNT_BADTIME);
                    945:                        }
                    946:                        snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
                    947:                            "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
                    948:                            up->errflg, pp->year, pp->day,
                    949:                            pp->hour, pp->minute, pp->second,
                    950:                            up->maxsignal, up->gain, up->modndx,
                    951:                            up->tc, up->exing * 1e6 / SECOND, up->freq *
                    952:                            1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
                    953:                        pp->lencode = strlen(pp->a_lastcode);
                    954:                        up->errflg = 0;
                    955:                        if (pp->sloppyclockflag & CLK_FLAG4) {
                    956:                                record_clock_stats(&peer->srcadr,
                    957:                                    pp->a_lastcode);
                    958: #ifdef DEBUG
                    959:                                if (debug)
                    960:                                        printf("irig %s\n",
                    961:                                            pp->a_lastcode);
                    962: #endif /* DEBUG */
                    963:                        }
                    964:                }
                    965:        }
                    966:        up->frmcnt = (up->frmcnt + 1) % FIELD;
                    967: }
                    968: 
                    969: 
                    970: /*
                    971:  * irig_poll - called by the transmit procedure
                    972:  *
                    973:  * This routine sweeps up the timecode updates since the last poll. For
                    974:  * IRIG-B there should be at least 60 updates; for IRIG-E there should
                    975:  * be at least 6. If nothing is heard, a timeout event is declared. 
                    976:  */
                    977: static void
                    978: irig_poll(
                    979:        int     unit,           /* instance number (not used) */
                    980:        struct peer *peer       /* peer structure pointer */
                    981:        )
                    982: {
                    983:        struct refclockproc *pp;
                    984:        struct irigunit *up;
                    985: 
                    986:        pp = peer->procptr;
                    987:        up = (struct irigunit *)pp->unitptr;
                    988: 
                    989:        if (pp->coderecv == pp->codeproc) {
                    990:                refclock_report(peer, CEVNT_TIMEOUT);
                    991:                return;
                    992: 
                    993:        }
                    994:        refclock_receive(peer);
                    995:        if (!(pp->sloppyclockflag & CLK_FLAG4)) {
                    996:                record_clock_stats(&peer->srcadr, pp->a_lastcode);
                    997: #ifdef DEBUG
                    998:                if (debug)
                    999:                        printf("irig %s\n", pp->a_lastcode);
                   1000: #endif /* DEBUG */
                   1001:        }
                   1002:        pp->polls++;
                   1003:        
                   1004: }
                   1005: 
                   1006: 
                   1007: /*
                   1008:  * irig_gain - adjust codec gain
                   1009:  *
                   1010:  * This routine is called at the end of each second. It uses the AGC to
                   1011:  * bradket the maximum signal level between MINAMP and MAXAMP to avoid
                   1012:  * hunting. The routine also jiggles the input port and selectively
                   1013:  * mutes the monitor.
                   1014:  */
                   1015: static void
                   1016: irig_gain(
                   1017:        struct peer *peer       /* peer structure pointer */
                   1018:        )
                   1019: {
                   1020:        struct refclockproc *pp;
                   1021:        struct irigunit *up;
                   1022: 
                   1023:        pp = peer->procptr;
                   1024:        up = (struct irigunit *)pp->unitptr;
                   1025: 
                   1026:        /*
                   1027:         * Apparently, the codec uses only the high order bits of the
                   1028:         * gain control field. Thus, it may take awhile for changes to
                   1029:         * wiggle the hardware bits.
                   1030:         */
                   1031:        if (up->maxsignal < MINAMP) {
                   1032:                up->gain += 4;
                   1033:                if (up->gain > MAXGAIN)
                   1034:                        up->gain = MAXGAIN;
                   1035:        } else if (up->maxsignal > MAXAMP) {
                   1036:                up->gain -= 4;
                   1037:                if (up->gain < 0)
                   1038:                        up->gain = 0;
                   1039:        }
                   1040:        audio_gain(up->gain, up->mongain, up->port);
                   1041: }
                   1042: 
                   1043: 
                   1044: #else
                   1045: int refclock_irig_bs;
                   1046: #endif /* REFCLOCK */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>