/*
* refclock_irig - audio IRIG-B/E demodulator/decoder
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(REFCLOCK) && defined(CLOCK_IRIG)
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */
#include "audio.h"
/*
* Audio IRIG-B/E demodulator/decoder
*
* This driver synchronizes the computer time using data encoded in
* IRIG-B/E signals commonly produced by GPS receivers and other timing
* devices. The IRIG signal is an amplitude-modulated carrier with
* pulse-width modulated data bits. For IRIG-B, the carrier frequency is
* 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
* 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
& format is in use.
*
* The driver requires an audio codec or sound card with sampling rate 8
* kHz and mu-law companding. This is the same standard as used by the
* telephone industry and is supported by most hardware and operating
* systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
* implementation, only one audio driver and codec can be supported on a
* single machine.
*
* The program processes 8000-Hz mu-law companded samples using separate
* signal filters for IRIG-B and IRIG-E, a comb filter, envelope
* detector and automatic threshold corrector. Cycle crossings relative
* to the corrected slice level determine the width of each pulse and
* its value - zero, one or position identifier.
*
* The data encode 20 BCD digits which determine the second, minute,
* hour and day of the year and sometimes the year and synchronization
* condition. The comb filter exponentially averages the corresponding
* samples of successive baud intervals in order to reliably identify
* the reference carrier cycle. A type-II phase-lock loop (PLL) performs
* additional integration and interpolation to accurately determine the
* zero crossing of that cycle, which determines the reference
* timestamp. A pulse-width discriminator demodulates the data pulses,
* which are then encoded as the BCD digits of the timecode.
*
* The timecode and reference timestamp are updated once each second
* with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
* saved for later processing. At poll intervals of 64 s, the saved
* samples are processed by a trimmed-mean filter and used to update the
* system clock.
*
* An automatic gain control feature provides protection against
* overdriven or underdriven input signal amplitudes. It is designed to
* maintain adequate demodulator signal amplitude while avoiding
* occasional noise spikes. In order to assure reliable capture, the
* decompanded input signal amplitude must be greater than 100 units and
* the codec sample frequency error less than 250 PPM (.025 percent).
*
* Monitor Data
*
* The timecode format used for debugging and data recording includes
* data helpful in diagnosing problems with the IRIG signal and codec
* connections. The driver produces one line for each timecode in the
* following format:
*
* 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
*
* If clockstats is enabled, the most recent line is written to the
* clockstats file every 64 s. If verbose recording is enabled (fudge
* flag 4) each line is written as generated.
*
* The first field containes the error flags in hex, where the hex bits
* are interpreted as below. This is followed by the year of century,
* day of year and time of day. Note that the time of day is for the
* previous minute, not the current time. The status indicator and year
* are not produced by some IRIG devices and appear as zeros. Following
* these fields are the carrier amplitude (0-3000), codec gain (0-255),
* modulation index (0-1), time constant (4-10), carrier phase error
* +-.5) and carrier frequency error (PPM). The last field is the on-
* time timestamp in NTP format.
*
* The error flags are defined as follows in hex:
*
* x01 Low signal. The carrier amplitude is less than 100 units. This
* is usually the result of no signal or wrong input port.
* x02 Frequency error. The codec frequency error is greater than 250
* PPM. This may be due to wrong signal format or (rarely)
* defective codec.
* x04 Modulation error. The IRIG modulation index is less than 0.5.
* This is usually the result of an overdriven codec, wrong signal
* format or wrong input port.
* x08 Frame synch error. The decoder frame does not match the IRIG
* frame. This is usually the result of an overdriven codec, wrong
* signal format or noisy IRIG signal. It may also be the result of
* an IRIG signature check which indicates a failure of the IRIG
* signal synchronization source.
* x10 Data bit error. The data bit length is out of tolerance. This is
* usually the result of an overdriven codec, wrong signal format
* or noisy IRIG signal.
* x20 Seconds numbering discrepancy. The decoder second does not match
* the IRIG second. This is usually the result of an overdriven
* codec, wrong signal format or noisy IRIG signal.
* x40 Codec error (overrun). The machine is not fast enough to keep up
* with the codec.
