File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / ntp / ntpd / refclock_wwv.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue May 29 12:08:38 2012 UTC (12 years, 1 month ago) by misho
Branches: ntp, MAIN
CVS tags: v4_2_6p5p0, v4_2_6p5, HEAD
ntp 4.2.6p5

    1: /*
    2:  * refclock_wwv - clock driver for NIST WWV/H time/frequency station
    3:  */
    4: #ifdef HAVE_CONFIG_H
    5: #include <config.h>
    6: #endif
    7: 
    8: #if defined(REFCLOCK) && defined(CLOCK_WWV)
    9: 
   10: #include "ntpd.h"
   11: #include "ntp_io.h"
   12: #include "ntp_refclock.h"
   13: #include "ntp_calendar.h"
   14: #include "ntp_stdlib.h"
   15: #include "audio.h"
   16: 
   17: #include <stdio.h>
   18: #include <ctype.h>
   19: #include <math.h>
   20: #ifdef HAVE_SYS_IOCTL_H
   21: # include <sys/ioctl.h>
   22: #endif /* HAVE_SYS_IOCTL_H */
   23: 
   24: #define ICOM 1
   25: 
   26: #ifdef ICOM
   27: #include "icom.h"
   28: #endif /* ICOM */
   29: 
   30: /*
   31:  * Audio WWV/H demodulator/decoder
   32:  *
   33:  * This driver synchronizes the computer time using data encoded in
   34:  * radio transmissions from NIST time/frequency stations WWV in Boulder,
   35:  * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
   36:  * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
   37:  * ordinary AM shortwave receiver can be tuned manually to one of these
   38:  * frequencies or, in the case of ICOM receivers, the receiver can be
   39:  * tuned automatically using this program as propagation conditions
   40:  * change throughout the weasons, both day and night.
   41:  *
   42:  * The driver requires an audio codec or sound card with sampling rate 8
   43:  * kHz and mu-law companding. This is the same standard as used by the
   44:  * telephone industry and is supported by most hardware and operating
   45:  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
   46:  * implementation, only one audio driver and codec can be supported on a
   47:  * single machine.
   48:  *
   49:  * The demodulation and decoding algorithms used in this driver are
   50:  * based on those developed for the TAPR DSP93 development board and the
   51:  * TI 320C25 digital signal processor described in: Mills, D.L. A
   52:  * precision radio clock for WWV transmissions. Electrical Engineering
   53:  * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
   54:  * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
   55:  * in this report have been modified somewhat to improve performance
   56:  * under weak signal conditions and to provide an automatic station
   57:  * identification feature.
   58:  *
   59:  * The ICOM code is normally compiled in the driver. It isn't used,
   60:  * unless the mode keyword on the server configuration command specifies
   61:  * a nonzero ICOM ID select code. The C-IV trace is turned on if the
   62:  * debug level is greater than one.
   63:  *
   64:  * Fudge factors
   65:  *
   66:  * Fudge flag4 causes the dubugging output described above to be
   67:  * recorded in the clockstats file. Fudge flag2 selects the audio input
   68:  * port, where 0 is the mike port (default) and 1 is the line-in port.
   69:  * It does not seem useful to select the compact disc player port. Fudge
   70:  * flag3 enables audio monitoring of the input signal. For this purpose,
   71:  * the monitor gain is set to a default value.
   72:  *
   73:  * CEVNT_BADTIME	invalid date or time
   74:  * CEVNT_PROP		propagation failure - no stations heard
   75:  * CEVNT_TIMEOUT	timeout (see newgame() below)
   76:  */
   77: /*
   78:  * General definitions. These ordinarily do not need to be changed.
   79:  */
   80: #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
   81: #define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
   82: #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
   83: #define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
   84: #define SECOND		8000	/* second epoch (sample rate) (Hz) */
   85: #define MINUTE		(SECOND * 60) /* minute epoch */
   86: #define OFFSET		128	/* companded sample offset */
   87: #define SIZE		256	/* decompanding table size */
   88: #define	MAXAMP		6000.	/* max signal level reference */
   89: #define	MAXCLP		100	/* max clips above reference per s */
   90: #define MAXSNR		40.	/* max SNR reference */
   91: #define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
   92: #define DATCYC		170	/* data filter cycles */
   93: #define DATSIZ		(DATCYC * MS) /* data filter size */
   94: #define SYNCYC		800	/* minute filter cycles */
   95: #define SYNSIZ		(SYNCYC * MS) /* minute filter size */
   96: #define TCKCYC		5	/* tick filter cycles */
   97: #define TCKSIZ		(TCKCYC * MS) /* tick filter size */
   98: #define NCHAN		5	/* number of radio channels */
   99: #define	AUDIO_PHI	5e-6	/* dispersion growth factor */
  100: #define	TBUF		128	/* max monitor line length */
  101: 
  102: /*
  103:  * Tunable parameters. The DGAIN parameter can be changed to fit the
  104:  * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
  105:  * is transmitted at about 20 percent percent modulation; the matched
  106:  * filter boosts it by a factor of 17 and the receiver response does
  107:  * what it does. The compromise value works for ICOM radios. If the
  108:  * radio is not tunable, the DCHAN parameter can be changed to fit the
  109:  * expected best propagation frequency: higher if further from the
  110:  * transmitter, lower if nearer. The compromise value works for the US
  111:  * right coast.
  112:  */
  113: #define DCHAN		3	/* default radio channel (15 Mhz) */
  114: #define DGAIN		5.	/* subcarrier gain */
  115: 
  116: /*
  117:  * General purpose status bits (status)
  118:  *
  119:  * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
  120:  * on signal loss. SSYNC is set when the second sync pulse has been
  121:  * acquired and cleared by signal loss. MSYNC is set when the minute
  122:  * sync pulse has been acquired. DSYNC is set when the units digit has
  123:  * has reached the threshold and INSYNC is set when all nine digits have
  124:  * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
  125:  * only by timeout, upon which the driver starts over from scratch.
  126:  *
  127:  * DGATE is lit if the data bit amplitude or SNR is below thresholds and
  128:  * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
  129:  * LEPSEC is set during the last minute of the leap day. At the end of
  130:  * this minute the driver inserts second 60 in the seconds state machine
  131:  * and the minute sync slips a second.
  132:  */
  133: #define MSYNC		0x0001	/* minute epoch sync */
  134: #define SSYNC		0x0002	/* second epoch sync */
  135: #define DSYNC		0x0004	/* minute units sync */
  136: #define INSYNC		0x0008	/* clock synchronized */
  137: #define FGATE		0x0010	/* frequency gate */
  138: #define DGATE		0x0020	/* data pulse amplitude error */
  139: #define BGATE		0x0040	/* data pulse width error */
  140: #define	METRIC		0x0080	/* one or more stations heard */
  141: #define LEPSEC		0x1000	/* leap minute */
  142: 
  143: /*
  144:  * Station scoreboard bits
  145:  *
  146:  * These are used to establish the signal quality for each of the five
  147:  * frequencies and two stations.
  148:  */
  149: #define SELV		0x0100	/* WWV station select */
  150: #define SELH		0x0200	/* WWVH station select */
  151: 
  152: /*
  153:  * Alarm status bits (alarm)
  154:  *
  155:  * These bits indicate various alarm conditions, which are decoded to
  156:  * form the quality character included in the timecode.
  157:  */
  158: #define CMPERR		0x1	/* digit or misc bit compare error */
  159: #define LOWERR		0x2	/* low bit or digit amplitude or SNR */
  160: #define NINERR		0x4	/* less than nine digits in minute */
  161: #define SYNERR		0x8	/* not tracking second sync */
  162: 
  163: /*
  164:  * Watchcat timeouts (watch)
  165:  *
  166:  * If these timeouts expire, the status bits are mashed to zero and the
  167:  * driver starts from scratch. Suitably more refined procedures may be
  168:  * developed in future. All these are in minutes.
  169:  */
  170: #define ACQSN		6	/* station acquisition timeout */
  171: #define DATA		15	/* unit minutes timeout */
  172: #define SYNCH		40	/* station sync timeout */
  173: #define PANIC		(2 * 1440) /* panic timeout */
  174: 
  175: /*
  176:  * Thresholds. These establish the minimum signal level, minimum SNR and
  177:  * maximum jitter thresholds which establish the error and false alarm
  178:  * rates of the driver. The values defined here may be on the
  179:  * adventurous side in the interest of the highest sensitivity.
  180:  */
  181: #define MTHR		13.	/* minute sync gate (percent) */
  182: #define TTHR		50.	/* minute sync threshold (percent) */
  183: #define AWND		20	/* minute sync jitter threshold (ms) */
  184: #define ATHR		2500.	/* QRZ minute sync threshold */
  185: #define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
  186: #define QTHR		2500.	/* QSY minute sync threshold */
  187: #define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
  188: #define STHR		2500.	/* second sync threshold */
  189: #define	SSNR		15.	/* second sync SNR threshold (dB) */
  190: #define SCMP		10 	/* second sync compare threshold */
  191: #define DTHR		1000.	/* bit threshold */
  192: #define DSNR		10.	/* bit SNR threshold (dB) */
  193: #define AMIN		3	/* min bit count */
  194: #define AMAX		6	/* max bit count */
  195: #define BTHR		1000.	/* digit threshold */
  196: #define BSNR		3.	/* digit likelihood threshold (dB) */
  197: #define BCMP		3	/* digit compare threshold */
  198: #define	MAXERR		40	/* maximum error alarm */
  199: 
  200: /*
  201:  * Tone frequency definitions. The increments are for 4.5-deg sine
  202:  * table.
  203:  */
  204: #define MS		(SECOND / 1000) /* samples per millisecond */
  205: #define IN100		((100 * 80) / SECOND) /* 100 Hz increment */
  206: #define IN1000		((1000 * 80) / SECOND) /* 1000 Hz increment */
  207: #define IN1200		((1200 * 80) / SECOND) /* 1200 Hz increment */
  208: 
  209: /*
  210:  * Acquisition and tracking time constants
  211:  */
  212: #define MINAVG		8	/* min averaging time */
  213: #define MAXAVG		1024	/* max averaging time */
  214: #define FCONST		3	/* frequency time constant */
  215: #define TCONST		16	/* data bit/digit time constant */
  216: 
  217: /*
  218:  * Miscellaneous status bits (misc)
  219:  *
  220:  * These bits correspond to designated bits in the WWV/H timecode. The
  221:  * bit probabilities are exponentially averaged over several minutes and
  222:  * processed by a integrator and threshold.
  223:  */
  224: #define DUT1		0x01	/* 56 DUT .1 */
  225: #define DUT2		0x02	/* 57 DUT .2 */
  226: #define DUT4		0x04	/* 58 DUT .4 */
  227: #define DUTS		0x08	/* 50 DUT sign */
  228: #define DST1		0x10	/* 55 DST1 leap warning */
  229: #define DST2		0x20	/* 2 DST2 DST1 delayed one day */
  230: #define SECWAR		0x40	/* 3 leap second warning */
  231: 
  232: /*
  233:  * The on-time synchronization point is the positive-going zero crossing
  234:  * of the first cycle of the 5-ms second pulse. The IIR baseband filter
  235:  * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
  236:  * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
  237:  * causes was determined by calibrating to a PPS signal from a GPS
  238:  * receiver. The additional propagation delay specific to each receiver
  239:  * location can be  programmed in the fudge time1 and time2 values for
  240:  * WWV and WWVH, respectively.
  241:  *
  242:  * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
  243:  * generally within .02 ms short-term with .02 ms jitter. The long-term
  244:  * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
  245:  * The processor load due to the driver is 5.8 percent.
  246:  */
  247: #define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
  248: 
  249: /*
  250:  * Table of sine values at 4.5-degree increments. This is used by the
  251:  * synchronous matched filter demodulators.
  252:  */
  253: double sintab[] = {
  254:  0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
  255:  3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
  256:  5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
  257:  8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
  258:  9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
  259:  1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
  260:  9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
  261:  8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
  262:  5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
  263:  3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
  264: -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
  265: -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
  266: -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
  267: -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
  268: -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
  269: -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
  270: -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
  271: -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
  272: -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
  273: -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
  274:  0.000000e+00};						    /* 80 */
  275: 
  276: /*
  277:  * Decoder operations at the end of each second are driven by a state
  278:  * machine. The transition matrix consists of a dispatch table indexed
  279:  * by second number. Each entry in the table contains a case switch
  280:  * number and argument.
