Annotation of embedaddon/pcre/pcre_compile.c, revision 1.1.1.2
1.1 misho 1: /*************************************************
2: * Perl-Compatible Regular Expressions *
3: *************************************************/
4:
5: /* PCRE is a library of functions to support regular expressions whose syntax
6: and semantics are as close as possible to those of the Perl 5 language.
7:
8: Written by Philip Hazel
1.1.1.2 ! misho 9: Copyright (c) 1997-2012 University of Cambridge
1.1 misho 10:
11: -----------------------------------------------------------------------------
12: Redistribution and use in source and binary forms, with or without
13: modification, are permitted provided that the following conditions are met:
14:
15: * Redistributions of source code must retain the above copyright notice,
16: this list of conditions and the following disclaimer.
17:
18: * Redistributions in binary form must reproduce the above copyright
19: notice, this list of conditions and the following disclaimer in the
20: documentation and/or other materials provided with the distribution.
21:
22: * Neither the name of the University of Cambridge nor the names of its
23: contributors may be used to endorse or promote products derived from
24: this software without specific prior written permission.
25:
26: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27: AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28: IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29: ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30: LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31: CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32: SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33: INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35: ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36: POSSIBILITY OF SUCH DAMAGE.
37: -----------------------------------------------------------------------------
38: */
39:
40:
41: /* This module contains the external function pcre_compile(), along with
42: supporting internal functions that are not used by other modules. */
43:
44:
45: #ifdef HAVE_CONFIG_H
46: #include "config.h"
47: #endif
48:
49: #define NLBLOCK cd /* Block containing newline information */
50: #define PSSTART start_pattern /* Field containing processed string start */
51: #define PSEND end_pattern /* Field containing processed string end */
52:
53: #include "pcre_internal.h"
54:
55:
1.1.1.2 ! misho 56: /* When PCRE_DEBUG is defined, we need the pcre(16)_printint() function, which
! 57: is also used by pcretest. PCRE_DEBUG is not defined when building a production
! 58: library. We do not need to select pcre16_printint.c specially, because the
! 59: COMPILE_PCREx macro will already be appropriately set. */
1.1 misho 60:
61: #ifdef PCRE_DEBUG
1.1.1.2 ! misho 62: /* pcre_printint.c should not include any headers */
! 63: #define PCRE_INCLUDED
! 64: #include "pcre_printint.c"
! 65: #undef PCRE_INCLUDED
1.1 misho 66: #endif
67:
68:
69: /* Macro for setting individual bits in class bitmaps. */
70:
71: #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
72:
73: /* Maximum length value to check against when making sure that the integer that
74: holds the compiled pattern length does not overflow. We make it a bit less than
75: INT_MAX to allow for adding in group terminating bytes, so that we don't have
76: to check them every time. */
77:
78: #define OFLOW_MAX (INT_MAX - 20)
79:
80:
81: /*************************************************
82: * Code parameters and static tables *
83: *************************************************/
84:
85: /* This value specifies the size of stack workspace that is used during the
86: first pre-compile phase that determines how much memory is required. The regex
87: is partly compiled into this space, but the compiled parts are discarded as
88: soon as they can be, so that hopefully there will never be an overrun. The code
89: does, however, check for an overrun. The largest amount I've seen used is 218,
90: so this number is very generous.
91:
92: The same workspace is used during the second, actual compile phase for
93: remembering forward references to groups so that they can be filled in at the
94: end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
95: is 4 there is plenty of room for most patterns. However, the memory can get
96: filled up by repetitions of forward references, for example patterns like
97: /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so
98: that the workspace is expanded using malloc() in this situation. The value
99: below is therefore a minimum, and we put a maximum on it for safety. The
100: minimum is now also defined in terms of LINK_SIZE so that the use of malloc()
101: kicks in at the same number of forward references in all cases. */
102:
103: #define COMPILE_WORK_SIZE (2048*LINK_SIZE)
104: #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE)
105:
106: /* The overrun tests check for a slightly smaller size so that they detect the
107: overrun before it actually does run off the end of the data block. */
108:
109: #define WORK_SIZE_SAFETY_MARGIN (100)
110:
1.1.1.2 ! misho 111: /* Private flags added to firstchar and reqchar. */
! 112:
! 113: #define REQ_CASELESS 0x10000000l /* Indicates caselessness */
! 114: #define REQ_VARY 0x20000000l /* Reqchar followed non-literal item */
! 115:
! 116: /* Repeated character flags. */
! 117:
! 118: #define UTF_LENGTH 0x10000000l /* The char contains its length. */
1.1 misho 119:
120: /* Table for handling escaped characters in the range '0'-'z'. Positive returns
121: are simple data values; negative values are for special things like \d and so
122: on. Zero means further processing is needed (for things like \x), or the escape
123: is invalid. */
124:
125: #ifndef EBCDIC
126:
127: /* This is the "normal" table for ASCII systems or for EBCDIC systems running
128: in UTF-8 mode. */
129:
130: static const short int escapes[] = {
131: 0, 0,
132: 0, 0,
133: 0, 0,
134: 0, 0,
135: 0, 0,
136: CHAR_COLON, CHAR_SEMICOLON,
137: CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
138: CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
139: CHAR_COMMERCIAL_AT, -ESC_A,
140: -ESC_B, -ESC_C,
141: -ESC_D, -ESC_E,
142: 0, -ESC_G,
143: -ESC_H, 0,
144: 0, -ESC_K,
145: 0, 0,
146: -ESC_N, 0,
147: -ESC_P, -ESC_Q,
148: -ESC_R, -ESC_S,
149: 0, 0,
150: -ESC_V, -ESC_W,
151: -ESC_X, 0,
152: -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
153: CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
154: CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
155: CHAR_GRAVE_ACCENT, 7,
156: -ESC_b, 0,
157: -ESC_d, ESC_e,
158: ESC_f, 0,
159: -ESC_h, 0,
160: 0, -ESC_k,
161: 0, 0,
162: ESC_n, 0,
163: -ESC_p, 0,
164: ESC_r, -ESC_s,
165: ESC_tee, 0,
166: -ESC_v, -ESC_w,
167: 0, 0,
168: -ESC_z
169: };
170:
171: #else
172:
173: /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
174:
175: static const short int escapes[] = {
176: /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
177: /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
178: /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
179: /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
180: /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
181: /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
182: /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
183: /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
184: /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
185: /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
186: /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
187: /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
188: /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
189: /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
190: /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
191: /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
192: /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
193: /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
194: /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
195: /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
196: /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
197: /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
198: /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
199: };
200: #endif
201:
202:
203: /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
204: searched linearly. Put all the names into a single string, in order to reduce
205: the number of relocations when a shared library is dynamically linked. The
206: string is built from string macros so that it works in UTF-8 mode on EBCDIC
207: platforms. */
208:
209: typedef struct verbitem {
210: int len; /* Length of verb name */
211: int op; /* Op when no arg, or -1 if arg mandatory */
212: int op_arg; /* Op when arg present, or -1 if not allowed */
213: } verbitem;
214:
215: static const char verbnames[] =
216: "\0" /* Empty name is a shorthand for MARK */
217: STRING_MARK0
218: STRING_ACCEPT0
219: STRING_COMMIT0
220: STRING_F0
221: STRING_FAIL0
222: STRING_PRUNE0
223: STRING_SKIP0
224: STRING_THEN;
225:
226: static const verbitem verbs[] = {
227: { 0, -1, OP_MARK },
228: { 4, -1, OP_MARK },
229: { 6, OP_ACCEPT, -1 },
230: { 6, OP_COMMIT, -1 },
231: { 1, OP_FAIL, -1 },
232: { 4, OP_FAIL, -1 },
233: { 5, OP_PRUNE, OP_PRUNE_ARG },
234: { 4, OP_SKIP, OP_SKIP_ARG },
235: { 4, OP_THEN, OP_THEN_ARG }
236: };
237:
238: static const int verbcount = sizeof(verbs)/sizeof(verbitem);
239:
240:
241: /* Tables of names of POSIX character classes and their lengths. The names are
242: now all in a single string, to reduce the number of relocations when a shared
243: library is dynamically loaded. The list of lengths is terminated by a zero
244: length entry. The first three must be alpha, lower, upper, as this is assumed
245: for handling case independence. */
246:
247: static const char posix_names[] =
248: STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
249: STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
250: STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
251: STRING_word0 STRING_xdigit;
252:
1.1.1.2 ! misho 253: static const pcre_uint8 posix_name_lengths[] = {
1.1 misho 254: 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
255:
256: /* Table of class bit maps for each POSIX class. Each class is formed from a
257: base map, with an optional addition or removal of another map. Then, for some
258: classes, there is some additional tweaking: for [:blank:] the vertical space
259: characters are removed, and for [:alpha:] and [:alnum:] the underscore
260: character is removed. The triples in the table consist of the base map offset,
261: second map offset or -1 if no second map, and a non-negative value for map
262: addition or a negative value for map subtraction (if there are two maps). The
263: absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
264: remove vertical space characters, 2 => remove underscore. */
265:
266: static const int posix_class_maps[] = {
267: cbit_word, cbit_digit, -2, /* alpha */
268: cbit_lower, -1, 0, /* lower */
269: cbit_upper, -1, 0, /* upper */
270: cbit_word, -1, 2, /* alnum - word without underscore */
271: cbit_print, cbit_cntrl, 0, /* ascii */
272: cbit_space, -1, 1, /* blank - a GNU extension */
273: cbit_cntrl, -1, 0, /* cntrl */
274: cbit_digit, -1, 0, /* digit */
275: cbit_graph, -1, 0, /* graph */
276: cbit_print, -1, 0, /* print */
277: cbit_punct, -1, 0, /* punct */
278: cbit_space, -1, 0, /* space */
279: cbit_word, -1, 0, /* word - a Perl extension */
280: cbit_xdigit,-1, 0 /* xdigit */
281: };
282:
283: /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
284: substitutes must be in the order of the names, defined above, and there are
285: both positive and negative cases. NULL means no substitute. */
286:
287: #ifdef SUPPORT_UCP
1.1.1.2 ! misho 288: static const pcre_uchar string_PNd[] = {
! 289: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 290: CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 291: static const pcre_uchar string_pNd[] = {
! 292: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 293: CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 294: static const pcre_uchar string_PXsp[] = {
! 295: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 296: CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 297: static const pcre_uchar string_pXsp[] = {
! 298: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 299: CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 300: static const pcre_uchar string_PXwd[] = {
! 301: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 302: CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 303: static const pcre_uchar string_pXwd[] = {
! 304: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 305: CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 306:
! 307: static const pcre_uchar *substitutes[] = {
! 308: string_PNd, /* \D */
! 309: string_pNd, /* \d */
! 310: string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */
! 311: string_pXsp, /* \s */
! 312: string_PXwd, /* \W */
! 313: string_pXwd /* \w */
1.1 misho 314: };
315:
1.1.1.2 ! misho 316: static const pcre_uchar string_pL[] = {
! 317: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 318: CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 319: static const pcre_uchar string_pLl[] = {
! 320: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 321: CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 322: static const pcre_uchar string_pLu[] = {
! 323: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 324: CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 325: static const pcre_uchar string_pXan[] = {
! 326: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 327: CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 328: static const pcre_uchar string_h[] = {
! 329: CHAR_BACKSLASH, CHAR_h, '\0' };
! 330: static const pcre_uchar string_pXps[] = {
! 331: CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
! 332: CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 333: static const pcre_uchar string_PL[] = {
! 334: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 335: CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 336: static const pcre_uchar string_PLl[] = {
! 337: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 338: CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 339: static const pcre_uchar string_PLu[] = {
! 340: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 341: CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 342: static const pcre_uchar string_PXan[] = {
! 343: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 344: CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 345: static const pcre_uchar string_H[] = {
! 346: CHAR_BACKSLASH, CHAR_H, '\0' };
! 347: static const pcre_uchar string_PXps[] = {
! 348: CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
! 349: CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
! 350:
! 351: static const pcre_uchar *posix_substitutes[] = {
! 352: string_pL, /* alpha */
! 353: string_pLl, /* lower */
! 354: string_pLu, /* upper */
! 355: string_pXan, /* alnum */
! 356: NULL, /* ascii */
! 357: string_h, /* blank */
! 358: NULL, /* cntrl */
! 359: string_pNd, /* digit */
! 360: NULL, /* graph */
! 361: NULL, /* print */
! 362: NULL, /* punct */
! 363: string_pXps, /* space */ /* NOTE: Xps is POSIX space */
! 364: string_pXwd, /* word */
! 365: NULL, /* xdigit */
1.1 misho 366: /* Negated cases */
1.1.1.2 ! misho 367: string_PL, /* ^alpha */
! 368: string_PLl, /* ^lower */
! 369: string_PLu, /* ^upper */
! 370: string_PXan, /* ^alnum */
! 371: NULL, /* ^ascii */
! 372: string_H, /* ^blank */
! 373: NULL, /* ^cntrl */
! 374: string_PNd, /* ^digit */
! 375: NULL, /* ^graph */
! 376: NULL, /* ^print */
! 377: NULL, /* ^punct */
! 378: string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */
! 379: string_PXwd, /* ^word */
! 380: NULL /* ^xdigit */
1.1 misho 381: };
1.1.1.2 ! misho 382: #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *))
1.1 misho 383: #endif
384:
385: #define STRING(a) # a
386: #define XSTRING(s) STRING(s)
387:
388: /* The texts of compile-time error messages. These are "char *" because they
389: are passed to the outside world. Do not ever re-use any error number, because
390: they are documented. Always add a new error instead. Messages marked DEAD below
391: are no longer used. This used to be a table of strings, but in order to reduce
392: the number of relocations needed when a shared library is loaded dynamically,
393: it is now one long string. We cannot use a table of offsets, because the
394: lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
395: simply count through to the one we want - this isn't a performance issue
396: because these strings are used only when there is a compilation error.
397:
398: Each substring ends with \0 to insert a null character. This includes the final
399: substring, so that the whole string ends with \0\0, which can be detected when
400: counting through. */
401:
402: static const char error_texts[] =
403: "no error\0"
404: "\\ at end of pattern\0"
405: "\\c at end of pattern\0"
406: "unrecognized character follows \\\0"
407: "numbers out of order in {} quantifier\0"
408: /* 5 */
409: "number too big in {} quantifier\0"
410: "missing terminating ] for character class\0"
411: "invalid escape sequence in character class\0"
412: "range out of order in character class\0"
413: "nothing to repeat\0"
414: /* 10 */
415: "operand of unlimited repeat could match the empty string\0" /** DEAD **/
416: "internal error: unexpected repeat\0"
417: "unrecognized character after (? or (?-\0"
418: "POSIX named classes are supported only within a class\0"
419: "missing )\0"
420: /* 15 */
421: "reference to non-existent subpattern\0"
422: "erroffset passed as NULL\0"
423: "unknown option bit(s) set\0"
424: "missing ) after comment\0"
425: "parentheses nested too deeply\0" /** DEAD **/
426: /* 20 */
427: "regular expression is too large\0"
428: "failed to get memory\0"
429: "unmatched parentheses\0"
430: "internal error: code overflow\0"
431: "unrecognized character after (?<\0"
432: /* 25 */
433: "lookbehind assertion is not fixed length\0"
434: "malformed number or name after (?(\0"
435: "conditional group contains more than two branches\0"
436: "assertion expected after (?(\0"
437: "(?R or (?[+-]digits must be followed by )\0"
438: /* 30 */
439: "unknown POSIX class name\0"
440: "POSIX collating elements are not supported\0"
1.1.1.2 ! misho 441: "this version of PCRE is compiled without UTF support\0"
1.1 misho 442: "spare error\0" /** DEAD **/
443: "character value in \\x{...} sequence is too large\0"
444: /* 35 */
445: "invalid condition (?(0)\0"
446: "\\C not allowed in lookbehind assertion\0"
447: "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
448: "number after (?C is > 255\0"
449: "closing ) for (?C expected\0"
450: /* 40 */
451: "recursive call could loop indefinitely\0"
452: "unrecognized character after (?P\0"
453: "syntax error in subpattern name (missing terminator)\0"
454: "two named subpatterns have the same name\0"
455: "invalid UTF-8 string\0"
456: /* 45 */
457: "support for \\P, \\p, and \\X has not been compiled\0"
458: "malformed \\P or \\p sequence\0"
459: "unknown property name after \\P or \\p\0"
460: "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
461: "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
462: /* 50 */
463: "repeated subpattern is too long\0" /** DEAD **/
1.1.1.2 ! misho 464: "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0"
1.1 misho 465: "internal error: overran compiling workspace\0"
466: "internal error: previously-checked referenced subpattern not found\0"
467: "DEFINE group contains more than one branch\0"
468: /* 55 */
469: "repeating a DEFINE group is not allowed\0" /** DEAD **/
470: "inconsistent NEWLINE options\0"
471: "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
472: "a numbered reference must not be zero\0"
473: "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
474: /* 60 */
475: "(*VERB) not recognized\0"
476: "number is too big\0"
477: "subpattern name expected\0"
478: "digit expected after (?+\0"
479: "] is an invalid data character in JavaScript compatibility mode\0"
480: /* 65 */
481: "different names for subpatterns of the same number are not allowed\0"
482: "(*MARK) must have an argument\0"
1.1.1.2 ! misho 483: "this version of PCRE is not compiled with Unicode property support\0"
1.1 misho 484: "\\c must be followed by an ASCII character\0"
485: "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
486: /* 70 */
487: "internal error: unknown opcode in find_fixedlength()\0"
488: "\\N is not supported in a class\0"
489: "too many forward references\0"
1.1.1.2 ! misho 490: "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0"
! 491: "invalid UTF-16 string\0"
1.1 misho 492: ;
493:
494: /* Table to identify digits and hex digits. This is used when compiling
495: patterns. Note that the tables in chartables are dependent on the locale, and
496: may mark arbitrary characters as digits - but the PCRE compiling code expects
497: to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
498: a private table here. It costs 256 bytes, but it is a lot faster than doing
499: character value tests (at least in some simple cases I timed), and in some
500: applications one wants PCRE to compile efficiently as well as match
501: efficiently.
502:
503: For convenience, we use the same bit definitions as in chartables:
504:
505: 0x04 decimal digit
506: 0x08 hexadecimal digit
507:
508: Then we can use ctype_digit and ctype_xdigit in the code. */
509:
1.1.1.2 ! misho 510: /* Using a simple comparison for decimal numbers rather than a memory read
! 511: is much faster, and the resulting code is simpler (the compiler turns it
! 512: into a subtraction and unsigned comparison). */
! 513:
! 514: #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9)
! 515:
1.1 misho 516: #ifndef EBCDIC
517:
518: /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
519: UTF-8 mode. */
520:
1.1.1.2 ! misho 521: static const pcre_uint8 digitab[] =
1.1 misho 522: {
523: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
524: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
525: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
526: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
527: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
528: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
529: 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
530: 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
531: 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
532: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
533: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
534: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
535: 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
536: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
537: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
538: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
539: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
540: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
541: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
542: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
543: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
544: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
545: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
546: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
547: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
548: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
549: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
550: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
551: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
552: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
553: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
554: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
555:
556: #else
557:
558: /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
559:
1.1.1.2 ! misho 560: static const pcre_uint8 digitab[] =
1.1 misho 561: {
562: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
563: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
564: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
565: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
566: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
567: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
568: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
569: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
570: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
571: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
572: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
573: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
574: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
575: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
576: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
577: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
578: 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
579: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
580: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
581: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
582: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
583: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
584: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
585: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
586: 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
587: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
588: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
589: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
590: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
591: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
592: 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
593: 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
594:
1.1.1.2 ! misho 595: static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */
1.1 misho 596: 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
597: 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
598: 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
599: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
600: 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
601: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
602: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
603: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
604: 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
605: 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
606: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
607: 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
608: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
609: 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
610: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
611: 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
612: 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
613: 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
614: 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
615: 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
616: 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
617: 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
618: 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
619: 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
620: 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
621: 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
622: 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
623: 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
624: 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
625: 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
626: 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
627: 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
628: #endif
629:
630:
631: /* Definition to allow mutual recursion */
632:
633: static BOOL
1.1.1.2 ! misho 634: compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int,
1.1 misho 635: int *, int *, branch_chain *, compile_data *, int *);
636:
637:
638:
639: /*************************************************
640: * Find an error text *
641: *************************************************/
642:
643: /* The error texts are now all in one long string, to save on relocations. As
644: some of the text is of unknown length, we can't use a table of offsets.
645: Instead, just count through the strings. This is not a performance issue
646: because it happens only when there has been a compilation error.
647:
648: Argument: the error number
649: Returns: pointer to the error string
650: */
651:
652: static const char *
653: find_error_text(int n)
654: {
655: const char *s = error_texts;
656: for (; n > 0; n--)
657: {
658: while (*s++ != 0) {};
659: if (*s == 0) return "Error text not found (please report)";
660: }
661: return s;
662: }
663:
664:
665: /*************************************************
666: * Expand the workspace *
667: *************************************************/
668:
669: /* This function is called during the second compiling phase, if the number of
670: forward references fills the existing workspace, which is originally a block on
671: the stack. A larger block is obtained from malloc() unless the ultimate limit
672: has been reached or the increase will be rather small.
673:
674: Argument: pointer to the compile data block
675: Returns: 0 if all went well, else an error number
676: */
677:
678: static int
679: expand_workspace(compile_data *cd)
680: {
1.1.1.2 ! misho 681: pcre_uchar *newspace;
1.1 misho 682: int newsize = cd->workspace_size * 2;
683:
684: if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX;
685: if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX ||
686: newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN)
687: return ERR72;
688:
1.1.1.2 ! misho 689: newspace = (PUBL(malloc))(IN_UCHARS(newsize));
1.1 misho 690: if (newspace == NULL) return ERR21;
1.1.1.2 ! misho 691: memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar));
! 692: cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace);
1.1 misho 693: if (cd->workspace_size > COMPILE_WORK_SIZE)
1.1.1.2 ! misho 694: (PUBL(free))((void *)cd->start_workspace);
1.1 misho 695: cd->start_workspace = newspace;
696: cd->workspace_size = newsize;
697: return 0;
698: }
699:
700:
701:
702: /*************************************************
703: * Check for counted repeat *
704: *************************************************/
705:
706: /* This function is called when a '{' is encountered in a place where it might
707: start a quantifier. It looks ahead to see if it really is a quantifier or not.
708: It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
709: where the ddds are digits.
710:
711: Arguments:
712: p pointer to the first char after '{'
713:
714: Returns: TRUE or FALSE
715: */
716:
717: static BOOL
1.1.1.2 ! misho 718: is_counted_repeat(const pcre_uchar *p)
1.1 misho 719: {
1.1.1.2 ! misho 720: if (!IS_DIGIT(*p)) return FALSE;
! 721: p++;
! 722: while (IS_DIGIT(*p)) p++;
1.1 misho 723: if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
724:
725: if (*p++ != CHAR_COMMA) return FALSE;
726: if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
727:
1.1.1.2 ! misho 728: if (!IS_DIGIT(*p)) return FALSE;
! 729: p++;
! 730: while (IS_DIGIT(*p)) p++;
1.1 misho 731:
732: return (*p == CHAR_RIGHT_CURLY_BRACKET);
733: }
734:
735:
736:
737: /*************************************************
738: * Handle escapes *
739: *************************************************/
740:
741: /* This function is called when a \ has been encountered. It either returns a
742: positive value for a simple escape such as \n, or a negative value which
743: encodes one of the more complicated things such as \d. A backreference to group
744: n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
745: UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
746: ptr is pointing at the \. On exit, it is on the final character of the escape
747: sequence.
748:
749: Arguments:
750: ptrptr points to the pattern position pointer
751: errorcodeptr points to the errorcode variable
752: bracount number of previous extracting brackets
753: options the options bits
754: isclass TRUE if inside a character class
755:
756: Returns: zero or positive => a data character
757: negative => a special escape sequence
758: on error, errorcodeptr is set
759: */
760:
761: static int
1.1.1.2 ! misho 762: check_escape(const pcre_uchar **ptrptr, int *errorcodeptr, int bracount,
1.1 misho 763: int options, BOOL isclass)
764: {
1.1.1.2 ! misho 765: /* PCRE_UTF16 has the same value as PCRE_UTF8. */
! 766: BOOL utf = (options & PCRE_UTF8) != 0;
! 767: const pcre_uchar *ptr = *ptrptr + 1;
! 768: pcre_int32 c;
! 769: int i;
1.1 misho 770:
771: GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
772: ptr--; /* Set pointer back to the last byte */
773:
774: /* If backslash is at the end of the pattern, it's an error. */
775:
776: if (c == 0) *errorcodeptr = ERR1;
777:
778: /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
779: in a table. A non-zero result is something that can be returned immediately.
780: Otherwise further processing may be required. */
781:
782: #ifndef EBCDIC /* ASCII/UTF-8 coding */
1.1.1.2 ! misho 783: /* Not alphanumeric */
! 784: else if (c < CHAR_0 || c > CHAR_z) {}
1.1 misho 785: else if ((i = escapes[c - CHAR_0]) != 0) c = i;
786:
787: #else /* EBCDIC coding */
1.1.1.2 ! misho 788: /* Not alphanumeric */
! 789: else if (c < 'a' || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {}
1.1 misho 790: else if ((i = escapes[c - 0x48]) != 0) c = i;
791: #endif
792:
793: /* Escapes that need further processing, or are illegal. */
794:
795: else
796: {
1.1.1.2 ! misho 797: const pcre_uchar *oldptr;
1.1 misho 798: BOOL braced, negated;
799:
800: switch (c)
801: {
802: /* A number of Perl escapes are not handled by PCRE. We give an explicit
803: error. */
804:
805: case CHAR_l:
806: case CHAR_L:
807: *errorcodeptr = ERR37;
808: break;
809:
810: case CHAR_u:
811: if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
812: {
813: /* In JavaScript, \u must be followed by four hexadecimal numbers.
814: Otherwise it is a lowercase u letter. */
1.1.1.2 ! misho 815: if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
! 816: && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0
! 817: && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0
! 818: && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0)
1.1 misho 819: {
820: c = 0;
821: for (i = 0; i < 4; ++i)
822: {
823: register int cc = *(++ptr);
824: #ifndef EBCDIC /* ASCII/UTF-8 coding */
825: if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
826: c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
827: #else /* EBCDIC coding */
828: if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
829: c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
830: #endif
831: }
832: }
833: }
834: else
835: *errorcodeptr = ERR37;
836: break;
837:
838: case CHAR_U:
839: /* In JavaScript, \U is an uppercase U letter. */
840: if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37;
841: break;
842:
843: /* In a character class, \g is just a literal "g". Outside a character
844: class, \g must be followed by one of a number of specific things:
845:
846: (1) A number, either plain or braced. If positive, it is an absolute
847: backreference. If negative, it is a relative backreference. This is a Perl
848: 5.10 feature.