* x80 Device status error (Spectracom).
*
*
* Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
* within a few tens of microseconds relative to the IRIG-B signal.
* Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
* broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
* modulation.
*
* Unlike other drivers, which can have multiple instantiations, this
* one supports only one. It does not seem likely that more than one
* audio codec would be useful in a single machine. More than one would
* probably chew up too much CPU time anyway.
*
* Fudge factors
*
* Fudge flag4 causes the dubugging output described above to be
* recorded in the clockstats file. Fudge flag2 selects the audio input
* port, where 0 is the mike port (default) and 1 is the line-in port.
* It does not seem useful to select the compact disc player port. Fudge
* flag3 enables audio monitoring of the input signal. For this purpose,
* the monitor gain is set t a default value. Fudgetime2 is used as a
* frequency vernier for broken codec sample frequency.
*
* Alarm codes
*
* CEVNT_BADTIME invalid date or time
* CEVNT_TIMEOUT no IRIG data since last poll
*/
/*
* Interface definitions
*/
#define DEVICE_AUDIO "/dev/audio" /* audio device name */
#define PRECISION (-17) /* precision assumed (about 10 us) */
#define REFID "IRIG" /* reference ID */
#define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
#define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
#define SECOND 8000 /* nominal sample rate (Hz) */
#define BAUD 80 /* samples per baud interval */
#define OFFSET 128 /* companded sample offset */
#define SIZE 256 /* decompanding table size */
#define CYCLE 8 /* samples per bit */
#define SUBFLD 10 /* bits per frame */
#define FIELD 100 /* bits per second */
#define MINTC 2 /* min PLL time constant */
#define MAXTC 10 /* max PLL time constant max */
#define MAXAMP 3000. /* maximum signal amplitude */
#define MINAMP 2000. /* minimum signal amplitude */
#define DRPOUT 100. /* dropout signal amplitude */
#define MODMIN 0.5 /* minimum modulation index */
#define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
/*
* The on-time synchronization point is the positive-going zero crossing
* of the first cycle of the second. The IIR baseband filter phase delay
* is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
* due to the codec and other causes was determined by calibrating to a
* PPS signal from a GPS receiver.
*
* The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
* within .02 ms short-term with .02 ms jitter. The processor load due
* to the driver is 0.51 percent.
*/
#define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */
#define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */
/*
* Data bit definitions
*/
#define BIT0 0 /* zero */
#define BIT1 1 /* one */
#define BITP 2 /* position identifier */
/*
* Error flags
*/
#define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
#define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
#define IRIG_ERR_MOD 0x04 /* low modulation index */
#define IRIG_ERR_SYNCH 0x08 /* frame synch error */
#define IRIG_ERR_DECODE 0x10 /* frame decoding error */
#define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
#define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
#define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
static char hexchar[] = "0123456789abcdef";
/*
* IRIG unit control structure
*/
struct irigunit {
u_char timecode[2 * SUBFLD + 1]; /* timecode string */
l_fp timestamp; /* audio sample timestamp */
l_fp tick; /* audio sample increment */
l_fp refstamp; /* reference timestamp */
l_fp chrstamp; /* baud timestamp */
l_fp prvstamp; /* previous baud timestamp */
double integ[BAUD]; /* baud integrator */
double phase, freq; /* logical clock phase and frequency */
double zxing; /* phase detector integrator */
double yxing; /* cycle phase */
double exing; /* envelope phase */
double modndx; /* modulation index */
double irig_b; /* IRIG-B signal amplitude */
double irig_e; /* IRIG-E signal amplitude */
int errflg; /* error flags */
/*
* Audio codec variables
*/
double comp[SIZE]; /* decompanding table */
double signal; /* peak signal for AGC */
int port; /* codec port */
int gain; /* codec gain */
int mongain; /* codec monitor gain */
int seccnt; /* second interval counter */
