File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / ntp / ntpd / refclock_irig.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue May 29 12:08:37 2012 UTC (12 years, 1 month ago) by misho
Branches: ntp, MAIN
CVS tags: v4_2_6p5p0, v4_2_6p5, HEAD
ntp 4.2.6p5

    1: /*
    2:  * refclock_irig - audio IRIG-B/E demodulator/decoder
    3:  */
    4: #ifdef HAVE_CONFIG_H
    5: #include <config.h>
    6: #endif
    7: 
    8: #if defined(REFCLOCK) && defined(CLOCK_IRIG)
    9: 
   10: #include "ntpd.h"
   11: #include "ntp_io.h"
   12: #include "ntp_refclock.h"
   13: #include "ntp_calendar.h"
   14: #include "ntp_stdlib.h"
   15: 
   16: #include <stdio.h>
   17: #include <ctype.h>
   18: #include <math.h>
   19: #ifdef HAVE_SYS_IOCTL_H
   20: #include <sys/ioctl.h>
   21: #endif /* HAVE_SYS_IOCTL_H */
   22: 
   23: #include "audio.h"
   24: 
   25: /*
   26:  * Audio IRIG-B/E demodulator/decoder
   27:  *
   28:  * This driver synchronizes the computer time using data encoded in
   29:  * IRIG-B/E signals commonly produced by GPS receivers and other timing
   30:  * devices. The IRIG signal is an amplitude-modulated carrier with
   31:  * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
   32:  * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
   33:  * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
   34:  & format is in use.
   35:  *
   36:  * The driver requires an audio codec or sound card with sampling rate 8
   37:  * kHz and mu-law companding. This is the same standard as used by the
   38:  * telephone industry and is supported by most hardware and operating
   39:  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
   40:  * implementation, only one audio driver and codec can be supported on a
   41:  * single machine.
   42:  *
   43:  * The program processes 8000-Hz mu-law companded samples using separate
   44:  * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
   45:  * detector and automatic threshold corrector. Cycle crossings relative
   46:  * to the corrected slice level determine the width of each pulse and
   47:  * its value - zero, one or position identifier.
   48:  *
   49:  * The data encode 20 BCD digits which determine the second, minute,
   50:  * hour and day of the year and sometimes the year and synchronization
   51:  * condition. The comb filter exponentially averages the corresponding
   52:  * samples of successive baud intervals in order to reliably identify
   53:  * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
   54:  * additional integration and interpolation to accurately determine the
   55:  * zero crossing of that cycle, which determines the reference
   56:  * timestamp. A pulse-width discriminator demodulates the data pulses,
   57:  * which are then encoded as the BCD digits of the timecode.
   58:  *
   59:  * The timecode and reference timestamp are updated once each second
   60:  * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
   61:  * saved for later processing. At poll intervals of 64 s, the saved
   62:  * samples are processed by a trimmed-mean filter and used to update the
   63:  * system clock.
   64:  *
   65:  * An automatic gain control feature provides protection against
   66:  * overdriven or underdriven input signal amplitudes. It is designed to
   67:  * maintain adequate demodulator signal amplitude while avoiding
   68:  * occasional noise spikes. In order to assure reliable capture, the
   69:  * decompanded input signal amplitude must be greater than 100 units and
   70:  * the codec sample frequency error less than 250 PPM (.025 percent).
   71:  *
   72:  * Monitor Data
   73:  *
   74:  * The timecode format used for debugging and data recording includes
   75:  * data helpful in diagnosing problems with the IRIG signal and codec
   76:  * connections. The driver produces one line for each timecode in the
   77:  * following format:
   78:  *
   79:  * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
   80:  *
   81:  * If clockstats is enabled, the most recent line is written to the
   82:  * clockstats file every 64 s. If verbose recording is enabled (fudge
   83:  * flag 4) each line is written as generated.
   84:  *
   85:  * The first field containes the error flags in hex, where the hex bits
   86:  * are interpreted as below. This is followed by the year of century,
   87:  * day of year and time of day. Note that the time of day is for the
   88:  * previous minute, not the current time. The status indicator and year
   89:  * are not produced by some IRIG devices and appear as zeros. Following
   90:  * these fields are the carrier amplitude (0-3000), codec gain (0-255),
   91:  * modulation index (0-1), time constant (4-10), carrier phase error
   92:  * +-.5) and carrier frequency error (PPM). The last field is the on-
   93:  * time timestamp in NTP format.
   94:  *
   95:  * The error flags are defined as follows in hex:
   96:  *
   97:  * x01	Low signal. The carrier amplitude is less than 100 units. This
   98:  *	is usually the result of no signal or wrong input port.
   99:  * x02	Frequency error. The codec frequency error is greater than 250
  100:  *	PPM. This may be due to wrong signal format or (rarely)
  101:  *	defective codec.
  102:  * x04	Modulation error. The IRIG modulation index is less than 0.5.
  103:  *	This is usually the result of an overdriven codec, wrong signal
  104:  *	format or wrong input port.
  105:  * x08	Frame synch error. The decoder frame does not match the IRIG
  106:  *	frame. This is usually the result of an overdriven codec, wrong
  107:  *	signal format or noisy IRIG signal. It may also be the result of
  108:  *	an IRIG signature check which indicates a failure of the IRIG
  109:  *	signal synchronization source.