  281:  */
  282: struct progx {
  283: 	int sw;			/* case switch number */
  284: 	int arg;		/* argument */
  285: };
  286: 
  287: /*
  288:  * Case switch numbers
  289:  */
  290: #define IDLE		0	/* no operation */
  291: #define COEF		1	/* BCD bit */
  292: #define COEF1		2	/* BCD bit for minute unit */
  293: #define COEF2		3	/* BCD bit not used */
  294: #define DECIM9		4	/* BCD digit 0-9 */
  295: #define DECIM6		5	/* BCD digit 0-6 */
  296: #define DECIM3		6	/* BCD digit 0-3 */
  297: #define DECIM2		7	/* BCD digit 0-2 */
  298: #define MSCBIT		8	/* miscellaneous bit */
  299: #define MSC20		9	/* miscellaneous bit */		
  300: #define MSC21		10	/* QSY probe channel */		
  301: #define MIN1		11	/* latch time */		
  302: #define MIN2		12	/* leap second */
  303: #define SYNC2		13	/* latch minute sync pulse */		
  304: #define SYNC3		14	/* latch data pulse */		
  305: 
  306: /*
  307:  * Offsets in decoding matrix
  308:  */
  309: #define MN		0	/* minute digits (2) */
  310: #define HR		2	/* hour digits (2) */
  311: #define DA		4	/* day digits (3) */
  312: #define YR		7	/* year digits (2) */
  313: 
  314: struct progx progx[] = {
  315: 	{SYNC2,	0},		/* 0 latch minute sync pulse */
  316: 	{SYNC3,	0},		/* 1 latch data pulse */
  317: 	{MSCBIT, DST2},		/* 2 dst2 */
  318: 	{MSCBIT, SECWAR},	/* 3 lw */
  319: 	{COEF,	0},		/* 4 1 year units */
  320: 	{COEF,	1},		/* 5 2 */
  321: 	{COEF,	2},		/* 6 4 */
  322: 	{COEF,	3},		/* 7 8 */
  323: 	{DECIM9, YR},		/* 8 */
  324: 	{IDLE,	0},		/* 9 p1 */
  325: 	{COEF1,	0},		/* 10 1 minute units */
  326: 	{COEF1,	1},		/* 11 2 */
  327: 	{COEF1,	2},		/* 12 4 */
  328: 	{COEF1,	3},		/* 13 8 */
  329: 	{DECIM9, MN},		/* 14 */
  330: 	{COEF,	0},		/* 15 10 minute tens */
  331: 	{COEF,	1},		/* 16 20 */
  332: 	{COEF,	2},		/* 17 40 */
  333: 	{COEF2,	3},		/* 18 80 (not used) */
  334: 	{DECIM6, MN + 1},	/* 19 p2 */
  335: 	{COEF,	0},		/* 20 1 hour units */
  336: 	{COEF,	1},		/* 21 2 */
  337: 	{COEF,	2},		/* 22 4 */
  338: 	{COEF,	3},		/* 23 8 */
  339: 	{DECIM9, HR},		/* 24 */
  340: 	{COEF,	0},		/* 25 10 hour tens */
  341: 	{COEF,	1},		/* 26 20 */
  342: 	{COEF2,	2},		/* 27 40 (not used) */
  343: 	{COEF2,	3},		/* 28 80 (not used) */
  344: 	{DECIM2, HR + 1},	/* 29 p3 */
  345: 	{COEF,	0},		/* 30 1 day units */
  346: 	{COEF,	1},		/* 31 2 */
  347: 	{COEF,	2},		/* 32 4 */
  348: 	{COEF,	3},		/* 33 8 */
  349: 	{DECIM9, DA},		/* 34 */
  350: 	{COEF,	0},		/* 35 10 day tens */
  351: 	{COEF,	1},		/* 36 20 */
  352: 	{COEF,	2},		/* 37 40 */
  353: 	{COEF,	3},		/* 38 80 */
  354: 	{DECIM9, DA + 1},	/* 39 p4 */
  355: 	{COEF,	0},		/* 40 100 day hundreds */
  356: 	{COEF,	1},		/* 41 200 */
  357: 	{COEF2,	2},		/* 42 400 (not used) */
  358: 	{COEF2,	3},		/* 43 800 (not used) */
  359: 	{DECIM3, DA + 2},	/* 44 */
  360: 	{IDLE,	0},		/* 45 */
  361: 	{IDLE,	0},		/* 46 */
  362: 	{IDLE,	0},		/* 47 */
  363: 	{IDLE,	0},		/* 48 */
  364: 	{IDLE,	0},		/* 49 p5 */
  365: 	{MSCBIT, DUTS},		/* 50 dut+- */
  366: 	{COEF,	0},		/* 51 10 year tens */
  367: 	{COEF,	1},		/* 52 20 */
  368: 	{COEF,	2},		/* 53 40 */
  369: 	{COEF,	3},		/* 54 80 */
  370: 	{MSC20, DST1},		/* 55 dst1 */
  371: 	{MSCBIT, DUT1},		/* 56 0.1 dut */
  372: 	{MSCBIT, DUT2},		/* 57 0.2 */
  373: 	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
  374: 	{MIN1,	0},		/* 59 p6 latch time */
  375: 	{MIN2,	0}		/* 60 leap second */
  376: };
  377: 
  378: /*
  379:  * BCD coefficients for maximum-likelihood digit decode
  380:  */
  381: #define P15	1.		/* max positive number */
  382: #define N15	-1.		/* max negative number */
  383: 
  384: /*
  385:  * Digits 0-9
  386:  */
  387: #define P9	(P15 / 4)	/* mark (+1) */
  388: #define N9	(N15 / 4)	/* space (-1) */
  389: 
  390: double bcd9[][4] = {
  391: 	{N9, N9, N9, N9}, 	/* 0 */
  392: 	{P9, N9, N9, N9}, 	/* 1 */
  393: 	{N9, P9, N9, N9}, 	/* 2 */
  394: 	{P9, P9, N9, N9}, 	/* 3 */
  395: 	{N9, N9, P9, N9}, 	/* 4 */
  396: 	{P9, N9, P9, N9}, 	/* 5 */
  397: 	{N9, P9, P9, N9}, 	/* 6 */
  398: 	{P9, P9, P9, N9}, 	/* 7 */
  399: 	{N9, N9, N9, P9}, 	/* 8 */
  400: 	{P9, N9, N9, P9}, 	/* 9 */
  401: 	{0, 0, 0, 0}		/* backstop */
  402: };
  403: 
  404: /*
  405:  * Digits 0-6 (minute tens)
  406:  */
  407: #define P6	(P15 / 3)	/* mark (+1) */
  408: #define N6	(N15 / 3)	/* space (-1) */
  409: 
  410: double bcd6[][4] = {
  411: 	{N6, N6, N6, 0}, 	/* 0 */
  412: 	{P6, N6, N6, 0}, 	/* 1 */
  413: 	{N6, P6, N6, 0}, 	/* 2 */
  414: 	{P6, P6, N6, 0}, 	/* 3 */
  415: 	{N6, N6, P6, 0}, 	/* 4 */
  416: 	{P6, N6, P6, 0}, 	/* 5 */
  417: 	{N6, P6, P6, 0}, 	/* 6 */
  418: 	{0, 0, 0, 0}		/* backstop */
  419: };
  420: 
  421: /*
  422:  * Digits 0-3 (day hundreds)
  423:  */
  424: #define P3	(P15 / 2)	/* mark (+1) */
  425: #define N3	(N15 / 2)	/* space (-1) */
  426: 
  427: double bcd3[][4] = {
  428: 	{N3, N3, 0, 0}, 	/* 0 */
  429: 	{P3, N3, 0, 0}, 	/* 1 */
  430: 	{N3, P3, 0, 0}, 	/* 2 */
  431: 	{P3, P3, 0, 0}, 	/* 3 */
  432: 	{0, 0, 0, 0}		/* backstop */
  433: };
  434: 
  435: /*
  436:  * Digits 0-2 (hour tens)
  437:  */
  438: #define P2	(P15 / 2)	/* mark (+1) */
  439: #define N2	(N15 / 2)	/* space (-1) */
  440: 
  441: double bcd2[][4] = {
  442: 	{N2, N2, 0, 0}, 	/* 0 */
  443: 	{P2, N2, 0, 0}, 	/* 1 */
  444: 	{N2, P2, 0, 0}, 	/* 2 */
  445: 	{0, 0, 0, 0}		/* backstop */
  446: };
  447: 
  448: /*
  449:  * DST decode (DST2 DST1) for prettyprint
  450:  */
  451: char dstcod[] = {
  452: 	'S',			/* 00 standard time */
  453: 	'I',			/* 01 set clock ahead at 0200 local */
  454: 	'O',			/* 10 set clock back at 0200 local */
  455: 	'D'			/* 11 daylight time */
  456: };
  457: 
  458: /*
  459:  * The decoding matrix consists of nine row vectors, one for each digit
  460:  * of the timecode. The digits are stored from least to most significant
  461:  * order. The maximum-likelihood timecode is formed from the digits
  462:  * corresponding to the maximum-likelihood values reading in the
  463:  * opposite order: yy ddd hh:mm.
  464:  */
  465: struct decvec {
  466: 	int radix;		/* radix (3, 4, 6, 10) */
  467: 	int digit;		/* current clock digit */
  468: 	int count;		/* match count */
  469: 	double digprb;		/* max digit probability */
  470: 	double digsnr;		/* likelihood function (dB) */
  471: 	double like[10];	/* likelihood integrator 0-9 */
  472: };
  473: 
  474: /*
  475:  * The station structure (sp) is used to acquire the minute pulse from
  476:  * WWV and/or WWVH. These stations are distinguished by the frequency
  477:  * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
  478:  * Hz for WWVH. Other than frequency, the format is the same.
  479:  */
  480: struct sync {
  481: 	double	epoch;		/* accumulated epoch differences */
  482: 	double	maxeng;		/* sync max energy */
  483: 	double	noieng;		/* sync noise energy */
  484: 	long	pos;		/* max amplitude position */
  485: 	long	lastpos;	/* last max position */
  486: 	long	mepoch;		/* minute synch epoch */
  487: 
  488: 	double	amp;		/* sync signal */
  489: 	double	syneng;		/* sync signal max */
  490: 	double	synmax;		/* sync signal max latched at 0 s */
  491: 	double	synsnr;		/* sync signal SNR */
  492: 	double	metric;		/* signal quality metric */
  493: 	int	reach;		/* reachability register */
  494: 	int	count;		/* bit counter */
  495: 	int	select;		/* select bits */
  496: 	char	refid[5];	/* reference identifier */
  497: };
  498: 
  499: /*
  500:  * The channel structure (cp) is used to mitigate between channels.
  501:  */
  502: struct chan {
  503: 	int	gain;		/* audio gain */
  504: 	struct sync wwv;	/* wwv station */
  505: 	struct sync wwvh;	/* wwvh station */
  506: };
  507: 
  508: /*
  509:  * WWV unit control structure (up)
  510:  */
  511: struct wwvunit {
  512: 	l_fp	timestamp;	/* audio sample timestamp */
  513: 	l_fp	tick;		/* audio sample increment */
  514: 	double	phase, freq;	/* logical clock phase and frequency */
  515: 	double	monitor;	/* audio monitor point */
  516: 	double	pdelay;		/* propagation delay (s) */
  517: #ifdef ICOM
  518: 	int	fd_icom;	/* ICOM file descriptor */
  519: #endif /* ICOM */
  520: 	int	errflg;		/* error flags */
  521: 	int	watch;		/* watchcat */
  522: 
  523: 	/*
  524: 	 * Audio codec variables
  525: 	 */
  526: 	double	comp[SIZE];	/* decompanding table */
  527:  	int	port;		/* codec port */
  528: 	int	gain;		/* codec gain */
  529: 	int	mongain;	/* codec monitor gain */
  530: 	int	clipcnt;	/* sample clipped count */
  531: 
  532: 	/*
  533: 	 * Variables used to establish basic system timing
  534: 	 */
  535: 	int	avgint;		/* master time constant */
  536: 	int	yepoch;		/* sync epoch */
  537: 	int	repoch;		/* buffered sync epoch */
  538: 	double	epomax;		/* second sync amplitude */
  539: 	double	eposnr;		/* second sync SNR */
  540: 	double	irig;		/* data I channel amplitude */
  541: 	double	qrig;		/* data Q channel amplitude */
  542: 	int	datapt;		/* 100 Hz ramp */
  543: 	double	datpha;		/* 100 Hz VFO control */
  544: 	int	rphase;		/* second sample counter */
  545: 	long	mphase;		/* minute sample counter */
  546: 
  547: 	/*
  548: 	 * Variables used to mitigate which channel to use
  549: 	 */
  550: 	struct chan mitig[NCHAN]; /* channel data */
  551: 	struct sync *sptr;	/* station pointer */
  552: 	int	dchan;		/* data channel */
  553: 	int	schan;		/* probe channel */
  554: 	int	achan;		/* active channel */
  555: 
  556: 	/*
  557: 	 * Variables used by the clock state machine
  558: 	 */
  559: 	struct decvec decvec[9]; /* decoding matrix */
  560: 	int	rsec;		/* seconds counter */
  561: 	int	digcnt;		/* count of digits synchronized */
  562: 
  563: 	/*
  564: 	 * Variables used to estimate signal levels and bit/digit
  565: 	 * probabilities
  566: 	 */
  567: 	double	datsig;		/* data signal max */
  568: 	double	datsnr;		/* data signal SNR (dB) */
  569: 
  570: 	/*
  571: 	 * Variables used to establish status and alarm conditions
  572: 	 */
  573: 	int	status;		/* status bits */
  574: 	int	alarm;		/* alarm flashers */
  575: 	int	misc;		/* miscellaneous timecode bits */
  576: 	int	errcnt;		/* data bit error counter */
  577: };
  578: 
  579: /*
  580:  * Function prototypes
  581:  */
  582: static	int	wwv_start	(int, struct peer *);
  583: static	void	wwv_shutdown	(int, struct peer *);
  584: static	void	wwv_receive	(struct recvbuf *);
  585: static	void	wwv_poll	(int, struct peer *);
  586: 
  587: /*
  588:  * More function prototypes
  589:  */
  590: static	void	wwv_epoch	(struct peer *);
  591: static	void	wwv_rf		(struct peer *, double);
  592: static	void	wwv_endpoc	(struct peer *, int);
  593: static	void	wwv_rsec	(struct peer *, double);
  594: static	void	wwv_qrz		(struct peer *, struct sync *, int);
  595: static	void	wwv_corr4	(struct peer *, struct decvec *,
  596: 				    double [], double [][4]);
  597: static	void	wwv_gain	(struct peer *);
  598: static	void	wwv_tsec	(struct peer *);
  599: static	int	timecode	(struct wwvunit *, char *);
  600: static	double	wwv_snr		(double, double);
  601: static	int	carry		(struct decvec *);
  602: static	int	wwv_newchan	(struct peer *);
  603: static	void	wwv_newgame	(struct peer *);
  604: static	double	wwv_metric	(struct sync *);
  605: static	void	wwv_clock	(struct peer *);
  606: #ifdef ICOM
  607: static	int	wwv_qsy		(struct peer *, int);
  608: #endif /* ICOM */
  609: 
  610: static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
  611: 
  612: /*
  613:  * Transfer vector
  614:  */
  615: struct	refclock refclock_wwv = {
  616: 	wwv_start,		/* start up driver */
  617: 	wwv_shutdown,		/* shut down driver */
  618: 	wwv_poll,		/* transmit poll message */
  619: 	noentry,		/* not used (old wwv_control) */
  620: 	noentry,		/* initialize driver (not used) */
  621: 	noentry,		/* not used (old wwv_buginfo) */
  622: 	NOFLAGS			/* not used */
  623: };
  624: 
  625: 
  626: /*
  627:  * wwv_start - open the devices and initialize data for processing
  628:  */
  629: static int
  630: wwv_start(
  631: 	int	unit,		/* instance number (used by PCM) */
  632: 	struct peer *peer	/* peer structure pointer */
  633: 	)
  634: {
  635: 	struct refclockproc *pp;
  636: 	struct wwvunit *up;
  637: #ifdef ICOM
  638: 	int	temp;
  639: #endif /* ICOM */
  640: 
  641: 	/*
  642: 	 * Local variables
  643: 	 */
  644: 	int	fd;		/* file descriptor */
  645: 	int	i;		/* index */
  646: 	double	step;		/* codec adjustment */
  647: 
  648: 	/*
  649: 	 * Open audio device
  650: 	 */
  651: 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
  652: 	if (fd < 0)
  653: 		return (0);
  654: #ifdef DEBUG
  655: 	if (debug)
  656: 		audio_show();
  657: #endif /* DEBUG */
  658: 
  659: 	/*
  660: 	 * Allocate and initialize unit structure
  661: 	 */
  662: 	if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
  663: 		close(fd);
  664: 		return (0);
  665: 	}
  666: 	memset(up, 0, sizeof(struct wwvunit));
  667: 	pp = peer->procptr;
  668: 	pp->unitptr = (caddr_t)up;
  669: 	pp->io.clock_recv = wwv_receive;
  670: 	pp->io.srcclock = (caddr_t)peer;
  671: 	pp->io.datalen = 0;
  672: 	pp->io.fd = fd;
  673: 	if (!io_addclock(&pp->io)) {
  674: 		close(fd);
  675: 		free(up);
  676: 		return (0);
  677: 	}
  678: 
  679: 	/*
  680: 	 * Initialize miscellaneous variables
  681: 	 */
  682: 	peer->precision = PRECISION;
  683: 	pp->clockdesc = DESCRIPTION;
  684: 
  685: 	/*
  686: 	 * The companded samples are encoded sign-magnitude. The table
  687: 	 * contains all the 256 values in the interest of speed.