849:
850: (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
851: is part of Perl's movement towards a unified syntax for back references. As
852: this is synonymous with \k{name}, we fudge it up by pretending it really
853: was \k.
854:
855: (3) For Oniguruma compatibility we also support \g followed by a name or a
856: number either in angle brackets or in single quotes. However, these are
857: (possibly recursive) subroutine calls, _not_ backreferences. Just return
858: the -ESC_g code (cf \k). */
859:
860: case CHAR_g:
861: if (isclass) break;
862: if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
863: {
864: c = -ESC_g;
865: break;
866: }
867:
868: /* Handle the Perl-compatible cases */
869:
870: if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
871: {
1.1.1.2 ! misho 872: const pcre_uchar *p;
1.1 misho 873: for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
1.1.1.2 ! misho 874: if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break;
1.1 misho 875: if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET)
876: {
877: c = -ESC_k;
878: break;
879: }
880: braced = TRUE;
881: ptr++;
882: }
883: else braced = FALSE;
884:
885: if (ptr[1] == CHAR_MINUS)
886: {
887: negated = TRUE;
888: ptr++;
889: }
890: else negated = FALSE;
891:
1.1.1.2 ! misho 892: /* The integer range is limited by the machine's int representation. */
1.1 misho 893: c = 0;
1.1.1.2 ! misho 894: while (IS_DIGIT(ptr[1]))
! 895: {
! 896: if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */
! 897: {
! 898: c = -1;
! 899: break;
! 900: }
1.1 misho 901: c = c * 10 + *(++ptr) - CHAR_0;
1.1.1.2 ! misho 902: }
! 903: if (((unsigned int)c) > INT_MAX) /* Integer overflow */
1.1 misho 904: {
1.1.1.2 ! misho 905: while (IS_DIGIT(ptr[1]))
! 906: ptr++;
1.1 misho 907: *errorcodeptr = ERR61;
908: break;
909: }
910:
911: if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
912: {
913: *errorcodeptr = ERR57;
914: break;
915: }
916:
917: if (c == 0)
918: {
919: *errorcodeptr = ERR58;
920: break;
921: }
922:
923: if (negated)
924: {
925: if (c > bracount)
926: {
927: *errorcodeptr = ERR15;
928: break;
929: }
930: c = bracount - (c - 1);
931: }
932:
933: c = -(ESC_REF + c);
934: break;
935:
936: /* The handling of escape sequences consisting of a string of digits
937: starting with one that is not zero is not straightforward. By experiment,
938: the way Perl works seems to be as follows:
939:
940: Outside a character class, the digits are read as a decimal number. If the
941: number is less than 10, or if there are that many previous extracting
942: left brackets, then it is a back reference. Otherwise, up to three octal
943: digits are read to form an escaped byte. Thus \123 is likely to be octal
944: 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
945: value is greater than 377, the least significant 8 bits are taken. Inside a
946: character class, \ followed by a digit is always an octal number. */
947:
948: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
949: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
950:
951: if (!isclass)
952: {
953: oldptr = ptr;
1.1.1.2 ! misho 954: /* The integer range is limited by the machine's int representation. */
1.1 misho 955: c -= CHAR_0;
1.1.1.2 ! misho 956: while (IS_DIGIT(ptr[1]))
! 957: {
! 958: if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */
! 959: {
! 960: c = -1;
! 961: break;
! 962: }
1.1 misho 963: c = c * 10 + *(++ptr) - CHAR_0;
1.1.1.2 ! misho 964: }
! 965: if (((unsigned int)c) > INT_MAX) /* Integer overflow */
1.1 misho 966: {
1.1.1.2 ! misho 967: while (IS_DIGIT(ptr[1]))
! 968: ptr++;
1.1 misho 969: *errorcodeptr = ERR61;
970: break;
971: }
972: if (c < 10 || c <= bracount)
973: {
974: c = -(ESC_REF + c);
975: break;
976: }
977: ptr = oldptr; /* Put the pointer back and fall through */
978: }
979:
980: /* Handle an octal number following \. If the first digit is 8 or 9, Perl
981: generates a binary zero byte and treats the digit as a following literal.
982: Thus we have to pull back the pointer by one. */
983:
984: if ((c = *ptr) >= CHAR_8)
985: {
986: ptr--;
987: c = 0;
988: break;
989: }
990:
991: /* \0 always starts an octal number, but we may drop through to here with a
992: larger first octal digit. The original code used just to take the least
993: significant 8 bits of octal numbers (I think this is what early Perls used
1.1.1.2 ! misho 994: to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode,
! 995: but no more than 3 octal digits. */
1.1 misho 996:
997: case CHAR_0:
998: c -= CHAR_0;
999: while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
1000: c = c * 8 + *(++ptr) - CHAR_0;
1.1.1.2 ! misho 1001: #ifdef COMPILE_PCRE8
! 1002: if (!utf && c > 0xff) *errorcodeptr = ERR51;
! 1003: #endif
1.1 misho 1004: break;
1005:
1006: /* \x is complicated. \x{ddd} is a character number which can be greater
1.1.1.2 ! misho 1007: than 0xff in utf or non-8bit mode, but only if the ddd are hex digits.
! 1008: If not, { is treated as a data character. */
1.1 misho 1009:
1010: case CHAR_x:
1011: if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
1012: {
1013: /* In JavaScript, \x must be followed by two hexadecimal numbers.
1014: Otherwise it is a lowercase x letter. */
1.1.1.2 ! misho 1015: if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
! 1016: && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0)
1.1 misho 1017: {
1018: c = 0;
1019: for (i = 0; i < 2; ++i)
1020: {
1021: register int cc = *(++ptr);
1022: #ifndef EBCDIC /* ASCII/UTF-8 coding */
1023: if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1024: c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1025: #else /* EBCDIC coding */
1026: if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
1027: c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1028: #endif
1029: }
1030: }
1031: break;
1032: }
1033:
1034: if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
1035: {
1.1.1.2 ! misho 1036: const pcre_uchar *pt = ptr + 2;
1.1 misho 1037:
1038: c = 0;
1.1.1.2 ! misho 1039: while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0)
1.1 misho 1040: {
1041: register int cc = *pt++;
1042: if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
1043:
1044: #ifndef EBCDIC /* ASCII/UTF-8 coding */
1045: if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1046: c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1047: #else /* EBCDIC coding */
1048: if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
1049: c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1050: #endif
1.1.1.2 ! misho 1051:
! 1052: #ifdef COMPILE_PCRE8
! 1053: if (c > (utf ? 0x10ffff : 0xff)) { c = -1; break; }
! 1054: #else
! 1055: #ifdef COMPILE_PCRE16
! 1056: if (c > (utf ? 0x10ffff : 0xffff)) { c = -1; break; }
! 1057: #endif
! 1058: #endif
! 1059: }
! 1060:
! 1061: if (c < 0)
! 1062: {
! 1063: while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++;
! 1064: *errorcodeptr = ERR34;
1.1 misho 1065: }
1066:
1067: if (*pt == CHAR_RIGHT_CURLY_BRACKET)
1068: {
1.1.1.2 ! misho 1069: if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
1.1 misho 1070: ptr = pt;
1071: break;
1072: }
1073:
1074: /* If the sequence of hex digits does not end with '}', then we don't
1075: recognize this construct; fall through to the normal \x handling. */
1076: }
1077:
1078: /* Read just a single-byte hex-defined char */
1079:
1080: c = 0;
1.1.1.2 ! misho 1081: while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0)
1.1 misho 1082: {
1083: int cc; /* Some compilers don't like */
1084: cc = *(++ptr); /* ++ in initializers */
1085: #ifndef EBCDIC /* ASCII/UTF-8 coding */
1086: if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1087: c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1088: #else /* EBCDIC coding */
1089: if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
1090: c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1091: #endif
1092: }
1093: break;
1094:
1095: /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
1096: An error is given if the byte following \c is not an ASCII character. This
1097: coding is ASCII-specific, but then the whole concept of \cx is
1098: ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
1099:
1100: case CHAR_c:
1101: c = *(++ptr);
1102: if (c == 0)
1103: {
1104: *errorcodeptr = ERR2;
1105: break;
1106: }
1107: #ifndef EBCDIC /* ASCII/UTF-8 coding */
1108: if (c > 127) /* Excludes all non-ASCII in either mode */
1109: {
1110: *errorcodeptr = ERR68;
1111: break;
1112: }
1113: if (c >= CHAR_a && c <= CHAR_z) c -= 32;
1114: c ^= 0x40;
1115: #else /* EBCDIC coding */
1116: if (c >= CHAR_a && c <= CHAR_z) c += 64;
1117: c ^= 0xC0;
1118: #endif
1119: break;
1120:
1121: /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
1122: other alphanumeric following \ is an error if PCRE_EXTRA was set;
1123: otherwise, for Perl compatibility, it is a literal. This code looks a bit
1124: odd, but there used to be some cases other than the default, and there may
1125: be again in future, so I haven't "optimized" it. */
1126:
1127: default:
1128: if ((options & PCRE_EXTRA) != 0) switch(c)
1129: {
1130: default:
1131: *errorcodeptr = ERR3;
1132: break;
1133: }
1134: break;
1135: }
1136: }
1137:
1138: /* Perl supports \N{name} for character names, as well as plain \N for "not
1139: newline". PCRE does not support \N{name}. However, it does support
1140: quantification such as \N{2,3}. */
1141:
1142: if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
1143: !is_counted_repeat(ptr+2))
1144: *errorcodeptr = ERR37;
1145:
1146: /* If PCRE_UCP is set, we change the values for \d etc. */
1147:
1148: if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w)
1149: c -= (ESC_DU - ESC_D);
1150:
1151: /* Set the pointer to the final character before returning. */
1152:
1153: *ptrptr = ptr;
1154: return c;
1155: }
1156:
1157:
1158:
1159: #ifdef SUPPORT_UCP
1160: /*************************************************
1161: * Handle \P and \p *
1162: *************************************************/
1163:
1164: /* This function is called after \P or \p has been encountered, provided that
1165: PCRE is compiled with support for Unicode properties. On entry, ptrptr is
1166: pointing at the P or p. On exit, it is pointing at the final character of the
1167: escape sequence.
1168:
1169: Argument:
1170: ptrptr points to the pattern position pointer
1171: negptr points to a boolean that is set TRUE for negation else FALSE
1172: dptr points to an int that is set to the detailed property value
1173: errorcodeptr points to the error code variable
1174:
1175: Returns: type value from ucp_type_table, or -1 for an invalid type
1176: */
1177:
1178: static int
1.1.1.2 ! misho 1179: get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
1.1 misho 1180: {
1181: int c, i, bot, top;
1.1.1.2 ! misho 1182: const pcre_uchar *ptr = *ptrptr;
! 1183: pcre_uchar name[32];
1.1 misho 1184:
1185: c = *(++ptr);
1186: if (c == 0) goto ERROR_RETURN;
1187:
1188: *negptr = FALSE;
1189:
1190: /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
1191: negation. */
1192:
1193: if (c == CHAR_LEFT_CURLY_BRACKET)
1194: {
1195: if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1196: {
1197: *negptr = TRUE;
1198: ptr++;
1199: }
1.1.1.2 ! misho 1200: for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++)
1.1 misho 1201: {
1202: c = *(++ptr);
1203: if (c == 0) goto ERROR_RETURN;
1204: if (c == CHAR_RIGHT_CURLY_BRACKET) break;
1205: name[i] = c;
1206: }
1207: if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
1208: name[i] = 0;
1209: }
1210:
1211: /* Otherwise there is just one following character */
1212:
1213: else
1214: {
1215: name[0] = c;
1216: name[1] = 0;
1217: }
1218:
1219: *ptrptr = ptr;
1220:
1221: /* Search for a recognized property name using binary chop */
1222:
1223: bot = 0;
1.1.1.2 ! misho 1224: top = PRIV(utt_size);
1.1 misho 1225:
1226: while (bot < top)
1227: {
1228: i = (bot + top) >> 1;
1.1.1.2 ! misho 1229: c = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset);
1.1 misho 1230: if (c == 0)
1231: {
1.1.1.2 ! misho 1232: *dptr = PRIV(utt)[i].value;
! 1233: return PRIV(utt)[i].type;
1.1 misho 1234: }
1235: if (c > 0) bot = i + 1; else top = i;
1236: }
1237:
1238: *errorcodeptr = ERR47;
1239: *ptrptr = ptr;
1240: return -1;
1241:
1242: ERROR_RETURN:
1243: *errorcodeptr = ERR46;
1244: *ptrptr = ptr;
1245: return -1;
1246: }
1247: #endif
1248:
1249:
1250:
1251:
1252: /*************************************************
1253: * Read repeat counts *
1254: *************************************************/
1255:
1256: /* Read an item of the form {n,m} and return the values. This is called only
1257: after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
1258: so the syntax is guaranteed to be correct, but we need to check the values.
1259:
1260: Arguments:
1261: p pointer to first char after '{'
1262: minp pointer to int for min
1263: maxp pointer to int for max
1264: returned as -1 if no max
1265: errorcodeptr points to error code variable
1266:
1267: Returns: pointer to '}' on success;
1268: current ptr on error, with errorcodeptr set non-zero
1269: */
1270:
1.1.1.2 ! misho 1271: static const pcre_uchar *
! 1272: read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr)
1.1 misho 1273: {
1274: int min = 0;
1275: int max = -1;
1276:
1277: /* Read the minimum value and do a paranoid check: a negative value indicates
1278: an integer overflow. */
1279:
1.1.1.2 ! misho 1280: while (IS_DIGIT(*p)) min = min * 10 + *p++ - CHAR_0;
1.1 misho 1281: if (min < 0 || min > 65535)
1282: {
1283: *errorcodeptr = ERR5;
1284: return p;
1285: }
1286:
1287: /* Read the maximum value if there is one, and again do a paranoid on its size.
1288: Also, max must not be less than min. */
1289:
1290: if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
1291: {
1292: if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
1293: {
1294: max = 0;
1.1.1.2 ! misho 1295: while(IS_DIGIT(*p)) max = max * 10 + *p++ - CHAR_0;
1.1 misho 1296: if (max < 0 || max > 65535)
1297: {
1298: *errorcodeptr = ERR5;
1299: return p;
1300: }
1301: if (max < min)
1302: {
1303: *errorcodeptr = ERR4;
1304: return p;
1305: }
1306: }
1307: }
1308:
1309: /* Fill in the required variables, and pass back the pointer to the terminating
1310: '}'. */
1311:
1312: *minp = min;
1313: *maxp = max;
1314: return p;
1315: }
1316:
1317:
1318:
1319: /*************************************************
1320: * Subroutine for finding forward reference *
1321: *************************************************/
1322:
1323: /* This recursive function is called only from find_parens() below. The
1324: top-level call starts at the beginning of the pattern. All other calls must
1325: start at a parenthesis. It scans along a pattern's text looking for capturing
1326: subpatterns, and counting them. If it finds a named pattern that matches the
1327: name it is given, it returns its number. Alternatively, if the name is NULL, it
1328: returns when it reaches a given numbered subpattern. Recursion is used to keep
1329: track of subpatterns that reset the capturing group numbers - the (?| feature.
1330:
1331: This function was originally called only from the second pass, in which we know
1332: that if (?< or (?' or (?P< is encountered, the name will be correctly
1333: terminated because that is checked in the first pass. There is now one call to
1334: this function in the first pass, to check for a recursive back reference by
1335: name (so that we can make the whole group atomic). In this case, we need check
1336: only up to the current position in the pattern, and that is still OK because
1337: and previous occurrences will have been checked. To make this work, the test
1338: for "end of pattern" is a check against cd->end_pattern in the main loop,
1339: instead of looking for a binary zero. This means that the special first-pass
1340: call can adjust cd->end_pattern temporarily. (Checks for binary zero while
1341: processing items within the loop are OK, because afterwards the main loop will
1342: terminate.)
1343:
1344: Arguments:
1345: ptrptr address of the current character pointer (updated)
1346: cd compile background data
1347: name name to seek, or NULL if seeking a numbered subpattern
1348: lorn name length, or subpattern number if name is NULL
1349: xmode TRUE if we are in /x mode
1.1.1.2 ! misho 1350: utf TRUE if we are in UTF-8 / UTF-16 mode
1.1 misho 1351: count pointer to the current capturing subpattern number (updated)
1352:
1353: Returns: the number of the named subpattern, or -1 if not found
1354: */
1355:
1356: static int
1.1.1.2 ! misho 1357: find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn,
! 1358: BOOL xmode, BOOL utf, int *count)
1.1 misho 1359: {
1.1.1.2 ! misho 1360: pcre_uchar *ptr = *ptrptr;
1.1 misho 1361: int start_count = *count;
1362: int hwm_count = start_count;
1363: BOOL dup_parens = FALSE;
1364:
1365: /* If the first character is a parenthesis, check on the type of group we are
1366: dealing with. The very first call may not start with a parenthesis. */
1367:
1368: if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1369: {
1370: /* Handle specials such as (*SKIP) or (*UTF8) etc. */
1371:
1372: if (ptr[1] == CHAR_ASTERISK) ptr += 2;
1373:
1374: /* Handle a normal, unnamed capturing parenthesis. */
1375:
1376: else if (ptr[1] != CHAR_QUESTION_MARK)
1377: {
1378: *count += 1;
1379: if (name == NULL && *count == lorn) return *count;
1380: ptr++;
1381: }
1382:
1383: /* All cases now have (? at the start. Remember when we are in a group
1384: where the parenthesis numbers are duplicated. */
1385:
1386: else if (ptr[2] == CHAR_VERTICAL_LINE)
1387: {
1388: ptr += 3;
1389: dup_parens = TRUE;
1390: }
1391:
1392: /* Handle comments; all characters are allowed until a ket is reached. */
1393:
1394: else if (ptr[2] == CHAR_NUMBER_SIGN)
1395: {
1396: for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
1397: goto FAIL_EXIT;
1398: }
1399:
1400: /* Handle a condition. If it is an assertion, just carry on so that it
1401: is processed as normal. If not, skip to the closing parenthesis of the
1402: condition (there can't be any nested parens). */
1403:
1404: else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
1405: {
1406: ptr += 2;
1407: if (ptr[1] != CHAR_QUESTION_MARK)
1408: {
1409: while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
1410: if (*ptr != 0) ptr++;
1411: }
1412: }
1413:
1414: /* Start with (? but not a condition. */
1415:
1416: else
1417: {
1418: ptr += 2;
1419: if (*ptr == CHAR_P) ptr++; /* Allow optional P */
1420:
1421: /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */
1422:
1423: if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
1424: ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
1425: {
1426: int term;
1.1.1.2 ! misho 1427: const pcre_uchar *thisname;
1.1 misho 1428: *count += 1;
1429: if (name == NULL && *count == lorn) return *count;
1430: term = *ptr++;
1431: if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
1432: thisname = ptr;
1433: while (*ptr != term) ptr++;
1434: if (name != NULL && lorn == ptr - thisname &&
1.1.1.2 ! misho 1435: STRNCMP_UC_UC(name, thisname, lorn) == 0)
1.1 misho 1436: return *count;
1437: term++;
1438: }
1439: }
1440: }
1441:
1442: /* Past any initial parenthesis handling, scan for parentheses or vertical
1443: bars. Stop if we get to cd->end_pattern. Note that this is important for the
1444: first-pass call when this value is temporarily adjusted to stop at the current
1445: position. So DO NOT change this to a test for binary zero. */
1446:
1447: for (; ptr < cd->end_pattern; ptr++)
1448: {
1449: /* Skip over backslashed characters and also entire \Q...\E */
1450:
1451: if (*ptr == CHAR_BACKSLASH)
1452: {
1453: if (*(++ptr) == 0) goto FAIL_EXIT;
1454: if (*ptr == CHAR_Q) for (;;)
1455: {
1456: while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1457: if (*ptr == 0) goto FAIL_EXIT;
1458: if (*(++ptr) == CHAR_E) break;
1459: }
1460: continue;
1461: }
1462:
1463: /* Skip over character classes; this logic must be similar to the way they
1464: are handled for real. If the first character is '^', skip it. Also, if the
1465: first few characters (either before or after ^) are \Q\E or \E we skip them
1466: too. This makes for compatibility with Perl. Note the use of STR macros to
1467: encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
1468:
1469: if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
1470: {
1471: BOOL negate_class = FALSE;
1472: for (;;)
1473: {
1474: if (ptr[1] == CHAR_BACKSLASH)
1475: {
1476: if (ptr[2] == CHAR_E)
1477: ptr+= 2;
1.1.1.2 ! misho 1478: else if (STRNCMP_UC_C8(ptr + 2,
1.1 misho 1479: STR_Q STR_BACKSLASH STR_E, 3) == 0)
1480: ptr += 4;
1481: else
1482: break;
1483: }
1484: else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1485: {
1486: negate_class = TRUE;
1487: ptr++;
1488: }
1489: else break;
1490: }
1491:
1492: /* If the next character is ']', it is a data character that must be
1493: skipped, except in JavaScript compatibility mode. */
1494:
1495: if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
1496: (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1497: ptr++;
1498:
1499: while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
1500: {
1501: if (*ptr == 0) return -1;
1502: if (*ptr == CHAR_BACKSLASH)
1503: {
1504: if (*(++ptr) == 0) goto FAIL_EXIT;
1505: if (*ptr == CHAR_Q) for (;;)
1506: {
1507: while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1508: if (*ptr == 0) goto FAIL_EXIT;
1509: if (*(++ptr) == CHAR_E) break;
1510: }
1511: continue;
1512: }
1513: }
1514: continue;
1515: }
1516:
1517: /* Skip comments in /x mode */
1518:
1519: if (xmode && *ptr == CHAR_NUMBER_SIGN)
1520: {
1521: ptr++;
1522: while (*ptr != 0)
1523: {
1524: if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
1525: ptr++;
1.1.1.2 ! misho 1526: #ifdef SUPPORT_UTF
! 1527: if (utf) FORWARDCHAR(ptr);
1.1 misho 1528: #endif
1529: }
1530: if (*ptr == 0) goto FAIL_EXIT;
1531: continue;
1532: }
1533:
1534: /* Check for the special metacharacters */
1535:
1536: if (*ptr == CHAR_LEFT_PARENTHESIS)
1537: {
1.1.1.2 ! misho 1538: int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count);
1.1 misho 1539: if (rc > 0) return rc;
1540: if (*ptr == 0) goto FAIL_EXIT;
1541: }
1542:
1543: else if (*ptr == CHAR_RIGHT_PARENTHESIS)
1544: {
1545: if (dup_parens && *count < hwm_count) *count = hwm_count;
1546: goto FAIL_EXIT;
1547: }
1548:
1549: else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
1550: {
1551: if (*count > hwm_count) hwm_count = *count;
1552: *count = start_count;
1553: }
1554: }
1555:
1556: FAIL_EXIT:
1557: *ptrptr = ptr;
1558: return -1;
1559: }
1560:
1561:
1562:
1563:
1564: /*************************************************
1565: * Find forward referenced subpattern *
1566: *************************************************/
1567:
1568: /* This function scans along a pattern's text looking for capturing
1569: subpatterns, and counting them. If it finds a named pattern that matches the
1570: name it is given, it returns its number. Alternatively, if the name is NULL, it
1571: returns when it reaches a given numbered subpattern. This is used for forward
1572: references to subpatterns. We used to be able to start this scan from the
1573: current compiling point, using the current count value from cd->bracount, and
1574: do it all in a single loop, but the addition of the possibility of duplicate
1575: subpattern numbers means that we have to scan from the very start, in order to
1576: take account of such duplicates, and to use a recursive function to keep track
1577: of the different types of group.
1578:
1579: Arguments:
1580: cd compile background data
1581: name name to seek, or NULL if seeking a numbered subpattern
1582: lorn name length, or subpattern number if name is NULL
1583: xmode TRUE if we are in /x mode
1.1.1.2 ! misho 1584: utf TRUE if we are in UTF-8 / UTF-16 mode
1.1 misho 1585:
1586: Returns: the number of the found subpattern, or -1 if not found
1587: */
1588:
1589: static int
1.1.1.2 ! misho 1590: find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode,
! 1591: BOOL utf)
1.1 misho 1592: {
1.1.1.2 ! misho 1593: pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern;
1.1 misho 1594: int count = 0;
1595: int rc;
1596:
1597: /* If the pattern does not start with an opening parenthesis, the first call
1598: to find_parens_sub() will scan right to the end (if necessary). However, if it
1599: does start with a parenthesis, find_parens_sub() will return when it hits the
1600: matching closing parens. That is why we have to have a loop. */
1601:
1602: for (;;)
1603: {
1.1.1.2 ! misho 1604: rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count);
1.1 misho 1605: if (rc > 0 || *ptr++ == 0) break;
1606: }
1607:
1608: return rc;
1609: }
1610:
1611:
1612:
1613:
1614: /*************************************************
1615: * Find first significant op code *
1616: *************************************************/
1617:
1618: /* This is called by several functions that scan a compiled expression looking
1619: for a fixed first character, or an anchoring op code etc. It skips over things
1620: that do not influence this. For some calls, it makes sense to skip negative
1621: forward and all backward assertions, and also the \b assertion; for others it
1622: does not.
1623:
1624: Arguments:
1625: code pointer to the start of the group
1626: skipassert TRUE if certain assertions are to be skipped
1627:
1628: Returns: pointer to the first significant opcode
1629: */
1630:
1.1.1.2 ! misho 1631: static const pcre_uchar*
! 1632: first_significant_code(const pcre_uchar *code, BOOL skipassert)
1.1 misho 1633: {
1634: for (;;)
1635: {
1636: switch ((int)*code)
1637: {
1638: case OP_ASSERT_NOT:
1639: case OP_ASSERTBACK:
1640: case OP_ASSERTBACK_NOT:
1641: if (!skipassert) return code;
1642: do code += GET(code, 1); while (*code == OP_ALT);
1.1.1.2 ! misho 1643: code += PRIV(OP_lengths)[*code];
1.1 misho 1644: break;
1645:
1646: case OP_WORD_BOUNDARY:
1647: case OP_NOT_WORD_BOUNDARY:
1648: if (!skipassert) return code;
1649: /* Fall through */
1650:
1651: case OP_CALLOUT:
1652: case OP_CREF:
1653: case OP_NCREF:
1654: case OP_RREF:
1655: case OP_NRREF:
1656: case OP_DEF:
1.1.1.2 ! misho 1657: code += PRIV(OP_lengths)[*code];
1.1 misho 1658: break;
1659:
1660: default:
1661: return code;
1662: }
1663: }
1664: /* Control never reaches here */
1665: }
1666:
1667:
1668:
1669:
1670: /*************************************************
1671: * Find the fixed length of a branch *
1672: *************************************************/
1673:
1674: /* Scan a branch and compute the fixed length of subject that will match it,
1675: if the length is fixed. This is needed for dealing with backward assertions.