  110:  * x10	Data bit error. The data bit length is out of tolerance. This is
  111:  *	usually the result of an overdriven codec, wrong signal format
  112:  *	or noisy IRIG signal.
  113:  * x20	Seconds numbering discrepancy. The decoder second does not match
  114:  *	the IRIG second. This is usually the result of an overdriven
  115:  *	codec, wrong signal format or noisy IRIG signal.
  116:  * x40	Codec error (overrun). The machine is not fast enough to keep up
  117:  *	with the codec.
  118:  * x80	Device status error (Spectracom).
  119:  *
  120:  *
  121:  * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
  122:  * within a few tens of microseconds relative to the IRIG-B signal.
  123:  * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
  124:  * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
  125:  * modulation.
  126:  *
  127:  * Unlike other drivers, which can have multiple instantiations, this
  128:  * one supports only one. It does not seem likely that more than one
  129:  * audio codec would be useful in a single machine. More than one would
  130:  * probably chew up too much CPU time anyway.
  131:  *
  132:  * Fudge factors
  133:  *
  134:  * Fudge flag4 causes the dubugging output described above to be
  135:  * recorded in the clockstats file. Fudge flag2 selects the audio input
  136:  * port, where 0 is the mike port (default) and 1 is the line-in port.
  137:  * It does not seem useful to select the compact disc player port. Fudge
  138:  * flag3 enables audio monitoring of the input signal. For this purpose,
  139:  * the monitor gain is set t a default value. Fudgetime2 is used as a
  140:  * frequency vernier for broken codec sample frequency.
  141:  *
  142:  * Alarm codes
  143:  *
  144:  * CEVNT_BADTIME	invalid date or time
  145:  * CEVNT_TIMEOUT	no IRIG data since last poll
  146:  */
  147: /*
  148:  * Interface definitions
  149:  */
  150: #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
  151: #define	PRECISION	(-17)	/* precision assumed (about 10 us) */
  152: #define	REFID		"IRIG"	/* reference ID */
  153: #define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
  154: #define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
  155: #define SECOND		8000	/* nominal sample rate (Hz) */
  156: #define BAUD		80	/* samples per baud interval */
  157: #define OFFSET		128	/* companded sample offset */
  158: #define SIZE		256	/* decompanding table size */
  159: #define CYCLE		8	/* samples per bit */
  160: #define SUBFLD		10	/* bits per frame */
  161: #define FIELD		100	/* bits per second */
  162: #define MINTC		2	/* min PLL time constant */
  163: #define MAXTC		10	/* max PLL time constant max */
  164: #define	MAXAMP		3000.	/* maximum signal amplitude */
  165: #define	MINAMP		2000.	/* minimum signal amplitude */
  166: #define DRPOUT		100.	/* dropout signal amplitude */
  167: #define MODMIN		0.5	/* minimum modulation index */
  168: #define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
  169: 
  170: /*
  171:  * The on-time synchronization point is the positive-going zero crossing
  172:  * of the first cycle of the second. The IIR baseband filter phase delay
  173:  * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
  174:  * due to the codec and other causes was determined by calibrating to a
  175:  * PPS signal from a GPS receiver.
  176:  *
  177:  * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
  178:  * within .02 ms short-term with .02 ms jitter. The processor load due
  179:  * to the driver is 0.51 percent.
  180:  */
  181: #define IRIG_B	((1.03 + 2.68) / 1000)	/* IRIG-B system delay (s) */
  182: #define IRIG_E	((3.47 + 2.68) / 1000)	/* IRIG-E system delay (s) */
  183: 
  184: /*
  185:  * Data bit definitions
  186:  */
  187: #define BIT0		0	/* zero */
  188: #define BIT1		1	/* one */
  189: #define BITP		2	/* position identifier */
  190: 
  191: /*
  192:  * Error flags
  193:  */
  194: #define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
  195: #define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
  196: #define IRIG_ERR_MOD	0x04	/* low modulation index */
  197: #define IRIG_ERR_SYNCH	0x08	/* frame synch error */
  198: #define IRIG_ERR_DECODE	0x10	/* frame decoding error */
  199: #define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
  200: #define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
  201: #define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */
  202: 
  203: static	char	hexchar[] = "0123456789abcdef";
  204: 
  205: /*
  206:  * IRIG unit control structure
  207:  */
  208: struct irigunit {
  209: 	u_char	timecode[2 * SUBFLD + 1]; /* timecode string */
  210: 	l_fp	timestamp;	/* audio sample timestamp */
  211: 	l_fp	tick;		/* audio sample increment */
  212: 	l_fp	refstamp;	/* reference timestamp */
  213: 	l_fp	chrstamp;	/* baud timestamp */
  214: 	l_fp	prvstamp;	/* previous baud timestamp */