  688: 	 */
  689: 	up->comp[0] = up->comp[OFFSET] = 0.;
  690: 	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
  691: 	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
  692: 	step = 2.;
  693: 	for (i = 3; i < OFFSET; i++) {
  694: 		up->comp[i] = up->comp[i - 1] + step;
  695: 		up->comp[OFFSET + i] = -up->comp[i];
  696:                 if (i % 16 == 0)
  697: 		    step *= 2.;
  698: 	}
  699: 	DTOLFP(1. / SECOND, &up->tick);
  700: 
  701: 	/*
  702: 	 * Initialize the decoding matrix with the radix for each digit
  703: 	 * position.
  704: 	 */
  705: 	up->decvec[MN].radix = 10;	/* minutes */
  706: 	up->decvec[MN + 1].radix = 6;
  707: 	up->decvec[HR].radix = 10;	/* hours */
  708: 	up->decvec[HR + 1].radix = 3;
  709: 	up->decvec[DA].radix = 10;	/* days */
  710: 	up->decvec[DA + 1].radix = 10;
  711: 	up->decvec[DA + 2].radix = 4;
  712: 	up->decvec[YR].radix = 10;	/* years */
  713: 	up->decvec[YR + 1].radix = 10;
  714: 
  715: #ifdef ICOM
  716: 	/*
  717: 	 * Initialize autotune if available. Note that the ICOM select
  718: 	 * code must be less than 128, so the high order bit can be used
  719: 	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
  720: 	 * we don't complain if the ICOM device is not there; but, if it
  721: 	 * is, the radio better be working.
  722: 	 */
  723: 	temp = 0;
  724: #ifdef DEBUG
  725: 	if (debug > 1)
  726: 		temp = P_TRACE;
  727: #endif /* DEBUG */
  728: 	if (peer->ttl != 0) {
  729: 		if (peer->ttl & 0x80)
  730: 			up->fd_icom = icom_init("/dev/icom", B1200,
  731: 			    temp);
  732: 		else
  733: 			up->fd_icom = icom_init("/dev/icom", B9600,
  734: 			    temp);
  735: 	}
  736: 	if (up->fd_icom > 0) {
  737: 		if (wwv_qsy(peer, DCHAN) != 0) {
  738: 			msyslog(LOG_NOTICE, "icom: radio not found");
  739: 			close(up->fd_icom);
  740: 			up->fd_icom = 0;
  741: 		} else {
  742: 			msyslog(LOG_NOTICE, "icom: autotune enabled");
  743: 		}
  744: 	}
  745: #endif /* ICOM */
  746: 
  747: 	/*
  748: 	 * Let the games begin.
  749: 	 */
  750: 	wwv_newgame(peer);
  751: 	return (1);
  752: }
  753: 
  754: 
  755: /*
  756:  * wwv_shutdown - shut down the clock
  757:  */
  758: static void
  759: wwv_shutdown(
  760: 	int	unit,		/* instance number (not used) */
  761: 	struct peer *peer	/* peer structure pointer */
  762: 	)
  763: {
  764: 	struct refclockproc *pp;
  765: 	struct wwvunit *up;
  766: 
  767: 	pp = peer->procptr;
  768: 	up = (struct wwvunit *)pp->unitptr;
  769: 	if (up == NULL)
  770: 		return;
  771: 
  772: 	io_closeclock(&pp->io);
  773: #ifdef ICOM
  774: 	if (up->fd_icom > 0)
  775: 		close(up->fd_icom);
  776: #endif /* ICOM */
  777: 	free(up);
  778: }
  779: 
  780: 
  781: /*
  782:  * wwv_receive - receive data from the audio device
  783:  *
  784:  * This routine reads input samples and adjusts the logical clock to
  785:  * track the A/D sample clock by dropping or duplicating codec samples.
  786:  * It also controls the A/D signal level with an AGC loop to mimimize
  787:  * quantization noise and avoid overload.
  788:  */
  789: static void
  790: wwv_receive(
  791: 	struct recvbuf *rbufp	/* receive buffer structure pointer */
  792: 	)
  793: {
  794: 	struct peer *peer;
  795: 	struct refclockproc *pp;
  796: 	struct wwvunit *up;
  797: 
  798: 	/*
  799: 	 * Local variables
  800: 	 */
  801: 	double	sample;		/* codec sample */
  802: 	u_char	*dpt;		/* buffer pointer */
  803: 	int	bufcnt;		/* buffer counter */
  804: 	l_fp	ltemp;
  805: 
  806: 	peer = (struct peer *)rbufp->recv_srcclock;
  807: 	pp = peer->procptr;
  808: 	up = (struct wwvunit *)pp->unitptr;
  809: 
  810: 	/*
  811: 	 * Main loop - read until there ain't no more. Note codec
  812: 	 * samples are bit-inverted.
  813: 	 */
  814: 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
  815: 	L_SUB(&rbufp->recv_time, &ltemp);
  816: 	up->timestamp = rbufp->recv_time;
  817: 	dpt = rbufp->recv_buffer;
  818: 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
  819: 		sample = up->comp[~*dpt++ & 0xff];
  820: 
  821: 		/*
  822: 		 * Clip noise spikes greater than MAXAMP (6000) and
  823: 		 * record the number of clips to be used later by the
  824: 		 * AGC.
  825: 		 */
  826: 		if (sample > MAXAMP) {
  827: 			sample = MAXAMP;
  828: 			up->clipcnt++;
  829: 		} else if (sample < -MAXAMP) {
  830: 			sample = -MAXAMP;
  831: 			up->clipcnt++;
  832: 		}
  833: 
  834: 		/*
  835: 		 * Variable frequency oscillator. The codec oscillator
  836: 		 * runs at the nominal rate of 8000 samples per second,
  837: 		 * or 125 us per sample. A frequency change of one unit
  838: 		 * results in either duplicating or deleting one sample
  839: 		 * per second, which results in a frequency change of
  840: 		 * 125 PPM.
  841: 		 */
  842: 		up->phase += (up->freq + clock_codec) / SECOND;
  843: 		if (up->phase >= .5) {
  844: 			up->phase -= 1.;
  845: 		} else if (up->phase < -.5) {
  846: 			up->phase += 1.;
  847: 			wwv_rf(peer, sample);
  848: 			wwv_rf(peer, sample);
  849: 		} else {
  850: 			wwv_rf(peer, sample);
  851: 		}
  852: 		L_ADD(&up->timestamp, &up->tick);
  853: 	}
  854: 
  855: 	/*
  856: 	 * Set the input port and monitor gain for the next buffer.
  857: 	 */
  858: 	if (pp->sloppyclockflag & CLK_FLAG2)
  859: 		up->port = 2;
  860: 	else
  861: 		up->port = 1;
  862: 	if (pp->sloppyclockflag & CLK_FLAG3)
  863: 		up->mongain = MONGAIN;
  864: 	else
  865: 		up->mongain = 0;
  866: }
  867: 
  868: 
  869: /*
  870:  * wwv_poll - called by the transmit procedure
  871:  *
  872:  * This routine keeps track of status. If no offset samples have been
  873:  * processed during a poll interval, a timeout event is declared. If
  874:  * errors have have occurred during the interval, they are reported as
  875:  * well.
  876:  */
  877: static void
  878: wwv_poll(
  879: 	int	unit,		/* instance number (not used) */
  880: 	struct peer *peer	/* peer structure pointer */
  881: 	)
  882: {
  883: 	struct refclockproc *pp;
  884: 	struct wwvunit *up;
  885: 
  886: 	pp = peer->procptr;
  887: 	up = (struct wwvunit *)pp->unitptr;
  888: 	if (up->errflg)
  889: 		refclock_report(peer, up->errflg);
  890: 	up->errflg = 0;
  891: 	pp->polls++;
  892: }
  893: 
  894: 
  895: /*
  896:  * wwv_rf - process signals and demodulate to baseband
  897:  *
  898:  * This routine grooms and filters decompanded raw audio samples. The
  899:  * output signal is the 100-Hz filtered baseband data signal in
  900:  * quadrature phase. The routine also determines the minute synch epoch,
  901:  * as well as certain signal maxima, minima and related values.
  902:  *
  903:  * There are two 1-s ramps used by this program. Both count the 8000
  904:  * logical clock samples spanning exactly one second. The epoch ramp
  905:  * counts the samples starting at an arbitrary time. The rphase ramp
  906:  * counts the samples starting at the 5-ms second sync pulse found
  907:  * during the epoch ramp.
  908:  *
  909:  * There are two 1-m ramps used by this program. The mphase ramp counts
  910:  * the 480,000 logical clock samples spanning exactly one minute and
  911:  * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
  912:  * the minute starting at the 800-ms minute sync pulse found during the
  913:  * mphase ramp. The rsec ramp drives the seconds state machine to
  914:  * determine the bits and digits of the timecode. 
  915:  *
  916:  * Demodulation operations are based on three synthesized quadrature
  917:  * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
  918:  * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
  919:  * matched filters for the data signal (170 ms at 100 Hz), WWV minute
  920:  * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
  921:  * at 1200 Hz). Two additional matched filters are switched in
  922:  * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
  923:  * WWVH second sync signal (6 cycles at 1200 Hz).
  924:  */
  925: static void
  926: wwv_rf(
  927: 	struct peer *peer,	/* peerstructure pointer */
  928: 	double isig		/* input signal */
  929: 	)
  930: {
  931: 	struct refclockproc *pp;
  932: 	struct wwvunit *up;
  933: 	struct sync *sp, *rp;
  934: 
  935: 	static double lpf[5];	/* 150-Hz lpf delay line */
  936: 	double data;		/* lpf output */
  937: 	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
  938: 	double syncx;		/* bpf output */
  939: 	static double mf[41];	/* 1000/1200-Hz mf delay line */
  940: 	double mfsync;		/* mf output */
  941: 
  942: 	static int iptr;	/* data channel pointer */
  943: 	static double ibuf[DATSIZ]; /* data I channel delay line */
  944: 	static double qbuf[DATSIZ]; /* data Q channel delay line */
  945: 
  946: 	static int jptr;	/* sync channel pointer */
  947: 	static int kptr;	/* tick channel pointer */
  948: 
  949: 	static int csinptr;	/* wwv channel phase */
  950: 	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
  951: 	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
  952: 	static double ciamp;	/* wwv I channel amplitude */
  953: 	static double cqamp;	/* wwv Q channel amplitude */
  954: 
  955: 	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
  956: 	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
  957: 	static double csiamp;	/* wwv I tick amplitude */
  958: 	static double csqamp;	/* wwv Q tick amplitude */
  959: 
  960: 	static int hsinptr;	/* wwvh channel phase */
  961: 	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
  962: 	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
  963: 	static double hiamp;	/* wwvh I channel amplitude */
  964: 	static double hqamp;	/* wwvh Q channel amplitude */
  965: 
  966: 	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
  967: 	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
  968: 	static double hsiamp;	/* wwvh I tick amplitude */
  969: 	static double hsqamp;	/* wwvh Q tick amplitude */
  970: 
  971: 	static double epobuf[SECOND]; /* second sync comb filter */
  972: 	static double epomax, nxtmax; /* second sync amplitude buffer */
  973: 	static int epopos;	/* epoch second sync position buffer */
  974: 
  975: 	static int iniflg;	/* initialization flag */
  976: 	int	epoch;		/* comb filter index */
  977: 	double	dtemp;
  978: 	int	i;
  979: 
  980: 	pp = peer->procptr;
  981: 	up = (struct wwvunit *)pp->unitptr;
  982: 
  983: 	if (!iniflg) {
  984: 		iniflg = 1;
  985: 		memset((char *)lpf, 0, sizeof(lpf));
  986: 		memset((char *)bpf, 0, sizeof(bpf));
  987: 		memset((char *)mf, 0, sizeof(mf));
  988: 		memset((char *)ibuf, 0, sizeof(ibuf));
  989: 		memset((char *)qbuf, 0, sizeof(qbuf));
  990: 		memset((char *)cibuf, 0, sizeof(cibuf));
  991: 		memset((char *)cqbuf, 0, sizeof(cqbuf));
  992: 		memset((char *)csibuf, 0, sizeof(csibuf));
  993: 		memset((char *)csqbuf, 0, sizeof(csqbuf));
  994: 		memset((char *)hibuf, 0, sizeof(hibuf));
  995: 		memset((char *)hqbuf, 0, sizeof(hqbuf));
  996: 		memset((char *)hsibuf, 0, sizeof(hsibuf));
  997: 		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
  998: 		memset((char *)epobuf, 0, sizeof(epobuf));
  999: 	}
 1000: 
 1001: 	/*
 1002: 	 * Baseband data demodulation. The 100-Hz subcarrier is
 1003: 	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
 1004: 	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
 1005: 	 * 600-Hz tones and most of the noise and voice modulation
 1006: 	 * components.
 1007: 	 *
 1008: 	 * The subcarrier is transmitted 10 dB down from the carrier.
 1009: 	 * The DGAIN parameter can be adjusted for this and to
 1010: 	 * compensate for the radio audio response at 100 Hz.