/*
* RF variables
*/
double bpf[9]; /* IRIG-B filter shift register */
double lpf[5]; /* IRIG-E filter shift register */
double envmin, envmax; /* envelope min and max */
double slice; /* envelope slice level */
double intmin, intmax; /* integrated envelope min and max */
double maxsignal; /* integrated peak amplitude */
double noise; /* integrated noise amplitude */
double lastenv[CYCLE]; /* last cycle amplitudes */
double lastint[CYCLE]; /* last integrated cycle amplitudes */
double lastsig; /* last carrier sample */
double fdelay; /* filter delay */
int decim; /* sample decimation factor */
int envphase; /* envelope phase */
int envptr; /* envelope phase pointer */
int envsw; /* envelope state */
int envxing; /* envelope slice crossing */
int tc; /* time constant */
int tcount; /* time constant counter */
int badcnt; /* decimation interval counter */
/*
* Decoder variables
*/
int pulse; /* cycle counter */
int cycles; /* carrier cycles */
int dcycles; /* data cycles */
int lastbit; /* last code element */
int second; /* previous second */
int bitcnt; /* bit count in frame */
int frmcnt; /* bit count in second */
int xptr; /* timecode pointer */
int bits; /* demodulated bits */
};
/*
* Function prototypes
*/
static int irig_start (int, struct peer *);
static void irig_shutdown (int, struct peer *);
static void irig_receive (struct recvbuf *);
static void irig_poll (int, struct peer *);
/*
* More function prototypes
*/
static void irig_base (struct peer *, double);
static void irig_rf (struct peer *, double);
static void irig_baud (struct peer *, int);
static void irig_decode (struct peer *, int);
static void irig_gain (struct peer *);
/*
* Transfer vector
*/
struct refclock refclock_irig = {
irig_start, /* start up driver */
irig_shutdown, /* shut down driver */
irig_poll, /* transmit poll message */
noentry, /* not used (old irig_control) */
noentry, /* initialize driver (not used) */
noentry, /* not used (old irig_buginfo) */
NOFLAGS /* not used */
};
/*
* irig_start - open the devices and initialize data for processing
*/
static int
irig_start(
int unit, /* instance number (used for PCM) */
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct irigunit *up;
/*
* Local variables
*/
int fd; /* file descriptor */
int i; /* index */
double step; /* codec adjustment */
/*
* Open audio device
*/
fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
if (fd < 0)
return (0);
#ifdef DEBUG
if (debug)
audio_show();
#endif
/*
* Allocate and initialize unit structure
*/
up = emalloc(sizeof(*up));
memset(up, 0, sizeof(*up));
pp = peer->procptr;
pp->unitptr = (caddr_t)up;
pp->io.clock_recv = irig_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
if (!io_addclock(&pp->io)) {
close(fd);
pp->io.fd = -1;
free(up);
pp->unitptr = NULL;
return (0);
}
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
memcpy((char *)&pp->refid, REFID, 4);
up->tc = MINTC;
up->decim = 1;
up->gain = 127;
/*
* The companded samples are encoded sign-magnitude. The table
* contains all the 256 values in the interest of speed.
*/
up->comp[0] = up->comp[OFFSET] = 0.;
up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
step = 2.;
for (i = 3; i < OFFSET; i++) {
up->comp[i] = up->comp[i - 1] + step;
up->comp[OFFSET + i] = -up->comp[i];
if (i % 16 == 0)
step *= 2.;
}
DTOLFP(1. / SECOND, &up->tick);
return (1);
}
/*
* irig_shutdown - shut down the clock
*/
static void
irig_shutdown(
int unit, /* instance number (not used) */
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct irigunit *up;
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
if (-1 != pp->io.fd)
io_closeclock(&pp->io);
if (NULL != up)
free(up);
}
/*
* irig_receive - receive data from the audio device
*
* This routine reads input samples and adjusts the logical clock to
* track the irig clock by dropping or duplicating codec samples.
*/
static void
irig_receive(
struct recvbuf *rbufp /* receive buffer structure pointer */
)
{
struct peer *peer;
struct refclockproc *pp;
struct irigunit *up;
/*
* Local variables
*/
double sample; /* codec sample */
u_char *dpt; /* buffer pointer */
int bufcnt; /* buffer counter */
l_fp ltemp; /* l_fp temp */
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
/*
* Main loop - read until there ain't no more. Note codec
* samples are bit-inverted.