  215: 	double	integ[BAUD];	/* baud integrator */
  216: 	double	phase, freq;	/* logical clock phase and frequency */
  217: 	double	zxing;		/* phase detector integrator */
  218: 	double	yxing;		/* cycle phase */
  219: 	double	exing;		/* envelope phase */
  220: 	double	modndx;		/* modulation index */
  221: 	double	irig_b;		/* IRIG-B signal amplitude */
  222: 	double	irig_e;		/* IRIG-E signal amplitude */
  223: 	int	errflg;		/* error flags */
  224: 	/*
  225: 	 * Audio codec variables
  226: 	 */
  227: 	double	comp[SIZE];	/* decompanding table */
  228: 	double	signal;		/* peak signal for AGC */
  229: 	int	port;		/* codec port */
  230: 	int	gain;		/* codec gain */
  231: 	int	mongain;	/* codec monitor gain */
  232: 	int	seccnt;		/* second interval counter */
  233: 
  234: 	/*
  235: 	 * RF variables
  236: 	 */
  237: 	double	bpf[9];		/* IRIG-B filter shift register */
  238: 	double	lpf[5];		/* IRIG-E filter shift register */
  239: 	double	envmin, envmax;	/* envelope min and max */
  240: 	double	slice;		/* envelope slice level */
  241: 	double	intmin, intmax;	/* integrated envelope min and max */
  242: 	double	maxsignal;	/* integrated peak amplitude */
  243: 	double	noise;		/* integrated noise amplitude */
  244: 	double	lastenv[CYCLE];	/* last cycle amplitudes */
  245: 	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
  246: 	double	lastsig;	/* last carrier sample */
  247: 	double	fdelay;		/* filter delay */
  248: 	int	decim;		/* sample decimation factor */
  249: 	int	envphase;	/* envelope phase */
  250: 	int	envptr;		/* envelope phase pointer */
  251: 	int	envsw;		/* envelope state */
  252: 	int	envxing;	/* envelope slice crossing */
  253: 	int	tc;		/* time constant */
  254: 	int	tcount;		/* time constant counter */
  255: 	int	badcnt;		/* decimation interval counter */
  256: 
  257: 	/*
  258: 	 * Decoder variables
  259: 	 */
  260: 	int	pulse;		/* cycle counter */
  261: 	int	cycles;		/* carrier cycles */
  262: 	int	dcycles;	/* data cycles */
  263: 	int	lastbit;	/* last code element */
  264: 	int	second;		/* previous second */
  265: 	int	bitcnt;		/* bit count in frame */
  266: 	int	frmcnt;		/* bit count in second */
  267: 	int	xptr;		/* timecode pointer */
  268: 	int	bits;		/* demodulated bits */
  269: };
  270: 
  271: /*
  272:  * Function prototypes
  273:  */
  274: static	int	irig_start	(int, struct peer *);
  275: static	void	irig_shutdown	(int, struct peer *);
  276: static	void	irig_receive	(struct recvbuf *);
  277: static	void	irig_poll	(int, struct peer *);
  278: 
  279: /*
  280:  * More function prototypes
  281:  */
  282: static	void	irig_base	(struct peer *, double);
  283: static	void	irig_rf		(struct peer *, double);
  284: static	void	irig_baud	(struct peer *, int);
  285: static	void	irig_decode	(struct peer *, int);
  286: static	void	irig_gain	(struct peer *);
  287: 
  288: /*
  289:  * Transfer vector
  290:  */
  291: struct	refclock refclock_irig = {
  292: 	irig_start,		/* start up driver */
  293: 	irig_shutdown,		/* shut down driver */
  294: 	irig_poll,		/* transmit poll message */
  295: 	noentry,		/* not used (old irig_control) */
  296: 	noentry,		/* initialize driver (not used) */
  297: 	noentry,		/* not used (old irig_buginfo) */
  298: 	NOFLAGS			/* not used */
  299: };
  300: 
  301: 
  302: /*
  303:  * irig_start - open the devices and initialize data for processing
  304:  */
  305: static int
  306: irig_start(
  307: 	int	unit,		/* instance number (used for PCM) */
  308: 	struct peer *peer	/* peer structure pointer */
  309: 	)
  310: {
  311: 	struct refclockproc *pp;
  312: 	struct irigunit *up;
  313: 
  314: 	/*
  315: 	 * Local variables
  316: 	 */
  317: 	int	fd;		/* file descriptor */
  318: 	int	i;		/* index */
  319: 	double	step;		/* codec adjustment */
  320: 
  321: 	/*
  322: 	 * Open audio device
  323: 	 */
  324: 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
  325: 	if (fd < 0)
  326: 		return (0);
  327: #ifdef DEBUG
  328: 	if (debug)
  329: 		audio_show();
  330: #endif
  331: 
  332: 	/*
  333: 	 * Allocate and initialize unit structure
  334: 	 */
  335: 	up = emalloc(sizeof(*up));
  336: 	memset(up, 0, sizeof(*up));
  337: 	pp = peer->procptr;
  338: 	pp->unitptr = (caddr_t)up;
  339: 	pp->io.clock_recv = irig_receive;
  340: 	pp->io.srcclock = (caddr_t)peer;
  341: 	pp->io.datalen = 0;
  342: 	pp->io.fd = fd;
  343: 	if (!io_addclock(&pp->io)) {
  344: 		close(fd);
  345: 		pp->io.fd = -1;
  346: 		free(up);
  347: 		pp->unitptr = NULL;
  348: 		return (0);
  349: 	}
  350: 
  351: 	/*
  352: 	 * Initialize miscellaneous variables
  353: 	 */
  354: 	peer->precision = PRECISION;
  355: 	pp->clockdesc = DESCRIPTION;
  356: 	memcpy((char *)&pp->refid, REFID, 4);
  357: 	up->tc = MINTC;
  358: 	up->decim = 1;
  359: 	up->gain = 127;
  360: 
  361: 	/*
  362: 	 * The companded samples are encoded sign-magnitude. The table
  363: 	 * contains all the 256 values in the interest of speed.