 1011: 	 *
 1012: 	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
 1013: 	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
 1014: 	 */
 1015: 	data = (lpf[4] = lpf[3]) * 8.360961e-01;
 1016: 	data += (lpf[3] = lpf[2]) * -3.481740e+00;
 1017: 	data += (lpf[2] = lpf[1]) * 5.452988e+00;
 1018: 	data += (lpf[1] = lpf[0]) * -3.807229e+00;
 1019: 	lpf[0] = isig * DGAIN - data;
 1020: 	data = lpf[0] * 3.281435e-03
 1021: 	    + lpf[1] * -1.149947e-02
 1022: 	    + lpf[2] * 1.654858e-02
 1023: 	    + lpf[3] * -1.149947e-02
 1024: 	    + lpf[4] * 3.281435e-03;
 1025: 
 1026: 	/*
 1027: 	 * The 100-Hz data signal is demodulated using a pair of
 1028: 	 * quadrature multipliers, matched filters and a phase lock
 1029: 	 * loop. The I and Q quadrature data signals are produced by
 1030: 	 * multiplying the filtered signal by 100-Hz sine and cosine
 1031: 	 * signals, respectively. The signals are processed by 170-ms
 1032: 	 * synchronous matched filters to produce the amplitude and
 1033: 	 * phase signals used by the demodulator. The signals are scaled
 1034: 	 * to produce unit energy at the maximum value.
 1035: 	 */
 1036: 	i = up->datapt;
 1037: 	up->datapt = (up->datapt + IN100) % 80;
 1038: 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
 1039: 	up->irig -= ibuf[iptr];
 1040: 	ibuf[iptr] = dtemp;
 1041: 	up->irig += dtemp;
 1042: 
 1043: 	i = (i + 20) % 80;
 1044: 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
 1045: 	up->qrig -= qbuf[iptr];
 1046: 	qbuf[iptr] = dtemp;
 1047: 	up->qrig += dtemp;
 1048: 	iptr = (iptr + 1) % DATSIZ;
 1049: 
 1050: 	/*
 1051: 	 * Baseband sync demodulation. The 1000/1200 sync signals are
 1052: 	 * extracted using a 600-Hz IIR bandpass filter. This removes
 1053: 	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
 1054: 	 * tones and most of the noise and voice modulation components.
 1055: 	 *
 1056: 	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
 1057: 	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
 1058: 	 */
 1059: 	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
 1060: 	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
 1061: 	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
 1062: 	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
 1063: 	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
 1064: 	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
 1065: 	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
 1066: 	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
 1067: 	bpf[0] = isig - syncx;
 1068: 	syncx = bpf[0] * 8.203628e-03
 1069: 	    + bpf[1] * -2.375732e-02
 1070: 	    + bpf[2] * 3.353214e-02
 1071: 	    + bpf[3] * -4.080258e-02
 1072: 	    + bpf[4] * 4.605479e-02
 1073: 	    + bpf[5] * -4.080258e-02
 1074: 	    + bpf[6] * 3.353214e-02
 1075: 	    + bpf[7] * -2.375732e-02
 1076: 	    + bpf[8] * 8.203628e-03;
 1077: 
 1078: 	/*
 1079: 	 * The 1000/1200 sync signals are demodulated using a pair of
 1080: 	 * quadrature multipliers and matched filters. However,
 1081: 	 * synchronous demodulation at these frequencies is impractical,
 1082: 	 * so only the signal amplitude is used. The I and Q quadrature
 1083: 	 * sync signals are produced by multiplying the filtered signal
 1084: 	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
 1085: 	 * respectively. The WWV and WWVH signals are processed by 800-
 1086: 	 * ms synchronous matched filters and combined to produce the
 1087: 	 * minute sync signal and detect which one (or both) the WWV or
 1088: 	 * WWVH signal is present. The WWV and WWVH signals are also
 1089: 	 * processed by 5-ms synchronous matched filters and combined to
 1090: 	 * produce the second sync signal. The signals are scaled to
 1091: 	 * produce unit energy at the maximum value.
 1092: 	 *
 1093: 	 * Note the master timing ramps, which run continuously. The
 1094: 	 * minute counter (mphase) counts the samples in the minute,
 1095: 	 * while the second counter (epoch) counts the samples in the
 1096: 	 * second.
 1097: 	 */
 1098: 	up->mphase = (up->mphase + 1) % MINUTE;
 1099: 	epoch = up->mphase % SECOND;
 1100: 
 1101: 	/*
 1102: 	 * WWV
 1103: 	 */
 1104: 	i = csinptr;
 1105: 	csinptr = (csinptr + IN1000) % 80;
 1106: 
 1107: 	dtemp = sintab[i] * syncx / (MS / 2.);
 1108: 	ciamp -= cibuf[jptr];
 1109: 	cibuf[jptr] = dtemp;
 1110: 	ciamp += dtemp;
 1111: 	csiamp -= csibuf[kptr];
 1112: 	csibuf[kptr] = dtemp;
 1113: 	csiamp += dtemp;
 1114: 
 1115: 	i = (i + 20) % 80;
 1116: 	dtemp = sintab[i] * syncx / (MS / 2.);
 1117: 	cqamp -= cqbuf[jptr];
 1118: 	cqbuf[jptr] = dtemp;
 1119: 	cqamp += dtemp;
 1120: 	csqamp -= csqbuf[kptr];
 1121: 	csqbuf[kptr] = dtemp;
 1122: 	csqamp += dtemp;
 1123: 
 1124: 	sp = &up->mitig[up->achan].wwv;
 1125: 	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
 1126: 	if (!(up->status & MSYNC))
 1127: 		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * SECOND));
 1128: 
 1129: 	/*
 1130: 	 * WWVH
 1131: 	 */
 1132: 	i = hsinptr;
 1133: 	hsinptr = (hsinptr + IN1200) % 80;
 1134: 
 1135: 	dtemp = sintab[i] * syncx / (MS / 2.);
 1136: 	hiamp -= hibuf[jptr];
 1137: 	hibuf[jptr] = dtemp;
 1138: 	hiamp += dtemp;
 1139: 	hsiamp -= hsibuf[kptr];
 1140: 	hsibuf[kptr] = dtemp;
 1141: 	hsiamp += dtemp;
 1142: 
 1143: 	i = (i + 20) % 80;
 1144: 	dtemp = sintab[i] * syncx / (MS / 2.);
 1145: 	hqamp -= hqbuf[jptr];
 1146: 	hqbuf[jptr] = dtemp;
 1147: 	hqamp += dtemp;
 1148: 	hsqamp -= hsqbuf[kptr];
 1149: 	hsqbuf[kptr] = dtemp;
 1150: 	hsqamp += dtemp;
 1151: 
 1152: 	rp = &up->mitig[up->achan].wwvh;
 1153: 	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
 1154: 	if (!(up->status & MSYNC))
 1155: 		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * SECOND));
 1156: 	jptr = (jptr + 1) % SYNSIZ;
 1157: 	kptr = (kptr + 1) % TCKSIZ;
 1158: 
 1159: 	/*
 1160: 	 * The following section is called once per minute. It does
 1161: 	 * housekeeping and timeout functions and empties the dustbins.
 1162: 	 */
 1163: 	if (up->mphase == 0) {
 1164: 		up->watch++;
 1165: 		if (!(up->status & MSYNC)) {
 1166: 
 1167: 			/*
 1168: 			 * If minute sync has not been acquired before
 1169: 			 * ACQSN timeout (6 min), or if no signal is
 1170: 			 * heard, the program cycles to the next
 1171: 			 * frequency and tries again.
 1172: 			 */
 1173: 			if (!wwv_newchan(peer))
 1174: 				up->watch = 0;
 1175: 		} else {
 1176: 
 1177: 			/*
 1178: 			 * If the leap bit is set, set the minute epoch
 1179: 			 * back one second so the station processes
 1180: 			 * don't miss a beat.
 1181: 			 */
 1182: 			if (up->status & LEPSEC) {
 1183: 				up->mphase -= SECOND;
 1184: 				if (up->mphase < 0)
 1185: 					up->mphase += MINUTE;
 1186: 			}
 1187: 		}
 1188: 	}
 1189: 
 1190: 	/*
 1191: 	 * When the channel metric reaches threshold and the second
 1192: 	 * counter matches the minute epoch within the second, the
 1193: 	 * driver has synchronized to the station. The second number is
 1194: 	 * the remaining seconds until the next minute epoch, while the
 1195: 	 * sync epoch is zero. Watch out for the first second; if
 1196: 	 * already synchronized to the second, the buffered sync epoch
 1197: 	 * must be set.
 1198: 	 *
 1199: 	 * Note the guard interval is 200 ms; if for some reason the
 1200: 	 * clock drifts more than that, it might wind up in the wrong
 1201: 	 * second. If the maximum frequency error is not more than about
 1202: 	 * 1 PPM, the clock can go as much as two days while still in
 1203: 	 * the same second.
 1204: 	 */
 1205: 	if (up->status & MSYNC) {
 1206: 		wwv_epoch(peer);
 1207: 	} else if (up->sptr != NULL) {
 1208: 		sp = up->sptr;
 1209: 		if (sp->metric >= TTHR && epoch == sp->mepoch % SECOND)
 1210:  		    {
 1211: 			up->rsec = (60 - sp->mepoch / SECOND) % 60;
 1212: 			up->rphase = 0;
 1213: 			up->status |= MSYNC;
 1214: 			up->watch = 0;
 1215: 			if (!(up->status & SSYNC))
 1216: 				up->repoch = up->yepoch = epoch;
 1217: 			else
 1218: 				up->repoch = up->yepoch;
 1219: 			
 1220: 		}
 1221: 	}
 1222: 
 1223: 	/*
 1224: 	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
 1225: 	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
 1226: 	 * pulse is used for the most precise synchronization, since if
 1227: 	 * provides a resolution of one sample (125 us). The filters run
 1228: 	 * only if the station has been reliably determined.
 1229: 	 */
 1230: 	if (up->status & SELV)
 1231: 		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
 1232: 		    TCKCYC;
 1233: 	else if (up->status & SELH)
 1234: 		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
 1235: 		    TCKCYC;
 1236: 	else
 1237: 		mfsync = 0;
 1238: 
 1239: 	/*
 1240: 	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
 1241: 	 * filter. Correct for the FIR matched filter delay, which is 5
 1242: 	 * ms for both the WWV and WWVH filters, and also for the
 1243: 	 * propagation delay. Once each second look for second sync. If
 1244: 	 * not in minute sync, fiddle the codec gain. Note the SNR is
 1245: 	 * computed from the maximum sample and the envelope of the
 1246: 	 * sample 6 ms before it, so if we slip more than a cycle the
 1247: 	 * SNR should plummet. The signal is scaled to produce unit
 1248: 	 * energy at the maximum value.
 1249: 	 */
 1250: 	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
 1251: 	    up->avgint);
 1252: 	if (dtemp > epomax) {
 1253: 		int	j;
 1254: 
 1255: 		epomax = dtemp;
 1256: 		epopos = epoch;
 1257: 		j = epoch - 6 * MS;
 1258: 		if (j < 0)
 1259: 			j += SECOND;
 1260: 		nxtmax = fabs(epobuf[j]);
 1261: 	}
 1262: 	if (epoch == 0) {
 1263: 		up->epomax = epomax;
 1264: 		up->eposnr = wwv_snr(epomax, nxtmax);
 1265: 		epopos -= TCKCYC * MS;
 1266: 		if (epopos < 0)
 1267: 			epopos += SECOND;
 1268: 		wwv_endpoc(peer, epopos);
 1269: 		if (!(up->status & SSYNC))
 1270: 			up->alarm |= SYNERR;
 1271: 		epomax = 0;
 1272: 		if (!(up->status & MSYNC))
 1273: 			wwv_gain(peer);
 1274: 	}
 1275: }
 1276: 
 1277: 
 1278: /*
 1279:  * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
 1280:  *
 1281:  * This routine implements a virtual station process used to acquire
 1282:  * minute sync and to mitigate among the ten frequency and station
 1283:  * combinations. During minute sync acquisition the process probes each
 1284:  * frequency and station in turn for the minute pulse, which
 1285:  * involves searching through the entire 480,000-sample minute. The
 1286:  * process finds the maximum signal and RMS noise plus signal. Then, the
 1287:  * actual noise is determined by subtracting the energy of the matched
 1288:  * filter.
 1289:  *
 1290:  * Students of radar receiver technology will discover this algorithm
 1291:  * amounts to a range-gate discriminator. A valid pulse must have peak
 1292:  * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
 1293:  * difference between the current and previous epoch must be less than
 1294:  * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
 1295:  * into the second, so the timing is retarded to the previous second
 1296:  * epoch.
 1297:  */
 1298: static void
 1299: wwv_qrz(
 1300: 	struct peer *peer,	/* peer structure pointer */
 1301: 	struct sync *sp,	/* sync channel structure */
 1302: 	int	pdelay		/* propagation delay (samples) */
 1303: 	)
 1304: {
 1305: 	struct refclockproc *pp;
 1306: 	struct wwvunit *up;
 1307: 	char	tbuf[TBUF];	/* monitor buffer */
 1308: 	long	epoch;
 1309: 
 1310: 	pp = peer->procptr;
 1311: 	up = (struct wwvunit *)pp->unitptr;
 1312: 
 1313: 	/*
 1314: 	 * Find the sample with peak amplitude, which defines the minute
 1315: 	 * epoch. Accumulate all samples to determine the total noise
 1316: 	 * energy.
 1317: 	 */
 1318: 	epoch = up->mphase - pdelay - SYNSIZ;
 1319: 	if (epoch < 0)
 1320: 		epoch += MINUTE;
 1321: 	if (sp->amp > sp->maxeng) {
 1322: 		sp->maxeng = sp->amp;
 1323: 		sp->pos = epoch;
 1324: 	}
 1325: 	sp->noieng += sp->amp;
 1326: 
 1327: 	/*
 1328: 	 * At the end of the minute, determine the epoch of the minute
 1329: 	 * sync pulse, as well as the difference between the current and
 1330: 	 * previous epoches due to the intrinsic frequency error plus
 1331: 	 * jitter. When calculating the SNR, subtract the pulse energy
 1332: 	 * from the total noise energy and then normalize.