1676: In UTF8 mode, the result is in characters rather than bytes. The branch is
1677: temporarily terminated with OP_END when this function is called.
1678:
1679: This function is called when a backward assertion is encountered, so that if it
1680: fails, the error message can point to the correct place in the pattern.
1681: However, we cannot do this when the assertion contains subroutine calls,
1682: because they can be forward references. We solve this by remembering this case
1683: and doing the check at the end; a flag specifies which mode we are running in.
1684:
1685: Arguments:
1686: code points to the start of the pattern (the bracket)
1.1.1.2 ! misho 1687: utf TRUE in UTF-8 / UTF-16 mode
1.1 misho 1688: atend TRUE if called when the pattern is complete
1689: cd the "compile data" structure
1690:
1691: Returns: the fixed length,
1692: or -1 if there is no fixed length,
1693: or -2 if \C was encountered (in UTF-8 mode only)
1694: or -3 if an OP_RECURSE item was encountered and atend is FALSE
1695: or -4 if an unknown opcode was encountered (internal error)
1696: */
1697:
1698: static int
1.1.1.2 ! misho 1699: find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd)
1.1 misho 1700: {
1701: int length = -1;
1702:
1703: register int branchlength = 0;
1.1.1.2 ! misho 1704: register pcre_uchar *cc = code + 1 + LINK_SIZE;
1.1 misho 1705:
1706: /* Scan along the opcodes for this branch. If we get to the end of the
1707: branch, check the length against that of the other branches. */
1708:
1709: for (;;)
1710: {
1711: int d;
1.1.1.2 ! misho 1712: pcre_uchar *ce, *cs;
1.1 misho 1713: register int op = *cc;
1.1.1.2 ! misho 1714:
1.1 misho 1715: switch (op)
1716: {
1717: /* We only need to continue for OP_CBRA (normal capturing bracket) and
1718: OP_BRA (normal non-capturing bracket) because the other variants of these
1719: opcodes are all concerned with unlimited repeated groups, which of course
1720: are not of fixed length. */
1721:
1722: case OP_CBRA:
1723: case OP_BRA:
1724: case OP_ONCE:
1725: case OP_ONCE_NC:
1726: case OP_COND:
1.1.1.2 ! misho 1727: d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd);
1.1 misho 1728: if (d < 0) return d;
1729: branchlength += d;
1730: do cc += GET(cc, 1); while (*cc == OP_ALT);
1731: cc += 1 + LINK_SIZE;
1732: break;
1733:
1734: /* Reached end of a branch; if it's a ket it is the end of a nested call.
1735: If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
1736: an ALT. If it is END it's the end of the outer call. All can be handled by
1737: the same code. Note that we must not include the OP_KETRxxx opcodes here,
1738: because they all imply an unlimited repeat. */
1739:
1740: case OP_ALT:
1741: case OP_KET:
1742: case OP_END:
1743: case OP_ACCEPT:
1744: case OP_ASSERT_ACCEPT:
1745: if (length < 0) length = branchlength;
1746: else if (length != branchlength) return -1;
1747: if (*cc != OP_ALT) return length;
1748: cc += 1 + LINK_SIZE;
1749: branchlength = 0;
1750: break;
1751:
1752: /* A true recursion implies not fixed length, but a subroutine call may
1753: be OK. If the subroutine is a forward reference, we can't deal with
1754: it until the end of the pattern, so return -3. */
1755:
1756: case OP_RECURSE:
1757: if (!atend) return -3;
1.1.1.2 ! misho 1758: cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */
! 1759: do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
! 1760: if (cc > cs && cc < ce) return -1; /* Recursion */
! 1761: d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd);
1.1 misho 1762: if (d < 0) return d;
1763: branchlength += d;
1764: cc += 1 + LINK_SIZE;
1765: break;
1766:
1767: /* Skip over assertive subpatterns */
1768:
1769: case OP_ASSERT:
1770: case OP_ASSERT_NOT:
1771: case OP_ASSERTBACK:
1772: case OP_ASSERTBACK_NOT:
1773: do cc += GET(cc, 1); while (*cc == OP_ALT);
1.1.1.2 ! misho 1774: cc += PRIV(OP_lengths)[*cc];
! 1775: break;
1.1 misho 1776:
1777: /* Skip over things that don't match chars */
1778:
1779: case OP_MARK:
1780: case OP_PRUNE_ARG:
1781: case OP_SKIP_ARG:
1782: case OP_THEN_ARG:
1.1.1.2 ! misho 1783: cc += cc[1] + PRIV(OP_lengths)[*cc];
1.1 misho 1784: break;
1785:
1786: case OP_CALLOUT:
1787: case OP_CIRC:
1788: case OP_CIRCM:
1789: case OP_CLOSE:
1790: case OP_COMMIT:
1791: case OP_CREF:
1792: case OP_DEF:
1793: case OP_DOLL:
1794: case OP_DOLLM:
1795: case OP_EOD:
1796: case OP_EODN:
1797: case OP_FAIL:
1798: case OP_NCREF:
1799: case OP_NRREF:
1800: case OP_NOT_WORD_BOUNDARY:
1801: case OP_PRUNE:
1802: case OP_REVERSE:
1803: case OP_RREF:
1804: case OP_SET_SOM:
1805: case OP_SKIP:
1806: case OP_SOD:
1807: case OP_SOM:
1808: case OP_THEN:
1809: case OP_WORD_BOUNDARY:
1.1.1.2 ! misho 1810: cc += PRIV(OP_lengths)[*cc];
1.1 misho 1811: break;
1812:
1813: /* Handle literal characters */
1814:
1815: case OP_CHAR:
1816: case OP_CHARI:
1817: case OP_NOT:
1818: case OP_NOTI:
1819: branchlength++;
1820: cc += 2;
1.1.1.2 ! misho 1821: #ifdef SUPPORT_UTF
! 1822: if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
1.1 misho 1823: #endif
1824: break;
1825:
1826: /* Handle exact repetitions. The count is already in characters, but we
1827: need to skip over a multibyte character in UTF8 mode. */
1828:
1829: case OP_EXACT:
1830: case OP_EXACTI:
1831: case OP_NOTEXACT:
1832: case OP_NOTEXACTI:
1833: branchlength += GET2(cc,1);
1.1.1.2 ! misho 1834: cc += 2 + IMM2_SIZE;
! 1835: #ifdef SUPPORT_UTF
! 1836: if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
1.1 misho 1837: #endif
1838: break;
1839:
1840: case OP_TYPEEXACT:
1841: branchlength += GET2(cc,1);
1.1.1.2 ! misho 1842: if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP) cc += 2;
! 1843: cc += 1 + IMM2_SIZE + 1;
1.1 misho 1844: break;
1845:
1846: /* Handle single-char matchers */
1847:
1848: case OP_PROP:
1849: case OP_NOTPROP:
1850: cc += 2;
1851: /* Fall through */
1852:
1853: case OP_HSPACE:
1854: case OP_VSPACE:
1855: case OP_NOT_HSPACE:
1856: case OP_NOT_VSPACE:
1857: case OP_NOT_DIGIT:
1858: case OP_DIGIT:
1859: case OP_NOT_WHITESPACE:
1860: case OP_WHITESPACE:
1861: case OP_NOT_WORDCHAR:
1862: case OP_WORDCHAR:
1863: case OP_ANY:
1864: case OP_ALLANY:
1865: branchlength++;
1866: cc++;
1867: break;
1868:
1869: /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
1870: otherwise \C is coded as OP_ALLANY. */
1871:
1872: case OP_ANYBYTE:
1873: return -2;
1874:
1875: /* Check a class for variable quantification */
1876:
1.1.1.2 ! misho 1877: #if defined SUPPORT_UTF || defined COMPILE_PCRE16
1.1 misho 1878: case OP_XCLASS:
1.1.1.2 ! misho 1879: cc += GET(cc, 1) - PRIV(OP_lengths)[OP_CLASS];
1.1 misho 1880: /* Fall through */
1881: #endif
1882:
1883: case OP_CLASS:
1884: case OP_NCLASS:
1.1.1.2 ! misho 1885: cc += PRIV(OP_lengths)[OP_CLASS];
1.1 misho 1886:
1887: switch (*cc)
1888: {
1889: case OP_CRPLUS:
1890: case OP_CRMINPLUS:
1891: case OP_CRSTAR:
1892: case OP_CRMINSTAR:
1893: case OP_CRQUERY:
1894: case OP_CRMINQUERY:
1895: return -1;
1896:
1897: case OP_CRRANGE:
1898: case OP_CRMINRANGE:
1.1.1.2 ! misho 1899: if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1;
1.1 misho 1900: branchlength += GET2(cc,1);
1.1.1.2 ! misho 1901: cc += 1 + 2 * IMM2_SIZE;
1.1 misho 1902: break;
1903:
1904: default:
1905: branchlength++;
1906: }
1907: break;
1908:
1909: /* Anything else is variable length */
1910:
1911: case OP_ANYNL:
1912: case OP_BRAMINZERO:
1913: case OP_BRAPOS:
1914: case OP_BRAPOSZERO:
1915: case OP_BRAZERO:
1916: case OP_CBRAPOS:
1917: case OP_EXTUNI:
1918: case OP_KETRMAX:
1919: case OP_KETRMIN:
1920: case OP_KETRPOS:
1921: case OP_MINPLUS:
1922: case OP_MINPLUSI:
1923: case OP_MINQUERY:
1924: case OP_MINQUERYI:
1925: case OP_MINSTAR:
1926: case OP_MINSTARI:
1927: case OP_MINUPTO:
1928: case OP_MINUPTOI:
1929: case OP_NOTMINPLUS:
1930: case OP_NOTMINPLUSI:
1931: case OP_NOTMINQUERY:
1932: case OP_NOTMINQUERYI:
1933: case OP_NOTMINSTAR:
1934: case OP_NOTMINSTARI:
1935: case OP_NOTMINUPTO:
1936: case OP_NOTMINUPTOI:
1937: case OP_NOTPLUS:
1938: case OP_NOTPLUSI:
1939: case OP_NOTPOSPLUS:
1940: case OP_NOTPOSPLUSI:
1941: case OP_NOTPOSQUERY:
1942: case OP_NOTPOSQUERYI:
1943: case OP_NOTPOSSTAR:
1944: case OP_NOTPOSSTARI:
1945: case OP_NOTPOSUPTO:
1946: case OP_NOTPOSUPTOI:
1947: case OP_NOTQUERY:
1948: case OP_NOTQUERYI:
1949: case OP_NOTSTAR:
1950: case OP_NOTSTARI:
1951: case OP_NOTUPTO:
1952: case OP_NOTUPTOI:
1953: case OP_PLUS:
1954: case OP_PLUSI:
1955: case OP_POSPLUS:
1956: case OP_POSPLUSI:
1957: case OP_POSQUERY:
1958: case OP_POSQUERYI:
1959: case OP_POSSTAR:
1960: case OP_POSSTARI:
1961: case OP_POSUPTO:
1962: case OP_POSUPTOI:
1963: case OP_QUERY:
1964: case OP_QUERYI:
1965: case OP_REF:
1966: case OP_REFI:
1967: case OP_SBRA:
1968: case OP_SBRAPOS:
1969: case OP_SCBRA:
1970: case OP_SCBRAPOS:
1971: case OP_SCOND:
1972: case OP_SKIPZERO:
1973: case OP_STAR:
1974: case OP_STARI:
1975: case OP_TYPEMINPLUS:
1976: case OP_TYPEMINQUERY:
1977: case OP_TYPEMINSTAR:
1978: case OP_TYPEMINUPTO:
1979: case OP_TYPEPLUS:
1980: case OP_TYPEPOSPLUS:
1981: case OP_TYPEPOSQUERY:
1982: case OP_TYPEPOSSTAR:
1983: case OP_TYPEPOSUPTO:
1984: case OP_TYPEQUERY:
1985: case OP_TYPESTAR:
1986: case OP_TYPEUPTO:
1987: case OP_UPTO:
1988: case OP_UPTOI:
1989: return -1;
1990:
1991: /* Catch unrecognized opcodes so that when new ones are added they
1992: are not forgotten, as has happened in the past. */
1993:
1994: default:
1995: return -4;
1996: }
1997: }
1998: /* Control never gets here */
1999: }
2000:
2001:
2002:
2003:
2004: /*************************************************
2005: * Scan compiled regex for specific bracket *
2006: *************************************************/
2007:
2008: /* This little function scans through a compiled pattern until it finds a
2009: capturing bracket with the given number, or, if the number is negative, an
2010: instance of OP_REVERSE for a lookbehind. The function is global in the C sense
2011: so that it can be called from pcre_study() when finding the minimum matching
2012: length.
2013:
2014: Arguments:
2015: code points to start of expression
1.1.1.2 ! misho 2016: utf TRUE in UTF-8 / UTF-16 mode
1.1 misho 2017: number the required bracket number or negative to find a lookbehind
2018:
2019: Returns: pointer to the opcode for the bracket, or NULL if not found
2020: */
2021:
1.1.1.2 ! misho 2022: const pcre_uchar *
! 2023: PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number)
1.1 misho 2024: {
2025: for (;;)
2026: {
2027: register int c = *code;
2028:
2029: if (c == OP_END) return NULL;
2030:
2031: /* XCLASS is used for classes that cannot be represented just by a bit
2032: map. This includes negated single high-valued characters. The length in
2033: the table is zero; the actual length is stored in the compiled code. */
2034:
2035: if (c == OP_XCLASS) code += GET(code, 1);
2036:
2037: /* Handle recursion */
2038:
2039: else if (c == OP_REVERSE)
2040: {
1.1.1.2 ! misho 2041: if (number < 0) return (pcre_uchar *)code;
! 2042: code += PRIV(OP_lengths)[c];
1.1 misho 2043: }
2044:
2045: /* Handle capturing bracket */
2046:
2047: else if (c == OP_CBRA || c == OP_SCBRA ||
2048: c == OP_CBRAPOS || c == OP_SCBRAPOS)
2049: {
2050: int n = GET2(code, 1+LINK_SIZE);
1.1.1.2 ! misho 2051: if (n == number) return (pcre_uchar *)code;
! 2052: code += PRIV(OP_lengths)[c];
1.1 misho 2053: }
2054:
2055: /* Otherwise, we can get the item's length from the table, except that for
2056: repeated character types, we have to test for \p and \P, which have an extra
2057: two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2058: must add in its length. */
2059:
2060: else
2061: {
2062: switch(c)
2063: {
2064: case OP_TYPESTAR:
2065: case OP_TYPEMINSTAR:
2066: case OP_TYPEPLUS:
2067: case OP_TYPEMINPLUS:
2068: case OP_TYPEQUERY:
2069: case OP_TYPEMINQUERY:
2070: case OP_TYPEPOSSTAR:
2071: case OP_TYPEPOSPLUS:
2072: case OP_TYPEPOSQUERY:
2073: if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2074: break;
2075:
2076: case OP_TYPEUPTO:
2077: case OP_TYPEMINUPTO:
2078: case OP_TYPEEXACT:
2079: case OP_TYPEPOSUPTO:
1.1.1.2 ! misho 2080: if (code[1 + IMM2_SIZE] == OP_PROP
! 2081: || code[1 + IMM2_SIZE] == OP_NOTPROP) code += 2;
1.1 misho 2082: break;
2083:
2084: case OP_MARK:
2085: case OP_PRUNE_ARG:
2086: case OP_SKIP_ARG:
2087: code += code[1];
2088: break;
2089:
2090: case OP_THEN_ARG:
2091: code += code[1];
2092: break;
2093: }
2094:
2095: /* Add in the fixed length from the table */
2096:
1.1.1.2 ! misho 2097: code += PRIV(OP_lengths)[c];
1.1 misho 2098:
2099: /* In UTF-8 mode, opcodes that are followed by a character may be followed by
2100: a multi-byte character. The length in the table is a minimum, so we have to
2101: arrange to skip the extra bytes. */
2102:
1.1.1.2 ! misho 2103: #ifdef SUPPORT_UTF
! 2104: if (utf) switch(c)
1.1 misho 2105: {
2106: case OP_CHAR:
2107: case OP_CHARI:
2108: case OP_EXACT:
2109: case OP_EXACTI:
2110: case OP_UPTO:
2111: case OP_UPTOI:
2112: case OP_MINUPTO:
2113: case OP_MINUPTOI:
2114: case OP_POSUPTO:
2115: case OP_POSUPTOI:
2116: case OP_STAR:
2117: case OP_STARI:
2118: case OP_MINSTAR:
2119: case OP_MINSTARI:
2120: case OP_POSSTAR:
2121: case OP_POSSTARI:
2122: case OP_PLUS:
2123: case OP_PLUSI:
2124: case OP_MINPLUS:
2125: case OP_MINPLUSI:
2126: case OP_POSPLUS:
2127: case OP_POSPLUSI:
2128: case OP_QUERY:
2129: case OP_QUERYI:
2130: case OP_MINQUERY:
2131: case OP_MINQUERYI:
2132: case OP_POSQUERY:
2133: case OP_POSQUERYI:
1.1.1.2 ! misho 2134: if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
1.1 misho 2135: break;
2136: }
2137: #else
1.1.1.2 ! misho 2138: (void)(utf); /* Keep compiler happy by referencing function argument */
1.1 misho 2139: #endif
2140: }
2141: }
2142: }
2143:
2144:
2145:
2146: /*************************************************
2147: * Scan compiled regex for recursion reference *
2148: *************************************************/
2149:
2150: /* This little function scans through a compiled pattern until it finds an
2151: instance of OP_RECURSE.
2152:
2153: Arguments:
2154: code points to start of expression
1.1.1.2 ! misho 2155: utf TRUE in UTF-8 / UTF-16 mode
1.1 misho 2156:
2157: Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
2158: */
2159:
1.1.1.2 ! misho 2160: static const pcre_uchar *
! 2161: find_recurse(const pcre_uchar *code, BOOL utf)
1.1 misho 2162: {
2163: for (;;)
2164: {
2165: register int c = *code;
2166: if (c == OP_END) return NULL;
2167: if (c == OP_RECURSE) return code;
2168:
2169: /* XCLASS is used for classes that cannot be represented just by a bit
2170: map. This includes negated single high-valued characters. The length in
2171: the table is zero; the actual length is stored in the compiled code. */
2172:
2173: if (c == OP_XCLASS) code += GET(code, 1);
2174:
2175: /* Otherwise, we can get the item's length from the table, except that for
2176: repeated character types, we have to test for \p and \P, which have an extra
2177: two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2178: must add in its length. */
2179:
2180: else
2181: {
2182: switch(c)
2183: {
2184: case OP_TYPESTAR:
2185: case OP_TYPEMINSTAR:
2186: case OP_TYPEPLUS:
2187: case OP_TYPEMINPLUS:
2188: case OP_TYPEQUERY:
2189: case OP_TYPEMINQUERY:
2190: case OP_TYPEPOSSTAR:
2191: case OP_TYPEPOSPLUS:
2192: case OP_TYPEPOSQUERY:
2193: if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2194: break;
2195:
2196: case OP_TYPEPOSUPTO:
2197: case OP_TYPEUPTO:
2198: case OP_TYPEMINUPTO:
2199: case OP_TYPEEXACT:
1.1.1.2 ! misho 2200: if (code[1 + IMM2_SIZE] == OP_PROP
! 2201: || code[1 + IMM2_SIZE] == OP_NOTPROP) code += 2;
1.1 misho 2202: break;
2203:
2204: case OP_MARK:
2205: case OP_PRUNE_ARG:
2206: case OP_SKIP_ARG:
2207: code += code[1];
2208: break;
2209:
2210: case OP_THEN_ARG:
2211: code += code[1];
2212: break;
2213: }
2214:
2215: /* Add in the fixed length from the table */
2216:
1.1.1.2 ! misho 2217: code += PRIV(OP_lengths)[c];
1.1 misho 2218:
2219: /* In UTF-8 mode, opcodes that are followed by a character may be followed
2220: by a multi-byte character. The length in the table is a minimum, so we have
2221: to arrange to skip the extra bytes. */
2222:
1.1.1.2 ! misho 2223: #ifdef SUPPORT_UTF
! 2224: if (utf) switch(c)
1.1 misho 2225: {
2226: case OP_CHAR:
2227: case OP_CHARI:
2228: case OP_EXACT:
2229: case OP_EXACTI:
2230: case OP_UPTO:
2231: case OP_UPTOI:
2232: case OP_MINUPTO:
2233: case OP_MINUPTOI:
2234: case OP_POSUPTO:
2235: case OP_POSUPTOI:
2236: case OP_STAR:
2237: case OP_STARI:
2238: case OP_MINSTAR:
2239: case OP_MINSTARI:
2240: case OP_POSSTAR:
2241: case OP_POSSTARI:
2242: case OP_PLUS:
2243: case OP_PLUSI:
2244: case OP_MINPLUS:
2245: case OP_MINPLUSI:
2246: case OP_POSPLUS:
2247: case OP_POSPLUSI:
2248: case OP_QUERY:
2249: case OP_QUERYI:
2250: case OP_MINQUERY:
2251: case OP_MINQUERYI:
2252: case OP_POSQUERY:
2253: case OP_POSQUERYI:
1.1.1.2 ! misho 2254: if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
1.1 misho 2255: break;
2256: }
2257: #else
1.1.1.2 ! misho 2258: (void)(utf); /* Keep compiler happy by referencing function argument */
1.1 misho 2259: #endif
2260: }
2261: }
2262: }
2263:
2264:
2265:
2266: /*************************************************
2267: * Scan compiled branch for non-emptiness *
2268: *************************************************/
2269:
2270: /* This function scans through a branch of a compiled pattern to see whether it
2271: can match the empty string or not. It is called from could_be_empty()
2272: below and from compile_branch() when checking for an unlimited repeat of a
2273: group that can match nothing. Note that first_significant_code() skips over
2274: backward and negative forward assertions when its final argument is TRUE. If we
2275: hit an unclosed bracket, we return "empty" - this means we've struck an inner
2276: bracket whose current branch will already have been scanned.
2277:
2278: Arguments:
2279: code points to start of search
2280: endcode points to where to stop
1.1.1.2 ! misho 2281: utf TRUE if in UTF-8 / UTF-16 mode
1.1 misho 2282: cd contains pointers to tables etc.
2283:
2284: Returns: TRUE if what is matched could be empty
2285: */
2286:
2287: static BOOL
1.1.1.2 ! misho 2288: could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode,
! 2289: BOOL utf, compile_data *cd)
1.1 misho 2290: {
2291: register int c;
1.1.1.2 ! misho 2292: for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE);
1.1 misho 2293: code < endcode;
1.1.1.2 ! misho 2294: code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE))
1.1 misho 2295: {
1.1.1.2 ! misho 2296: const pcre_uchar *ccode;
1.1 misho 2297:
2298: c = *code;
2299:
2300: /* Skip over forward assertions; the other assertions are skipped by
2301: first_significant_code() with a TRUE final argument. */
2302:
2303: if (c == OP_ASSERT)
2304: {
2305: do code += GET(code, 1); while (*code == OP_ALT);
2306: c = *code;
2307: continue;
2308: }
2309:
2310: /* For a recursion/subroutine call, if its end has been reached, which
2311: implies a backward reference subroutine call, we can scan it. If it's a
2312: forward reference subroutine call, we can't. To detect forward reference
2313: we have to scan up the list that is kept in the workspace. This function is
2314: called only when doing the real compile, not during the pre-compile that
2315: measures the size of the compiled pattern. */
2316:
2317: if (c == OP_RECURSE)
2318: {
1.1.1.2 ! misho 2319: const pcre_uchar *scode;
1.1 misho 2320: BOOL empty_branch;
2321:
2322: /* Test for forward reference */
2323:
2324: for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
2325: if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE;
2326:
2327: /* Not a forward reference, test for completed backward reference */
2328:
2329: empty_branch = FALSE;
2330: scode = cd->start_code + GET(code, 1);
2331: if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
2332:
2333: /* Completed backwards reference */
2334:
2335: do
2336: {
1.1.1.2 ! misho 2337: if (could_be_empty_branch(scode, endcode, utf, cd))
1.1 misho 2338: {
2339: empty_branch = TRUE;
2340: break;
2341: }
2342: scode += GET(scode, 1);
2343: }
2344: while (*scode == OP_ALT);
2345:
2346: if (!empty_branch) return FALSE; /* All branches are non-empty */
2347: continue;
2348: }
2349:
2350: /* Groups with zero repeats can of course be empty; skip them. */
2351:
2352: if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
2353: c == OP_BRAPOSZERO)
2354: {
1.1.1.2 ! misho 2355: code += PRIV(OP_lengths)[c];
1.1 misho 2356: do code += GET(code, 1); while (*code == OP_ALT);
2357: c = *code;
2358: continue;
2359: }
2360:
2361: /* A nested group that is already marked as "could be empty" can just be
2362: skipped. */
2363:
2364: if (c == OP_SBRA || c == OP_SBRAPOS ||
2365: c == OP_SCBRA || c == OP_SCBRAPOS)
2366: {
2367: do code += GET(code, 1); while (*code == OP_ALT);
2368: c = *code;
2369: continue;
2370: }
2371:
2372: /* For other groups, scan the branches. */
2373:
2374: if (c == OP_BRA || c == OP_BRAPOS ||
2375: c == OP_CBRA || c == OP_CBRAPOS ||
2376: c == OP_ONCE || c == OP_ONCE_NC ||
2377: c == OP_COND)
2378: {
2379: BOOL empty_branch;
2380: if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
2381:
2382: /* If a conditional group has only one branch, there is a second, implied,
2383: empty branch, so just skip over the conditional, because it could be empty.