  364: 	 */
  365: 	up->comp[0] = up->comp[OFFSET] = 0.;
  366: 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
  367: 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
  368: 	step = 2.;
  369: 	for (i = 3; i < OFFSET; i++) {
  370: 		up->comp[i] = up->comp[i - 1] + step;
  371: 		up->comp[OFFSET + i] = -up->comp[i];
  372: 		if (i % 16 == 0)
  373: 			step *= 2.;
  374: 	}
  375: 	DTOLFP(1. / SECOND, &up->tick);
  376: 	return (1);
  377: }
  378: 
  379: 
  380: /*
  381:  * irig_shutdown - shut down the clock
  382:  */
  383: static void
  384: irig_shutdown(
  385: 	int	unit,		/* instance number (not used) */
  386: 	struct peer *peer	/* peer structure pointer */
  387: 	)
  388: {
  389: 	struct refclockproc *pp;
  390: 	struct irigunit *up;
  391: 
  392: 	pp = peer->procptr;
  393: 	up = (struct irigunit *)pp->unitptr;
  394: 	if (-1 != pp->io.fd)
  395: 		io_closeclock(&pp->io);
  396: 	if (NULL != up)
  397: 		free(up);
  398: }
  399: 
  400: 
  401: /*
  402:  * irig_receive - receive data from the audio device
  403:  *
  404:  * This routine reads input samples and adjusts the logical clock to
  405:  * track the irig clock by dropping or duplicating codec samples.
  406:  */
  407: static void
  408: irig_receive(
  409: 	struct recvbuf *rbufp	/* receive buffer structure pointer */
  410: 	)
  411: {
  412: 	struct peer *peer;
  413: 	struct refclockproc *pp;
  414: 	struct irigunit *up;
  415: 
  416: 	/*
  417: 	 * Local variables
  418: 	 */
  419: 	double	sample;		/* codec sample */
  420: 	u_char	*dpt;		/* buffer pointer */
  421: 	int	bufcnt;		/* buffer counter */
  422: 	l_fp	ltemp;		/* l_fp temp */
  423: 
  424: 	peer = (struct peer *)rbufp->recv_srcclock;
  425: 	pp = peer->procptr;
  426: 	up = (struct irigunit *)pp->unitptr;
  427: 
  428: 	/*
  429: 	 * Main loop - read until there ain't no more. Note codec
  430: 	 * samples are bit-inverted.
  431: 	 */
  432: 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
  433: 	L_SUB(&rbufp->recv_time, &ltemp);
  434: 	up->timestamp = rbufp->recv_time;
  435: 	dpt = rbufp->recv_buffer;
  436: 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
  437: 		sample = up->comp[~*dpt++ & 0xff];
  438: 
  439: 		/*
  440: 		 * Variable frequency oscillator. The codec oscillator
  441: 		 * runs at the nominal rate of 8000 samples per second,
  442: 		 * or 125 us per sample. A frequency change of one unit
  443: 		 * results in either duplicating or deleting one sample
  444: 		 * per second, which results in a frequency change of
  445: 		 * 125 PPM.
  446: 		 */
  447: 		up->phase += (up->freq + clock_codec) / SECOND;
  448: 		up->phase += pp->fudgetime2 / 1e6;
  449: 		if (up->phase >= .5) {
  450: 			up->phase -= 1.;
  451: 		} else if (up->phase < -.5) {
  452: 			up->phase += 1.;
  453: 			irig_rf(peer, sample);
  454: 			irig_rf(peer, sample);
  455: 		} else {
  456: 			irig_rf(peer, sample);
  457: 		}
  458: 		L_ADD(&up->timestamp, &up->tick);
  459: 		sample = fabs(sample);
  460: 		if (sample > up->signal)
  461: 			up->signal = sample;
  462: 			up->signal += (sample - up->signal) /
  463: 			    1000;
  464: 
  465: 		/*
  466: 		 * Once each second, determine the IRIG format and gain.
  467: 		 */
  468: 		up->seccnt = (up->seccnt + 1) % SECOND;
  469: 		if (up->seccnt == 0) {
  470: 			if (up->irig_b > up->irig_e) {
  471: 				up->decim = 1;
  472: 				up->fdelay = IRIG_B;
  473: 			} else {
  474: 				up->decim = 10;
  475: 				up->fdelay = IRIG_E;
  476: 			}
  477: 			up->irig_b = up->irig_e = 0;
  478: 			irig_gain(peer);
  479: 
  480: 		}
  481: 	}
  482: 
  483: 	/*
  484: 	 * Set the input port and monitor gain for the next buffer.
  485: 	 */
  486: 	if (pp->sloppyclockflag & CLK_FLAG2)
  487: 		up->port = 2;
  488: 	else
  489: 		up->port = 1;
  490: 	if (pp->sloppyclockflag & CLK_FLAG3)
  491: 		up->mongain = MONGAIN;
  492: 	else
  493: 		up->mongain = 0;
  494: }
  495: 
  496: 
  497: /*
  498:  * irig_rf - RF processing
  499:  *
  500:  * This routine filters the RF signal using a bandass filter for IRIG-B
  501:  * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
  502:  * decimated by a factor of ten. Note that the codec filters function as
  503:  * roofing filters to attenuate both the high and low ends of the
  504:  * passband. IIR filter coefficients were determined using Matlab Signal
  505:  * Processing Toolkit.