*/
DTOLFP((double)rbufp->recv_length / SECOND, <emp);
L_SUB(&rbufp->recv_time, <emp);
up->timestamp = rbufp->recv_time;
dpt = rbufp->recv_buffer;
for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
sample = up->comp[~*dpt++ & 0xff];
/*
* Variable frequency oscillator. The codec oscillator
* runs at the nominal rate of 8000 samples per second,
* or 125 us per sample. A frequency change of one unit
* results in either duplicating or deleting one sample
* per second, which results in a frequency change of
* 125 PPM.
*/
up->phase += (up->freq + clock_codec) / SECOND;
up->phase += pp->fudgetime2 / 1e6;
if (up->phase >= .5) {
up->phase -= 1.;
} else if (up->phase < -.5) {
up->phase += 1.;
irig_rf(peer, sample);
irig_rf(peer, sample);
} else {
irig_rf(peer, sample);
}
L_ADD(&up->timestamp, &up->tick);
sample = fabs(sample);
if (sample > up->signal)
up->signal = sample;
up->signal += (sample - up->signal) /
1000;
/*
* Once each second, determine the IRIG format and gain.
*/
up->seccnt = (up->seccnt + 1) % SECOND;
if (up->seccnt == 0) {
if (up->irig_b > up->irig_e) {
up->decim = 1;
up->fdelay = IRIG_B;
} else {
up->decim = 10;
up->fdelay = IRIG_E;
}
up->irig_b = up->irig_e = 0;
irig_gain(peer);
}
}
/*
* Set the input port and monitor gain for the next buffer.
*/
if (pp->sloppyclockflag & CLK_FLAG2)
up->port = 2;
else
up->port = 1;
if (pp->sloppyclockflag & CLK_FLAG3)
up->mongain = MONGAIN;
else
up->mongain = 0;
}
/*
* irig_rf - RF processing
*
* This routine filters the RF signal using a bandass filter for IRIG-B
* and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
* decimated by a factor of ten. Note that the codec filters function as
* roofing filters to attenuate both the high and low ends of the
* passband. IIR filter coefficients were determined using Matlab Signal
* Processing Toolkit.
*/
static void
irig_rf(
struct peer *peer, /* peer structure pointer */
double sample /* current signal sample */
)
{
struct refclockproc *pp;
struct irigunit *up;
/*
* Local variables
*/
double irig_b, irig_e; /* irig filter outputs */
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
/*
* IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
* bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
* phase delay 1.03 ms.
*/
irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
up->bpf[0] = sample - irig_b;
irig_b = up->bpf[0] * 4.952157e-003
+ up->bpf[1] * -2.055878e-002
+ up->bpf[2] * 4.401413e-002
+ up->bpf[3] * -6.558851e-002
+ up->bpf[4] * 7.462108e-002
+ up->bpf[5] * -6.558851e-002
+ up->bpf[6] * 4.401413e-002
+ up->bpf[7] * -2.055878e-002
+ up->bpf[8] * 4.952157e-003;
up->irig_b += irig_b * irig_b;
/*
* IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
* 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
* 3.47 ms.
*/
irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
up->lpf[0] = sample - irig_e;
irig_e = up->lpf[0] * 3.215696e-003
+ up->lpf[1] * -1.174951e-002
+ up->lpf[2] * 1.712074e-002
+ up->lpf[3] * -1.174951e-002
+ up->lpf[4] * 3.215696e-003;
up->irig_e += irig_e * irig_e;
/*
* Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
*/
up->badcnt = (up->badcnt + 1) % up->decim;
if (up->badcnt == 0) {
if (up->decim == 1)
irig_base(peer, irig_b);
else
irig_base(peer, irig_e);
}
}
/*
* irig_base - baseband processing
*
* This routine processes the baseband signal and demodulates the AM
* carrier using a synchronous detector. It then synchronizes to the
* data frame at the baud rate and decodes the width-modulated data
* pulses.