2384: Otherwise, scan the individual branches of the group. */
2385:
2386: if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
2387: code += GET(code, 1);
2388: else
2389: {
2390: empty_branch = FALSE;
2391: do
2392: {
1.1.1.2 ! misho 2393: if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd))
1.1 misho 2394: empty_branch = TRUE;
2395: code += GET(code, 1);
2396: }
2397: while (*code == OP_ALT);
2398: if (!empty_branch) return FALSE; /* All branches are non-empty */
2399: }
2400:
2401: c = *code;
2402: continue;
2403: }
2404:
2405: /* Handle the other opcodes */
2406:
2407: switch (c)
2408: {
2409: /* Check for quantifiers after a class. XCLASS is used for classes that
2410: cannot be represented just by a bit map. This includes negated single
1.1.1.2 ! misho 2411: high-valued characters. The length in PRIV(OP_lengths)[] is zero; the
1.1 misho 2412: actual length is stored in the compiled code, so we must update "code"
2413: here. */
2414:
1.1.1.2 ! misho 2415: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
1.1 misho 2416: case OP_XCLASS:
2417: ccode = code += GET(code, 1);
2418: goto CHECK_CLASS_REPEAT;
2419: #endif
2420:
2421: case OP_CLASS:
2422: case OP_NCLASS:
1.1.1.2 ! misho 2423: ccode = code + PRIV(OP_lengths)[OP_CLASS];
1.1 misho 2424:
1.1.1.2 ! misho 2425: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
1.1 misho 2426: CHECK_CLASS_REPEAT:
2427: #endif
2428:
2429: switch (*ccode)
2430: {
2431: case OP_CRSTAR: /* These could be empty; continue */
2432: case OP_CRMINSTAR:
2433: case OP_CRQUERY:
2434: case OP_CRMINQUERY:
2435: break;
2436:
2437: default: /* Non-repeat => class must match */
2438: case OP_CRPLUS: /* These repeats aren't empty */
2439: case OP_CRMINPLUS:
2440: return FALSE;
2441:
2442: case OP_CRRANGE:
2443: case OP_CRMINRANGE:
2444: if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
2445: break;
2446: }
2447: break;
2448:
2449: /* Opcodes that must match a character */
2450:
2451: case OP_PROP:
2452: case OP_NOTPROP:
2453: case OP_EXTUNI:
2454: case OP_NOT_DIGIT:
2455: case OP_DIGIT:
2456: case OP_NOT_WHITESPACE:
2457: case OP_WHITESPACE:
2458: case OP_NOT_WORDCHAR:
2459: case OP_WORDCHAR:
2460: case OP_ANY:
2461: case OP_ALLANY:
2462: case OP_ANYBYTE:
2463: case OP_CHAR:
2464: case OP_CHARI:
2465: case OP_NOT:
2466: case OP_NOTI:
2467: case OP_PLUS:
2468: case OP_MINPLUS:
2469: case OP_POSPLUS:
2470: case OP_EXACT:
2471: case OP_NOTPLUS:
2472: case OP_NOTMINPLUS:
2473: case OP_NOTPOSPLUS:
2474: case OP_NOTEXACT:
2475: case OP_TYPEPLUS:
2476: case OP_TYPEMINPLUS:
2477: case OP_TYPEPOSPLUS:
2478: case OP_TYPEEXACT:
2479: return FALSE;
2480:
2481: /* These are going to continue, as they may be empty, but we have to
2482: fudge the length for the \p and \P cases. */
2483:
2484: case OP_TYPESTAR:
2485: case OP_TYPEMINSTAR:
2486: case OP_TYPEPOSSTAR:
2487: case OP_TYPEQUERY:
2488: case OP_TYPEMINQUERY:
2489: case OP_TYPEPOSQUERY:
2490: if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2491: break;
2492:
2493: /* Same for these */
2494:
2495: case OP_TYPEUPTO:
2496: case OP_TYPEMINUPTO:
2497: case OP_TYPEPOSUPTO:
1.1.1.2 ! misho 2498: if (code[1 + IMM2_SIZE] == OP_PROP
! 2499: || code[1 + IMM2_SIZE] == OP_NOTPROP) code += 2;
1.1 misho 2500: break;
2501:
2502: /* End of branch */
2503:
2504: case OP_KET:
2505: case OP_KETRMAX:
2506: case OP_KETRMIN:
2507: case OP_KETRPOS:
2508: case OP_ALT:
2509: return TRUE;
2510:
2511: /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
2512: MINUPTO, and POSUPTO may be followed by a multibyte character */
2513:
1.1.1.2 ! misho 2514: #ifdef SUPPORT_UTF
1.1 misho 2515: case OP_STAR:
2516: case OP_STARI:
2517: case OP_MINSTAR:
2518: case OP_MINSTARI:
2519: case OP_POSSTAR:
2520: case OP_POSSTARI:
2521: case OP_QUERY:
2522: case OP_QUERYI:
2523: case OP_MINQUERY:
2524: case OP_MINQUERYI:
2525: case OP_POSQUERY:
2526: case OP_POSQUERYI:
1.1.1.2 ! misho 2527: if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]);
1.1 misho 2528: break;
2529:
2530: case OP_UPTO:
2531: case OP_UPTOI:
2532: case OP_MINUPTO:
2533: case OP_MINUPTOI:
2534: case OP_POSUPTO:
2535: case OP_POSUPTOI:
1.1.1.2 ! misho 2536: if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]);
1.1 misho 2537: break;
2538: #endif
2539:
2540: /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
2541: string. */
2542:
2543: case OP_MARK:
2544: case OP_PRUNE_ARG:
2545: case OP_SKIP_ARG:
2546: code += code[1];
2547: break;
2548:
2549: case OP_THEN_ARG:
2550: code += code[1];
2551: break;
2552:
2553: /* None of the remaining opcodes are required to match a character. */
2554:
2555: default:
2556: break;
2557: }
2558: }
2559:
2560: return TRUE;
2561: }
2562:
2563:
2564:
2565: /*************************************************
2566: * Scan compiled regex for non-emptiness *
2567: *************************************************/
2568:
2569: /* This function is called to check for left recursive calls. We want to check
2570: the current branch of the current pattern to see if it could match the empty
2571: string. If it could, we must look outwards for branches at other levels,
2572: stopping when we pass beyond the bracket which is the subject of the recursion.
2573: This function is called only during the real compile, not during the
2574: pre-compile.
2575:
2576: Arguments:
2577: code points to start of the recursion
2578: endcode points to where to stop (current RECURSE item)
2579: bcptr points to the chain of current (unclosed) branch starts
1.1.1.2 ! misho 2580: utf TRUE if in UTF-8 / UTF-16 mode
1.1 misho 2581: cd pointers to tables etc
2582:
2583: Returns: TRUE if what is matched could be empty
2584: */
2585:
2586: static BOOL
1.1.1.2 ! misho 2587: could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode,
! 2588: branch_chain *bcptr, BOOL utf, compile_data *cd)
1.1 misho 2589: {
2590: while (bcptr != NULL && bcptr->current_branch >= code)
2591: {
1.1.1.2 ! misho 2592: if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd))
1.1 misho 2593: return FALSE;
2594: bcptr = bcptr->outer;
2595: }
2596: return TRUE;
2597: }
2598:
2599:
2600:
2601: /*************************************************
2602: * Check for POSIX class syntax *
2603: *************************************************/
2604:
2605: /* This function is called when the sequence "[:" or "[." or "[=" is
2606: encountered in a character class. It checks whether this is followed by a
2607: sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
2608: reach an unescaped ']' without the special preceding character, return FALSE.
2609:
2610: Originally, this function only recognized a sequence of letters between the
2611: terminators, but it seems that Perl recognizes any sequence of characters,
2612: though of course unknown POSIX names are subsequently rejected. Perl gives an
2613: "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
2614: didn't consider this to be a POSIX class. Likewise for [:1234:].
2615:
2616: The problem in trying to be exactly like Perl is in the handling of escapes. We
2617: have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
2618: class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
2619: below handles the special case of \], but does not try to do any other escape
2620: processing. This makes it different from Perl for cases such as [:l\ower:]
2621: where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
2622: "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
2623: I think.
2624:
2625: A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
2626: It seems that the appearance of a nested POSIX class supersedes an apparent
2627: external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
2628: a digit.
2629:
2630: In Perl, unescaped square brackets may also appear as part of class names. For
2631: example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
2632: [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
2633: seem right at all. PCRE does not allow closing square brackets in POSIX class
2634: names.
2635:
2636: Arguments:
2637: ptr pointer to the initial [
2638: endptr where to return the end pointer
2639:
2640: Returns: TRUE or FALSE
2641: */
2642:
2643: static BOOL
1.1.1.2 ! misho 2644: check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr)
1.1 misho 2645: {
2646: int terminator; /* Don't combine these lines; the Solaris cc */
2647: terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
2648: for (++ptr; *ptr != 0; ptr++)
2649: {
2650: if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2651: ptr++;
2652: else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
2653: else
2654: {
2655: if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2656: {
2657: *endptr = ptr;
2658: return TRUE;
2659: }
2660: if (*ptr == CHAR_LEFT_SQUARE_BRACKET &&
2661: (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
2662: ptr[1] == CHAR_EQUALS_SIGN) &&
2663: check_posix_syntax(ptr, endptr))
2664: return FALSE;
2665: }
2666: }
2667: return FALSE;
2668: }
2669:
2670:
2671:
2672:
2673: /*************************************************
2674: * Check POSIX class name *
2675: *************************************************/
2676:
2677: /* This function is called to check the name given in a POSIX-style class entry
2678: such as [:alnum:].
2679:
2680: Arguments:
2681: ptr points to the first letter
2682: len the length of the name
2683:
2684: Returns: a value representing the name, or -1 if unknown
2685: */
2686:
2687: static int
1.1.1.2 ! misho 2688: check_posix_name(const pcre_uchar *ptr, int len)
1.1 misho 2689: {
2690: const char *pn = posix_names;
2691: register int yield = 0;
2692: while (posix_name_lengths[yield] != 0)
2693: {
2694: if (len == posix_name_lengths[yield] &&
1.1.1.2 ! misho 2695: STRNCMP_UC_C8(ptr, pn, len) == 0) return yield;
1.1 misho 2696: pn += posix_name_lengths[yield] + 1;
2697: yield++;
2698: }
2699: return -1;
2700: }
2701:
2702:
2703: /*************************************************
2704: * Adjust OP_RECURSE items in repeated group *
2705: *************************************************/
2706:
2707: /* OP_RECURSE items contain an offset from the start of the regex to the group
2708: that is referenced. This means that groups can be replicated for fixed
2709: repetition simply by copying (because the recursion is allowed to refer to
2710: earlier groups that are outside the current group). However, when a group is
2711: optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
2712: inserted before it, after it has been compiled. This means that any OP_RECURSE
2713: items within it that refer to the group itself or any contained groups have to
2714: have their offsets adjusted. That one of the jobs of this function. Before it
2715: is called, the partially compiled regex must be temporarily terminated with
2716: OP_END.
2717:
2718: This function has been extended with the possibility of forward references for
2719: recursions and subroutine calls. It must also check the list of such references
2720: for the group we are dealing with. If it finds that one of the recursions in
2721: the current group is on this list, it adjusts the offset in the list, not the
2722: value in the reference (which is a group number).
2723:
2724: Arguments:
2725: group points to the start of the group
2726: adjust the amount by which the group is to be moved
1.1.1.2 ! misho 2727: utf TRUE in UTF-8 / UTF-16 mode
1.1 misho 2728: cd contains pointers to tables etc.
2729: save_hwm the hwm forward reference pointer at the start of the group
2730:
2731: Returns: nothing
2732: */
2733:
2734: static void
1.1.1.2 ! misho 2735: adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd,
! 2736: pcre_uchar *save_hwm)
1.1 misho 2737: {
1.1.1.2 ! misho 2738: pcre_uchar *ptr = group;
1.1 misho 2739:
1.1.1.2 ! misho 2740: while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL)
1.1 misho 2741: {
2742: int offset;
1.1.1.2 ! misho 2743: pcre_uchar *hc;
1.1 misho 2744:
2745: /* See if this recursion is on the forward reference list. If so, adjust the
2746: reference. */
2747:
2748: for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
2749: {
2750: offset = GET(hc, 0);
2751: if (cd->start_code + offset == ptr + 1)
2752: {
2753: PUT(hc, 0, offset + adjust);
2754: break;
2755: }
2756: }
2757:
2758: /* Otherwise, adjust the recursion offset if it's after the start of this
2759: group. */
2760:
2761: if (hc >= cd->hwm)
2762: {
2763: offset = GET(ptr, 1);
2764: if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
2765: }
2766:
2767: ptr += 1 + LINK_SIZE;
2768: }
2769: }
2770:
2771:
2772:
2773: /*************************************************
2774: * Insert an automatic callout point *
2775: *************************************************/
2776:
2777: /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
2778: callout points before each pattern item.
2779:
2780: Arguments:
2781: code current code pointer
2782: ptr current pattern pointer
2783: cd pointers to tables etc
2784:
2785: Returns: new code pointer
2786: */
2787:
1.1.1.2 ! misho 2788: static pcre_uchar *
! 2789: auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd)
1.1 misho 2790: {
2791: *code++ = OP_CALLOUT;
2792: *code++ = 255;
2793: PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
2794: PUT(code, LINK_SIZE, 0); /* Default length */
1.1.1.2 ! misho 2795: return code + 2 * LINK_SIZE;
1.1 misho 2796: }
2797:
2798:
2799:
2800: /*************************************************
2801: * Complete a callout item *
2802: *************************************************/
2803:
2804: /* A callout item contains the length of the next item in the pattern, which
2805: we can't fill in till after we have reached the relevant point. This is used
2806: for both automatic and manual callouts.
2807:
2808: Arguments:
2809: previous_callout points to previous callout item
2810: ptr current pattern pointer
2811: cd pointers to tables etc
2812:
2813: Returns: nothing
2814: */
2815:
2816: static void
1.1.1.2 ! misho 2817: complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd)
1.1 misho 2818: {
2819: int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
2820: PUT(previous_callout, 2 + LINK_SIZE, length);
2821: }
2822:
2823:
2824:
2825: #ifdef SUPPORT_UCP
2826: /*************************************************
2827: * Get othercase range *
2828: *************************************************/
2829:
2830: /* This function is passed the start and end of a class range, in UTF-8 mode
2831: with UCP support. It searches up the characters, looking for internal ranges of
2832: characters in the "other" case. Each call returns the next one, updating the
2833: start address.
2834:
2835: Arguments:
2836: cptr points to starting character value; updated
2837: d end value
2838: ocptr where to put start of othercase range
2839: odptr where to put end of othercase range
2840:
2841: Yield: TRUE when range returned; FALSE when no more
2842: */
2843:
2844: static BOOL
2845: get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
2846: unsigned int *odptr)
2847: {
2848: unsigned int c, othercase, next;
2849:
2850: for (c = *cptr; c <= d; c++)
2851: { if ((othercase = UCD_OTHERCASE(c)) != c) break; }
2852:
2853: if (c > d) return FALSE;
2854:
2855: *ocptr = othercase;
2856: next = othercase + 1;
2857:
2858: for (++c; c <= d; c++)
2859: {
2860: if (UCD_OTHERCASE(c) != next) break;
2861: next++;
2862: }
2863:
2864: *odptr = next - 1;
2865: *cptr = c;
2866:
2867: return TRUE;
2868: }
2869:
2870:
2871:
2872: /*************************************************
2873: * Check a character and a property *
2874: *************************************************/
2875:
2876: /* This function is called by check_auto_possessive() when a property item
2877: is adjacent to a fixed character.
2878:
2879: Arguments:
2880: c the character
2881: ptype the property type
2882: pdata the data for the type
2883: negated TRUE if it's a negated property (\P or \p{^)
2884:
2885: Returns: TRUE if auto-possessifying is OK
2886: */
2887:
2888: static BOOL
2889: check_char_prop(int c, int ptype, int pdata, BOOL negated)
2890: {
2891: const ucd_record *prop = GET_UCD(c);
2892: switch(ptype)
2893: {
2894: case PT_LAMP:
2895: return (prop->chartype == ucp_Lu ||
2896: prop->chartype == ucp_Ll ||
2897: prop->chartype == ucp_Lt) == negated;
2898:
2899: case PT_GC:
1.1.1.2 ! misho 2900: return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated;
1.1 misho 2901:
2902: case PT_PC:
2903: return (pdata == prop->chartype) == negated;
2904:
2905: case PT_SC:
2906: return (pdata == prop->script) == negated;
2907:
2908: /* These are specials */
2909:
2910: case PT_ALNUM:
1.1.1.2 ! misho 2911: return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
! 2912: PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated;
1.1 misho 2913:
2914: case PT_SPACE: /* Perl space */
1.1.1.2 ! misho 2915: return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
1.1 misho 2916: c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
2917: == negated;
2918:
2919: case PT_PXSPACE: /* POSIX space */
1.1.1.2 ! misho 2920: return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
1.1 misho 2921: c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
2922: c == CHAR_FF || c == CHAR_CR)
2923: == negated;
2924:
2925: case PT_WORD:
1.1.1.2 ! misho 2926: return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
! 2927: PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
1.1 misho 2928: c == CHAR_UNDERSCORE) == negated;
2929: }
2930: return FALSE;
2931: }
2932: #endif /* SUPPORT_UCP */
2933:
2934:
2935:
2936: /*************************************************
2937: * Check if auto-possessifying is possible *
2938: *************************************************/
2939:
2940: /* This function is called for unlimited repeats of certain items, to see
2941: whether the next thing could possibly match the repeated item. If not, it makes
2942: sense to automatically possessify the repeated item.
2943:
2944: Arguments:
2945: previous pointer to the repeated opcode
1.1.1.2 ! misho 2946: utf TRUE in UTF-8 / UTF-16 mode
1.1 misho 2947: ptr next character in pattern
2948: options options bits
2949: cd contains pointers to tables etc.
2950:
2951: Returns: TRUE if possessifying is wanted
2952: */
2953:
2954: static BOOL
1.1.1.2 ! misho 2955: check_auto_possessive(const pcre_uchar *previous, BOOL utf,
! 2956: const pcre_uchar *ptr, int options, compile_data *cd)
1.1 misho 2957: {
1.1.1.2 ! misho 2958: pcre_int32 c, next;
1.1 misho 2959: int op_code = *previous++;
2960:
2961: /* Skip whitespace and comments in extended mode */
2962:
2963: if ((options & PCRE_EXTENDED) != 0)
2964: {
2965: for (;;)
2966: {
1.1.1.2 ! misho 2967: while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
1.1 misho 2968: if (*ptr == CHAR_NUMBER_SIGN)
2969: {
2970: ptr++;
2971: while (*ptr != 0)
2972: {
2973: if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2974: ptr++;
1.1.1.2 ! misho 2975: #ifdef SUPPORT_UTF
! 2976: if (utf) FORWARDCHAR(ptr);
1.1 misho 2977: #endif
2978: }
2979: }
2980: else break;
2981: }
2982: }
2983:
2984: /* If the next item is one that we can handle, get its value. A non-negative
2985: value is a character, a negative value is an escape value. */
2986:
2987: if (*ptr == CHAR_BACKSLASH)
2988: {
2989: int temperrorcode = 0;
2990: next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2991: if (temperrorcode != 0) return FALSE;
2992: ptr++; /* Point after the escape sequence */
2993: }
1.1.1.2 ! misho 2994: else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0)
1.1 misho 2995: {
1.1.1.2 ! misho 2996: #ifdef SUPPORT_UTF
! 2997: if (utf) { GETCHARINC(next, ptr); } else
1.1 misho 2998: #endif
2999: next = *ptr++;
3000: }
3001: else return FALSE;
3002:
3003: /* Skip whitespace and comments in extended mode */
3004:
3005: if ((options & PCRE_EXTENDED) != 0)
3006: {
3007: for (;;)
3008: {
1.1.1.2 ! misho 3009: while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
1.1 misho 3010: if (*ptr == CHAR_NUMBER_SIGN)
3011: {
3012: ptr++;
3013: while (*ptr != 0)
3014: {
3015: if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
3016: ptr++;
1.1.1.2 ! misho 3017: #ifdef SUPPORT_UTF
! 3018: if (utf) FORWARDCHAR(ptr);
1.1 misho 3019: #endif
3020: }
3021: }
3022: else break;
3023: }
3024: }
3025:
3026: /* If the next thing is itself optional, we have to give up. */
3027:
3028: if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
1.1.1.2 ! misho 3029: STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
1.1 misho 3030: return FALSE;
3031:
3032: /* Now compare the next item with the previous opcode. First, handle cases when
3033: the next item is a character. */
3034:
3035: if (next >= 0) switch(op_code)
3036: {
3037: case OP_CHAR:
1.1.1.2 ! misho 3038: #ifdef SUPPORT_UTF
1.1 misho 3039: GETCHARTEST(c, previous);
3040: #else
3041: c = *previous;
3042: #endif
3043: return c != next;
3044:
3045: /* For CHARI (caseless character) we must check the other case. If we have
3046: Unicode property support, we can use it to test the other case of
3047: high-valued characters. */
3048:
3049: case OP_CHARI:
1.1.1.2 ! misho 3050: #ifdef SUPPORT_UTF
1.1 misho 3051: GETCHARTEST(c, previous);
3052: #else
3053: c = *previous;
3054: #endif
3055: if (c == next) return FALSE;
1.1.1.2 ! misho 3056: #ifdef SUPPORT_UTF
! 3057: if (utf)
1.1 misho 3058: {
3059: unsigned int othercase;
3060: if (next < 128) othercase = cd->fcc[next]; else
3061: #ifdef SUPPORT_UCP
3062: othercase = UCD_OTHERCASE((unsigned int)next);
3063: #else
3064: othercase = NOTACHAR;
3065: #endif
3066: return (unsigned int)c != othercase;
3067: }
3068: else
1.1.1.2 ! misho 3069: #endif /* SUPPORT_UTF */
! 3070: return (c != TABLE_GET((unsigned int)next, cd->fcc, next)); /* Non-UTF-8 mode */
1.1 misho 3071:
3072: /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These
3073: opcodes are not used for multi-byte characters, because they are coded using
3074: an XCLASS instead. */
3075:
3076: case OP_NOT:
3077: return (c = *previous) == next;
3078:
3079: case OP_NOTI:
3080: if ((c = *previous) == next) return TRUE;
1.1.1.2 ! misho 3081: #ifdef SUPPORT_UTF
! 3082: if (utf)
1.1 misho 3083: {
3084: unsigned int othercase;
3085: if (next < 128) othercase = cd->fcc[next]; else
3086: #ifdef SUPPORT_UCP
3087: othercase = UCD_OTHERCASE(next);
3088: #else
3089: othercase = NOTACHAR;
3090: #endif
3091: return (unsigned int)c == othercase;
3092: }
3093: else
1.1.1.2 ! misho 3094: #endif /* SUPPORT_UTF */
! 3095: return (c == (int)(TABLE_GET((unsigned int)next, cd->fcc, next))); /* Non-UTF-8 mode */
1.1 misho 3096:
3097: /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
3098: When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
3099:
3100: case OP_DIGIT:
3101: return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
3102:
3103: case OP_NOT_DIGIT:
3104: return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
3105:
3106: case OP_WHITESPACE:
3107: return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
3108:
3109: case OP_NOT_WHITESPACE:
3110: return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
3111:
3112: case OP_WORDCHAR:
3113: return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
3114:
3115: case OP_NOT_WORDCHAR:
3116: return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
3117:
3118: case OP_HSPACE:
3119: case OP_NOT_HSPACE:
3120: switch(next)
3121: {
3122: case 0x09:
3123: case 0x20:
3124: case 0xa0:
3125: case 0x1680:
3126: case 0x180e:
3127: case 0x2000:
3128: case 0x2001:
3129: case 0x2002:
3130: case 0x2003:
3131: case 0x2004:
3132: case 0x2005:
3133: case 0x2006:
3134: case 0x2007:
3135: case 0x2008:
3136: case 0x2009:
3137: case 0x200A:
3138: case 0x202f:
3139: case 0x205f:
3140: case 0x3000:
3141: return op_code == OP_NOT_HSPACE;
3142: default:
3143: return op_code != OP_NOT_HSPACE;
3144: }
3145:
3146: case OP_ANYNL:
3147: case OP_VSPACE:
3148: case OP_NOT_VSPACE:
3149: switch(next)
3150: {
3151: case 0x0a:
3152: case 0x0b:
3153: case 0x0c:
3154: case 0x0d:
3155: case 0x85:
3156: case 0x2028:
3157: case 0x2029:
3158: return op_code == OP_NOT_VSPACE;
3159: default:
3160: return op_code != OP_NOT_VSPACE;
3161: }
3162:
3163: #ifdef SUPPORT_UCP
3164: case OP_PROP:
3165: return check_char_prop(next, previous[0], previous[1], FALSE);
3166:
3167: case OP_NOTPROP:
3168: return check_char_prop(next, previous[0], previous[1], TRUE);
3169: #endif
3170:
3171: default:
3172: return FALSE;
3173: }
3174:
3175:
3176: /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
3177: is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
3178: generated only when PCRE_UCP is *not* set, that is, when only ASCII
3179: characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
3180: replaced by OP_PROP codes when PCRE_UCP is set. */
3181:
3182: switch(op_code)
3183: {
3184: case OP_CHAR:
3185: case OP_CHARI:
1.1.1.2 ! misho 3186: #ifdef SUPPORT_UTF
1.1 misho 3187: GETCHARTEST(c, previous);
3188: #else
3189: c = *previous;
3190: #endif
3191: switch(-next)
3192: {
3193: case ESC_d:
3194: return c > 127 || (cd->ctypes[c] & ctype_digit) == 0;
3195:
3196: case ESC_D:
3197: return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0;
3198:
3199: case ESC_s:
3200: return c > 127 || (cd->ctypes[c] & ctype_space) == 0;
3201:
3202: case ESC_S:
3203: return c <= 127 && (cd->ctypes[c] & ctype_space) != 0;
3204:
3205: case ESC_w:
3206: return c > 127 || (cd->ctypes[c] & ctype_word) == 0;
3207:
3208: case ESC_W:
3209: return c <= 127 && (cd->ctypes[c] & ctype_word) != 0;
3210:
3211: case ESC_h:
3212: case ESC_H:
3213: switch(c)
3214: {
3215: case 0x09:
3216: case 0x20:
3217: case 0xa0:
3218: case 0x1680:
3219: case 0x180e:
3220: case 0x2000:
3221: case 0x2001:
3222: case 0x2002:
3223: case 0x2003:
3224: case 0x2004:
3225: case 0x2005:
3226: case 0x2006:
3227: case 0x2007:
3228: case 0x2008:
3229: case 0x2009:
3230: case 0x200A:
3231: case 0x202f:
3232: case 0x205f:
3233: case 0x3000:
3234: return -next != ESC_h;
3235: default:
3236: return -next == ESC_h;
3237: }
3238:
3239: case ESC_v:
3240: case ESC_V:
3241: switch(c)
3242: {
3243: case 0x0a:
3244: case 0x0b:
3245: case 0x0c:
3246: case 0x0d:
3247: case 0x85:
3248: case 0x2028:
3249: case 0x2029:
3250: return -next != ESC_v;
3251: default:
3252: return -next == ESC_v;
3253: }
3254:
3255: /* When PCRE_UCP is set, these values get generated for \d etc. Find
3256: their substitutions and process them. The result will always be either
3257: -ESC_p or -ESC_P. Then fall through to process those values. */
3258:
3259: #ifdef SUPPORT_UCP
3260: case ESC_du:
3261: case ESC_DU:
3262: case ESC_wu:
3263: case ESC_WU:
3264: case ESC_su:
3265: case ESC_SU:
3266: {
3267: int temperrorcode = 0;
3268: ptr = substitutes[-next - ESC_DU];
3269: next = check_escape(&ptr, &temperrorcode, 0, options, FALSE);
3270: if (temperrorcode != 0) return FALSE;
3271: ptr++; /* For compatibility */
3272: }
3273: /* Fall through */
3274:
3275: case ESC_p:
3276: case ESC_P:
3277: {
3278: int ptype, pdata, errorcodeptr;
3279: BOOL negated;
3280:
3281: ptr--; /* Make ptr point at the p or P */
3282: ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr);
3283: if (ptype < 0) return FALSE;
3284: ptr++; /* Point past the final curly ket */
3285:
3286: /* If the property item is optional, we have to give up. (When generated
3287: from \d etc by PCRE_UCP, this test will have been applied much earlier,
3288: to the original \d etc. At this point, ptr will point to a zero byte. */
3289:
3290: if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
1.1.1.2 ! misho 3291: STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
1.1 misho 3292: return FALSE;
3293:
3294: /* Do the property check. */
3295:
3296: return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated);
3297: }
3298: #endif
3299:
3300: default:
3301: return FALSE;
3302: }
3303:
3304: /* In principle, support for Unicode properties should be integrated here as
3305: well. It means re-organizing the above code so as to get hold of the property
3306: values before switching on the op-code. However, I wonder how many patterns
3307: combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
3308: these op-codes are never generated.) */
3309:
3310: case OP_DIGIT:
3311: return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
3312: next == -ESC_h || next == -ESC_v || next == -ESC_R;
3313:
3314: case OP_NOT_DIGIT:
3315: return next == -ESC_d;
3316:
3317: case OP_WHITESPACE:
3318: return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R;
3319:
3320: case OP_NOT_WHITESPACE:
3321: return next == -ESC_s || next == -ESC_h || next == -ESC_v;
3322:
3323: case OP_HSPACE:
3324: return next == -ESC_S || next == -ESC_H || next == -ESC_d ||
3325: next == -ESC_w || next == -ESC_v || next == -ESC_R;
3326:
3327: case OP_NOT_HSPACE:
3328: return next == -ESC_h;
3329:
3330: /* Can't have \S in here because VT matches \S (Perl anomaly) */
3331: case OP_ANYNL:
3332: case OP_VSPACE:
3333: return next == -ESC_V || next == -ESC_d || next == -ESC_w;
3334:
3335: case OP_NOT_VSPACE:
3336: return next == -ESC_v || next == -ESC_R;
3337:
3338: case OP_WORDCHAR:
3339: return next == -ESC_W || next == -ESC_s || next == -ESC_h ||
3340: next == -ESC_v || next == -ESC_R;
3341:
3342: case OP_NOT_WORDCHAR:
3343: return next == -ESC_w || next == -ESC_d;
3344:
3345: default:
3346: return FALSE;
3347: }
3348:
3349: /* Control does not reach here */
3350: }
3351:
3352:
3353:
3354: /*************************************************
3355: * Compile one branch *
3356: *************************************************/
3357:
3358: /* Scan the pattern, compiling it into the a vector. If the options are
3359: changed during the branch, the pointer is used to change the external options
3360: bits. This function is used during the pre-compile phase when we are trying
3361: to find out the amount of memory needed, as well as during the real compile
3362: phase. The value of lengthptr distinguishes the two phases.