  506:  */
  507: static void
  508: irig_rf(
  509: 	struct peer *peer,	/* peer structure pointer */
  510: 	double	sample		/* current signal sample */
  511: 	)
  512: {
  513: 	struct refclockproc *pp;
  514: 	struct irigunit *up;
  515: 
  516: 	/*
  517: 	 * Local variables
  518: 	 */
  519: 	double	irig_b, irig_e;	/* irig filter outputs */
  520: 
  521: 	pp = peer->procptr;
  522: 	up = (struct irigunit *)pp->unitptr;
  523: 
  524: 	/*
  525: 	 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
  526: 	 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
  527: 	 * phase delay 1.03 ms.
  528: 	 */
  529: 	irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
  530: 	irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
  531: 	irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
  532: 	irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
  533: 	irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
  534: 	irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
  535: 	irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
  536: 	irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
  537: 	up->bpf[0] = sample - irig_b;
  538: 	irig_b = up->bpf[0] * 4.952157e-003
  539: 	    + up->bpf[1] * -2.055878e-002
  540: 	    + up->bpf[2] * 4.401413e-002
  541: 	    + up->bpf[3] * -6.558851e-002
  542: 	    + up->bpf[4] * 7.462108e-002
  543: 	    + up->bpf[5] * -6.558851e-002
  544: 	    + up->bpf[6] * 4.401413e-002
  545: 	    + up->bpf[7] * -2.055878e-002
  546: 	    + up->bpf[8] * 4.952157e-003;
  547: 	up->irig_b += irig_b * irig_b;
  548: 
  549: 	/*
  550: 	 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
  551: 	 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
  552: 	 * 3.47 ms.
  553: 	 */
  554: 	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
  555: 	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
  556: 	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
  557: 	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
  558: 	up->lpf[0] = sample - irig_e;
  559: 	irig_e = up->lpf[0] * 3.215696e-003
  560: 	    + up->lpf[1] * -1.174951e-002
  561: 	    + up->lpf[2] * 1.712074e-002
  562: 	    + up->lpf[3] * -1.174951e-002
  563: 	    + up->lpf[4] * 3.215696e-003;
  564: 	up->irig_e += irig_e * irig_e;
  565: 
  566: 	/*
  567: 	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
  568: 	 */
  569: 	up->badcnt = (up->badcnt + 1) % up->decim;
  570: 	if (up->badcnt == 0) {
  571: 		if (up->decim == 1)
  572: 			irig_base(peer, irig_b);
  573: 		else
  574: 			irig_base(peer, irig_e);
  575: 	}
  576: }
  577: 
  578: /*
  579:  * irig_base - baseband processing
  580:  *
  581:  * This routine processes the baseband signal and demodulates the AM
  582:  * carrier using a synchronous detector. It then synchronizes to the
  583:  * data frame at the baud rate and decodes the width-modulated data
  584:  * pulses.
  585:  */
  586: static void
  587: irig_base(
  588: 	struct peer *peer,	/* peer structure pointer */
  589: 	double	sample		/* current signal sample */
  590: 	)
  591: {
  592: 	struct refclockproc *pp;
  593: 	struct irigunit *up;
  594: 
  595: 	/*
  596: 	 * Local variables
  597: 	 */
  598: 	double	lope;		/* integrator output */
  599: 	double	env;		/* envelope detector output */
  600: 	double	dtemp;
  601: 	int	carphase;	/* carrier phase */
  602: 
  603: 	pp = peer->procptr;
  604: 	up = (struct irigunit *)pp->unitptr;
  605: 
  606: 	/*
  607: 	 * Synchronous baud integrator. Corresponding samples of current
  608: 	 * and past baud intervals are integrated to refine the envelope
  609: 	 * amplitude and phase estimate. We keep one cycle (1 ms) of the
  610: 	 * raw data and one baud (10 ms) of the integrated data.
  611: 	 */
  612: 	up->envphase = (up->envphase + 1) % BAUD;
  613: 	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
  614: 	    (5 * up->tc);
  615: 	lope = up->integ[up->envphase];
  616: 	carphase = up->envphase % CYCLE;
  617: 	up->lastenv[carphase] = sample;
  618: 	up->lastint[carphase] = lope;
  619: 
  620: 	/*
  621: 	 * Phase detector. Find the negative-going zero crossing
  622: 	 * relative to sample 4 in the 8-sample sycle. A phase change of
  623: 	 * 360 degrees produces an output change of one unit.
  624: 	 */ 
  625: 	if (up->lastsig > 0 && lope <= 0)
  626: 		up->zxing += (double)(carphase - 4) / CYCLE;
  627: 	up->lastsig = lope;
  628: 
  629: 	/*
  630: 	 * End of the baud. Update signal/noise estimates and PLL
  631: 	 * phase, frequency and time constant.
  632: 	 */
  633: 	if (up->envphase == 0) {
  634: 		up->maxsignal = up->intmax; up->noise = up->intmin;
  635: 		up->intmin = 1e6; up->intmax = -1e6;
  636: 		if (up->maxsignal < DRPOUT)
  637: 			up->errflg |= IRIG_ERR_AMP;
  638: 		if (up->maxsignal > 0)
  639: 			up->modndx = (up->maxsignal - up->noise) /
  640: 			    up->maxsignal;
  641:  		else
  642: 			up->modndx = 0;
  643: 		if (up->modndx < MODMIN)
  644: 			up->errflg |= IRIG_ERR_MOD;
  645: 		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
  646: 		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
  647: 			up->tc = MINTC;
  648: 			up->tcount = 0;
  649: 		}
  650: 
  651: 		/*
  652: 		 * Update PLL phase and frequency. The PLL time constant
  653: 		 * is set initially to stabilize the frequency within a
  654: 		 * minute or two, then increases to the maximum. The
  655: 		 * frequency is clamped so that the PLL capture range
  656: 		 * cannot be exceeded.