 1333: 	 */
 1334: 	if (up->mphase == 0) {
 1335: 		sp->synmax = sp->maxeng;
 1336: 		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
 1337: 		    sp->synmax) / MINUTE);
 1338: 		if (sp->count == 0)
 1339: 			sp->lastpos = sp->pos;
 1340: 		epoch = (sp->pos - sp->lastpos) % MINUTE;
 1341: 		sp->reach <<= 1;
 1342: 		if (sp->reach & (1 << AMAX))
 1343: 			sp->count--;
 1344: 		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
 1345: 			if (abs(epoch) < AWND * MS) {
 1346: 				sp->reach |= 1;
 1347: 				sp->count++;
 1348: 				sp->mepoch = sp->lastpos = sp->pos;
 1349: 			} else if (sp->count == 1) {
 1350: 				sp->lastpos = sp->pos;
 1351: 			}
 1352: 		}
 1353: 		if (up->watch > ACQSN)
 1354: 			sp->metric = 0;
 1355: 		else
 1356: 			sp->metric = wwv_metric(sp);
 1357: 		if (pp->sloppyclockflag & CLK_FLAG4) {
 1358: 			sprintf(tbuf,
 1359: 			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
 1360: 			    up->status, up->gain, sp->refid,
 1361: 			    sp->reach & 0xffff, sp->metric, sp->synmax,
 1362: 			    sp->synsnr, sp->pos % SECOND, epoch);
 1363: 			record_clock_stats(&peer->srcadr, tbuf);
 1364: #ifdef DEBUG
 1365: 			if (debug)
 1366: 				printf("%s\n", tbuf);
 1367: #endif /* DEBUG */
 1368: 		}
 1369: 		sp->maxeng = sp->noieng = 0;
 1370: 	}
 1371: }
 1372: 
 1373: 
 1374: /*
 1375:  * wwv_endpoc - identify and acquire second sync pulse
 1376:  *
 1377:  * This routine is called at the end of the second sync interval. It
 1378:  * determines the second sync epoch position within the second and
 1379:  * disciplines the sample clock using a frequency-lock loop (FLL).
 1380:  *
 1381:  * Second sync is determined in the RF input routine as the maximum
 1382:  * over all 8000 samples in the second comb filter. To assure accurate
 1383:  * and reliable time and frequency discipline, this routine performs a
 1384:  * great deal of heavy-handed heuristic data filtering and grooming.
 1385:  */
 1386: static void
 1387: wwv_endpoc(
 1388: 	struct peer *peer,	/* peer structure pointer */
 1389: 	int epopos		/* epoch max position */
 1390: 	)
 1391: {
 1392: 	struct refclockproc *pp;
 1393: 	struct wwvunit *up;
 1394: 	static int epoch_mf[3]; /* epoch median filter */
 1395: 	static int tepoch;	/* current second epoch */
 1396:  	static int xepoch;	/* last second epoch */
 1397:  	static int zepoch;	/* last run epoch */
 1398: 	static int zcount;	/* last run end time */
 1399: 	static int scount;	/* seconds counter */
 1400: 	static int syncnt;	/* run length counter */
 1401: 	static int maxrun;	/* longest run length */
 1402: 	static int mepoch;	/* longest run end epoch */
 1403: 	static int mcount;	/* longest run end time */
 1404: 	static int avgcnt;	/* averaging interval counter */
 1405: 	static int avginc;	/* averaging ratchet */
 1406: 	static int iniflg;	/* initialization flag */
 1407: 	char tbuf[TBUF];		/* monitor buffer */
 1408: 	double dtemp;
 1409: 	int tmp2;
 1410: 
 1411: 	pp = peer->procptr;
 1412: 	up = (struct wwvunit *)pp->unitptr;
 1413: 	if (!iniflg) {
 1414: 		iniflg = 1;
 1415: 		memset((char *)epoch_mf, 0, sizeof(epoch_mf));
 1416: 	}
 1417: 
 1418: 	/*
 1419: 	 * If the signal amplitude or SNR fall below thresholds, dim the
 1420: 	 * second sync lamp and wait for hotter ions. If no stations are
 1421: 	 * heard, we are either in a probe cycle or the ions are really
 1422: 	 * cold. 
 1423: 	 */
 1424: 	scount++;
 1425: 	if (up->epomax < STHR || up->eposnr < SSNR) {
 1426: 		up->status &= ~(SSYNC | FGATE);
 1427: 		avgcnt = syncnt = maxrun = 0;
 1428: 		return;
 1429: 	}
 1430: 	if (!(up->status & (SELV | SELH)))
 1431: 		return;
 1432: 
 1433: 	/*
 1434: 	 * A three-stage median filter is used to help denoise the
 1435: 	 * second sync pulse. The median sample becomes the candidate
 1436: 	 * epoch.
 1437: 	 */
 1438: 	epoch_mf[2] = epoch_mf[1];
 1439: 	epoch_mf[1] = epoch_mf[0];
 1440: 	epoch_mf[0] = epopos;
 1441: 	if (epoch_mf[0] > epoch_mf[1]) {
 1442: 		if (epoch_mf[1] > epoch_mf[2])
 1443: 			tepoch = epoch_mf[1];	/* 0 1 2 */
 1444: 		else if (epoch_mf[2] > epoch_mf[0])
 1445: 			tepoch = epoch_mf[0];	/* 2 0 1 */
 1446: 		else
 1447: 			tepoch = epoch_mf[2];	/* 0 2 1 */
 1448: 	} else {
 1449: 		if (epoch_mf[1] < epoch_mf[2])
 1450: 			tepoch = epoch_mf[1];	/* 2 1 0 */
 1451: 		else if (epoch_mf[2] < epoch_mf[0])
 1452: 			tepoch = epoch_mf[0];	/* 1 0 2 */
 1453: 		else
 1454: 			tepoch = epoch_mf[2];	/* 1 2 0 */
 1455: 	}
 1456: 
 1457: 
 1458: 	/*
 1459: 	 * If the epoch candidate is the same as the last one, increment
 1460: 	 * the run counter. If not, save the length, epoch and end
 1461: 	 * time of the current run for use later and reset the counter.
 1462: 	 * The epoch is considered valid if the run is at least SCMP
 1463: 	 * (10) s, the minute is synchronized and the interval since the
 1464: 	 * last epoch  is not greater than the averaging interval. Thus,
 1465: 	 * after a long absence, the program will wait a full averaging
 1466: 	 * interval while the comb filter charges up and noise
 1467: 	 * dissapates..
 1468: 	 */
 1469: 	tmp2 = (tepoch - xepoch) % SECOND;
 1470: 	if (tmp2 == 0) {
 1471: 		syncnt++;
 1472: 		if (syncnt > SCMP && up->status & MSYNC && (up->status &
 1473: 		    FGATE || scount - zcount <= up->avgint)) {
 1474: 			up->status |= SSYNC;
 1475: 			up->yepoch = tepoch;
 1476: 		}
 1477: 	} else if (syncnt >= maxrun) {
 1478: 		maxrun = syncnt;
 1479: 		mcount = scount;
 1480: 		mepoch = xepoch;
 1481: 		syncnt = 0;
 1482: 	}
 1483: 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
 1484: 	    MSYNC)) {
 1485: 		sprintf(tbuf,
 1486: 		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
 1487: 		    up->status, up->gain, tepoch, up->epomax,
 1488: 		    up->eposnr, tmp2, avgcnt, syncnt,
 1489: 		    maxrun);
 1490: 		record_clock_stats(&peer->srcadr, tbuf);
 1491: #ifdef DEBUG
 1492: 		if (debug)
 1493: 			printf("%s\n", tbuf);
 1494: #endif /* DEBUG */
 1495: 	}
 1496: 	avgcnt++;
 1497: 	if (avgcnt < up->avgint) {
 1498: 		xepoch = tepoch;
 1499: 		return;
 1500: 	}
 1501: 
 1502: 	/*
 1503: 	 * The sample clock frequency is disciplined using a first-order
 1504: 	 * feedback loop with time constant consistent with the Allan
 1505: 	 * intercept of typical computer clocks. During each averaging
 1506: 	 * interval the candidate epoch at the end of the longest run is
 1507: 	 * determined. If the longest run is zero, all epoches in the
 1508: 	 * interval are different, so the candidate epoch is the current
 1509: 	 * epoch. The frequency update is computed from the candidate
 1510: 	 * epoch difference (125-us units) and time difference (seconds)
 1511: 	 * between updates.
 1512: 	 */
 1513: 	if (syncnt >= maxrun) {
 1514: 		maxrun = syncnt;
 1515: 		mcount = scount;
 1516: 		mepoch = xepoch;
 1517: 	}
 1518: 	xepoch = tepoch;
 1519: 	if (maxrun == 0) {
 1520: 		mepoch = tepoch;
 1521: 		mcount = scount;
 1522: 	}
 1523: 
 1524: 	/*
 1525: 	 * The master clock runs at the codec sample frequency of 8000
 1526: 	 * Hz, so the intrinsic time resolution is 125 us. The frequency
 1527: 	 * resolution ranges from 18 PPM at the minimum averaging
 1528: 	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
 1529: 	 * s. An offset update is determined at the end of the longest
 1530: 	 * run in each averaging interval. The frequency adjustment is
 1531: 	 * computed from the difference between offset updates and the
 1532: 	 * interval between them.
 1533: 	 *
 1534: 	 * The maximum frequency adjustment ranges from 187 PPM at the
 1535: 	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
 1536: 	 * exceeds the maximum, the update is discarded and the
 1537: 	 * hysteresis counter is decremented. Otherwise, the frequency
 1538: 	 * is incremented by the adjustment, but clamped to the maximum
 1539: 	 * 187.5 PPM. If the update is less than half the maximum, the
 1540: 	 * hysteresis counter is incremented. If the counter increments
 1541: 	 * to +3, the averaging interval is doubled and the counter set
 1542: 	 * to zero; if it decrements to -3, the interval is halved and
 1543: 	 * the counter set to zero.
 1544: 	 */
 1545: 	dtemp = (mepoch - zepoch) % SECOND;
 1546: 	if (up->status & FGATE) {
 1547: 		if (abs(dtemp) < MAXFREQ * MINAVG) {
 1548: 			up->freq += (dtemp / 2.) / ((mcount - zcount) *
 1549: 			    FCONST);
 1550: 			if (up->freq > MAXFREQ)
 1551: 				up->freq = MAXFREQ;
 1552: 			else if (up->freq < -MAXFREQ)
 1553: 				up->freq = -MAXFREQ;
 1554: 			if (abs(dtemp) < MAXFREQ * MINAVG / 2.) {
 1555: 				if (avginc < 3) {
 1556: 					avginc++;
 1557: 				} else {
 1558: 					if (up->avgint < MAXAVG) {
 1559: 						up->avgint <<= 1;
 1560: 						avginc = 0;
 1561: 					}
 1562: 				}
 1563: 			}
 1564: 		} else {
 1565: 			if (avginc > -3) {
 1566: 				avginc--;
 1567: 			} else {
 1568: 				if (up->avgint > MINAVG) {
 1569: 					up->avgint >>= 1;
 1570: 					avginc = 0;
 1571: 				}
 1572: 			}
 1573: 		}
 1574: 	}
 1575: 	if (pp->sloppyclockflag & CLK_FLAG4) {
 1576: 		sprintf(tbuf,
 1577: 		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
 1578: 		    up->status, up->epomax, up->eposnr, mepoch,
 1579: 		    up->avgint, maxrun, mcount - zcount, dtemp,
 1580: 		    up->freq * 1e6 / SECOND);
 1581: 		record_clock_stats(&peer->srcadr, tbuf);
 1582: #ifdef DEBUG
 1583: 		if (debug)
 1584: 			printf("%s\n", tbuf);
 1585: #endif /* DEBUG */
 1586: 	}
 1587: 
 1588: 	/*
 1589: 	 * This is a valid update; set up for the next interval.
 1590: 	 */
 1591: 	up->status |= FGATE;
 1592: 	zepoch = mepoch;
 1593: 	zcount = mcount;
 1594: 	avgcnt = syncnt = maxrun = 0;
 1595: }
 1596: 
 1597: 
 1598: /*
 1599:  * wwv_epoch - epoch scanner
 1600:  *
 1601:  * This routine extracts data signals from the 100-Hz subcarrier. It
 1602:  * scans the receiver second epoch to determine the signal amplitudes
 1603:  * and pulse timings. Receiver synchronization is determined by the
 1604:  * minute sync pulse detected in the wwv_rf() routine and the second
 1605:  * sync pulse detected in the wwv_epoch() routine. The transmitted
 1606:  * signals are delayed by the propagation delay, receiver delay and
 1607:  * filter delay of this program. Delay corrections are introduced
 1608:  * separately for WWV and WWVH. 
 1609:  *
 1610:  * Most communications radios use a highpass filter in the audio stages,
 1611:  * which can do nasty things to the subcarrier phase relative to the
 1612:  * sync pulses. Therefore, the data subcarrier reference phase is
 1613:  * disciplined using the hardlimited quadrature-phase signal sampled at
 1614:  * the same time as the in-phase signal. The phase tracking loop uses
 1615:  * phase adjustments of plus-minus one sample (125 us). 
 1616:  */
 1617: static void
 1618: wwv_epoch(
 1619: 	struct peer *peer	/* peer structure pointer */
 1620: 	)
 1621: {
 1622: 	struct refclockproc *pp;
 1623: 	struct wwvunit *up;
 1624: 	struct chan *cp;
 1625: 	static double sigmin, sigzer, sigone, engmax, engmin;
 1626: 
 1627: 	pp = peer->procptr;
 1628: 	up = (struct wwvunit *)pp->unitptr;
 1629: 
 1630: 	/*
 1631: 	 * Find the maximum minute sync pulse energy for both the
 1632: 	 * WWV and WWVH stations. This will be used later for channel
 1633: 	 * and station mitigation. Also set the seconds epoch at 800 ms
 1634: 	 * well before the end of the second to make sure we never set
 1635: 	 * the epoch backwards.
 1636: 	 */
 1637: 	cp = &up->mitig[up->achan];
 1638: 	if (cp->wwv.amp > cp->wwv.syneng) 
 1639: 		cp->wwv.syneng = cp->wwv.amp;
 1640: 	if (cp->wwvh.amp > cp->wwvh.syneng) 
 1641: 		cp->wwvh.syneng = cp->wwvh.amp;
 1642: 	if (up->rphase == 800 * MS)
 1643: 		up->repoch = up->yepoch;
 1644: 
 1645: 	/*
 1646: 	 * Use the signal amplitude at epoch 15 ms as the noise floor.
 1647: 	 * This gives a guard time of +-15 ms from the beginning of the
 1648: 	 * second until the second pulse rises at 30 ms. There is a
 1649: 	 * compromise here; we want to delay the sample as long as
 1650: 	 * possible to give the radio time to change frequency and the
 1651: 	 * AGC to stabilize, but as early as possible if the second
 1652: 	 * epoch is not exact.
 1653: 	 */
 1654: 	if (up->rphase == 15 * MS)
 1655: 		sigmin = sigzer = sigone = up->irig;
 1656: 
 1657: 	/*
 1658: 	 * Latch the data signal at 200 ms. Keep this around until the
 1659: 	 * end of the second. Use the signal energy as the peak to
 1660: 	 * compute the SNR. Use the Q sample to adjust the 100-Hz
 1661: 	 * reference oscillator phase.