*/
static void
irig_base(
struct peer *peer, /* peer structure pointer */
double sample /* current signal sample */
)
{
struct refclockproc *pp;
struct irigunit *up;
/*
* Local variables
*/
double lope; /* integrator output */
double env; /* envelope detector output */
double dtemp;
int carphase; /* carrier phase */
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
/*
* Synchronous baud integrator. Corresponding samples of current
* and past baud intervals are integrated to refine the envelope
* amplitude and phase estimate. We keep one cycle (1 ms) of the
* raw data and one baud (10 ms) of the integrated data.
*/
up->envphase = (up->envphase + 1) % BAUD;
up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
(5 * up->tc);
lope = up->integ[up->envphase];
carphase = up->envphase % CYCLE;
up->lastenv[carphase] = sample;
up->lastint[carphase] = lope;
/*
* Phase detector. Find the negative-going zero crossing
* relative to sample 4 in the 8-sample sycle. A phase change of
* 360 degrees produces an output change of one unit.
*/
if (up->lastsig > 0 && lope <= 0)
up->zxing += (double)(carphase - 4) / CYCLE;
up->lastsig = lope;
/*
* End of the baud. Update signal/noise estimates and PLL
* phase, frequency and time constant.
*/
if (up->envphase == 0) {
up->maxsignal = up->intmax; up->noise = up->intmin;
up->intmin = 1e6; up->intmax = -1e6;
if (up->maxsignal < DRPOUT)
up->errflg |= IRIG_ERR_AMP;
if (up->maxsignal > 0)
up->modndx = (up->maxsignal - up->noise) /
up->maxsignal;
else
up->modndx = 0;
if (up->modndx < MODMIN)
up->errflg |= IRIG_ERR_MOD;
if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
up->tc = MINTC;
up->tcount = 0;
}
/*
* Update PLL phase and frequency. The PLL time constant
* is set initially to stabilize the frequency within a
* minute or two, then increases to the maximum. The
* frequency is clamped so that the PLL capture range
* cannot be exceeded.
*/
dtemp = up->zxing * up->decim / BAUD;
up->yxing = dtemp;
up->zxing = 0.;
up->phase += dtemp / up->tc;
up->freq += dtemp / (4. * up->tc * up->tc);
if (up->freq > MAXFREQ) {
up->freq = MAXFREQ;
up->errflg |= IRIG_ERR_FREQ;
} else if (up->freq < -MAXFREQ) {
up->freq = -MAXFREQ;
up->errflg |= IRIG_ERR_FREQ;
}
}
/*
* Synchronous demodulator. There are eight samples in the cycle
* and ten cycles in the baud. Since the PLL has aligned the
* negative-going zero crossing at sample 4, the maximum
* amplitude is at sample 2 and minimum at sample 6. The
* beginning of the data pulse is determined from the integrated
* samples, while the end of the pulse is determined from the
* raw samples. The raw data bits are demodulated relative to
* the slice level and left-shifted in the decoding register.
*/
if (carphase != 7)
return;
lope = (up->lastint[2] - up->lastint[6]) / 2.;
if (lope > up->intmax)
up->intmax = lope;
if (lope < up->intmin)
up->intmin = lope;
/*
* Pulse code demodulator and reference timestamp. The decoder
* looks for a sequence of ten bits; the first two bits must be
* one, the last two bits must be zero. Frame synch is asserted
* when three correct frames have been found.
*/
up->pulse = (up->pulse + 1) % 10;
up->cycles <<= 1;
if (lope >= (up->maxsignal + up->noise) / 2.)
up->cycles |= 1;
if ((up->cycles & 0x303c0f03) == 0x300c0300) {
if (up->pulse != 0)
up->errflg |= IRIG_ERR_SYNCH;
up->pulse = 0;
}
/*
* Assemble the baud and max/min to get the slice level for the
* next baud. The slice level is based on the maximum over the
* first two bits and the minimum over the last two bits, with
* the slice level halfway between the maximum and minimum.