  657: 		 */
  658: 		dtemp = up->zxing * up->decim / BAUD;
  659: 		up->yxing = dtemp;
  660: 		up->zxing = 0.;
  661: 		up->phase += dtemp / up->tc;
  662: 		up->freq += dtemp / (4. * up->tc * up->tc);
  663: 		if (up->freq > MAXFREQ) {
  664: 			up->freq = MAXFREQ;
  665: 			up->errflg |= IRIG_ERR_FREQ;
  666: 		} else if (up->freq < -MAXFREQ) {
  667: 			up->freq = -MAXFREQ;
  668: 			up->errflg |= IRIG_ERR_FREQ;
  669: 		}
  670: 	}
  671: 
  672: 	/*
  673: 	 * Synchronous demodulator. There are eight samples in the cycle
  674: 	 * and ten cycles in the baud. Since the PLL has aligned the
  675: 	 * negative-going zero crossing at sample 4, the maximum
  676: 	 * amplitude is at sample 2 and minimum at sample 6. The
  677: 	 * beginning of the data pulse is determined from the integrated
  678: 	 * samples, while the end of the pulse is determined from the
  679: 	 * raw samples. The raw data bits are demodulated relative to
  680: 	 * the slice level and left-shifted in the decoding register.
  681: 	 */
  682: 	if (carphase != 7)
  683: 		return;
  684: 
  685: 	lope = (up->lastint[2] - up->lastint[6]) / 2.;
  686: 	if (lope > up->intmax)
  687: 		up->intmax = lope;
  688: 	if (lope < up->intmin)
  689: 		up->intmin = lope;
  690: 
  691: 	/*
  692: 	 * Pulse code demodulator and reference timestamp. The decoder
  693: 	 * looks for a sequence of ten bits; the first two bits must be
  694: 	 * one, the last two bits must be zero. Frame synch is asserted
  695: 	 * when three correct frames have been found.
  696: 	 */
  697: 	up->pulse = (up->pulse + 1) % 10;
  698: 	up->cycles <<= 1;
  699: 	if (lope >= (up->maxsignal + up->noise) / 2.)
  700: 		up->cycles |= 1;
  701: 	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
  702: 		if (up->pulse != 0)
  703: 			up->errflg |= IRIG_ERR_SYNCH;
  704: 		up->pulse = 0;
  705: 	}
  706: 
  707: 	/*
  708: 	 * Assemble the baud and max/min to get the slice level for the
  709: 	 * next baud. The slice level is based on the maximum over the
  710: 	 * first two bits and the minimum over the last two bits, with
  711: 	 * the slice level halfway between the maximum and minimum.
  712: 	 */
  713: 	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
  714: 	up->dcycles <<= 1;
  715: 	if (env >= up->slice)
  716: 		up->dcycles |= 1;
  717: 	switch(up->pulse) {
  718: 
  719: 	case 0:
  720: 		irig_baud(peer, up->dcycles);
  721: 		if (env < up->envmin)
  722: 			up->envmin = env;
  723: 		up->slice = (up->envmax + up->envmin) / 2;
  724: 		up->envmin = 1e6; up->envmax = -1e6;
  725: 		break;
  726: 
  727: 	case 1:
  728: 		up->envmax = env;
  729: 		break;
  730: 
  731: 	case 2:
  732: 		if (env > up->envmax)
  733: 			up->envmax = env;
  734: 		break;
  735: 
  736: 	case 9:
  737: 		up->envmin = env;
  738: 		break;
  739: 	}
  740: }
  741: 
  742: /*
  743:  * irig_baud - update the PLL and decode the pulse-width signal
  744:  */
  745: static void
  746: irig_baud(
  747: 	struct peer *peer,	/* peer structure pointer */
  748: 	int	bits		/* decoded bits */
  749: 	)
  750: {
  751: 	struct refclockproc *pp;
  752: 	struct irigunit *up;
  753: 	double	dtemp;
  754: 	l_fp	ltemp;
  755: 
  756:         pp = peer->procptr;
  757: 	up = (struct irigunit *)pp->unitptr;
  758: 
  759: 	/*
  760: 	 * The PLL time constant starts out small, in order to
  761: 	 * sustain a frequency tolerance of 250 PPM. It
  762: 	 * gradually increases as the loop settles down. Note
  763: 	 * that small wiggles are not believed, unless they
  764: 	 * persist for lots of samples.
  765: 	 */
  766: 	up->exing = -up->yxing;
  767: 	if (fabs(up->envxing - up->envphase) <= 1) {
  768: 		up->tcount++;
  769: 		if (up->tcount > 20 * up->tc) {
  770: 			up->tc++;
  771: 			if (up->tc > MAXTC)
  772: 				up->tc = MAXTC;
  773: 			up->tcount = 0;
  774: 			up->envxing = up->envphase;
  775: 		} else {
  776: 			up->exing -= up->envxing - up->envphase;
  777: 		}
  778: 	} else {
  779: 		up->tcount = 0;
  780: 		up->envxing = up->envphase;
  781: 	}
  782: 
  783: 	/*
  784: 	 * Strike the baud timestamp as the positive zero crossing of
  785: 	 * the first bit, accounting for the codec delay and filter
  786: 	 * delay.