 1662: 	 */
 1663: 	if (up->rphase == 200 * MS) {
 1664: 		sigzer = up->irig;
 1665: 		engmax = sqrt(up->irig * up->irig + up->qrig *
 1666: 		    up->qrig);
 1667: 		up->datpha = up->qrig / up->avgint;
 1668: 		if (up->datpha >= 0) {
 1669: 			up->datapt++;
 1670: 			if (up->datapt >= 80)
 1671: 				up->datapt -= 80;
 1672: 		} else {
 1673: 			up->datapt--;
 1674: 			if (up->datapt < 0)
 1675: 				up->datapt += 80;
 1676: 		}
 1677: 	}
 1678: 
 1679: 
 1680: 	/*
 1681: 	 * Latch the data signal at 500 ms. Keep this around until the
 1682: 	 * end of the second.
 1683: 	 */
 1684: 	else if (up->rphase == 500 * MS)
 1685: 		sigone = up->irig;
 1686: 
 1687: 	/*
 1688: 	 * At the end of the second crank the clock state machine and
 1689: 	 * adjust the codec gain. Note the epoch is buffered from the
 1690: 	 * center of the second in order to avoid jitter while the
 1691: 	 * seconds synch is diddling the epoch. Then, determine the true
 1692: 	 * offset and update the median filter in the driver interface.
 1693: 	 *
 1694: 	 * Use the energy at the end of the second as the noise to
 1695: 	 * compute the SNR for the data pulse. This gives a better
 1696: 	 * measurement than the beginning of the second, especially when
 1697: 	 * returning from the probe channel. This gives a guard time of
 1698: 	 * 30 ms from the decay of the longest pulse to the rise of the
 1699: 	 * next pulse.
 1700: 	 */
 1701: 	up->rphase++;
 1702: 	if (up->mphase % SECOND == up->repoch) {
 1703: 		up->status &= ~(DGATE | BGATE);
 1704: 		engmin = sqrt(up->irig * up->irig + up->qrig *
 1705: 		    up->qrig);
 1706: 		up->datsig = engmax;
 1707: 		up->datsnr = wwv_snr(engmax, engmin);
 1708: 
 1709: 		/*
 1710: 		 * If the amplitude or SNR is below threshold, average a
 1711: 		 * 0 in the the integrators; otherwise, average the
 1712: 		 * bipolar signal. This is done to avoid noise polution.
 1713: 		 */
 1714: 		if (engmax < DTHR || up->datsnr < DSNR) {
 1715: 			up->status |= DGATE;
 1716: 			wwv_rsec(peer, 0);
 1717: 		} else {
 1718: 			sigzer -= sigone;
 1719: 			sigone -= sigmin;
 1720: 			wwv_rsec(peer, sigone - sigzer);
 1721: 		}
 1722: 		if (up->status & (DGATE | BGATE))
 1723: 			up->errcnt++;
 1724: 		if (up->errcnt > MAXERR)
 1725: 			up->alarm |= LOWERR;
 1726: 		wwv_gain(peer);
 1727: 		cp = &up->mitig[up->achan];
 1728: 		cp->wwv.syneng = 0;
 1729: 		cp->wwvh.syneng = 0;
 1730: 		up->rphase = 0;
 1731: 	}
 1732: }
 1733: 
 1734: 
 1735: /*
 1736:  * wwv_rsec - process receiver second
 1737:  *
 1738:  * This routine is called at the end of each receiver second to
 1739:  * implement the per-second state machine. The machine assembles BCD
 1740:  * digit bits, decodes miscellaneous bits and dances the leap seconds.
 1741:  *
 1742:  * Normally, the minute has 60 seconds numbered 0-59. If the leap
 1743:  * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
 1744:  * for leap years) or 31 December (day 365 or 366 for leap years) is
 1745:  * augmented by one second numbered 60. This is accomplished by
 1746:  * extending the minute interval by one second and teaching the state
 1747:  * machine to ignore it.
 1748:  */
 1749: static void
 1750: wwv_rsec(
 1751: 	struct peer *peer,	/* peer structure pointer */
 1752: 	double bit
 1753: 	)
 1754: {
 1755: 	static int iniflg;	/* initialization flag */
 1756: 	static double bcddld[4]; /* BCD data bits */
 1757: 	static double bitvec[61]; /* bit integrator for misc bits */
 1758: 	struct refclockproc *pp;
 1759: 	struct wwvunit *up;
 1760: 	struct chan *cp;
 1761: 	struct sync *sp, *rp;
 1762: 	char	tbuf[TBUF];	/* monitor buffer */
 1763: 	int	sw, arg, nsec;
 1764: 
 1765: 	pp = peer->procptr;
 1766: 	up = (struct wwvunit *)pp->unitptr;
 1767: 	if (!iniflg) {
 1768: 		iniflg = 1;
 1769: 		memset((char *)bitvec, 0, sizeof(bitvec));
 1770: 	}
 1771: 
 1772: 	/*
 1773: 	 * The bit represents the probability of a hit on zero (negative
 1774: 	 * values), a hit on one (positive values) or a miss (zero
 1775: 	 * value). The likelihood vector is the exponential average of
 1776: 	 * these probabilities. Only the bits of this vector
 1777: 	 * corresponding to the miscellaneous bits of the timecode are
 1778: 	 * used, but it's easier to do them all. After that, crank the
 1779: 	 * seconds state machine.
 1780: 	 */
 1781: 	nsec = up->rsec;
 1782: 	up->rsec++;
 1783: 	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
 1784: 	sw = progx[nsec].sw;
 1785: 	arg = progx[nsec].arg;
 1786: 
 1787: 	/*
 1788: 	 * The minute state machine. Fly off to a particular section as
 1789: 	 * directed by the transition matrix and second number.
 1790: 	 */
 1791: 	switch (sw) {
 1792: 
 1793: 	/*
 1794: 	 * Ignore this second.
 1795: 	 */
 1796: 	case IDLE:			/* 9, 45-49 */
 1797: 		break;
 1798: 
 1799: 	/*
 1800: 	 * Probe channel stuff
 1801: 	 *
 1802: 	 * The WWV/H format contains data pulses in second 59 (position
 1803: 	 * identifier) and second 1, but not in second 0. The minute
 1804: 	 * sync pulse is contained in second 0. At the end of second 58
 1805: 	 * QSY to the probe channel, which rotates in turn over all
 1806: 	 * WWV/H frequencies. At the end of second 0 measure the minute
 1807: 	 * sync pulse. At the end of second 1 measure the data pulse and
 1808: 	 * QSY back to the data channel. Note that the actions commented
 1809: 	 * here happen at the end of the second numbered as shown.
 1810: 	 *
 1811: 	 * At the end of second 0 save the minute sync amplitude latched
 1812: 	 * at 800 ms as the signal later used to calculate the SNR. 
 1813: 	 */
 1814: 	case SYNC2:			/* 0 */
 1815: 		cp = &up->mitig[up->achan];
 1816: 		cp->wwv.synmax = cp->wwv.syneng;
 1817: 		cp->wwvh.synmax = cp->wwvh.syneng;
 1818: 		break;
 1819: 
 1820: 	/*
 1821: 	 * At the end of second 1 use the minute sync amplitude latched
 1822: 	 * at 800 ms as the noise to calculate the SNR. If the minute
 1823: 	 * sync pulse and SNR are above thresholds and the data pulse
 1824: 	 * amplitude and SNR are above thresolds, shift a 1 into the
 1825: 	 * station reachability register; otherwise, shift a 0. The
 1826: 	 * number of 1 bits in the last six intervals is a component of
 1827: 	 * the channel metric computed by the wwv_metric() routine.
 1828: 	 * Finally, QSY back to the data channel.
 1829: 	 */
 1830: 	case SYNC3:			/* 1 */
 1831: 		cp = &up->mitig[up->achan];
 1832: 
 1833: 		/*
 1834: 		 * WWV station
 1835: 		 */
 1836: 		sp = &cp->wwv;
 1837: 		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
 1838: 		sp->reach <<= 1;
 1839: 		if (sp->reach & (1 << AMAX))
 1840: 			sp->count--;
 1841: 		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
 1842: 		    !(up->status & (DGATE | BGATE))) {
 1843: 			sp->reach |= 1;
 1844: 			sp->count++;
 1845: 		}
 1846: 		sp->metric = wwv_metric(sp);
 1847: 
 1848: 		/*
 1849: 		 * WWVH station
 1850: 		 */
 1851: 		rp = &cp->wwvh;
 1852: 		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
 1853: 		rp->reach <<= 1;
 1854: 		if (rp->reach & (1 << AMAX))
 1855: 			rp->count--;
 1856: 		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
 1857: 		    !(up->status & (DGATE | BGATE))) {
 1858: 			rp->reach |= 1;
 1859: 			rp->count++;
 1860: 		}
 1861: 		rp->metric = wwv_metric(rp);
 1862: 		if (pp->sloppyclockflag & CLK_FLAG4) {
 1863: 			sprintf(tbuf,
 1864: 			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
 1865: 			    up->status, up->gain, up->yepoch,
 1866: 			    up->epomax, up->eposnr, up->datsig,
 1867: 			    up->datsnr,
 1868: 			    sp->refid, sp->reach & 0xffff,
 1869: 			    sp->metric, sp->synmax, sp->synsnr,
 1870: 			    rp->refid, rp->reach & 0xffff,
 1871: 			    rp->metric, rp->synmax, rp->synsnr);
 1872: 			record_clock_stats(&peer->srcadr, tbuf);
 1873: #ifdef DEBUG
 1874: 			if (debug)
 1875: 				printf("%s\n", tbuf);
 1876: #endif /* DEBUG */
 1877: 		}
 1878: 		up->errcnt = up->digcnt = up->alarm = 0;
 1879: 
 1880: 		/*
 1881: 		 * If synchronized to a station, restart if no stations
 1882: 		 * have been heard within the PANIC timeout (2 days). If
 1883: 		 * not and the minute digit has been found, restart if
 1884: 		 * not synchronized withing the SYNCH timeout (40 m). If
 1885: 		 * not, restart if the unit digit has not been found
 1886: 		 * within the DATA timeout (15 m).
 1887: 		 */
 1888: 		if (up->status & INSYNC) {
 1889: 			if (up->watch > PANIC) {
 1890: 				wwv_newgame(peer);
 1891: 				return;
 1892: 			}
 1893: 		} else if (up->status & DSYNC) {
 1894: 			if (up->watch > SYNCH) {
 1895: 				wwv_newgame(peer);
 1896: 				return;
 1897: 			}
 1898: 		} else if (up->watch > DATA) {
 1899: 			wwv_newgame(peer);
 1900: 			return;
 1901: 		}
 1902: 		wwv_newchan(peer);
 1903: 		break;
 1904: 
 1905: 	/*
 1906: 	 * Save the bit probability in the BCD data vector at the index
 1907: 	 * given by the argument. Bits not used in the digit are forced
 1908: 	 * to zero.
 1909: 	 */
 1910: 	case COEF1:			/* 4-7 */ 
 1911: 		bcddld[arg] = bit;
 1912: 		break;
 1913: 
 1914: 	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
 1915: 					   30-33, 35-38, 40-41, 51-54 */
 1916: 		if (up->status & DSYNC) 
 1917: 			bcddld[arg] = bit;
 1918: 		else
 1919: 			bcddld[arg] = 0;
 1920: 		break;
 1921: 
 1922: 	case COEF2:			/* 18, 27-28, 42-43 */
 1923: 		bcddld[arg] = 0;
 1924: 		break;
 1925: 
 1926: 	/*
 1927: 	 * Correlate coefficient vector with each valid digit vector and
 1928: 	 * save in decoding matrix. We step through the decoding matrix
 1929: 	 * digits correlating each with the coefficients and saving the
 1930: 	 * greatest and the next lower for later SNR calculation.
 1931: 	 */
 1932: 	case DECIM2:			/* 29 */
 1933: 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
 1934: 		break;
 1935: 
 1936: 	case DECIM3:			/* 44 */
 1937: 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
 1938: 		break;
 1939: 
 1940: 	case DECIM6:			/* 19 */
 1941: 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
 1942: 		break;
 1943: 
 1944: 	case DECIM9:			/* 8, 14, 24, 34, 39 */
 1945: 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
 1946: 		break;
 1947: 
 1948: 	/*
 1949: 	 * Miscellaneous bits. If above the positive threshold, declare
 1950: 	 * 1; if below the negative threshold, declare 0; otherwise
 1951: 	 * raise the BGATE bit. The design is intended to avoid
 1952: 	 * integrating noise under low SNR conditions.
 1953: 	 */
 1954: 	case MSC20:			/* 55 */
 1955: 		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
 1956: 		/* fall through */
 1957: 
 1958: 	case MSCBIT:			/* 2-3, 50, 56-57 */
 1959: 		if (bitvec[nsec] > BTHR) {
 1960: 			if (!(up->misc & arg))
 1961: 				up->alarm |= CMPERR;
 1962: 			up->misc |= arg;
 1963: 		} else if (bitvec[nsec] < -BTHR) {
 1964: 			if (up->misc & arg)
 1965: 				up->alarm |= CMPERR;
 1966: 			up->misc &= ~arg;
 1967: 		} else {
 1968: 			up->status |= BGATE;
 1969: 		}
 1970: 		break;
 1971: 
 1972: 	/*
 1973: 	 * Save the data channel gain, then QSY to the probe channel and
 1974: 	 * dim the seconds comb filters. The www_newchan() routine will
 1975: 	 * light them back up.
 1976: 	 */
 1977: 	case MSC21:			/* 58 */
 1978: 		if (bitvec[nsec] > BTHR) {
 1979: 			if (!(up->misc & arg))
 1980: 				up->alarm |= CMPERR;
 1981: 			up->misc |= arg;
 1982: 		} else if (bitvec[nsec] < -BTHR) {
 1983: 			if (up->misc & arg)
 1984: 				up->alarm |= CMPERR;
 1985: 			up->misc &= ~arg;
 1986: 		} else {
 1987: 			up->status |= BGATE;
 1988: 		}
 1989: 		up->status &= ~(SELV | SELH);
 1990: #ifdef ICOM
 1991: 		if (up->fd_icom > 0) {
 1992: 			up->schan = (up->schan + 1) % NCHAN;
 1993: 			wwv_qsy(peer, up->schan);
 1994: 		} else {
 1995: 			up->mitig[up->achan].gain = up->gain;
 1996: 		}
 1997: #else
 1998: 		up->mitig[up->achan].gain = up->gain;
 1999: #endif /* ICOM */
 2000: 		break;
 2001: 
 2002: 	/*
 2003: 	 * The endgames
 2004: 	 *
 2005: 	 * During second 59 the receiver and codec AGC are settling
 2006: 	 * down, so the data pulse is unusable as quality metric. If
 2007: 	 * LEPSEC is set on the last minute of 30 June or 31 December,
 2008: 	 * the transmitter and receiver insert an extra second (60) in
 2009: 	 * the timescale and the minute sync repeats the second. Once
 2010: 	 * leaps occurred at intervals of about 18 months, but the last
 2011: 	 * leap before the most recent leap in 1995 was in  1998.