3363:
3364: Arguments:
3365: optionsptr pointer to the option bits
3366: codeptr points to the pointer to the current code point
3367: ptrptr points to the current pattern pointer
3368: errorcodeptr points to error code variable
1.1.1.2 ! misho 3369: firstcharptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
! 3370: reqcharptr set to the last literal character required, else < 0
1.1 misho 3371: bcptr points to current branch chain
3372: cond_depth conditional nesting depth
3373: cd contains pointers to tables etc.
3374: lengthptr NULL during the real compile phase
3375: points to length accumulator during pre-compile phase
3376:
3377: Returns: TRUE on success
3378: FALSE, with *errorcodeptr set non-zero on error
3379: */
3380:
3381: static BOOL
1.1.1.2 ! misho 3382: compile_branch(int *optionsptr, pcre_uchar **codeptr,
! 3383: const pcre_uchar **ptrptr, int *errorcodeptr, pcre_int32 *firstcharptr,
! 3384: pcre_int32 *reqcharptr, branch_chain *bcptr, int cond_depth,
! 3385: compile_data *cd, int *lengthptr)
1.1 misho 3386: {
3387: int repeat_type, op_type;
3388: int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
3389: int bravalue = 0;
3390: int greedy_default, greedy_non_default;
1.1.1.2 ! misho 3391: pcre_int32 firstchar, reqchar;
! 3392: pcre_int32 zeroreqchar, zerofirstchar;
! 3393: pcre_int32 req_caseopt, reqvary, tempreqvary;
1.1 misho 3394: int options = *optionsptr; /* May change dynamically */
3395: int after_manual_callout = 0;
3396: int length_prevgroup = 0;
3397: register int c;
1.1.1.2 ! misho 3398: register pcre_uchar *code = *codeptr;
! 3399: pcre_uchar *last_code = code;
! 3400: pcre_uchar *orig_code = code;
! 3401: pcre_uchar *tempcode;
1.1 misho 3402: BOOL inescq = FALSE;
1.1.1.2 ! misho 3403: BOOL groupsetfirstchar = FALSE;
! 3404: const pcre_uchar *ptr = *ptrptr;
! 3405: const pcre_uchar *tempptr;
! 3406: const pcre_uchar *nestptr = NULL;
! 3407: pcre_uchar *previous = NULL;
! 3408: pcre_uchar *previous_callout = NULL;
! 3409: pcre_uchar *save_hwm = NULL;
! 3410: pcre_uint8 classbits[32];
1.1 misho 3411:
3412: /* We can fish out the UTF-8 setting once and for all into a BOOL, but we
3413: must not do this for other options (e.g. PCRE_EXTENDED) because they may change
3414: dynamically as we process the pattern. */
3415:
1.1.1.2 ! misho 3416: #ifdef SUPPORT_UTF
! 3417: /* PCRE_UTF16 has the same value as PCRE_UTF8. */
! 3418: BOOL utf = (options & PCRE_UTF8) != 0;
! 3419: pcre_uchar utf_chars[6];
1.1 misho 3420: #else
1.1.1.2 ! misho 3421: BOOL utf = FALSE;
! 3422: #endif
! 3423:
! 3424: /* Helper variables for OP_XCLASS opcode (for characters > 255). */
! 3425:
! 3426: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
! 3427: BOOL xclass;
! 3428: pcre_uchar *class_uchardata;
! 3429: pcre_uchar *class_uchardata_base;
1.1 misho 3430: #endif
3431:
3432: #ifdef PCRE_DEBUG
3433: if (lengthptr != NULL) DPRINTF((">> start branch\n"));
3434: #endif
3435:
3436: /* Set up the default and non-default settings for greediness */
3437:
3438: greedy_default = ((options & PCRE_UNGREEDY) != 0);
3439: greedy_non_default = greedy_default ^ 1;
3440:
3441: /* Initialize no first byte, no required byte. REQ_UNSET means "no char
3442: matching encountered yet". It gets changed to REQ_NONE if we hit something that
1.1.1.2 ! misho 3443: matches a non-fixed char first char; reqchar just remains unset if we never
1.1 misho 3444: find one.
3445:
3446: When we hit a repeat whose minimum is zero, we may have to adjust these values
3447: to take the zero repeat into account. This is implemented by setting them to
1.1.1.2 ! misho 3448: zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual
1.1 misho 3449: item types that can be repeated set these backoff variables appropriately. */
3450:
1.1.1.2 ! misho 3451: firstchar = reqchar = zerofirstchar = zeroreqchar = REQ_UNSET;
1.1 misho 3452:
1.1.1.2 ! misho 3453: /* The variable req_caseopt contains either the REQ_CASELESS value
! 3454: or zero, according to the current setting of the caseless flag. The
! 3455: REQ_CASELESS leaves the lower 28 bit empty. It is added into the
! 3456: firstchar or reqchar variables to record the case status of the
! 3457: value. This is used only for ASCII characters. */
1.1 misho 3458:
1.1.1.2 ! misho 3459: req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
1.1 misho 3460:
3461: /* Switch on next character until the end of the branch */
3462:
3463: for (;; ptr++)
3464: {
3465: BOOL negate_class;
3466: BOOL should_flip_negation;
3467: BOOL possessive_quantifier;
3468: BOOL is_quantifier;
3469: BOOL is_recurse;
3470: BOOL reset_bracount;
1.1.1.2 ! misho 3471: int class_has_8bitchar;
! 3472: int class_single_char;
1.1 misho 3473: int newoptions;
3474: int recno;
3475: int refsign;
3476: int skipbytes;
1.1.1.2 ! misho 3477: int subreqchar;
! 3478: int subfirstchar;
1.1 misho 3479: int terminator;
3480: int mclength;
3481: int tempbracount;
1.1.1.2 ! misho 3482: pcre_uchar mcbuffer[8];
1.1 misho 3483:
1.1.1.2 ! misho 3484: /* Get next character in the pattern */
1.1 misho 3485:
3486: c = *ptr;
3487:
3488: /* If we are at the end of a nested substitution, revert to the outer level
3489: string. Nesting only happens one level deep. */
3490:
3491: if (c == 0 && nestptr != NULL)
3492: {
3493: ptr = nestptr;
3494: nestptr = NULL;
3495: c = *ptr;
3496: }
3497:
3498: /* If we are in the pre-compile phase, accumulate the length used for the
3499: previous cycle of this loop. */
3500:
3501: if (lengthptr != NULL)
3502: {
3503: #ifdef PCRE_DEBUG
3504: if (code > cd->hwm) cd->hwm = code; /* High water info */
3505: #endif
3506: if (code > cd->start_workspace + cd->workspace_size -
3507: WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
3508: {
3509: *errorcodeptr = ERR52;
3510: goto FAILED;
3511: }
3512:
3513: /* There is at least one situation where code goes backwards: this is the
3514: case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
3515: the class is simply eliminated. However, it is created first, so we have to
3516: allow memory for it. Therefore, don't ever reduce the length at this point.
3517: */
3518:
3519: if (code < last_code) code = last_code;
3520:
3521: /* Paranoid check for integer overflow */
3522:
3523: if (OFLOW_MAX - *lengthptr < code - last_code)
3524: {
3525: *errorcodeptr = ERR20;
3526: goto FAILED;
3527: }
3528:
3529: *lengthptr += (int)(code - last_code);
1.1.1.2 ! misho 3530: DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr,
! 3531: (int)(code - last_code), c, c));
1.1 misho 3532:
3533: /* If "previous" is set and it is not at the start of the work space, move
3534: it back to there, in order to avoid filling up the work space. Otherwise,
3535: if "previous" is NULL, reset the current code pointer to the start. */
3536:
3537: if (previous != NULL)
3538: {
3539: if (previous > orig_code)
3540: {
1.1.1.2 ! misho 3541: memmove(orig_code, previous, IN_UCHARS(code - previous));
1.1 misho 3542: code -= previous - orig_code;
3543: previous = orig_code;
3544: }
3545: }
3546: else code = orig_code;
3547:
3548: /* Remember where this code item starts so we can pick up the length
3549: next time round. */
3550:
3551: last_code = code;
3552: }
3553:
3554: /* In the real compile phase, just check the workspace used by the forward
3555: reference list. */
3556:
3557: else if (cd->hwm > cd->start_workspace + cd->workspace_size -
3558: WORK_SIZE_SAFETY_MARGIN)
3559: {
3560: *errorcodeptr = ERR52;
3561: goto FAILED;
3562: }
3563:
3564: /* If in \Q...\E, check for the end; if not, we have a literal */
3565:
3566: if (inescq && c != 0)
3567: {
3568: if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3569: {
3570: inescq = FALSE;
3571: ptr++;
3572: continue;
3573: }
3574: else
3575: {
3576: if (previous_callout != NULL)
3577: {
3578: if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3579: complete_callout(previous_callout, ptr, cd);
3580: previous_callout = NULL;
3581: }
3582: if ((options & PCRE_AUTO_CALLOUT) != 0)
3583: {
3584: previous_callout = code;
3585: code = auto_callout(code, ptr, cd);
3586: }
3587: goto NORMAL_CHAR;
3588: }
3589: }
3590:
3591: /* Fill in length of a previous callout, except when the next thing is
3592: a quantifier. */
3593:
3594: is_quantifier =
3595: c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
3596: (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
3597:
3598: if (!is_quantifier && previous_callout != NULL &&
3599: after_manual_callout-- <= 0)
3600: {
3601: if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3602: complete_callout(previous_callout, ptr, cd);
3603: previous_callout = NULL;
3604: }
3605:
3606: /* In extended mode, skip white space and comments. */
3607:
3608: if ((options & PCRE_EXTENDED) != 0)
3609: {
1.1.1.2 ! misho 3610: if (MAX_255(*ptr) && (cd->ctypes[c] & ctype_space) != 0) continue;
1.1 misho 3611: if (c == CHAR_NUMBER_SIGN)
3612: {
3613: ptr++;
3614: while (*ptr != 0)
3615: {
3616: if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3617: ptr++;
1.1.1.2 ! misho 3618: #ifdef SUPPORT_UTF
! 3619: if (utf) FORWARDCHAR(ptr);
1.1 misho 3620: #endif
3621: }
3622: if (*ptr != 0) continue;
3623:
3624: /* Else fall through to handle end of string */
3625: c = 0;
3626: }
3627: }
3628:
3629: /* No auto callout for quantifiers. */
3630:
3631: if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
3632: {
3633: previous_callout = code;
3634: code = auto_callout(code, ptr, cd);
3635: }
3636:
3637: switch(c)
3638: {
3639: /* ===================================================================*/
3640: case 0: /* The branch terminates at string end */
3641: case CHAR_VERTICAL_LINE: /* or | or ) */
3642: case CHAR_RIGHT_PARENTHESIS:
1.1.1.2 ! misho 3643: *firstcharptr = firstchar;
! 3644: *reqcharptr = reqchar;
1.1 misho 3645: *codeptr = code;
3646: *ptrptr = ptr;
3647: if (lengthptr != NULL)
3648: {
3649: if (OFLOW_MAX - *lengthptr < code - last_code)
3650: {
3651: *errorcodeptr = ERR20;
3652: goto FAILED;
3653: }
3654: *lengthptr += (int)(code - last_code); /* To include callout length */
3655: DPRINTF((">> end branch\n"));
3656: }
3657: return TRUE;
3658:
3659:
3660: /* ===================================================================*/
3661: /* Handle single-character metacharacters. In multiline mode, ^ disables
3662: the setting of any following char as a first character. */
3663:
3664: case CHAR_CIRCUMFLEX_ACCENT:
3665: previous = NULL;
3666: if ((options & PCRE_MULTILINE) != 0)
3667: {
1.1.1.2 ! misho 3668: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
1.1 misho 3669: *code++ = OP_CIRCM;
3670: }
3671: else *code++ = OP_CIRC;
3672: break;
3673:
3674: case CHAR_DOLLAR_SIGN:
3675: previous = NULL;
3676: *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
3677: break;
3678:
3679: /* There can never be a first char if '.' is first, whatever happens about
1.1.1.2 ! misho 3680: repeats. The value of reqchar doesn't change either. */
1.1 misho 3681:
3682: case CHAR_DOT:
1.1.1.2 ! misho 3683: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
! 3684: zerofirstchar = firstchar;
! 3685: zeroreqchar = reqchar;
1.1 misho 3686: previous = code;
3687: *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
3688: break;
3689:
3690:
3691: /* ===================================================================*/
3692: /* Character classes. If the included characters are all < 256, we build a
3693: 32-byte bitmap of the permitted characters, except in the special case
3694: where there is only one such character. For negated classes, we build the
3695: map as usual, then invert it at the end. However, we use a different opcode
3696: so that data characters > 255 can be handled correctly.
3697:
3698: If the class contains characters outside the 0-255 range, a different
3699: opcode is compiled. It may optionally have a bit map for characters < 256,
3700: but those above are are explicitly listed afterwards. A flag byte tells
3701: whether the bitmap is present, and whether this is a negated class or not.
3702:
3703: In JavaScript compatibility mode, an isolated ']' causes an error. In
3704: default (Perl) mode, it is treated as a data character. */
3705:
3706: case CHAR_RIGHT_SQUARE_BRACKET:
3707: if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3708: {
3709: *errorcodeptr = ERR64;
3710: goto FAILED;
3711: }
3712: goto NORMAL_CHAR;
3713:
3714: case CHAR_LEFT_SQUARE_BRACKET:
3715: previous = code;
3716:
3717: /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
3718: they are encountered at the top level, so we'll do that too. */
3719:
3720: if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3721: ptr[1] == CHAR_EQUALS_SIGN) &&
3722: check_posix_syntax(ptr, &tempptr))
3723: {
3724: *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
3725: goto FAILED;
3726: }
3727:
3728: /* If the first character is '^', set the negation flag and skip it. Also,
3729: if the first few characters (either before or after ^) are \Q\E or \E we
3730: skip them too. This makes for compatibility with Perl. */
3731:
3732: negate_class = FALSE;
3733: for (;;)
3734: {
3735: c = *(++ptr);
3736: if (c == CHAR_BACKSLASH)
3737: {
3738: if (ptr[1] == CHAR_E)
3739: ptr++;
1.1.1.2 ! misho 3740: else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
1.1 misho 3741: ptr += 3;
3742: else
3743: break;
3744: }
3745: else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
3746: negate_class = TRUE;
3747: else break;
3748: }
3749:
3750: /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
3751: an initial ']' is taken as a data character -- the code below handles
3752: that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
3753: [^] must match any character, so generate OP_ALLANY. */
3754:
3755: if (c == CHAR_RIGHT_SQUARE_BRACKET &&
3756: (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3757: {
3758: *code++ = negate_class? OP_ALLANY : OP_FAIL;
1.1.1.2 ! misho 3759: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
! 3760: zerofirstchar = firstchar;
1.1 misho 3761: break;
3762: }
3763:
3764: /* If a class contains a negative special such as \S, we need to flip the
3765: negation flag at the end, so that support for characters > 255 works
3766: correctly (they are all included in the class). */
3767:
3768: should_flip_negation = FALSE;
3769:
1.1.1.2 ! misho 3770: /* For optimization purposes, we track some properties of the class.
! 3771: class_has_8bitchar will be non-zero, if the class contains at least one
! 3772: < 256 character. class_single_char will be 1 if the class contains only
! 3773: a single character. */
1.1 misho 3774:
1.1.1.2 ! misho 3775: class_has_8bitchar = 0;
! 3776: class_single_char = 0;
1.1 misho 3777:
3778: /* Initialize the 32-char bit map to all zeros. We build the map in a
3779: temporary bit of memory, in case the class contains only 1 character (less
3780: than 256), because in that case the compiled code doesn't use the bit map.
3781: */
3782:
1.1.1.2 ! misho 3783: memset(classbits, 0, 32 * sizeof(pcre_uint8));
1.1 misho 3784:
1.1.1.2 ! misho 3785: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
! 3786: xclass = FALSE; /* No chars >= 256 */
! 3787: class_uchardata = code + LINK_SIZE + 2; /* For UTF-8 items */
! 3788: class_uchardata_base = class_uchardata; /* For resetting in pass 1 */
1.1 misho 3789: #endif
3790:
3791: /* Process characters until ] is reached. By writing this as a "do" it
3792: means that an initial ] is taken as a data character. At the start of the
3793: loop, c contains the first byte of the character. */
3794:
3795: if (c != 0) do
3796: {
1.1.1.2 ! misho 3797: const pcre_uchar *oldptr;
1.1 misho 3798:
1.1.1.2 ! misho 3799: #ifdef SUPPORT_UTF
! 3800: if (utf && HAS_EXTRALEN(c))
1.1 misho 3801: { /* Braces are required because the */
3802: GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
3803: }
1.1.1.2 ! misho 3804: #endif
1.1 misho 3805:
1.1.1.2 ! misho 3806: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
! 3807: /* In the pre-compile phase, accumulate the length of any extra
1.1 misho 3808: data and reset the pointer. This is so that very large classes that
1.1.1.2 ! misho 3809: contain a zillion > 255 characters no longer overwrite the work space
1.1 misho 3810: (which is on the stack). */
3811:
3812: if (lengthptr != NULL)
3813: {
1.1.1.2 ! misho 3814: *lengthptr += class_uchardata - class_uchardata_base;
! 3815: class_uchardata = class_uchardata_base;
1.1 misho 3816: }
3817: #endif
3818:
3819: /* Inside \Q...\E everything is literal except \E */
3820:
3821: if (inescq)
3822: {
3823: if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
3824: {
3825: inescq = FALSE; /* Reset literal state */
3826: ptr++; /* Skip the 'E' */
3827: continue; /* Carry on with next */
3828: }
3829: goto CHECK_RANGE; /* Could be range if \E follows */
3830: }
3831:
3832: /* Handle POSIX class names. Perl allows a negation extension of the
3833: form [:^name:]. A square bracket that doesn't match the syntax is
3834: treated as a literal. We also recognize the POSIX constructions
3835: [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
3836: 5.6 and 5.8 do. */
3837:
3838: if (c == CHAR_LEFT_SQUARE_BRACKET &&
3839: (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3840: ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
3841: {
3842: BOOL local_negate = FALSE;
3843: int posix_class, taboffset, tabopt;
1.1.1.2 ! misho 3844: register const pcre_uint8 *cbits = cd->cbits;
! 3845: pcre_uint8 pbits[32];
1.1 misho 3846:
3847: if (ptr[1] != CHAR_COLON)
3848: {
3849: *errorcodeptr = ERR31;
3850: goto FAILED;
3851: }
3852:
3853: ptr += 2;
3854: if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
3855: {
3856: local_negate = TRUE;
3857: should_flip_negation = TRUE; /* Note negative special */
3858: ptr++;
3859: }
3860:
3861: posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
3862: if (posix_class < 0)
3863: {
3864: *errorcodeptr = ERR30;
3865: goto FAILED;
3866: }
3867:
3868: /* If matching is caseless, upper and lower are converted to
3869: alpha. This relies on the fact that the class table starts with
3870: alpha, lower, upper as the first 3 entries. */
3871:
3872: if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
3873: posix_class = 0;
3874:
3875: /* When PCRE_UCP is set, some of the POSIX classes are converted to
3876: different escape sequences that use Unicode properties. */
3877:
3878: #ifdef SUPPORT_UCP
3879: if ((options & PCRE_UCP) != 0)
3880: {
3881: int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
3882: if (posix_substitutes[pc] != NULL)
3883: {
3884: nestptr = tempptr + 1;
3885: ptr = posix_substitutes[pc] - 1;
3886: continue;
3887: }
3888: }
3889: #endif
3890: /* In the non-UCP case, we build the bit map for the POSIX class in a
3891: chunk of local store because we may be adding and subtracting from it,
3892: and we don't want to subtract bits that may be in the main map already.