  787: 	 */
  788: 	up->prvstamp = up->chrstamp;
  789: 	dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
  790: 	DTOLFP(dtemp, &ltemp);
  791: 	up->chrstamp = up->timestamp;
  792: 	L_SUB(&up->chrstamp, &ltemp);
  793: 
  794: 	/*
  795: 	 * The data bits are collected in ten-bit bauds. The first two
  796: 	 * bits are not used. The resulting patterns represent runs of
  797: 	 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
  798: 	 * 8-bit run represents a soft error and is treated as 0.
  799: 	 */
  800: 	switch (up->dcycles & 0xff) {
  801: 
  802: 	case 0x00:		/* 0-1 bits (0) */
  803: 	case 0x80:
  804: 		irig_decode(peer, BIT0);
  805: 		break;
  806: 
  807: 	case 0xc0:		/* 2-4 bits (1) */
  808: 	case 0xe0:
  809: 	case 0xf0:
  810: 		irig_decode(peer, BIT1);
  811: 		break;
  812: 
  813: 	case 0xf8:		/* (5-7 bits (PI) */
  814: 	case 0xfc:
  815: 	case 0xfe:
  816: 		irig_decode(peer, BITP);
  817: 		break;
  818: 
  819: 	default:		/* 8 bits (error) */
  820: 		irig_decode(peer, BIT0);
  821: 		up->errflg |= IRIG_ERR_DECODE;
  822: 	}
  823: }
  824: 
  825: 
  826: /*
  827:  * irig_decode - decode the data
  828:  *
  829:  * This routine assembles bauds into digits, digits into frames and
  830:  * frames into the timecode fields. Bits can have values of zero, one
  831:  * or position identifier. There are four bits per digit, ten digits per
  832:  * frame and ten frames per second.
  833:  */
  834: static void
  835: irig_decode(
  836: 	struct	peer *peer,	/* peer structure pointer */
  837: 	int	bit		/* data bit (0, 1 or 2) */
  838: 	)
  839: {
  840: 	struct refclockproc *pp;
  841: 	struct irigunit *up;
  842: 
  843: 	/*
  844: 	 * Local variables
  845: 	 */
  846: 	int	syncdig;	/* sync digit (Spectracom) */
  847: 	char	sbs[6 + 1];	/* binary seconds since 0h */
  848: 	char	spare[2 + 1];	/* mulligan digits */
  849: 	int	temp;
  850: 
  851: 	pp = peer->procptr;
  852: 	up = (struct irigunit *)pp->unitptr;
  853: 
  854: 	/*
  855: 	 * Assemble frame bits.
  856: 	 */
  857: 	up->bits >>= 1;
  858: 	if (bit == BIT1) {
  859: 		up->bits |= 0x200;
  860: 	} else if (bit == BITP && up->lastbit == BITP) {
  861: 
  862: 		/*
  863: 		 * Frame sync - two adjacent position identifiers, which
  864: 		 * mark the beginning of the second. The reference time
  865: 		 * is the beginning of the second position identifier,
  866: 		 * so copy the character timestamp to the reference
  867: 		 * timestamp.
  868: 		 */
  869: 		if (up->frmcnt != 1)
  870: 			up->errflg |= IRIG_ERR_SYNCH;
  871: 		up->frmcnt = 1;
  872: 		up->refstamp = up->prvstamp;
  873: 	}
  874: 	up->lastbit = bit;
  875: 	if (up->frmcnt % SUBFLD == 0) {
  876: 
  877: 		/*
  878: 		 * End of frame. Encode two hexadecimal digits in
  879: 		 * little-endian timecode field. Note frame 1 is shifted
  880: 		 * right one bit to account for the marker PI.
  881: 		 */
  882: 		temp = up->bits;
  883: 		if (up->frmcnt == 10)
  884: 			temp >>= 1;
  885: 		if (up->xptr >= 2) {
  886: 			up->timecode[--up->xptr] = hexchar[temp & 0xf];
  887: 			up->timecode[--up->xptr] = hexchar[(temp >> 5) &
  888: 			    0xf];
  889: 		}
  890: 		if (up->frmcnt == 0) {
  891: 
  892: 			/*
  893: 			 * End of second. Decode the timecode and wind
  894: 			 * the clock. Not all IRIG generators have the
  895: 			 * year; if so, it is nonzero after year 2000.
  896: 			 * Not all have the hardware status bit; if so,
  897: 			 * it is lit when the source is okay and dim
  898: 			 * when bad. We watch this only if the year is
  899: 			 * nonzero. Not all are configured for signature
  900: 			 * control. If so, all BCD digits are set to
  901: 			 * zero if the source is bad. In this case the
  902: 			 * refclock_process() will reject the timecode
  903: 			 * as invalid.