*/
env = (up->lastenv[2] - up->lastenv[6]) / 2.;
up->dcycles <<= 1;
if (env >= up->slice)
up->dcycles |= 1;
switch(up->pulse) {
case 0:
irig_baud(peer, up->dcycles);
if (env < up->envmin)
up->envmin = env;
up->slice = (up->envmax + up->envmin) / 2;
up->envmin = 1e6; up->envmax = -1e6;
break;
case 1:
up->envmax = env;
break;
case 2:
if (env > up->envmax)
up->envmax = env;
break;
case 9:
up->envmin = env;
break;
}
}
/*
* irig_baud - update the PLL and decode the pulse-width signal
*/
static void
irig_baud(
struct peer *peer, /* peer structure pointer */
int bits /* decoded bits */
)
{
struct refclockproc *pp;
struct irigunit *up;
double dtemp;
l_fp ltemp;
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
/*
* The PLL time constant starts out small, in order to
* sustain a frequency tolerance of 250 PPM. It
* gradually increases as the loop settles down. Note
* that small wiggles are not believed, unless they
* persist for lots of samples.
*/
up->exing = -up->yxing;
if (fabs(up->envxing - up->envphase) <= 1) {
up->tcount++;
if (up->tcount > 20 * up->tc) {
up->tc++;
if (up->tc > MAXTC)
up->tc = MAXTC;
up->tcount = 0;
up->envxing = up->envphase;
} else {
up->exing -= up->envxing - up->envphase;
}
} else {
up->tcount = 0;
up->envxing = up->envphase;
}
/*
* Strike the baud timestamp as the positive zero crossing of
* the first bit, accounting for the codec delay and filter
* delay.
*/
up->prvstamp = up->chrstamp;
dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
DTOLFP(dtemp, <emp);
up->chrstamp = up->timestamp;
L_SUB(&up->chrstamp, <emp);
/*
* The data bits are collected in ten-bit bauds. The first two
* bits are not used. The resulting patterns represent runs of
* 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
* 8-bit run represents a soft error and is treated as 0.
*/
switch (up->dcycles & 0xff) {
case 0x00: /* 0-1 bits (0) */
case 0x80:
irig_decode(peer, BIT0);
break;
case 0xc0: /* 2-4 bits (1) */
case 0xe0:
case 0xf0:
irig_decode(peer, BIT1);
break;
case 0xf8: /* (5-7 bits (PI) */
case 0xfc:
case 0xfe:
irig_decode(peer, BITP);
break;
default: /* 8 bits (error) */
irig_decode(peer, BIT0);
up->errflg |= IRIG_ERR_DECODE;
}
}
/*
* irig_decode - decode the data
*
* This routine assembles bauds into digits, digits into frames and
* frames into the timecode fields. Bits can have values of zero, one
* or position identifier. There are four bits per digit, ten digits per
* frame and ten frames per second.
*/
static void
irig_decode(
struct peer *peer, /* peer structure pointer */
int bit /* data bit (0, 1 or 2) */
)
{
struct refclockproc *pp;
struct irigunit *up;
/*
* Local variables
*/
int syncdig; /* sync digit (Spectracom) */
char sbs[6 + 1]; /* binary seconds since 0h */
char spare[2 + 1]; /* mulligan digits */
int temp;
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
/*
* Assemble frame bits.
*/
up->bits >>= 1;
if (bit == BIT1) {
up->bits |= 0x200;
} else if (bit == BITP && up->lastbit == BITP) {
/*
* Frame sync - two adjacent position identifiers, which
* mark the beginning of the second. The reference time
* is the beginning of the second position identifier,
* so copy the character timestamp to the reference
* timestamp.
*/
if (up->frmcnt != 1)
up->errflg |= IRIG_ERR_SYNCH;
up->frmcnt = 1;
up->refstamp = up->prvstamp;
}
up->lastbit = bit;
if (up->frmcnt % SUBFLD == 0) {
/*
* End of frame. Encode two hexadecimal digits in
* little-endian timecode field. Note frame 1 is shifted
* right one bit to account for the marker PI.
*/
temp = up->bits;
if (up->frmcnt == 10)
temp >>= 1;
if (up->xptr >= 2) {
up->timecode[--up->xptr] = hexchar[temp & 0xf];
up->timecode[--up->xptr] = hexchar[(temp >> 5) &
0xf];
}
if (up->frmcnt == 0) {
/*
* End of second. Decode the timecode and wind
* the clock. Not all IRIG generators have the
* year; if so, it is nonzero after year 2000.