3893: At the end we or the result into the bit map that is being built. */
3894:
3895: posix_class *= 3;
3896:
3897: /* Copy in the first table (always present) */
3898:
3899: memcpy(pbits, cbits + posix_class_maps[posix_class],
1.1.1.2 ! misho 3900: 32 * sizeof(pcre_uint8));
1.1 misho 3901:
3902: /* If there is a second table, add or remove it as required. */
3903:
3904: taboffset = posix_class_maps[posix_class + 1];
3905: tabopt = posix_class_maps[posix_class + 2];
3906:
3907: if (taboffset >= 0)
3908: {
3909: if (tabopt >= 0)
3910: for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
3911: else
3912: for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
3913: }
3914:
3915: /* Not see if we need to remove any special characters. An option
3916: value of 1 removes vertical space and 2 removes underscore. */
3917:
3918: if (tabopt < 0) tabopt = -tabopt;
3919: if (tabopt == 1) pbits[1] &= ~0x3c;
3920: else if (tabopt == 2) pbits[11] &= 0x7f;
3921:
3922: /* Add the POSIX table or its complement into the main table that is
3923: being built and we are done. */
3924:
3925: if (local_negate)
3926: for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
3927: else
3928: for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
3929:
3930: ptr = tempptr + 1;
1.1.1.2 ! misho 3931: /* Every class contains at least one < 256 characters. */
! 3932: class_has_8bitchar = 1;
! 3933: /* Every class contains at least two characters. */
! 3934: class_single_char = 2;
1.1 misho 3935: continue; /* End of POSIX syntax handling */
3936: }
3937:
3938: /* Backslash may introduce a single character, or it may introduce one
3939: of the specials, which just set a flag. The sequence \b is a special
3940: case. Inside a class (and only there) it is treated as backspace. We
1.1.1.2 ! misho 3941: assume that other escapes have more than one character in them, so
! 3942: speculatively set both class_has_8bitchar and class_single_char bigger
! 3943: than one. Unrecognized escapes fall through and are either treated
! 3944: as literal characters (by default), or are faulted if
1.1 misho 3945: PCRE_EXTRA is set. */
3946:
3947: if (c == CHAR_BACKSLASH)
3948: {
3949: c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3950: if (*errorcodeptr != 0) goto FAILED;
3951:
3952: if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
3953: else if (-c == ESC_N) /* \N is not supported in a class */
3954: {
3955: *errorcodeptr = ERR71;
3956: goto FAILED;
3957: }
3958: else if (-c == ESC_Q) /* Handle start of quoted string */
3959: {
3960: if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
3961: {
3962: ptr += 2; /* avoid empty string */
3963: }
3964: else inescq = TRUE;
3965: continue;
3966: }
3967: else if (-c == ESC_E) continue; /* Ignore orphan \E */
3968:
3969: if (c < 0)
3970: {
1.1.1.2 ! misho 3971: register const pcre_uint8 *cbits = cd->cbits;
! 3972: /* Every class contains at least two < 256 characters. */
! 3973: class_has_8bitchar++;
! 3974: /* Every class contains at least two characters. */
! 3975: class_single_char += 2;
1.1 misho 3976:
3977: switch (-c)
3978: {
3979: #ifdef SUPPORT_UCP
3980: case ESC_du: /* These are the values given for \d etc */
3981: case ESC_DU: /* when PCRE_UCP is set. We replace the */
3982: case ESC_wu: /* escape sequence with an appropriate \p */
3983: case ESC_WU: /* or \P to test Unicode properties instead */
3984: case ESC_su: /* of the default ASCII testing. */
3985: case ESC_SU:
3986: nestptr = ptr;
3987: ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
1.1.1.2 ! misho 3988: class_has_8bitchar--; /* Undo! */
1.1 misho 3989: continue;
3990: #endif
3991: case ESC_d:
3992: for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
3993: continue;
3994:
3995: case ESC_D:
3996: should_flip_negation = TRUE;
3997: for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
3998: continue;
3999:
4000: case ESC_w:
4001: for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
4002: continue;
4003:
4004: case ESC_W:
4005: should_flip_negation = TRUE;
4006: for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
4007: continue;
4008:
4009: /* Perl 5.004 onwards omits VT from \s, but we must preserve it
4010: if it was previously set by something earlier in the character
4011: class. */
4012:
4013: case ESC_s:
4014: classbits[0] |= cbits[cbit_space];
4015: classbits[1] |= cbits[cbit_space+1] & ~0x08;
4016: for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
4017: continue;
4018:
4019: case ESC_S:
4020: should_flip_negation = TRUE;
4021: for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
4022: classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
4023: continue;
4024:
4025: case ESC_h:
4026: SETBIT(classbits, 0x09); /* VT */
4027: SETBIT(classbits, 0x20); /* SPACE */
4028: SETBIT(classbits, 0xa0); /* NSBP */
1.1.1.2 ! misho 4029: #ifndef COMPILE_PCRE8
! 4030: xclass = TRUE;
! 4031: *class_uchardata++ = XCL_SINGLE;
! 4032: *class_uchardata++ = 0x1680;
! 4033: *class_uchardata++ = XCL_SINGLE;
! 4034: *class_uchardata++ = 0x180e;
! 4035: *class_uchardata++ = XCL_RANGE;
! 4036: *class_uchardata++ = 0x2000;
! 4037: *class_uchardata++ = 0x200a;
! 4038: *class_uchardata++ = XCL_SINGLE;
! 4039: *class_uchardata++ = 0x202f;
! 4040: *class_uchardata++ = XCL_SINGLE;
! 4041: *class_uchardata++ = 0x205f;
! 4042: *class_uchardata++ = XCL_SINGLE;
! 4043: *class_uchardata++ = 0x3000;
! 4044: #elif defined SUPPORT_UTF
! 4045: if (utf)
1.1 misho 4046: {
1.1.1.2 ! misho 4047: xclass = TRUE;
! 4048: *class_uchardata++ = XCL_SINGLE;
! 4049: class_uchardata += PRIV(ord2utf)(0x1680, class_uchardata);
! 4050: *class_uchardata++ = XCL_SINGLE;
! 4051: class_uchardata += PRIV(ord2utf)(0x180e, class_uchardata);
! 4052: *class_uchardata++ = XCL_RANGE;
! 4053: class_uchardata += PRIV(ord2utf)(0x2000, class_uchardata);
! 4054: class_uchardata += PRIV(ord2utf)(0x200a, class_uchardata);
! 4055: *class_uchardata++ = XCL_SINGLE;
! 4056: class_uchardata += PRIV(ord2utf)(0x202f, class_uchardata);
! 4057: *class_uchardata++ = XCL_SINGLE;
! 4058: class_uchardata += PRIV(ord2utf)(0x205f, class_uchardata);
! 4059: *class_uchardata++ = XCL_SINGLE;
! 4060: class_uchardata += PRIV(ord2utf)(0x3000, class_uchardata);
1.1 misho 4061: }
4062: #endif
4063: continue;
4064:
4065: case ESC_H:
4066: for (c = 0; c < 32; c++)
4067: {
4068: int x = 0xff;
4069: switch (c)
4070: {
4071: case 0x09/8: x ^= 1 << (0x09%8); break;
4072: case 0x20/8: x ^= 1 << (0x20%8); break;
4073: case 0xa0/8: x ^= 1 << (0xa0%8); break;
4074: default: break;
4075: }
4076: classbits[c] |= x;
4077: }
1.1.1.2 ! misho 4078: #ifndef COMPILE_PCRE8
! 4079: xclass = TRUE;
! 4080: *class_uchardata++ = XCL_RANGE;
! 4081: *class_uchardata++ = 0x0100;
! 4082: *class_uchardata++ = 0x167f;
! 4083: *class_uchardata++ = XCL_RANGE;
! 4084: *class_uchardata++ = 0x1681;
! 4085: *class_uchardata++ = 0x180d;
! 4086: *class_uchardata++ = XCL_RANGE;
! 4087: *class_uchardata++ = 0x180f;
! 4088: *class_uchardata++ = 0x1fff;
! 4089: *class_uchardata++ = XCL_RANGE;
! 4090: *class_uchardata++ = 0x200b;
! 4091: *class_uchardata++ = 0x202e;
! 4092: *class_uchardata++ = XCL_RANGE;
! 4093: *class_uchardata++ = 0x2030;
! 4094: *class_uchardata++ = 0x205e;
! 4095: *class_uchardata++ = XCL_RANGE;
! 4096: *class_uchardata++ = 0x2060;
! 4097: *class_uchardata++ = 0x2fff;
! 4098: *class_uchardata++ = XCL_RANGE;
! 4099: *class_uchardata++ = 0x3001;
! 4100: #ifdef SUPPORT_UTF
! 4101: if (utf)
! 4102: class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata);
! 4103: else
! 4104: #endif
! 4105: *class_uchardata++ = 0xffff;
! 4106: #elif defined SUPPORT_UTF
! 4107: if (utf)
1.1 misho 4108: {
1.1.1.2 ! misho 4109: xclass = TRUE;
! 4110: *class_uchardata++ = XCL_RANGE;
! 4111: class_uchardata += PRIV(ord2utf)(0x0100, class_uchardata);
! 4112: class_uchardata += PRIV(ord2utf)(0x167f, class_uchardata);
! 4113: *class_uchardata++ = XCL_RANGE;
! 4114: class_uchardata += PRIV(ord2utf)(0x1681, class_uchardata);
! 4115: class_uchardata += PRIV(ord2utf)(0x180d, class_uchardata);
! 4116: *class_uchardata++ = XCL_RANGE;
! 4117: class_uchardata += PRIV(ord2utf)(0x180f, class_uchardata);
! 4118: class_uchardata += PRIV(ord2utf)(0x1fff, class_uchardata);
! 4119: *class_uchardata++ = XCL_RANGE;
! 4120: class_uchardata += PRIV(ord2utf)(0x200b, class_uchardata);
! 4121: class_uchardata += PRIV(ord2utf)(0x202e, class_uchardata);
! 4122: *class_uchardata++ = XCL_RANGE;
! 4123: class_uchardata += PRIV(ord2utf)(0x2030, class_uchardata);
! 4124: class_uchardata += PRIV(ord2utf)(0x205e, class_uchardata);
! 4125: *class_uchardata++ = XCL_RANGE;
! 4126: class_uchardata += PRIV(ord2utf)(0x2060, class_uchardata);
! 4127: class_uchardata += PRIV(ord2utf)(0x2fff, class_uchardata);
! 4128: *class_uchardata++ = XCL_RANGE;
! 4129: class_uchardata += PRIV(ord2utf)(0x3001, class_uchardata);
! 4130: class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata);
1.1 misho 4131: }
4132: #endif
4133: continue;
4134:
4135: case ESC_v:
4136: SETBIT(classbits, 0x0a); /* LF */
4137: SETBIT(classbits, 0x0b); /* VT */
4138: SETBIT(classbits, 0x0c); /* FF */
4139: SETBIT(classbits, 0x0d); /* CR */
4140: SETBIT(classbits, 0x85); /* NEL */
1.1.1.2 ! misho 4141: #ifndef COMPILE_PCRE8
! 4142: xclass = TRUE;
! 4143: *class_uchardata++ = XCL_RANGE;
! 4144: *class_uchardata++ = 0x2028;
! 4145: *class_uchardata++ = 0x2029;
! 4146: #elif defined SUPPORT_UTF
! 4147: if (utf)
1.1 misho 4148: {
1.1.1.2 ! misho 4149: xclass = TRUE;
! 4150: *class_uchardata++ = XCL_RANGE;
! 4151: class_uchardata += PRIV(ord2utf)(0x2028, class_uchardata);
! 4152: class_uchardata += PRIV(ord2utf)(0x2029, class_uchardata);
1.1 misho 4153: }
4154: #endif
4155: continue;
4156:
4157: case ESC_V:
4158: for (c = 0; c < 32; c++)
4159: {
4160: int x = 0xff;
4161: switch (c)
4162: {
4163: case 0x0a/8: x ^= 1 << (0x0a%8);
4164: x ^= 1 << (0x0b%8);
4165: x ^= 1 << (0x0c%8);
4166: x ^= 1 << (0x0d%8);
4167: break;
4168: case 0x85/8: x ^= 1 << (0x85%8); break;
4169: default: break;
4170: }
4171: classbits[c] |= x;
4172: }
4173:
1.1.1.2 ! misho 4174: #ifndef COMPILE_PCRE8
! 4175: xclass = TRUE;
! 4176: *class_uchardata++ = XCL_RANGE;
! 4177: *class_uchardata++ = 0x0100;
! 4178: *class_uchardata++ = 0x2027;
! 4179: *class_uchardata++ = XCL_RANGE;
! 4180: *class_uchardata++ = 0x202a;
! 4181: #ifdef SUPPORT_UTF
! 4182: if (utf)
! 4183: class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata);
! 4184: else
! 4185: #endif
! 4186: *class_uchardata++ = 0xffff;
! 4187: #elif defined SUPPORT_UTF
! 4188: if (utf)
1.1 misho 4189: {
1.1.1.2 ! misho 4190: xclass = TRUE;
! 4191: *class_uchardata++ = XCL_RANGE;
! 4192: class_uchardata += PRIV(ord2utf)(0x0100, class_uchardata);
! 4193: class_uchardata += PRIV(ord2utf)(0x2027, class_uchardata);
! 4194: *class_uchardata++ = XCL_RANGE;
! 4195: class_uchardata += PRIV(ord2utf)(0x202a, class_uchardata);
! 4196: class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata);
1.1 misho 4197: }
4198: #endif
4199: continue;
4200:
4201: #ifdef SUPPORT_UCP
4202: case ESC_p:
4203: case ESC_P:
4204: {
4205: BOOL negated;
4206: int pdata;
4207: int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
4208: if (ptype < 0) goto FAILED;
1.1.1.2 ! misho 4209: xclass = TRUE;
! 4210: *class_uchardata++ = ((-c == ESC_p) != negated)?
1.1 misho 4211: XCL_PROP : XCL_NOTPROP;
1.1.1.2 ! misho 4212: *class_uchardata++ = ptype;
! 4213: *class_uchardata++ = pdata;
! 4214: class_has_8bitchar--; /* Undo! */
1.1 misho 4215: continue;
4216: }
4217: #endif
4218: /* Unrecognized escapes are faulted if PCRE is running in its
4219: strict mode. By default, for compatibility with Perl, they are
4220: treated as literals. */
4221:
4222: default:
4223: if ((options & PCRE_EXTRA) != 0)
4224: {
4225: *errorcodeptr = ERR7;
4226: goto FAILED;
4227: }
1.1.1.2 ! misho 4228: class_has_8bitchar--; /* Undo the speculative increase. */
! 4229: class_single_char -= 2; /* Undo the speculative increase. */
! 4230: c = *ptr; /* Get the final character and fall through */
1.1 misho 4231: break;
4232: }
4233: }
4234:
4235: /* Fall through if we have a single character (c >= 0). This may be
1.1.1.2 ! misho 4236: greater than 256. */
1.1 misho 4237:
4238: } /* End of backslash handling */
4239:
4240: /* A single character may be followed by '-' to form a range. However,
4241: Perl does not permit ']' to be the end of the range. A '-' character
4242: at the end is treated as a literal. Perl ignores orphaned \E sequences
4243: entirely. The code for handling \Q and \E is messy. */
4244:
4245: CHECK_RANGE:
4246: while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
4247: {
4248: inescq = FALSE;
4249: ptr += 2;
4250: }
4251:
4252: oldptr = ptr;
4253:
4254: /* Remember \r or \n */
4255:
4256: if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4257:
4258: /* Check for range */
4259:
4260: if (!inescq && ptr[1] == CHAR_MINUS)
4261: {
4262: int d;
4263: ptr += 2;
4264: while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
4265:
4266: /* If we hit \Q (not followed by \E) at this point, go into escaped
4267: mode. */
4268:
4269: while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
4270: {
4271: ptr += 2;
4272: if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
4273: { ptr += 2; continue; }
4274: inescq = TRUE;
4275: break;
4276: }
4277:
4278: if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
4279: {
4280: ptr = oldptr;
4281: goto LONE_SINGLE_CHARACTER;
4282: }
4283:
1.1.1.2 ! misho 4284: #ifdef SUPPORT_UTF
! 4285: if (utf)
1.1 misho 4286: { /* Braces are required because the */
4287: GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
4288: }
4289: else
4290: #endif
4291: d = *ptr; /* Not UTF-8 mode */
4292:
4293: /* The second part of a range can be a single-character escape, but
4294: not any of the other escapes. Perl 5.6 treats a hyphen as a literal
4295: in such circumstances. */
4296:
4297: if (!inescq && d == CHAR_BACKSLASH)
4298: {
4299: d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
4300: if (*errorcodeptr != 0) goto FAILED;
4301:
4302: /* \b is backspace; any other special means the '-' was literal */
4303:
4304: if (d < 0)
4305: {
4306: if (d == -ESC_b) d = CHAR_BS; else
4307: {
4308: ptr = oldptr;
4309: goto LONE_SINGLE_CHARACTER; /* A few lines below */
4310: }
4311: }
4312: }
4313:
4314: /* Check that the two values are in the correct order. Optimize
4315: one-character ranges */
4316:
4317: if (d < c)
4318: {
4319: *errorcodeptr = ERR8;
4320: goto FAILED;
4321: }
4322:
4323: if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
4324:
4325: /* Remember \r or \n */
4326:
4327: if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4328:
1.1.1.2 ! misho 4329: /* Since we found a character range, single character optimizations
! 4330: cannot be done anymore. */
! 4331: class_single_char = 2;
! 4332:
1.1 misho 4333: /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
4334: matching, we have to use an XCLASS with extra data items. Caseless
4335: matching for characters > 127 is available only if UCP support is
4336: available. */
4337:
1.1.1.2 ! misho 4338: #if defined SUPPORT_UTF && !(defined COMPILE_PCRE8)
! 4339: if ((d > 255) || (utf && ((options & PCRE_CASELESS) != 0 && d > 127)))
! 4340: #elif defined SUPPORT_UTF
! 4341: if (utf && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
! 4342: #elif !(defined COMPILE_PCRE8)
! 4343: if (d > 255)
! 4344: #endif
! 4345: #if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
1.1 misho 4346: {
1.1.1.2 ! misho 4347: xclass = TRUE;
1.1 misho 4348:
4349: /* With UCP support, we can find the other case equivalents of
4350: the relevant characters. There may be several ranges. Optimize how
4351: they fit with the basic range. */
4352:
4353: #ifdef SUPPORT_UCP
1.1.1.2 ! misho 4354: #ifndef COMPILE_PCRE8
! 4355: if (utf && (options & PCRE_CASELESS) != 0)
! 4356: #else
1.1 misho 4357: if ((options & PCRE_CASELESS) != 0)
1.1.1.2 ! misho 4358: #endif
1.1 misho 4359: {
4360: unsigned int occ, ocd;
4361: unsigned int cc = c;
4362: unsigned int origd = d;
4363: while (get_othercase_range(&cc, origd, &occ, &ocd))
4364: {
4365: if (occ >= (unsigned int)c &&
4366: ocd <= (unsigned int)d)
4367: continue; /* Skip embedded ranges */
4368:
4369: if (occ < (unsigned int)c &&
4370: ocd >= (unsigned int)c - 1) /* Extend the basic range */
4371: { /* if there is overlap, */
4372: c = occ; /* noting that if occ < c */
4373: continue; /* we can't have ocd > d */
4374: } /* because a subrange is */
4375: if (ocd > (unsigned int)d &&
4376: occ <= (unsigned int)d + 1) /* always shorter than */
4377: { /* the basic range. */
4378: d = ocd;
4379: continue;
4380: }
4381:
4382: if (occ == ocd)
4383: {
1.1.1.2 ! misho 4384: *class_uchardata++ = XCL_SINGLE;
1.1 misho 4385: }
4386: else
4387: {
1.1.1.2 ! misho 4388: *class_uchardata++ = XCL_RANGE;
! 4389: class_uchardata += PRIV(ord2utf)(occ, class_uchardata);
1.1 misho 4390: }
1.1.1.2 ! misho 4391: class_uchardata += PRIV(ord2utf)(ocd, class_uchardata);
1.1 misho 4392: }
4393: }
4394: #endif /* SUPPORT_UCP */
4395:
4396: /* Now record the original range, possibly modified for UCP caseless
4397: overlapping ranges. */
4398:
1.1.1.2 ! misho 4399: *class_uchardata++ = XCL_RANGE;
! 4400: #ifdef SUPPORT_UTF
! 4401: #ifndef COMPILE_PCRE8
! 4402: if (utf)
! 4403: {
! 4404: class_uchardata += PRIV(ord2utf)(c, class_uchardata);
! 4405: class_uchardata += PRIV(ord2utf)(d, class_uchardata);
! 4406: }
! 4407: else
! 4408: {
! 4409: *class_uchardata++ = c;
! 4410: *class_uchardata++ = d;
! 4411: }
! 4412: #else
! 4413: class_uchardata += PRIV(ord2utf)(c, class_uchardata);
! 4414: class_uchardata += PRIV(ord2utf)(d, class_uchardata);
! 4415: #endif
! 4416: #else /* SUPPORT_UTF */
! 4417: *class_uchardata++ = c;
! 4418: *class_uchardata++ = d;
! 4419: #endif /* SUPPORT_UTF */
1.1 misho 4420:
4421: /* With UCP support, we are done. Without UCP support, there is no
1.1.1.2 ! misho 4422: caseless matching for UTF characters > 127; we can use the bit map
! 4423: for the smaller ones. As for 16 bit characters without UTF, we
! 4424: can still use */
1.1 misho 4425:
4426: #ifdef SUPPORT_UCP
1.1.1.2 ! misho 4427: #ifndef COMPILE_PCRE8
! 4428: if (utf)
! 4429: #endif
! 4430: continue; /* With next character in the class */
! 4431: #endif /* SUPPORT_UCP */
1.1 misho 4432:
1.1.1.2 ! misho 4433: #if defined SUPPORT_UTF && !defined(SUPPORT_UCP) && !(defined COMPILE_PCRE8)
! 4434: if (utf)
! 4435: {
! 4436: if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
! 4437: /* Adjust upper limit and fall through to set up the map */
! 4438: d = 127;
! 4439: }
! 4440: else
! 4441: {
! 4442: if (c > 255) continue;
! 4443: /* Adjust upper limit and fall through to set up the map */
! 4444: d = 255;
! 4445: }
! 4446: #elif defined SUPPORT_UTF && !defined(SUPPORT_UCP)
! 4447: if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
1.1 misho 4448: /* Adjust upper limit and fall through to set up the map */
4449: d = 127;
1.1.1.2 ! misho 4450: #else
! 4451: if (c > 255) continue;
! 4452: /* Adjust upper limit and fall through to set up the map */
! 4453: d = 255;
! 4454: #endif /* SUPPORT_UTF && !SUPPORT_UCP && !COMPILE_PCRE8 */
1.1 misho 4455: }
1.1.1.2 ! misho 4456: #endif /* SUPPORT_UTF || !COMPILE_PCRE8 */
1.1 misho 4457:
1.1.1.2 ! misho 4458: /* We use the bit map for 8 bit mode, or when the characters fall
! 4459: partially or entirely to [0-255] ([0-127] for UCP) ranges. */
1.1 misho 4460:
1.1.1.2 ! misho 4461: class_has_8bitchar = 1;
1.1 misho 4462:
4463: /* We can save a bit of time by skipping this in the pre-compile. */
4464:
4465: if (lengthptr == NULL) for (; c <= d; c++)
4466: {
4467: classbits[c/8] |= (1 << (c&7));
4468: if ((options & PCRE_CASELESS) != 0)
4469: {
1.1.1.2 ! misho 4470: int uc = cd->fcc[c]; /* flip case */
1.1 misho 4471: classbits[uc/8] |= (1 << (uc&7));
4472: }
4473: }
4474:
4475: continue; /* Go get the next char in the class */
4476: }
4477:
4478: /* Handle a lone single character - we can get here for a normal
4479: non-escape char, or after \ that introduces a single character or for an
4480: apparent range that isn't. */
4481:
4482: LONE_SINGLE_CHARACTER:
4483:
1.1.1.2 ! misho 4484: /* Only the value of 1 matters for class_single_char. */
! 4485: if (class_single_char < 2) class_single_char++;
1.1 misho 4486:
1.1.1.2 ! misho 4487: /* If class_charcount is 1, we saw precisely one character. As long as
! 4488: there were no negated characters >= 128 and there was no use of \p or \P,
! 4489: in other words, no use of any XCLASS features, we can optimize.
! 4490:
! 4491: In UTF-8 mode, we can optimize the negative case only if there were no
! 4492: characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
! 4493: operate on single-bytes characters only. This is an historical hangover.
! 4494: Maybe one day we can tidy these opcodes to handle multi-byte characters.
! 4495:
! 4496: The optimization throws away the bit map. We turn the item into a
! 4497: 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative.
! 4498: Note that OP_NOT[I] does not support multibyte characters. In the positive
! 4499: case, it can cause firstchar to be set. Otherwise, there can be no first
! 4500: char if this item is first, whatever repeat count may follow. In the case
! 4501: of reqchar, save the previous value for reinstating. */
! 4502:
! 4503: #ifdef SUPPORT_UTF
! 4504: if (class_single_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET
! 4505: && (!utf || !negate_class || c < (MAX_VALUE_FOR_SINGLE_CHAR + 1)))
! 4506: #else
! 4507: if (class_single_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
! 4508: #endif
1.1 misho 4509: {
1.1.1.2 ! misho 4510: ptr++;
! 4511: zeroreqchar = reqchar;
! 4512:
! 4513: /* The OP_NOT[I] opcodes work on single characters only. */
! 4514:
! 4515: if (negate_class)
! 4516: {
! 4517: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
! 4518: zerofirstchar = firstchar;
! 4519: *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
! 4520: *code++ = c;
! 4521: goto NOT_CHAR;
! 4522: }
! 4523:
! 4524: /* For a single, positive character, get the value into mcbuffer, and
! 4525: then we can handle this with the normal one-character code. */
! 4526:
! 4527: #ifdef SUPPORT_UTF
! 4528: if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
! 4529: mclength = PRIV(ord2utf)(c, mcbuffer);
! 4530: else
! 4531: #endif
! 4532: {
! 4533: mcbuffer[0] = c;
! 4534: mclength = 1;
! 4535: }
! 4536: goto ONE_CHAR;
! 4537: } /* End of 1-char optimization */
! 4538:
! 4539: /* Handle a character that cannot go in the bit map. */
! 4540:
! 4541: #if defined SUPPORT_UTF && !(defined COMPILE_PCRE8)
! 4542: if ((c > 255) || (utf && ((options & PCRE_CASELESS) != 0 && c > 127)))
! 4543: #elif defined SUPPORT_UTF
! 4544: if (utf && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
! 4545: #elif !(defined COMPILE_PCRE8)
! 4546: if (c > 255)
! 4547: #endif
! 4548:
! 4549: #if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
! 4550: {
! 4551: xclass = TRUE;
! 4552: *class_uchardata++ = XCL_SINGLE;
! 4553: #ifdef SUPPORT_UTF
! 4554: #ifndef COMPILE_PCRE8
! 4555: /* In non 8 bit mode, we can get here even if we are not in UTF mode. */
! 4556: if (!utf)
! 4557: *class_uchardata++ = c;
! 4558: else
! 4559: #endif
! 4560: class_uchardata += PRIV(ord2utf)(c, class_uchardata);
! 4561: #else /* SUPPORT_UTF */
! 4562: *class_uchardata++ = c;
! 4563: #endif /* SUPPORT_UTF */
1.1 misho 4564:
4565: #ifdef SUPPORT_UCP
1.1.1.2 ! misho 4566: #ifdef COMPILE_PCRE8
1.1 misho 4567: if ((options & PCRE_CASELESS) != 0)
1.1.1.2 ! misho 4568: #else
! 4569: /* In non 8 bit mode, we can get here even if we are not in UTF mode. */
! 4570: if (utf && (options & PCRE_CASELESS) != 0)
! 4571: #endif
1.1 misho 4572: {
4573: unsigned int othercase;
1.1.1.2 ! misho 4574: if ((int)(othercase = UCD_OTHERCASE(c)) != c)
1.1 misho 4575: {
1.1.1.2 ! misho 4576: *class_uchardata++ = XCL_SINGLE;
! 4577: class_uchardata += PRIV(ord2utf)(othercase, class_uchardata);
1.1 misho 4578: }
4579: }
4580: #endif /* SUPPORT_UCP */
4581:
4582: }
4583: else
1.1.1.2 ! misho 4584: #endif /* SUPPORT_UTF || COMPILE_PCRE16 */
1.1 misho 4585:
4586: /* Handle a single-byte character */
4587: {
1.1.1.2 ! misho 4588: class_has_8bitchar = 1;
1.1 misho 4589: classbits[c/8] |= (1 << (c&7));
4590: if ((options & PCRE_CASELESS) != 0)
4591: {
1.1.1.2 ! misho 4592: c = cd->fcc[c]; /* flip case */
1.1 misho 4593: classbits[c/8] |= (1 << (c&7));
4594: }
4595: }
4596: }
4597:
4598: /* Loop until ']' reached. This "while" is the end of the "do" far above.