  904: 			 */
  905: 			up->xptr = 2 * SUBFLD;
  906: 			if (sscanf((char *)up->timecode,
  907: 			   "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
  908: 			    &syncdig, spare, &pp->day, &pp->hour,
  909: 			    &pp->minute, &pp->second) != 8)
  910: 				pp->leap = LEAP_NOTINSYNC;
  911: 			else
  912: 				pp->leap = LEAP_NOWARNING;
  913: 			up->second = (up->second + up->decim) % 60;
  914: 
  915: 			/*
  916: 			 * Raise an alarm if the day field is zero,
  917: 			 * which happens when signature control is
  918: 			 * enabled and the device has lost
  919: 			 * synchronization. Raise an alarm if the year
  920: 			 * field is nonzero and the sync indicator is
  921: 			 * zero, which happens when a Spectracom radio
  922: 			 * has lost synchronization. Raise an alarm if
  923: 			 * the expected second does not agree with the
  924: 			 * decoded second, which happens with a garbled
  925: 			 * IRIG signal. We are very particular.
  926: 			 */
  927: 			if (pp->day == 0 || (pp->year != 0 && syncdig ==
  928: 			    0))
  929: 				up->errflg |= IRIG_ERR_SIGERR;
  930: 			if (pp->second != up->second)
  931: 				up->errflg |= IRIG_ERR_CHECK;
  932: 			up->second = pp->second;
  933: 
  934: 			/*
  935: 			 * Wind the clock only if there are no errors
  936: 			 * and the time constant has reached the
  937: 			 * maximum.
  938: 			 */
  939: 			if (up->errflg == 0 && up->tc == MAXTC) {
  940: 				pp->lastref = pp->lastrec;
  941: 				pp->lastrec = up->refstamp;
  942: 				if (!refclock_process(pp))
  943: 					refclock_report(peer,
  944: 					    CEVNT_BADTIME);
  945: 			}
  946: 			snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
  947: 			    "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
  948: 			    up->errflg, pp->year, pp->day,
  949: 			    pp->hour, pp->minute, pp->second,
  950: 			    up->maxsignal, up->gain, up->modndx,
  951: 			    up->tc, up->exing * 1e6 / SECOND, up->freq *
  952: 			    1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
  953: 			pp->lencode = strlen(pp->a_lastcode);
  954: 			up->errflg = 0;
  955: 			if (pp->sloppyclockflag & CLK_FLAG4) {
  956: 				record_clock_stats(&peer->srcadr,
  957: 				    pp->a_lastcode);
  958: #ifdef DEBUG
  959: 				if (debug)
  960: 					printf("irig %s\n",
  961: 					    pp->a_lastcode);
  962: #endif /* DEBUG */
  963: 			}
  964: 		}
  965: 	}
  966: 	up->frmcnt = (up->frmcnt + 1) % FIELD;
  967: }
  968: 
  969: 
  970: /*
  971:  * irig_poll - called by the transmit procedure
  972:  *
  973:  * This routine sweeps up the timecode updates since the last poll. For
  974:  * IRIG-B there should be at least 60 updates; for IRIG-E there should
  975:  * be at least 6. If nothing is heard, a timeout event is declared. 
  976:  */
  977: static void
  978: irig_poll(
  979: 	int	unit,		/* instance number (not used) */
  980: 	struct peer *peer	/* peer structure pointer */
  981: 	)
  982: {
  983: 	struct refclockproc *pp;
  984: 	struct irigunit *up;
  985: 
  986: 	pp = peer->procptr;
  987: 	up = (struct irigunit *)pp->unitptr;
  988: 
  989: 	if (pp->coderecv == pp->codeproc) {
  990: 		refclock_report(peer, CEVNT_TIMEOUT);
  991: 		return;
  992: 
  993: 	}
  994: 	refclock_receive(peer);
  995: 	if (!(pp->sloppyclockflag & CLK_FLAG4)) {
  996: 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
  997: #ifdef DEBUG
  998: 		if (debug)
  999: 			printf("irig %s\n", pp->a_lastcode);
 1000: #endif /* DEBUG */
 1001: 	}
 1002: 	pp->polls++;
 1003: 	
 1004: }
 1005: 
 1006: 
 1007: /*
 1008:  * irig_gain - adjust codec gain
 1009:  *
 1010:  * This routine is called at the end of each second. It uses the AGC to
 1011:  * bradket the maximum signal level between MINAMP and MAXAMP to avoid
 1012:  * hunting. The routine also jiggles the input port and selectively
 1013:  * mutes the monitor.
 1014:  */
 1015: static void
 1016: irig_gain(
 1017: 	struct peer *peer	/* peer structure pointer */
 1018: 	)
 1019: {
 1020: 	struct refclockproc *pp;
 1021: 	struct irigunit *up;
 1022: 
 1023: 	pp = peer->procptr;
 1024: 	up = (struct irigunit *)pp->unitptr;
 1025: 
 1026: 	/*
 1027: 	 * Apparently, the codec uses only the high order bits of the
 1028: 	 * gain control field. Thus, it may take awhile for changes to
 1029: 	 * wiggle the hardware bits.
 1030: 	 */
 1031: 	if (up->maxsignal < MINAMP) {
 1032: 		up->gain += 4;
 1033: 		if (up->gain > MAXGAIN)
 1034: 			up->gain = MAXGAIN;
 1035: 	} else if (up->maxsignal > MAXAMP) {
 1036: 		up->gain -= 4;
 1037: 		if (up->gain < 0)
 1038: 			up->gain = 0;
 1039: 	}
 1040: 	audio_gain(up->gain, up->mongain, up->port);
 1041: }
 1042: 
 1043: 
 1044: #else
 1045: int refclock_irig_bs;
 1046: #endif /* REFCLOCK */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>