* Not all have the hardware status bit; if so,
* it is lit when the source is okay and dim
* when bad. We watch this only if the year is
* nonzero. Not all are configured for signature
* control. If so, all BCD digits are set to
* zero if the source is bad. In this case the
* refclock_process() will reject the timecode
* as invalid.
*/
up->xptr = 2 * SUBFLD;
if (sscanf((char *)up->timecode,
"%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
&syncdig, spare, &pp->day, &pp->hour,
&pp->minute, &pp->second) != 8)
pp->leap = LEAP_NOTINSYNC;
else
pp->leap = LEAP_NOWARNING;
up->second = (up->second + up->decim) % 60;
/*
* Raise an alarm if the day field is zero,
* which happens when signature control is
* enabled and the device has lost
* synchronization. Raise an alarm if the year
* field is nonzero and the sync indicator is
* zero, which happens when a Spectracom radio
* has lost synchronization. Raise an alarm if
* the expected second does not agree with the
* decoded second, which happens with a garbled
* IRIG signal. We are very particular.
*/
if (pp->day == 0 || (pp->year != 0 && syncdig ==
0))
up->errflg |= IRIG_ERR_SIGERR;
if (pp->second != up->second)
up->errflg |= IRIG_ERR_CHECK;
up->second = pp->second;
/*
* Wind the clock only if there are no errors
* and the time constant has reached the
* maximum.
*/
if (up->errflg == 0 && up->tc == MAXTC) {
pp->lastref = pp->lastrec;
pp->lastrec = up->refstamp;
if (!refclock_process(pp))
refclock_report(peer,
CEVNT_BADTIME);
}
snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
"%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
up->errflg, pp->year, pp->day,
pp->hour, pp->minute, pp->second,
up->maxsignal, up->gain, up->modndx,
up->tc, up->exing * 1e6 / SECOND, up->freq *
1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
pp->lencode = strlen(pp->a_lastcode);
up->errflg = 0;
if (pp->sloppyclockflag & CLK_FLAG4) {
record_clock_stats(&peer->srcadr,
pp->a_lastcode);
#ifdef DEBUG
if (debug)
printf("irig %s\n",
pp->a_lastcode);
#endif /* DEBUG */
}
}
}
up->frmcnt = (up->frmcnt + 1) % FIELD;
}
/*
* irig_poll - called by the transmit procedure
*
* This routine sweeps up the timecode updates since the last poll. For
* IRIG-B there should be at least 60 updates; for IRIG-E there should
* be at least 6. If nothing is heard, a timeout event is declared.
*/
static void
irig_poll(
int unit, /* instance number (not used) */
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct irigunit *up;
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
if (pp->coderecv == pp->codeproc) {
refclock_report(peer, CEVNT_TIMEOUT);
return;
}
refclock_receive(peer);
if (!(pp->sloppyclockflag & CLK_FLAG4)) {
record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
if (debug)
printf("irig %s\n", pp->a_lastcode);
#endif /* DEBUG */
}
pp->polls++;
}
/*
* irig_gain - adjust codec gain
*
* This routine is called at the end of each second. It uses the AGC to
* bradket the maximum signal level between MINAMP and MAXAMP to avoid
* hunting. The routine also jiggles the input port and selectively
* mutes the monitor.
*/
static void
irig_gain(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
struct irigunit *up;
pp = peer->procptr;
up = (struct irigunit *)pp->unitptr;
/*
* Apparently, the codec uses only the high order bits of the
* gain control field. Thus, it may take awhile for changes to
* wiggle the hardware bits.
*/
if (up->maxsignal < MINAMP) {
up->gain += 4;
if (up->gain > MAXGAIN)
up->gain = MAXGAIN;
} else if (up->maxsignal > MAXAMP) {
up->gain -= 4;
if (up->gain < 0)
up->gain = 0;
}
audio_gain(up->gain, up->mongain, up->port);
}
#else
int refclock_irig_bs;
#endif /* REFCLOCK */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>