4599: If we are at the end of an internal nested string, revert to the outer
4600: string. */
4601:
4602: while (((c = *(++ptr)) != 0 ||
4603: (nestptr != NULL &&
4604: (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) &&
4605: (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
4606:
4607: /* Check for missing terminating ']' */
4608:
4609: if (c == 0)
4610: {
4611: *errorcodeptr = ERR6;
4612: goto FAILED;
4613: }
4614:
1.1.1.2 ! misho 4615: /* If this is the first thing in the branch, there can be no first char
! 4616: setting, whatever the repeat count. Any reqchar setting must remain
! 4617: unchanged after any kind of repeat. */
! 4618:
! 4619: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
! 4620: zerofirstchar = firstchar;
! 4621: zeroreqchar = reqchar;
1.1 misho 4622:
4623: /* If there are characters with values > 255, we have to compile an
4624: extended class, with its own opcode, unless there was a negated special
4625: such as \S in the class, and PCRE_UCP is not set, because in that case all
4626: characters > 255 are in the class, so any that were explicitly given as
4627: well can be ignored. If (when there are explicit characters > 255 that must
4628: be listed) there are no characters < 256, we can omit the bitmap in the
4629: actual compiled code. */
4630:
1.1.1.2 ! misho 4631: #ifdef SUPPORT_UTF
! 4632: if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0))
! 4633: #elif !defined COMPILE_PCRE8
! 4634: if (xclass && !should_flip_negation)
! 4635: #endif
! 4636: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
1.1 misho 4637: {
1.1.1.2 ! misho 4638: *class_uchardata++ = XCL_END; /* Marks the end of extra data */
1.1 misho 4639: *code++ = OP_XCLASS;
4640: code += LINK_SIZE;
1.1.1.2 ! misho 4641: *code = negate_class? XCL_NOT:0;
1.1 misho 4642:
4643: /* If the map is required, move up the extra data to make room for it;
4644: otherwise just move the code pointer to the end of the extra data. */
4645:
1.1.1.2 ! misho 4646: if (class_has_8bitchar > 0)
1.1 misho 4647: {
4648: *code++ |= XCL_MAP;
1.1.1.2 ! misho 4649: memmove(code + (32 / sizeof(pcre_uchar)), code,
! 4650: IN_UCHARS(class_uchardata - code));
1.1 misho 4651: memcpy(code, classbits, 32);
1.1.1.2 ! misho 4652: code = class_uchardata + (32 / sizeof(pcre_uchar));
1.1 misho 4653: }
1.1.1.2 ! misho 4654: else code = class_uchardata;
1.1 misho 4655:
4656: /* Now fill in the complete length of the item */
4657:
4658: PUT(previous, 1, (int)(code - previous));
4659: break; /* End of class handling */
4660: }
4661: #endif
4662:
4663: /* If there are no characters > 255, or they are all to be included or
4664: excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
4665: whole class was negated and whether there were negative specials such as \S
4666: (non-UCP) in the class. Then copy the 32-byte map into the code vector,
4667: negating it if necessary. */
4668:
4669: *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
1.1.1.2 ! misho 4670: if (lengthptr == NULL) /* Save time in the pre-compile phase */
1.1 misho 4671: {
1.1.1.2 ! misho 4672: if (negate_class)
! 4673: for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
1.1 misho 4674: memcpy(code, classbits, 32);
4675: }
1.1.1.2 ! misho 4676: code += 32 / sizeof(pcre_uchar);
! 4677: NOT_CHAR:
1.1 misho 4678: break;
4679:
4680:
4681: /* ===================================================================*/
4682: /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
4683: has been tested above. */
4684:
4685: case CHAR_LEFT_CURLY_BRACKET:
4686: if (!is_quantifier) goto NORMAL_CHAR;
4687: ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
4688: if (*errorcodeptr != 0) goto FAILED;
4689: goto REPEAT;
4690:
4691: case CHAR_ASTERISK:
4692: repeat_min = 0;
4693: repeat_max = -1;
4694: goto REPEAT;
4695:
4696: case CHAR_PLUS:
4697: repeat_min = 1;
4698: repeat_max = -1;
4699: goto REPEAT;
4700:
4701: case CHAR_QUESTION_MARK:
4702: repeat_min = 0;
4703: repeat_max = 1;
4704:
4705: REPEAT:
4706: if (previous == NULL)
4707: {
4708: *errorcodeptr = ERR9;
4709: goto FAILED;
4710: }
4711:
4712: if (repeat_min == 0)
4713: {
1.1.1.2 ! misho 4714: firstchar = zerofirstchar; /* Adjust for zero repeat */
! 4715: reqchar = zeroreqchar; /* Ditto */
1.1 misho 4716: }
4717:
4718: /* Remember whether this is a variable length repeat */
4719:
4720: reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
4721:
4722: op_type = 0; /* Default single-char op codes */
4723: possessive_quantifier = FALSE; /* Default not possessive quantifier */
4724:
4725: /* Save start of previous item, in case we have to move it up in order to
4726: insert something before it. */
4727:
4728: tempcode = previous;
4729:
4730: /* If the next character is '+', we have a possessive quantifier. This
4731: implies greediness, whatever the setting of the PCRE_UNGREEDY option.
4732: If the next character is '?' this is a minimizing repeat, by default,
4733: but if PCRE_UNGREEDY is set, it works the other way round. We change the
4734: repeat type to the non-default. */
4735:
4736: if (ptr[1] == CHAR_PLUS)
4737: {
4738: repeat_type = 0; /* Force greedy */
4739: possessive_quantifier = TRUE;
4740: ptr++;
4741: }
4742: else if (ptr[1] == CHAR_QUESTION_MARK)
4743: {
4744: repeat_type = greedy_non_default;
4745: ptr++;
4746: }
4747: else repeat_type = greedy_default;
4748:
4749: /* If previous was a recursion call, wrap it in atomic brackets so that
4750: previous becomes the atomic group. All recursions were so wrapped in the
4751: past, but it no longer happens for non-repeated recursions. In fact, the
4752: repeated ones could be re-implemented independently so as not to need this,
4753: but for the moment we rely on the code for repeating groups. */
4754:
4755: if (*previous == OP_RECURSE)
4756: {
1.1.1.2 ! misho 4757: memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE));
1.1 misho 4758: *previous = OP_ONCE;
4759: PUT(previous, 1, 2 + 2*LINK_SIZE);
4760: previous[2 + 2*LINK_SIZE] = OP_KET;
4761: PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
4762: code += 2 + 2 * LINK_SIZE;
4763: length_prevgroup = 3 + 3*LINK_SIZE;
4764:
4765: /* When actually compiling, we need to check whether this was a forward
4766: reference, and if so, adjust the offset. */
4767:
4768: if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
4769: {
4770: int offset = GET(cd->hwm, -LINK_SIZE);
4771: if (offset == previous + 1 - cd->start_code)
4772: PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
4773: }
4774: }
4775:
4776: /* Now handle repetition for the different types of item. */
4777:
4778: /* If previous was a character match, abolish the item and generate a
4779: repeat item instead. If a char item has a minumum of more than one, ensure
1.1.1.2 ! misho 4780: that it is set in reqchar - it might not be if a sequence such as x{3} is
! 4781: the first thing in a branch because the x will have gone into firstchar
1.1 misho 4782: instead. */
4783:
4784: if (*previous == OP_CHAR || *previous == OP_CHARI)
4785: {
4786: op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR;
4787:
1.1.1.2 ! misho 4788: /* Deal with UTF characters that take up more than one character. It's
1.1 misho 4789: easier to write this out separately than try to macrify it. Use c to
1.1.1.2 ! misho 4790: hold the length of the character in bytes, plus UTF_LENGTH to flag that
! 4791: it's a length rather than a small character. */
1.1 misho 4792:
1.1.1.2 ! misho 4793: #ifdef SUPPORT_UTF
! 4794: if (utf && NOT_FIRSTCHAR(code[-1]))
1.1 misho 4795: {
1.1.1.2 ! misho 4796: pcre_uchar *lastchar = code - 1;
! 4797: BACKCHAR(lastchar);
1.1 misho 4798: c = (int)(code - lastchar); /* Length of UTF-8 character */
1.1.1.2 ! misho 4799: memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */
! 4800: c |= UTF_LENGTH; /* Flag c as a length */
1.1 misho 4801: }
4802: else
1.1.1.2 ! misho 4803: #endif /* SUPPORT_UTF */
1.1 misho 4804:
1.1.1.2 ! misho 4805: /* Handle the case of a single charater - either with no UTF support, or
! 4806: with UTF disabled, or for a single character UTF character. */
1.1 misho 4807: {
4808: c = code[-1];
1.1.1.2 ! misho 4809: if (repeat_min > 1) reqchar = c | req_caseopt | cd->req_varyopt;
1.1 misho 4810: }
4811:
4812: /* If the repetition is unlimited, it pays to see if the next thing on
4813: the line is something that cannot possibly match this character. If so,
4814: automatically possessifying this item gains some performance in the case
4815: where the match fails. */
4816:
4817: if (!possessive_quantifier &&
4818: repeat_max < 0 &&
1.1.1.2 ! misho 4819: check_auto_possessive(previous, utf, ptr + 1, options, cd))
1.1 misho 4820: {
4821: repeat_type = 0; /* Force greedy */
4822: possessive_quantifier = TRUE;
4823: }
4824:
4825: goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
4826: }
4827:
4828: /* If previous was a single negated character ([^a] or similar), we use
4829: one of the special opcodes, replacing it. The code is shared with single-
4830: character repeats by setting opt_type to add a suitable offset into
4831: repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI
4832: are currently used only for single-byte chars. */
4833:
4834: else if (*previous == OP_NOT || *previous == OP_NOTI)
4835: {
4836: op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR;
4837: c = previous[1];
4838: if (!possessive_quantifier &&
4839: repeat_max < 0 &&
1.1.1.2 ! misho 4840: check_auto_possessive(previous, utf, ptr + 1, options, cd))
1.1 misho 4841: {
4842: repeat_type = 0; /* Force greedy */
4843: possessive_quantifier = TRUE;
4844: }
4845: goto OUTPUT_SINGLE_REPEAT;
4846: }
4847:
4848: /* If previous was a character type match (\d or similar), abolish it and
4849: create a suitable repeat item. The code is shared with single-character
4850: repeats by setting op_type to add a suitable offset into repeat_type. Note
4851: the the Unicode property types will be present only when SUPPORT_UCP is
4852: defined, but we don't wrap the little bits of code here because it just
4853: makes it horribly messy. */
4854:
4855: else if (*previous < OP_EODN)
4856: {
1.1.1.2 ! misho 4857: pcre_uchar *oldcode;
1.1 misho 4858: int prop_type, prop_value;
4859: op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
4860: c = *previous;
4861:
4862: if (!possessive_quantifier &&
4863: repeat_max < 0 &&
1.1.1.2 ! misho 4864: check_auto_possessive(previous, utf, ptr + 1, options, cd))
1.1 misho 4865: {
4866: repeat_type = 0; /* Force greedy */
4867: possessive_quantifier = TRUE;
4868: }
4869:
4870: OUTPUT_SINGLE_REPEAT:
4871: if (*previous == OP_PROP || *previous == OP_NOTPROP)
4872: {
4873: prop_type = previous[1];
4874: prop_value = previous[2];
4875: }
4876: else prop_type = prop_value = -1;
4877:
4878: oldcode = code;
4879: code = previous; /* Usually overwrite previous item */
4880:
4881: /* If the maximum is zero then the minimum must also be zero; Perl allows
4882: this case, so we do too - by simply omitting the item altogether. */
4883:
4884: if (repeat_max == 0) goto END_REPEAT;
4885:
4886: /*--------------------------------------------------------------------*/
4887: /* This code is obsolete from release 8.00; the restriction was finally
4888: removed: */
4889:
4890: /* All real repeats make it impossible to handle partial matching (maybe
4891: one day we will be able to remove this restriction). */
4892:
4893: /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4894: /*--------------------------------------------------------------------*/
4895:
4896: /* Combine the op_type with the repeat_type */
4897:
4898: repeat_type += op_type;
4899:
4900: /* A minimum of zero is handled either as the special case * or ?, or as
4901: an UPTO, with the maximum given. */
4902:
4903: if (repeat_min == 0)
4904: {
4905: if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
4906: else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
4907: else
4908: {
4909: *code++ = OP_UPTO + repeat_type;
4910: PUT2INC(code, 0, repeat_max);
4911: }
4912: }
4913:
4914: /* A repeat minimum of 1 is optimized into some special cases. If the
4915: maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
4916: left in place and, if the maximum is greater than 1, we use OP_UPTO with
4917: one less than the maximum. */
4918:
4919: else if (repeat_min == 1)
4920: {
4921: if (repeat_max == -1)
4922: *code++ = OP_PLUS + repeat_type;
4923: else
4924: {
4925: code = oldcode; /* leave previous item in place */
4926: if (repeat_max == 1) goto END_REPEAT;
4927: *code++ = OP_UPTO + repeat_type;
4928: PUT2INC(code, 0, repeat_max - 1);
4929: }
4930: }
4931:
4932: /* The case {n,n} is just an EXACT, while the general case {n,m} is
4933: handled as an EXACT followed by an UPTO. */
4934:
4935: else
4936: {
4937: *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
4938: PUT2INC(code, 0, repeat_min);
4939:
4940: /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
4941: we have to insert the character for the previous code. For a repeated
4942: Unicode property match, there are two extra bytes that define the
4943: required property. In UTF-8 mode, long characters have their length in
1.1.1.2 ! misho 4944: c, with the UTF_LENGTH bit as a flag. */
1.1 misho 4945:
4946: if (repeat_max < 0)
4947: {
1.1.1.2 ! misho 4948: #ifdef SUPPORT_UTF
! 4949: if (utf && (c & UTF_LENGTH) != 0)
1.1 misho 4950: {
1.1.1.2 ! misho 4951: memcpy(code, utf_chars, IN_UCHARS(c & 7));
1.1 misho 4952: code += c & 7;
4953: }
4954: else
4955: #endif
4956: {
4957: *code++ = c;
4958: if (prop_type >= 0)
4959: {
4960: *code++ = prop_type;
4961: *code++ = prop_value;
4962: }
4963: }
4964: *code++ = OP_STAR + repeat_type;
4965: }
4966:
4967: /* Else insert an UPTO if the max is greater than the min, again
4968: preceded by the character, for the previously inserted code. If the
4969: UPTO is just for 1 instance, we can use QUERY instead. */
4970:
4971: else if (repeat_max != repeat_min)
4972: {
1.1.1.2 ! misho 4973: #ifdef SUPPORT_UTF
! 4974: if (utf && (c & UTF_LENGTH) != 0)
1.1 misho 4975: {
1.1.1.2 ! misho 4976: memcpy(code, utf_chars, IN_UCHARS(c & 7));
1.1 misho 4977: code += c & 7;
4978: }
4979: else
4980: #endif
4981: *code++ = c;
4982: if (prop_type >= 0)
4983: {
4984: *code++ = prop_type;
4985: *code++ = prop_value;
4986: }
4987: repeat_max -= repeat_min;
4988:
4989: if (repeat_max == 1)
4990: {
4991: *code++ = OP_QUERY + repeat_type;
4992: }
4993: else
4994: {
4995: *code++ = OP_UPTO + repeat_type;
4996: PUT2INC(code, 0, repeat_max);
4997: }
4998: }
4999: }
5000:
5001: /* The character or character type itself comes last in all cases. */
5002:
1.1.1.2 ! misho 5003: #ifdef SUPPORT_UTF
! 5004: if (utf && (c & UTF_LENGTH) != 0)
1.1 misho 5005: {
1.1.1.2 ! misho 5006: memcpy(code, utf_chars, IN_UCHARS(c & 7));
1.1 misho 5007: code += c & 7;
5008: }
5009: else
5010: #endif
5011: *code++ = c;
5012:
5013: /* For a repeated Unicode property match, there are two extra bytes that
5014: define the required property. */
5015:
5016: #ifdef SUPPORT_UCP
5017: if (prop_type >= 0)
5018: {
5019: *code++ = prop_type;
5020: *code++ = prop_value;
5021: }
5022: #endif
5023: }
5024:
5025: /* If previous was a character class or a back reference, we put the repeat
5026: stuff after it, but just skip the item if the repeat was {0,0}. */
5027:
5028: else if (*previous == OP_CLASS ||
5029: *previous == OP_NCLASS ||
1.1.1.2 ! misho 5030: #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
1.1 misho 5031: *previous == OP_XCLASS ||
5032: #endif
5033: *previous == OP_REF ||
5034: *previous == OP_REFI)
5035: {
5036: if (repeat_max == 0)
5037: {
5038: code = previous;
5039: goto END_REPEAT;
5040: }
5041:
5042: /*--------------------------------------------------------------------*/
5043: /* This code is obsolete from release 8.00; the restriction was finally
5044: removed: */
5045:
5046: /* All real repeats make it impossible to handle partial matching (maybe
5047: one day we will be able to remove this restriction). */
5048:
5049: /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
5050: /*--------------------------------------------------------------------*/
5051:
5052: if (repeat_min == 0 && repeat_max == -1)
5053: *code++ = OP_CRSTAR + repeat_type;
5054: else if (repeat_min == 1 && repeat_max == -1)
5055: *code++ = OP_CRPLUS + repeat_type;
5056: else if (repeat_min == 0 && repeat_max == 1)
5057: *code++ = OP_CRQUERY + repeat_type;
5058: else
5059: {
5060: *code++ = OP_CRRANGE + repeat_type;
5061: PUT2INC(code, 0, repeat_min);
5062: if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
5063: PUT2INC(code, 0, repeat_max);
5064: }
5065: }
5066:
5067: /* If previous was a bracket group, we may have to replicate it in certain
5068: cases. Note that at this point we can encounter only the "basic" bracket
5069: opcodes such as BRA and CBRA, as this is the place where they get converted
5070: into the more special varieties such as BRAPOS and SBRA. A test for >=
5071: OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
5072: ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow
5073: repetition of assertions, but now it does, for Perl compatibility. */
5074:
5075: else if (*previous >= OP_ASSERT && *previous <= OP_COND)
5076: {
5077: register int i;
5078: int len = (int)(code - previous);
1.1.1.2 ! misho 5079: pcre_uchar *bralink = NULL;
! 5080: pcre_uchar *brazeroptr = NULL;
1.1 misho 5081:
5082: /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
5083: we just ignore the repeat. */
5084:
5085: if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
5086: goto END_REPEAT;
5087:
5088: /* There is no sense in actually repeating assertions. The only potential
5089: use of repetition is in cases when the assertion is optional. Therefore,
5090: if the minimum is greater than zero, just ignore the repeat. If the
5091: maximum is not not zero or one, set it to 1. */
5092:
5093: if (*previous < OP_ONCE) /* Assertion */
5094: {
5095: if (repeat_min > 0) goto END_REPEAT;
5096: if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
5097: }
5098:
5099: /* The case of a zero minimum is special because of the need to stick
5100: OP_BRAZERO in front of it, and because the group appears once in the
5101: data, whereas in other cases it appears the minimum number of times. For
5102: this reason, it is simplest to treat this case separately, as otherwise
5103: the code gets far too messy. There are several special subcases when the
5104: minimum is zero. */
5105:
5106: if (repeat_min == 0)
5107: {
5108: /* If the maximum is also zero, we used to just omit the group from the
5109: output altogether, like this:
5110:
5111: ** if (repeat_max == 0)
5112: ** {
5113: ** code = previous;
5114: ** goto END_REPEAT;
5115: ** }
5116:
5117: However, that fails when a group or a subgroup within it is referenced
5118: as a subroutine from elsewhere in the pattern, so now we stick in
5119: OP_SKIPZERO in front of it so that it is skipped on execution. As we
5120: don't have a list of which groups are referenced, we cannot do this
5121: selectively.
5122:
5123: If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
5124: and do no more at this point. However, we do need to adjust any
5125: OP_RECURSE calls inside the group that refer to the group itself or any
5126: internal or forward referenced group, because the offset is from the
5127: start of the whole regex. Temporarily terminate the pattern while doing
5128: this. */
5129:
5130: if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
5131: {
5132: *code = OP_END;
1.1.1.2 ! misho 5133: adjust_recurse(previous, 1, utf, cd, save_hwm);
! 5134: memmove(previous + 1, previous, IN_UCHARS(len));
1.1 misho 5135: code++;
5136: if (repeat_max == 0)
5137: {
5138: *previous++ = OP_SKIPZERO;
5139: goto END_REPEAT;
5140: }
5141: brazeroptr = previous; /* Save for possessive optimizing */
5142: *previous++ = OP_BRAZERO + repeat_type;
5143: }
5144:
5145: /* If the maximum is greater than 1 and limited, we have to replicate
5146: in a nested fashion, sticking OP_BRAZERO before each set of brackets.
5147: The first one has to be handled carefully because it's the original
5148: copy, which has to be moved up. The remainder can be handled by code
5149: that is common with the non-zero minimum case below. We have to
5150: adjust the value or repeat_max, since one less copy is required. Once
5151: again, we may have to adjust any OP_RECURSE calls inside the group. */
5152:
5153: else
5154: {
5155: int offset;
5156: *code = OP_END;
1.1.1.2 ! misho 5157: adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm);
! 5158: memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len));
1.1 misho 5159: code += 2 + LINK_SIZE;
5160: *previous++ = OP_BRAZERO + repeat_type;
5161: *previous++ = OP_BRA;
5162:
5163: /* We chain together the bracket offset fields that have to be
5164: filled in later when the ends of the brackets are reached. */
5165:
5166: offset = (bralink == NULL)? 0 : (int)(previous - bralink);
5167: bralink = previous;
5168: PUTINC(previous, 0, offset);
5169: }
5170:
5171: repeat_max--;
5172: }
5173:
5174: /* If the minimum is greater than zero, replicate the group as many
5175: times as necessary, and adjust the maximum to the number of subsequent
5176: copies that we need. If we set a first char from the group, and didn't
5177: set a required char, copy the latter from the former. If there are any
5178: forward reference subroutine calls in the group, there will be entries on
5179: the workspace list; replicate these with an appropriate increment. */
5180:
5181: else
5182: {
5183: if (repeat_min > 1)
5184: {
5185: /* In the pre-compile phase, we don't actually do the replication. We
5186: just adjust the length as if we had. Do some paranoid checks for
5187: potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
5188: integer type when available, otherwise double. */
5189:
5190: if (lengthptr != NULL)
5191: {
5192: int delta = (repeat_min - 1)*length_prevgroup;
5193: if ((INT64_OR_DOUBLE)(repeat_min - 1)*
5194: (INT64_OR_DOUBLE)length_prevgroup >
5195: (INT64_OR_DOUBLE)INT_MAX ||
5196: OFLOW_MAX - *lengthptr < delta)
5197: {
5198: *errorcodeptr = ERR20;
5199: goto FAILED;
5200: }
5201: *lengthptr += delta;
5202: }
5203:
5204: /* This is compiling for real. If there is a set first byte for
5205: the group, and we have not yet set a "required byte", set it. Make
5206: sure there is enough workspace for copying forward references before
5207: doing the copy. */
5208:
5209: else
5210: {
1.1.1.2 ! misho 5211: if (groupsetfirstchar && reqchar < 0) reqchar = firstchar;
1.1 misho 5212:
5213: for (i = 1; i < repeat_min; i++)
5214: {
1.1.1.2 ! misho 5215: pcre_uchar *hc;
! 5216: pcre_uchar *this_hwm = cd->hwm;
! 5217: memcpy(code, previous, IN_UCHARS(len));
1.1 misho 5218:
5219: while (cd->hwm > cd->start_workspace + cd->workspace_size -
5220: WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5221: {
5222: int save_offset = save_hwm - cd->start_workspace;
5223: int this_offset = this_hwm - cd->start_workspace;
5224: *errorcodeptr = expand_workspace(cd);
5225: if (*errorcodeptr != 0) goto FAILED;
1.1.1.2 ! misho 5226: save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
! 5227: this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
1.1 misho 5228: }
5229:
5230: for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5231: {
5232: PUT(cd->hwm, 0, GET(hc, 0) + len);
5233: cd->hwm += LINK_SIZE;
5234: }
5235: save_hwm = this_hwm;
5236: code += len;
5237: }
5238: }
5239: }
5240:
5241: if (repeat_max > 0) repeat_max -= repeat_min;
5242: }
5243:
5244: /* This code is common to both the zero and non-zero minimum cases. If
5245: the maximum is limited, it replicates the group in a nested fashion,
5246: remembering the bracket starts on a stack. In the case of a zero minimum,
5247: the first one was set up above. In all cases the repeat_max now specifies
5248: the number of additional copies needed. Again, we must remember to
5249: replicate entries on the forward reference list. */
5250:
5251: if (repeat_max >= 0)
5252: {
5253: /* In the pre-compile phase, we don't actually do the replication. We
5254: just adjust the length as if we had. For each repetition we must add 1
5255: to the length for BRAZERO and for all but the last repetition we must
5256: add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
5257: paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
5258: a 64-bit integer type when available, otherwise double. */
5259:
5260: if (lengthptr != NULL && repeat_max > 0)
5261: {
5262: int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
5263: 2 - 2*LINK_SIZE; /* Last one doesn't nest */
5264: if ((INT64_OR_DOUBLE)repeat_max *
5265: (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
5266: > (INT64_OR_DOUBLE)INT_MAX ||
5267: OFLOW_MAX - *lengthptr < delta)
5268: {
5269: *errorcodeptr = ERR20;
5270: goto FAILED;
5271: }
5272: *lengthptr += delta;
5273: }
5274:
5275: /* This is compiling for real */
5276:
5277: else for (i = repeat_max - 1; i >= 0; i--)
5278: {
1.1.1.2 ! misho 5279: pcre_uchar *hc;
! 5280: pcre_uchar *this_hwm = cd->hwm;
1.1 misho 5281:
5282: *code++ = OP_BRAZERO + repeat_type;
5283:
5284: /* All but the final copy start a new nesting, maintaining the
5285: chain of brackets outstanding. */
5286:
5287: if (i != 0)
5288: {
5289: int offset;
5290: *code++ = OP_BRA;
5291: offset = (bralink == NULL)? 0 : (int)(code - bralink);
5292: bralink = code;
5293: PUTINC(code, 0, offset);
5294: }
5295:
1.1.1.2 ! misho 5296: memcpy(code, previous, IN_UCHARS(len));
1.1 misho 5297:
5298: /* Ensure there is enough workspace for forward references before
5299: copying them. */
5300:
5301: while (cd->hwm > cd->start_workspace + cd->workspace_size -
5302: WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5303: {
5304: int save_offset = save_hwm - cd->start_workspace;
5305: int this_offset = this_hwm - cd->start_workspace;
5306: *errorcodeptr = expand_workspace(cd);
5307: if (*errorcodeptr != 0) goto FAILED;
1.1.1.2 ! misho 5308: save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
! 5309: this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
1.1 misho 5310: }
5311:
5312: for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5313: {
5314: PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
5315: cd->hwm += LINK_SIZE;
5316: }
5317: save_hwm = this_hwm;
5318: code += len;
5319: }
5320:
5321: /* Now chain through the pending brackets, and fill in their length
5322: fields (which are holding the chain links pro tem). */
5323:
5324: while (bralink != NULL)
5325: {
5326: int oldlinkoffset;
5327: int offset = (int)(code - bralink + 1);
1.1.1.2 ! misho 5328: pcre_uchar *bra = code - offset;
1.1 misho 5329: oldlinkoffset = GET(bra, 1);
5330: bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
5331: *code++ = OP_KET;
5332: PUTINC(code, 0, offset);
5333: PUT(bra, 1, offset);
5334: }
5335: }
5336:
5337: /* If the maximum is unlimited, set a repeater in the final copy. For
5338: ONCE brackets, that's all we need to do. However, possessively repeated
5339: ONCE brackets can be converted into non-capturing brackets, as the
5340: behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
5341: deal with possessive ONCEs specially.