 2012: 	 */
 2013: 	case MIN1:			/* 59 */
 2014: 		if (up->status & LEPSEC)
 2015: 			break;
 2016: 
 2017: 		/* fall through */
 2018: 
 2019: 	case MIN2:			/* 60 */
 2020: 		up->status &= ~LEPSEC;
 2021: 		wwv_tsec(peer);
 2022: 		up->rsec = 0;
 2023: 		wwv_clock(peer);
 2024: 		break;
 2025: 	}
 2026: 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
 2027: 	    DSYNC)) {
 2028: 		sprintf(tbuf,
 2029: 		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
 2030: 		    nsec, up->status, up->gain, up->yepoch, up->epomax,
 2031: 		    up->eposnr, up->datsig, up->datsnr, bit);
 2032: 		record_clock_stats(&peer->srcadr, tbuf);
 2033: #ifdef DEBUG
 2034: 		if (debug)
 2035: 			printf("%s\n", tbuf);
 2036: #endif /* DEBUG */
 2037: 	}
 2038: 	pp->disp += AUDIO_PHI;
 2039: }
 2040: 
 2041: /*
 2042:  * The radio clock is set if the alarm bits are all zero. After that,
 2043:  * the time is considered valid if the second sync bit is lit. It should
 2044:  * not be a surprise, especially if the radio is not tunable, that
 2045:  * sometimes no stations are above the noise and the integrators
 2046:  * discharge below the thresholds. We assume that, after a day of signal
 2047:  * loss, the minute sync epoch will be in the same second. This requires
 2048:  * the codec frequency be accurate within 6 PPM. Practical experience
 2049:  * shows the frequency typically within 0.1 PPM, so after a day of
 2050:  * signal loss, the time should be within 8.6 ms.. 
 2051:  */
 2052: static void
 2053: wwv_clock(
 2054: 	struct peer *peer	/* peer unit pointer */
 2055: 	)
 2056: {
 2057: 	struct refclockproc *pp;
 2058: 	struct wwvunit *up;
 2059: 	l_fp	offset;		/* offset in NTP seconds */
 2060: 
 2061: 	pp = peer->procptr;
 2062: 	up = (struct wwvunit *)pp->unitptr;
 2063: 	if (!(up->status & SSYNC))
 2064: 		up->alarm |= SYNERR;
 2065: 	if (up->digcnt < 9)
 2066: 		up->alarm |= NINERR;
 2067: 	if (!(up->alarm))
 2068: 		up->status |= INSYNC;
 2069: 	if (up->status & INSYNC && up->status & SSYNC) {
 2070: 		if (up->misc & SECWAR)
 2071: 			pp->leap = LEAP_ADDSECOND;
 2072: 		else
 2073: 			pp->leap = LEAP_NOWARNING;
 2074: 		pp->second = up->rsec;
 2075: 		pp->minute = up->decvec[MN].digit + up->decvec[MN +
 2076: 		    1].digit * 10;
 2077: 		pp->hour = up->decvec[HR].digit + up->decvec[HR +
 2078: 		    1].digit * 10;
 2079: 		pp->day = up->decvec[DA].digit + up->decvec[DA +
 2080: 		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
 2081: 		pp->year = up->decvec[YR].digit + up->decvec[YR +
 2082: 		    1].digit * 10;
 2083: 		pp->year += 2000;
 2084: 		L_CLR(&offset);
 2085: 		if (!clocktime(pp->day, pp->hour, pp->minute,
 2086: 		    pp->second, GMT, up->timestamp.l_ui,
 2087: 		    &pp->yearstart, &offset.l_ui)) {
 2088: 			up->errflg = CEVNT_BADTIME;
 2089: 		} else {
 2090: 			up->watch = 0;
 2091: 			pp->disp = 0;
 2092: 			pp->lastref = up->timestamp;
 2093: 			refclock_process_offset(pp, offset,
 2094: 			    up->timestamp, PDELAY + up->pdelay);
 2095: 			refclock_receive(peer);
 2096: 		}
 2097: 	}
 2098: 	pp->lencode = timecode(up, pp->a_lastcode);
 2099: 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
 2100: #ifdef DEBUG
 2101: 	if (debug)
 2102: 		printf("wwv: timecode %d %s\n", pp->lencode,
 2103: 		    pp->a_lastcode);
 2104: #endif /* DEBUG */
 2105: }
 2106: 
 2107: 
 2108: /*
 2109:  * wwv_corr4 - determine maximum-likelihood digit
 2110:  *
 2111:  * This routine correlates the received digit vector with the BCD
 2112:  * coefficient vectors corresponding to all valid digits at the given
 2113:  * position in the decoding matrix. The maximum value corresponds to the
 2114:  * maximum-likelihood digit, while the ratio of this value to the next
 2115:  * lower value determines the likelihood function. Note that, if the
 2116:  * digit is invalid, the likelihood vector is averaged toward a miss.
 2117:  */
 2118: static void
 2119: wwv_corr4(
 2120: 	struct peer *peer,	/* peer unit pointer */
 2121: 	struct decvec *vp,	/* decoding table pointer */
 2122: 	double	data[],		/* received data vector */
 2123: 	double	tab[][4]	/* correlation vector array */
 2124: 	)
 2125: {
 2126: 	struct refclockproc *pp;
 2127: 	struct wwvunit *up;
 2128: 	double	topmax, nxtmax;	/* metrics */
 2129: 	double	acc;		/* accumulator */
 2130: 	char	tbuf[TBUF];	/* monitor buffer */
 2131: 	int	mldigit;	/* max likelihood digit */
 2132: 	int	i, j;
 2133: 
 2134: 	pp = peer->procptr;
 2135: 	up = (struct wwvunit *)pp->unitptr;
 2136: 
 2137: 	/*
 2138: 	 * Correlate digit vector with each BCD coefficient vector. If
 2139: 	 * any BCD digit bit is bad, consider all bits a miss. Until the
 2140: 	 * minute units digit has been resolved, don't to anything else.
 2141: 	 * Note the SNR is calculated as the ratio of the largest
 2142: 	 * likelihood value to the next largest likelihood value.
 2143:  	 */
 2144: 	mldigit = 0;
 2145: 	topmax = nxtmax = -MAXAMP;
 2146: 	for (i = 0; tab[i][0] != 0; i++) {
 2147: 		acc = 0;
 2148: 		for (j = 0; j < 4; j++)
 2149: 			acc += data[j] * tab[i][j];
 2150: 		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
 2151: 		if (acc > topmax) {
 2152: 			nxtmax = topmax;
 2153: 			topmax = acc;
 2154: 			mldigit = i;
 2155: 		} else if (acc > nxtmax) {
 2156: 			nxtmax = acc;
 2157: 		}
 2158: 	}
 2159: 	vp->digprb = topmax;
 2160: 	vp->digsnr = wwv_snr(topmax, nxtmax);
 2161: 
 2162: 	/*
 2163: 	 * The current maximum-likelihood digit is compared to the last
 2164: 	 * maximum-likelihood digit. If different, the compare counter
 2165: 	 * and maximum-likelihood digit are reset.  When the compare
 2166: 	 * counter reaches the BCMP threshold (3), the digit is assumed
 2167: 	 * correct. When the compare counter of all nine digits have
 2168: 	 * reached threshold, the clock is assumed correct.
 2169: 	 *
 2170: 	 * Note that the clock display digit is set before the compare
 2171: 	 * counter has reached threshold; however, the clock display is
 2172: 	 * not considered correct until all nine clock digits have
 2173: 	 * reached threshold. This is intended as eye candy, but avoids
 2174: 	 * mistakes when the signal is low and the SNR is very marginal.
 2175: 	 */
 2176: 	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
 2177: 		up->status |= BGATE;
 2178: 	} else {
 2179: 		if (vp->digit != mldigit) {
 2180: 			up->alarm |= CMPERR;
 2181: 			if (vp->count > 0)
 2182: 				vp->count--;
 2183: 			if (vp->count == 0)
 2184: 				vp->digit = mldigit;
 2185: 		} else {
 2186: 			if (vp->count < BCMP)
 2187: 				vp->count++;
 2188: 			if (vp->count == BCMP) {
 2189: 				up->status |= DSYNC;
 2190: 				up->digcnt++;
 2191: 			}
 2192: 		}
 2193: 	}
 2194: 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
 2195: 	    INSYNC)) {
 2196: 		sprintf(tbuf,
 2197: 		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
 2198: 		    up->rsec - 1, up->status, up->gain, up->yepoch,
 2199: 		    up->epomax, vp->radix, vp->digit, mldigit,
 2200: 		    vp->count, vp->digprb, vp->digsnr);
 2201: 		record_clock_stats(&peer->srcadr, tbuf);
 2202: #ifdef DEBUG
 2203: 		if (debug)
 2204: 			printf("%s\n", tbuf);
 2205: #endif /* DEBUG */
 2206: 	}
 2207: }
 2208: 
 2209: 
 2210: /*
 2211:  * wwv_tsec - transmitter minute processing
 2212:  *
 2213:  * This routine is called at the end of the transmitter minute. It
 2214:  * implements a state machine that advances the logical clock subject to
 2215:  * the funny rules that govern the conventional clock and calendar.
 2216:  */
 2217: static void
 2218: wwv_tsec(
 2219: 	struct peer *peer	/* driver structure pointer */
 2220: 	)
 2221: {
 2222: 	struct refclockproc *pp;
 2223: 	struct wwvunit *up;
 2224: 	int minute, day, isleap;
 2225: 	int temp;
 2226: 
 2227: 	pp = peer->procptr;
 2228: 	up = (struct wwvunit *)pp->unitptr;
 2229: 
 2230: 	/*
 2231: 	 * Advance minute unit of the day. Don't propagate carries until
 2232: 	 * the unit minute digit has been found.
 2233: 	 */
 2234: 	temp = carry(&up->decvec[MN]);	/* minute units */
 2235: 	if (!(up->status & DSYNC))
 2236: 		return;
 2237: 
 2238: 	/*
 2239: 	 * Propagate carries through the day.
 2240: 	 */ 
 2241: 	if (temp == 0)			/* carry minutes */
 2242: 		temp = carry(&up->decvec[MN + 1]);
 2243: 	if (temp == 0)			/* carry hours */
 2244: 		temp = carry(&up->decvec[HR]);
 2245: 	if (temp == 0)
 2246: 		temp = carry(&up->decvec[HR + 1]);
 2247: 
 2248: 	/*
 2249: 	 * Decode the current minute and day. Set leap day if the
 2250: 	 * timecode leap bit is set on 30 June or 31 December. Set leap
 2251: 	 * minute if the last minute on leap day, but only if the clock
 2252: 	 * is syncrhronized. This code fails in 2400 AD.
 2253: 	 */
 2254: 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
 2255: 	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
 2256: 	    1].digit * 600;
 2257: 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
 2258: 	    up->decvec[DA + 2].digit * 100;
 2259: 
 2260: 	/*
 2261: 	 * Set the leap bit on the last minute of the leap day.
 2262: 	 */
 2263: 	isleap = up->decvec[YR].digit & 0x3;
 2264: 	if (up->misc & SECWAR && up->status & INSYNC) {
 2265: 		if ((day == (isleap ? 182 : 183) || day == (isleap ?
 2266: 		    365 : 366)) && minute == 1439)
 2267: 			up->status |= LEPSEC;
 2268: 	}
 2269: 
 2270: 	/*
 2271: 	 * Roll the day if this the first minute and propagate carries
 2272: 	 * through the year.
 2273: 	 */
 2274: 	if (minute != 1440)
 2275: 		return;
 2276: 
 2277: 	minute = 0;
 2278: 	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
 2279: 	while (carry(&up->decvec[HR + 1]) != 0);
 2280: 	day++;
 2281: 	temp = carry(&up->decvec[DA]);	/* carry days */
 2282: 	if (temp == 0)
 2283: 		temp = carry(&up->decvec[DA + 1]);
 2284: 	if (temp == 0)
 2285: 		temp = carry(&up->decvec[DA + 2]);
 2286: 
 2287: 	/*
 2288: 	 * Roll the year if this the first day and propagate carries
 2289: 	 * through the century.
 2290: 	 */
 2291: 	if (day != (isleap ? 365 : 366))
 2292: 		return;
 2293: 
 2294: 	day = 1;
 2295: 	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
 2296: 	while (carry(&up->decvec[DA + 1]) != 0);
 2297: 	while (carry(&up->decvec[DA + 2]) != 0);
 2298: 	temp = carry(&up->decvec[YR]);	/* carry years */
 2299: 	if (temp == 0)
 2300: 		carry(&up->decvec[YR + 1]);
 2301: }
 2302: 
 2303: 
 2304: /*
 2305:  * carry - process digit
 2306:  *
 2307:  * This routine rotates a likelihood vector one position and increments
 2308:  * the clock digit modulo the radix. It returns the new clock digit or
 2309:  * zero if a carry occurred. Once synchronized, the clock digit will
 2310:  * match the maximum-likelihood digit corresponding to that position.
 2311:  */
 2312: static int
 2313: carry(
 2314: 	struct decvec *dp	/* decoding table pointer */
 2315: 	)
 2316: {
 2317: 	int temp;
 2318: 	int j;
 2319: 
 2320: 	dp->digit++;
 2321: 	if (dp->digit == dp->radix)
 2322: 		dp->digit = 0;
 2323: 	temp = dp->like[dp->radix - 1];
 2324: 	for (j = dp->radix - 1; j > 0; j--)
 2325: 		dp->like[j] = dp->like[j - 1];
 2326: 	dp->like[0] = temp;
 2327: 	return (dp->digit);
 2328: }
 2329: 
 2330: 
 2331: /*
 2332:  * wwv_snr - compute SNR or likelihood function
 2333:  */
 2334: static double
 2335: wwv_snr(
 2336: 	double signal,		/* signal */
 2337: 	double noise		/* noise */
 2338: 	)
 2339: {
 2340: 	double rval;
 2341: 
 2342: 	/*
 2343: 	 * This is a little tricky. Due to the way things are measured,
 2344: 	 * either or both the signal or noise amplitude can be negative
 2345: 	 * or zero. The intent is that, if the signal is negative or
 2346: 	 * zero, the SNR must always be zero. This can happen with the
 2347: 	 * subcarrier SNR before the phase has been aligned. On the
 2348: 	 * other hand, in the likelihood function the "noise" is the
 2349: 	 * next maximum down from the peak and this could be negative.
 2350: 	 * However, in this case the SNR is truly stupendous, so we
 2351: 	 * simply cap at MAXSNR dB (40).
 2352: 	 */
 2353: 	if (signal <= 0) {
 2354: 		rval = 0;
 2355: 	} else if (noise <= 0) {
 2356: 		rval = MAXSNR;
 2357: 	} else {
 2358: 		rval = 20. * log10(signal / noise);
 2359: 		if (rval > MAXSNR)
 2360: 			rval = MAXSNR;
 2361: 	}
 2362: 	return (rval);
 2363: }
 2364: 
 2365: 
 2366: /*
 2367:  * wwv_newchan - change to new data channel
 2368:  *
 2369:  * The radio actually appears to have ten channels, one channel for each
 2370:  * of five frequencies and each of two stations (WWV and WWVH), although
 2371:  * if not tunable only the DCHAN channel appears live. While the radio
 2372:  * is tuned to the working data channel frequency and station for most
 2373:  * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
 2374:  * probe frequency in order to search for minute sync pulse and data
 2375:  * subcarrier from other transmitters.
 2376:  *
 2377:  * The search for WWV and WWVH operates simultaneously, with WWV minute
 2378:  * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
 2379:  * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
 2380:  * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
 2381:  * on 25 MHz.
 2382:  *
 2383:  * This routine selects the best channel using a metric computed from
 2384:  * the reachability register and minute pulse amplitude. Normally, the
 2385:  * award goes to the the channel with the highest metric; but, in case
 2386:  * of ties, the award goes to the channel with the highest minute sync
 2387:  * pulse amplitude and then to the highest frequency.
 2388:  *
 2389:  * The routine performs an important squelch function to keep dirty data
 2390:  * from polluting the integrators. In order to consider a station valid,
 2391:  * the metric must be at least MTHR (13); otherwise, the station select
 2392:  * bits are cleared so the second sync is disabled and the data bit
 2393:  * integrators averaged to a miss. 
 2394:  */
 2395: static int
 2396: wwv_newchan(
 2397: 	struct peer *peer	/* peer structure pointer */
 2398: 	)
 2399: {
 2400: 	struct refclockproc *pp;
 2401: 	struct wwvunit *up;
 2402: 	struct sync *sp, *rp;
 2403: 	double rank, dtemp;
 2404: 	int i, j, rval;
 2405: 
 2406: 	pp = peer->procptr;
 2407: 	up = (struct wwvunit *)pp->unitptr;
 2408: 
 2409: 	/*
 2410: 	 * Search all five station pairs looking for the channel with
 2411: 	 * maximum metric.
 2412: 	 */
 2413: 	sp = NULL;
 2414: 	j = 0;
 2415: 	rank = 0;
 2416: 	for (i = 0; i < NCHAN; i++) {
 2417: 		rp = &up->mitig[i].wwvh;
 2418: 		dtemp = rp->metric;
 2419: 		if (dtemp >= rank) {
 2420: 			rank = dtemp;
 2421: 			sp = rp;
 2422: 			j = i;
 2423: 		}
 2424: 		rp = &up->mitig[i].wwv;
 2425: 		dtemp = rp->metric;
 2426: 		if (dtemp >= rank) {
 2427: 			rank = dtemp;
 2428: 			sp = rp;
 2429: 			j = i;
 2430: 		}
 2431: 	}
 2432: 
 2433: 	/*
 2434: 	 * If the strongest signal is less than the MTHR threshold (13),
 2435: 	 * we are beneath the waves, so squelch the second sync and
 2436: 	 * advance to the next station. This makes sure all stations are
 2437: 	 * scanned when the ions grow dim. If the strongest signal is
 2438: 	 * greater than the threshold, tune to that frequency and
 2439: 	 * transmitter QTH.
 2440: 	 */
 2441: 	up->status &= ~(SELV | SELH);
 2442: 	if (rank < MTHR) {
 2443: 		up->dchan = (up->dchan + 1) % NCHAN;
 2444: 		if (up->status & METRIC) {
 2445: 			up->status &= ~METRIC;
 2446: 			refclock_report(peer, CEVNT_PROP);
 2447: 		}
 2448: 		rval = FALSE;
 2449: 	} else {
 2450: 		up->dchan = j;
 2451: 		up->sptr = sp;
 2452: 		memcpy(&pp->refid, sp->refid, 4);
 2453: 		peer->refid = pp->refid;
 2454: 		up->status |= METRIC;
 2455: 		if (sp->select & SELV) {
 2456: 			up->status |= SELV;
 2457: 			up->pdelay = pp->fudgetime1;
 2458: 		} else if (sp->select & SELH) {
 2459: 			up->status |= SELH;
 2460: 			up->pdelay = pp->fudgetime2;
 2461: 		} else {
 2462: 			up->pdelay = 0;
 2463: 		}
 2464: 		rval = TRUE;
 2465: 	}
 2466: #ifdef ICOM
 2467: 	if (up->fd_icom > 0)
 2468: 		wwv_qsy(peer, up->dchan);
 2469: #endif /* ICOM */
 2470: 	return (rval);
 2471: }
 2472: 
 2473: 
 2474: /*
 2475:  * wwv_newgame - reset and start over
 2476:  *
 2477:  * There are three conditions resulting in a new game:
 2478:  *
 2479:  * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
 2480:  *	(DATA) without finding the unit seconds digit.
 2481:  *
 2482:  * 2	After finding good data (DSYNC lit), going more than 40 minutes
 2483:  *	(SYNCH) without finding station sync (INSYNC lit).
 2484:  *
 2485:  * 3	After finding station sync (INSYNC lit), going more than 2 days
 2486:  *	(PANIC) without finding any station. 
 2487:  */
 2488: static void
 2489: wwv_newgame(
 2490: 	struct peer *peer	/* peer structure pointer */
 2491: 	)
 2492: {
 2493: 	struct refclockproc *pp;
 2494: 	struct wwvunit *up;
 2495: 	struct chan *cp;
 2496: 	int i;
 2497: 
 2498: 	pp = peer->procptr;
 2499: 	up = (struct wwvunit *)pp->unitptr;
 2500: 
 2501: 	/*
 2502: 	 * Initialize strategic values. Note we set the leap bits
 2503: 	 * NOTINSYNC and the refid "NONE".
 2504: 	 */
 2505: 	if (up->status)
 2506: 		up->errflg = CEVNT_TIMEOUT;
 2507: 	peer->leap = LEAP_NOTINSYNC;
 2508: 	up->watch = up->status = up->alarm = 0;
 2509: 	up->avgint = MINAVG;
 2510: 	up->freq = 0;
 2511: 	up->gain = MAXGAIN / 2;
 2512: 
 2513: 	/*
 2514: 	 * Initialize the station processes for audio gain, select bit,
 2515: 	 * station/frequency identifier and reference identifier. Start
 2516: 	 * probing at the strongest channel or the default channel if
 2517: 	 * nothing heard.
 2518: 	 */
 2519: 	memset(up->mitig, 0, sizeof(up->mitig));
 2520: 	for (i = 0; i < NCHAN; i++) {
 2521: 		cp = &up->mitig[i];
 2522: 		cp->gain = up->gain;
 2523: 		cp->wwv.select = SELV;
 2524: 		sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i])); 
 2525: 		cp->wwvh.select = SELH;
 2526: 		sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i])); 
 2527: 	}
 2528: 	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
 2529: 	wwv_newchan(peer);
 2530: 	up->schan = up->dchan;
 2531: }
 2532: 
 2533: /*
 2534:  * wwv_metric - compute station metric
 2535:  *
 2536:  * The most significant bits represent the number of ones in the
 2537:  * station reachability register. The least significant bits represent
 2538:  * the minute sync pulse amplitude. The combined value is scaled 0-100.
 2539:  */
 2540: double
 2541: wwv_metric(
 2542: 	struct sync *sp		/* station pointer */
 2543: 	)
 2544: {
 2545: 	double	dtemp;
 2546: 
 2547: 	dtemp = sp->count * MAXAMP;
 2548: 	if (sp->synmax < MAXAMP)
 2549: 		dtemp += sp->synmax;
 2550: 	else
 2551: 		dtemp += MAXAMP - 1;
 2552: 	dtemp /= (AMAX + 1) * MAXAMP;
 2553: 	return (dtemp * 100.);
 2554: }
 2555: 
 2556: 
 2557: #ifdef ICOM
 2558: /*
 2559:  * wwv_qsy - Tune ICOM receiver
 2560:  *
 2561:  * This routine saves the AGC for the current channel, switches to a new
 2562:  * channel and restores the AGC for that channel. If a tunable receiver
 2563:  * is not available, just fake it.
 2564:  */
 2565: static int
 2566: wwv_qsy(
 2567: 	struct peer *peer,	/* peer structure pointer */
 2568: 	int	chan		/* channel */
 2569: 	)
 2570: {
 2571: 	int rval = 0;
 2572: 	struct refclockproc *pp;
 2573: 	struct wwvunit *up;
 2574: 
 2575: 	pp = peer->procptr;
 2576: 	up = (struct wwvunit *)pp->unitptr;
 2577: 	if (up->fd_icom > 0) {
 2578: 		up->mitig[up->achan].gain = up->gain;
 2579: 		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
 2580: 		    qsy[chan]);
 2581: 		up->achan = chan;
 2582: 		up->gain = up->mitig[up->achan].gain;
 2583: 	}
 2584: 	return (rval);
 2585: }
 2586: #endif /* ICOM */
 2587: 
 2588: 
 2589: /*
 2590:  * timecode - assemble timecode string and length
 2591:  *
 2592:  * Prettytime format - similar to Spectracom
 2593:  *
 2594:  * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
 2595:  *
 2596:  * s	sync indicator ('?' or ' ')
 2597:  * q	error bits (hex 0-F)
 2598:  * yyyy	year of century
 2599:  * ddd	day of year
 2600:  * hh	hour of day
 2601:  * mm	minute of hour
 2602:  * ss	second of minute)
 2603:  * l	leap second warning (' ' or 'L')
 2604:  * d	DST state ('S', 'D', 'I', or 'O')
 2605:  * dut	DUT sign and magnitude (0.1 s)
 2606:  * lset	minutes since last clock update
 2607:  * agc	audio gain (0-255)
 2608:  * iden	reference identifier (station and frequency)
 2609:  * sig	signal quality (0-100)
 2610:  * errs	bit errors in last minute
 2611:  * freq	frequency offset (PPM)
 2612:  * avgt	averaging time (s)
 2613:  */
 2614: static int
 2615: timecode(
 2616: 	struct wwvunit *up,	/* driver structure pointer */
 2617: 	char *ptr		/* target string */
 2618: 	)
 2619: {
 2620: 	struct sync *sp;
 2621: 	int year, day, hour, minute, second, dut;
 2622: 	char synchar, leapchar, dst;
 2623: 	char cptr[50];
 2624: 	
 2625: 
 2626: 	/*
 2627: 	 * Common fixed-format fields
 2628: 	 */
 2629: 	synchar = (up->status & INSYNC) ? ' ' : '?';
 2630: 	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
 2631: 	    2000;
 2632: 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
 2633: 	    up->decvec[DA + 2].digit * 100;
 2634: 	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
 2635: 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
 2636: 	second = 0;
 2637: 	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
 2638: 	dst = dstcod[(up->misc >> 4) & 0x3];
 2639: 	dut = up->misc & 0x7;
 2640: 	if (!(up->misc & DUTS))
 2641: 		dut = -dut;
 2642: 	sprintf(ptr, "%c%1X", synchar, up->alarm);
 2643: 	sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
 2644: 	    year, day, hour, minute, second, leapchar, dst, dut);
 2645: 	strcat(ptr, cptr);
 2646: 
 2647: 	/*
 2648: 	 * Specific variable-format fields
 2649: 	 */
 2650: 	sp = up->sptr;
 2651: 	sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
 2652: 	    up->mitig[up->dchan].gain, sp->refid, sp->metric,
 2653: 	    up->errcnt, up->freq / SECOND * 1e6, up->avgint);
 2654: 	strcat(ptr, cptr);
 2655: 	return (strlen(ptr));
 2656: }
 2657: 
 2658: 
 2659: /*
 2660:  * wwv_gain - adjust codec gain
 2661:  *
 2662:  * This routine is called at the end of each second. During the second
 2663:  * the number of signal clips above the MAXAMP threshold (6000). If
 2664:  * there are no clips, the gain is bumped up; if there are more than
 2665:  * MAXCLP clips (100), it is bumped down. The decoder is relatively
 2666:  * insensitive to amplitude, so this crudity works just peachy. The
 2667:  * routine also jiggles the input port and selectively mutes the
 2668:  * monitor.
 2669:  */
 2670: static void
 2671: wwv_gain(
 2672: 	struct peer *peer	/* peer structure pointer */
 2673: 	)
 2674: {
 2675: 	struct refclockproc *pp;
 2676: 	struct wwvunit *up;
 2677: 
 2678: 	pp = peer->procptr;
 2679: 	up = (struct wwvunit *)pp->unitptr;
 2680: 
 2681: 	/*
 2682: 	 * Apparently, the codec uses only the high order bits of the
 2683: 	 * gain control field. Thus, it may take awhile for changes to
 2684: 	 * wiggle the hardware bits.
 2685: 	 */
 2686: 	if (up->clipcnt == 0) {
 2687: 		up->gain += 4;
 2688: 		if (up->gain > MAXGAIN)
 2689: 			up->gain = MAXGAIN;
 2690: 	} else if (up->clipcnt > MAXCLP) {
 2691: 		up->gain -= 4;
 2692: 		if (up->gain < 0)
 2693: 			up->gain = 0;
 2694: 	}
 2695: 	audio_gain(up->gain, up->mongain, up->port);
 2696: 	up->clipcnt = 0;
 2697: #if DEBUG
 2698: 	if (debug > 1)
 2699: 		audio_show();
 2700: #endif
 2701: }
 2702: 
 2703: 
 2704: #else
 2705: int refclock_wwv_bs;
 2706: #endif /* REFCLOCK */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>