5342:
5343: Otherwise, when we are doing the actual compile phase, check to see
5344: whether this group is one that could match an empty string. If so,
5345: convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
5346: that runtime checking can be done. [This check is also applied to ONCE
5347: groups at runtime, but in a different way.]
5348:
5349: Then, if the quantifier was possessive and the bracket is not a
5350: conditional, we convert the BRA code to the POS form, and the KET code to
5351: KETRPOS. (It turns out to be convenient at runtime to detect this kind of
5352: subpattern at both the start and at the end.) The use of special opcodes
5353: makes it possible to reduce greatly the stack usage in pcre_exec(). If
5354: the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
5355:
5356: Then, if the minimum number of matches is 1 or 0, cancel the possessive
5357: flag so that the default action below, of wrapping everything inside
5358: atomic brackets, does not happen. When the minimum is greater than 1,
5359: there will be earlier copies of the group, and so we still have to wrap
5360: the whole thing. */
5361:
5362: else
5363: {
1.1.1.2 ! misho 5364: pcre_uchar *ketcode = code - 1 - LINK_SIZE;
! 5365: pcre_uchar *bracode = ketcode - GET(ketcode, 1);
1.1 misho 5366:
5367: /* Convert possessive ONCE brackets to non-capturing */
5368:
5369: if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
5370: possessive_quantifier) *bracode = OP_BRA;
5371:
5372: /* For non-possessive ONCE brackets, all we need to do is to
5373: set the KET. */
5374:
5375: if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
5376: *ketcode = OP_KETRMAX + repeat_type;
5377:
5378: /* Handle non-ONCE brackets and possessive ONCEs (which have been
5379: converted to non-capturing above). */
5380:
5381: else
5382: {
5383: /* In the compile phase, check for empty string matching. */
5384:
5385: if (lengthptr == NULL)
5386: {
1.1.1.2 ! misho 5387: pcre_uchar *scode = bracode;
1.1 misho 5388: do
5389: {
1.1.1.2 ! misho 5390: if (could_be_empty_branch(scode, ketcode, utf, cd))
1.1 misho 5391: {
5392: *bracode += OP_SBRA - OP_BRA;
5393: break;
5394: }
5395: scode += GET(scode, 1);
5396: }
5397: while (*scode == OP_ALT);
5398: }
5399:
5400: /* Handle possessive quantifiers. */
5401:
5402: if (possessive_quantifier)
5403: {
5404: /* For COND brackets, we wrap the whole thing in a possessively
5405: repeated non-capturing bracket, because we have not invented POS
5406: versions of the COND opcodes. Because we are moving code along, we
5407: must ensure that any pending recursive references are updated. */
5408:
5409: if (*bracode == OP_COND || *bracode == OP_SCOND)
5410: {
5411: int nlen = (int)(code - bracode);
5412: *code = OP_END;
1.1.1.2 ! misho 5413: adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm);
! 5414: memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen));
1.1 misho 5415: code += 1 + LINK_SIZE;
5416: nlen += 1 + LINK_SIZE;
5417: *bracode = OP_BRAPOS;
5418: *code++ = OP_KETRPOS;
5419: PUTINC(code, 0, nlen);
5420: PUT(bracode, 1, nlen);
5421: }
5422:
5423: /* For non-COND brackets, we modify the BRA code and use KETRPOS. */
5424:
5425: else
5426: {
5427: *bracode += 1; /* Switch to xxxPOS opcodes */
5428: *ketcode = OP_KETRPOS;
5429: }
5430:
5431: /* If the minimum is zero, mark it as possessive, then unset the
5432: possessive flag when the minimum is 0 or 1. */
5433:
5434: if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
5435: if (repeat_min < 2) possessive_quantifier = FALSE;
5436: }
5437:
5438: /* Non-possessive quantifier */
5439:
5440: else *ketcode = OP_KETRMAX + repeat_type;
5441: }
5442: }
5443: }
5444:
5445: /* If previous is OP_FAIL, it was generated by an empty class [] in
5446: JavaScript mode. The other ways in which OP_FAIL can be generated, that is
5447: by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
5448: error above. We can just ignore the repeat in JS case. */
5449:
5450: else if (*previous == OP_FAIL) goto END_REPEAT;
5451:
5452: /* Else there's some kind of shambles */
5453:
5454: else
5455: {
5456: *errorcodeptr = ERR11;
5457: goto FAILED;
5458: }
5459:
5460: /* If the character following a repeat is '+', or if certain optimization
5461: tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
5462: there are special alternative opcodes for this case. For anything else, we
5463: wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
5464: notation is just syntactic sugar, taken from Sun's Java package, but the
5465: special opcodes can optimize it.
5466:
5467: Some (but not all) possessively repeated subpatterns have already been
5468: completely handled in the code just above. For them, possessive_quantifier
5469: is always FALSE at this stage.
5470:
5471: Note that the repeated item starts at tempcode, not at previous, which
5472: might be the first part of a string whose (former) last char we repeated.
5473:
5474: Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
5475: an 'upto' may follow. We skip over an 'exact' item, and then test the
5476: length of what remains before proceeding. */
5477:
5478: if (possessive_quantifier)
5479: {
5480: int len;
5481:
5482: if (*tempcode == OP_TYPEEXACT)
1.1.1.2 ! misho 5483: tempcode += PRIV(OP_lengths)[*tempcode] +
! 5484: ((tempcode[1 + IMM2_SIZE] == OP_PROP
! 5485: || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0);
1.1 misho 5486:
5487: else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
5488: {
1.1.1.2 ! misho 5489: tempcode += PRIV(OP_lengths)[*tempcode];
! 5490: #ifdef SUPPORT_UTF
! 5491: if (utf && HAS_EXTRALEN(tempcode[-1]))
! 5492: tempcode += GET_EXTRALEN(tempcode[-1]);
1.1 misho 5493: #endif
5494: }
5495:
5496: len = (int)(code - tempcode);
5497: if (len > 0) switch (*tempcode)
5498: {
5499: case OP_STAR: *tempcode = OP_POSSTAR; break;
5500: case OP_PLUS: *tempcode = OP_POSPLUS; break;
5501: case OP_QUERY: *tempcode = OP_POSQUERY; break;
5502: case OP_UPTO: *tempcode = OP_POSUPTO; break;
5503:
5504: case OP_STARI: *tempcode = OP_POSSTARI; break;
5505: case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
5506: case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
5507: case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
5508:
5509: case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
5510: case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
5511: case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
5512: case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
5513:
5514: case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
5515: case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
5516: case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
5517: case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
5518:
5519: case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
5520: case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
5521: case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
5522: case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
5523:
5524: /* Because we are moving code along, we must ensure that any
5525: pending recursive references are updated. */
5526:
5527: default:
5528: *code = OP_END;
1.1.1.2 ! misho 5529: adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm);
! 5530: memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len));
1.1 misho 5531: code += 1 + LINK_SIZE;
5532: len += 1 + LINK_SIZE;
5533: tempcode[0] = OP_ONCE;
5534: *code++ = OP_KET;
5535: PUTINC(code, 0, len);
5536: PUT(tempcode, 1, len);
5537: break;
5538: }
5539: }
5540:
5541: /* In all case we no longer have a previous item. We also set the
1.1.1.2 ! misho 5542: "follows varying string" flag for subsequently encountered reqchars if
1.1 misho 5543: it isn't already set and we have just passed a varying length item. */
5544:
5545: END_REPEAT:
5546: previous = NULL;
5547: cd->req_varyopt |= reqvary;
5548: break;
5549:
5550:
5551: /* ===================================================================*/
5552: /* Start of nested parenthesized sub-expression, or comment or lookahead or
5553: lookbehind or option setting or condition or all the other extended
5554: parenthesis forms. */
5555:
5556: case CHAR_LEFT_PARENTHESIS:
5557: newoptions = options;
5558: skipbytes = 0;
5559: bravalue = OP_CBRA;
5560: save_hwm = cd->hwm;
5561: reset_bracount = FALSE;
5562:
5563: /* First deal with various "verbs" that can be introduced by '*'. */
5564:
1.1.1.2 ! misho 5565: ptr++;
! 5566: if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':'
! 5567: || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0))))
1.1 misho 5568: {
5569: int i, namelen;
5570: int arglen = 0;
5571: const char *vn = verbnames;
1.1.1.2 ! misho 5572: const pcre_uchar *name = ptr + 1;
! 5573: const pcre_uchar *arg = NULL;
1.1 misho 5574: previous = NULL;
1.1.1.2 ! misho 5575: ptr++;
! 5576: while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
1.1 misho 5577: namelen = (int)(ptr - name);
5578:
5579: /* It appears that Perl allows any characters whatsoever, other than
5580: a closing parenthesis, to appear in arguments, so we no longer insist on
5581: letters, digits, and underscores. */
5582:
5583: if (*ptr == CHAR_COLON)
5584: {
5585: arg = ++ptr;
5586: while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5587: arglen = (int)(ptr - arg);
5588: }
5589:
5590: if (*ptr != CHAR_RIGHT_PARENTHESIS)
5591: {
5592: *errorcodeptr = ERR60;
5593: goto FAILED;
5594: }
5595:
5596: /* Scan the table of verb names */
5597:
5598: for (i = 0; i < verbcount; i++)
5599: {
5600: if (namelen == verbs[i].len &&
1.1.1.2 ! misho 5601: STRNCMP_UC_C8(name, vn, namelen) == 0)
1.1 misho 5602: {
5603: /* Check for open captures before ACCEPT and convert it to
5604: ASSERT_ACCEPT if in an assertion. */
5605:
5606: if (verbs[i].op == OP_ACCEPT)
5607: {
5608: open_capitem *oc;
5609: if (arglen != 0)
5610: {
5611: *errorcodeptr = ERR59;
5612: goto FAILED;
5613: }
5614: cd->had_accept = TRUE;
5615: for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5616: {
5617: *code++ = OP_CLOSE;
5618: PUT2INC(code, 0, oc->number);
5619: }
5620: *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
5621:
1.1.1.2 ! misho 5622: /* Do not set firstchar after *ACCEPT */
! 5623: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
1.1 misho 5624: }
5625:
5626: /* Handle other cases with/without an argument */
5627:
5628: else if (arglen == 0)
5629: {
5630: if (verbs[i].op < 0) /* Argument is mandatory */
5631: {
5632: *errorcodeptr = ERR66;
5633: goto FAILED;
5634: }
5635: *code = verbs[i].op;
5636: if (*code++ == OP_THEN) cd->external_flags |= PCRE_HASTHEN;
5637: }
5638:
5639: else
5640: {
5641: if (verbs[i].op_arg < 0) /* Argument is forbidden */
5642: {
5643: *errorcodeptr = ERR59;
5644: goto FAILED;
5645: }
5646: *code = verbs[i].op_arg;
5647: if (*code++ == OP_THEN_ARG) cd->external_flags |= PCRE_HASTHEN;
5648: *code++ = arglen;
1.1.1.2 ! misho 5649: memcpy(code, arg, IN_UCHARS(arglen));
1.1 misho 5650: code += arglen;
5651: *code++ = 0;
5652: }
5653:
5654: break; /* Found verb, exit loop */
5655: }
5656:
5657: vn += verbs[i].len + 1;
5658: }
5659:
5660: if (i < verbcount) continue; /* Successfully handled a verb */
5661: *errorcodeptr = ERR60; /* Verb not recognized */
5662: goto FAILED;
5663: }
5664:
5665: /* Deal with the extended parentheses; all are introduced by '?', and the
5666: appearance of any of them means that this is not a capturing group. */
5667:
5668: else if (*ptr == CHAR_QUESTION_MARK)
5669: {
5670: int i, set, unset, namelen;
5671: int *optset;
1.1.1.2 ! misho 5672: const pcre_uchar *name;
! 5673: pcre_uchar *slot;
1.1 misho 5674:
5675: switch (*(++ptr))
5676: {
5677: case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
5678: ptr++;
5679: while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5680: if (*ptr == 0)
5681: {
5682: *errorcodeptr = ERR18;
5683: goto FAILED;
5684: }
5685: continue;
5686:
5687:
5688: /* ------------------------------------------------------------ */
5689: case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
5690: reset_bracount = TRUE;
5691: /* Fall through */
5692:
5693: /* ------------------------------------------------------------ */
5694: case CHAR_COLON: /* Non-capturing bracket */
5695: bravalue = OP_BRA;
5696: ptr++;
5697: break;
5698:
5699:
5700: /* ------------------------------------------------------------ */
5701: case CHAR_LEFT_PARENTHESIS:
5702: bravalue = OP_COND; /* Conditional group */
5703:
5704: /* A condition can be an assertion, a number (referring to a numbered
5705: group), a name (referring to a named group), or 'R', referring to
5706: recursion. R<digits> and R&name are also permitted for recursion tests.
5707:
5708: There are several syntaxes for testing a named group: (?(name)) is used
5709: by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
5710:
5711: There are two unfortunate ambiguities, caused by history. (a) 'R' can
5712: be the recursive thing or the name 'R' (and similarly for 'R' followed
5713: by digits), and (b) a number could be a name that consists of digits.
5714: In both cases, we look for a name first; if not found, we try the other
5715: cases. */
5716:
5717: /* For conditions that are assertions, check the syntax, and then exit
5718: the switch. This will take control down to where bracketed groups,
5719: including assertions, are processed. */
5720:
5721: if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN ||
5722: ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN))
5723: break;
5724:
5725: /* Most other conditions use OP_CREF (a couple change to OP_RREF
1.1.1.2 ! misho 5726: below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */
1.1 misho 5727:
5728: code[1+LINK_SIZE] = OP_CREF;
1.1.1.2 ! misho 5729: skipbytes = 1+IMM2_SIZE;
1.1 misho 5730: refsign = -1;
5731:
5732: /* Check for a test for recursion in a named group. */
5733:
5734: if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
5735: {
5736: terminator = -1;
5737: ptr += 2;
5738: code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
5739: }
5740:
5741: /* Check for a test for a named group's having been set, using the Perl
5742: syntax (?(<name>) or (?('name') */
5743:
5744: else if (ptr[1] == CHAR_LESS_THAN_SIGN)
5745: {
5746: terminator = CHAR_GREATER_THAN_SIGN;
5747: ptr++;
5748: }
5749: else if (ptr[1] == CHAR_APOSTROPHE)
5750: {
5751: terminator = CHAR_APOSTROPHE;
5752: ptr++;
5753: }
5754: else
5755: {
5756: terminator = 0;
5757: if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
5758: }
5759:
5760: /* We now expect to read a name; any thing else is an error */
5761:
1.1.1.2 ! misho 5762: if (!MAX_255(ptr[1]) || (cd->ctypes[ptr[1]] & ctype_word) == 0)
1.1 misho 5763: {
5764: ptr += 1; /* To get the right offset */
5765: *errorcodeptr = ERR28;
5766: goto FAILED;
5767: }
5768:
5769: /* Read the name, but also get it as a number if it's all digits */
5770:
5771: recno = 0;
5772: name = ++ptr;
1.1.1.2 ! misho 5773: while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0)
1.1 misho 5774: {
5775: if (recno >= 0)
1.1.1.2 ! misho 5776: recno = (IS_DIGIT(*ptr))? recno * 10 + *ptr - CHAR_0 : -1;
1.1 misho 5777: ptr++;
5778: }
5779: namelen = (int)(ptr - name);
5780:
5781: if ((terminator > 0 && *ptr++ != terminator) ||
5782: *ptr++ != CHAR_RIGHT_PARENTHESIS)
5783: {
5784: ptr--; /* Error offset */
5785: *errorcodeptr = ERR26;
5786: goto FAILED;
5787: }
5788:
5789: /* Do no further checking in the pre-compile phase. */
5790:
5791: if (lengthptr != NULL) break;
5792:
5793: /* In the real compile we do the work of looking for the actual
5794: reference. If the string started with "+" or "-" we require the rest to
5795: be digits, in which case recno will be set. */
5796:
5797: if (refsign > 0)
5798: {
5799: if (recno <= 0)
5800: {
5801: *errorcodeptr = ERR58;
5802: goto FAILED;
5803: }
5804: recno = (refsign == CHAR_MINUS)?
5805: cd->bracount - recno + 1 : recno +cd->bracount;
5806: if (recno <= 0 || recno > cd->final_bracount)
5807: {
5808: *errorcodeptr = ERR15;
5809: goto FAILED;
5810: }
5811: PUT2(code, 2+LINK_SIZE, recno);
5812: break;
5813: }
5814:
5815: /* Otherwise (did not start with "+" or "-"), start by looking for the
5816: name. If we find a name, add one to the opcode to change OP_CREF or
5817: OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
5818: except they record that the reference was originally to a name. The
5819: information is used to check duplicate names. */
5820:
5821: slot = cd->name_table;
5822: for (i = 0; i < cd->names_found; i++)
5823: {
1.1.1.2 ! misho 5824: if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break;
1.1 misho 5825: slot += cd->name_entry_size;
5826: }
5827:
5828: /* Found a previous named subpattern */
5829:
5830: if (i < cd->names_found)
5831: {
5832: recno = GET2(slot, 0);
5833: PUT2(code, 2+LINK_SIZE, recno);
5834: code[1+LINK_SIZE]++;
5835: }
5836:
5837: /* Search the pattern for a forward reference */
5838:
5839: else if ((i = find_parens(cd, name, namelen,
1.1.1.2 ! misho 5840: (options & PCRE_EXTENDED) != 0, utf)) > 0)
1.1 misho 5841: {
5842: PUT2(code, 2+LINK_SIZE, i);
5843: code[1+LINK_SIZE]++;
5844: }
5845:
5846: /* If terminator == 0 it means that the name followed directly after
5847: the opening parenthesis [e.g. (?(abc)...] and in this case there are
5848: some further alternatives to try. For the cases where terminator != 0
5849: [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
5850: now checked all the possibilities, so give an error. */
5851:
5852: else if (terminator != 0)
5853: {
5854: *errorcodeptr = ERR15;
5855: goto FAILED;
5856: }
5857:
5858: /* Check for (?(R) for recursion. Allow digits after R to specify a
5859: specific group number. */
5860:
5861: else if (*name == CHAR_R)
5862: {
5863: recno = 0;
5864: for (i = 1; i < namelen; i++)
5865: {
1.1.1.2 ! misho 5866: if (!IS_DIGIT(name[i]))
1.1 misho 5867: {
5868: *errorcodeptr = ERR15;
5869: goto FAILED;
5870: }
5871: recno = recno * 10 + name[i] - CHAR_0;
5872: }
5873: if (recno == 0) recno = RREF_ANY;
5874: code[1+LINK_SIZE] = OP_RREF; /* Change test type */
5875: PUT2(code, 2+LINK_SIZE, recno);
5876: }
5877:
5878: /* Similarly, check for the (?(DEFINE) "condition", which is always
5879: false. */
5880:
1.1.1.2 ! misho 5881: else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0)
1.1 misho 5882: {
5883: code[1+LINK_SIZE] = OP_DEF;
5884: skipbytes = 1;
5885: }
5886:
5887: /* Check for the "name" actually being a subpattern number. We are
5888: in the second pass here, so final_bracount is set. */
5889:
5890: else if (recno > 0 && recno <= cd->final_bracount)
5891: {
5892: PUT2(code, 2+LINK_SIZE, recno);
5893: }
5894:
5895: /* Either an unidentified subpattern, or a reference to (?(0) */
5896:
5897: else
5898: {
5899: *errorcodeptr = (recno == 0)? ERR35: ERR15;
5900: goto FAILED;
5901: }
5902: break;
5903:
5904:
5905: /* ------------------------------------------------------------ */
5906: case CHAR_EQUALS_SIGN: /* Positive lookahead */
5907: bravalue = OP_ASSERT;
5908: cd->assert_depth += 1;
5909: ptr++;
5910: break;
5911:
5912:
5913: /* ------------------------------------------------------------ */
5914: case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
5915: ptr++;
5916: if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
5917: {
5918: *code++ = OP_FAIL;
5919: previous = NULL;
5920: continue;
5921: }
5922: bravalue = OP_ASSERT_NOT;
5923: cd->assert_depth += 1;
5924: break;
5925:
5926:
5927: /* ------------------------------------------------------------ */
5928: case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
5929: switch (ptr[1])
5930: {
5931: case CHAR_EQUALS_SIGN: /* Positive lookbehind */
5932: bravalue = OP_ASSERTBACK;
5933: cd->assert_depth += 1;
5934: ptr += 2;
5935: break;
5936:
5937: case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
5938: bravalue = OP_ASSERTBACK_NOT;
5939: cd->assert_depth += 1;
5940: ptr += 2;
5941: break;
5942:
5943: default: /* Could be name define, else bad */
1.1.1.2 ! misho 5944: if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0)
! 5945: goto DEFINE_NAME;
1.1 misho 5946: ptr++; /* Correct offset for error */
5947: *errorcodeptr = ERR24;
5948: goto FAILED;
5949: }
5950: break;
5951:
5952:
5953: /* ------------------------------------------------------------ */
5954: case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
5955: bravalue = OP_ONCE;
5956: ptr++;
5957: break;
5958:
5959:
5960: /* ------------------------------------------------------------ */
5961: case CHAR_C: /* Callout - may be followed by digits; */
5962: previous_callout = code; /* Save for later completion */
5963: after_manual_callout = 1; /* Skip one item before completing */
5964: *code++ = OP_CALLOUT;
5965: {
5966: int n = 0;
1.1.1.2 ! misho 5967: ptr++;
! 5968: while(IS_DIGIT(*ptr))
! 5969: n = n * 10 + *ptr++ - CHAR_0;
1.1 misho 5970: if (*ptr != CHAR_RIGHT_PARENTHESIS)
5971: {
5972: *errorcodeptr = ERR39;
5973: goto FAILED;
5974: }
5975: if (n > 255)
5976: {
5977: *errorcodeptr = ERR38;
5978: goto FAILED;
5979: }
5980: *code++ = n;
5981: PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
5982: PUT(code, LINK_SIZE, 0); /* Default length */
5983: code += 2 * LINK_SIZE;
5984: }
5985: previous = NULL;
5986: continue;
5987:
5988:
5989: /* ------------------------------------------------------------ */
5990: case CHAR_P: /* Python-style named subpattern handling */
5991: if (*(++ptr) == CHAR_EQUALS_SIGN ||
5992: *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
5993: {
5994: is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
5995: terminator = CHAR_RIGHT_PARENTHESIS;
5996: goto NAMED_REF_OR_RECURSE;
5997: }
5998: else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
5999: {
6000: *errorcodeptr = ERR41;
6001: goto FAILED;
6002: }
6003: /* Fall through to handle (?P< as (?< is handled */
6004:
6005:
6006: /* ------------------------------------------------------------ */
6007: DEFINE_NAME: /* Come here from (?< handling */
6008: case CHAR_APOSTROPHE:
6009: {
6010: terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
6011: CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
6012: name = ++ptr;
6013:
1.1.1.2 ! misho 6014: while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
1.1 misho 6015: namelen = (int)(ptr - name);
6016:
6017: /* In the pre-compile phase, just do a syntax check. */
6018:
6019: if (lengthptr != NULL)
6020: {
6021: if (*ptr != terminator)
6022: {
6023: *errorcodeptr = ERR42;
6024: goto FAILED;
6025: }
6026: if (cd->names_found >= MAX_NAME_COUNT)
6027: {
6028: *errorcodeptr = ERR49;
6029: goto FAILED;
6030: }
1.1.1.2 ! misho 6031: if (namelen + IMM2_SIZE + 1 > cd->name_entry_size)
1.1 misho 6032: {
1.1.1.2 ! misho 6033: cd->name_entry_size = namelen + IMM2_SIZE + 1;
1.1 misho 6034: if (namelen > MAX_NAME_SIZE)
6035: {
6036: *errorcodeptr = ERR48;
6037: goto FAILED;
6038: }
6039: }
6040: }
6041:
6042: /* In the real compile, create the entry in the table, maintaining
6043: alphabetical order. Duplicate names for different numbers are
6044: permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
6045: number are always OK. (An existing number can be re-used if (?|
6046: appears in the pattern.) In either event, a duplicate name results in
6047: a duplicate entry in the table, even if the number is the same. This
6048: is because the number of names, and hence the table size, is computed
6049: in the pre-compile, and it affects various numbers and pointers which
6050: would all have to be modified, and the compiled code moved down, if
6051: duplicates with the same number were omitted from the table. This
6052: doesn't seem worth the hassle. However, *different* names for the
6053: same number are not permitted. */
6054:
6055: else
6056: {
6057: BOOL dupname = FALSE;
6058: slot = cd->name_table;
6059:
6060: for (i = 0; i < cd->names_found; i++)
6061: {
1.1.1.2 ! misho 6062: int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen));
1.1 misho 6063: if (crc == 0)
6064: {
1.1.1.2 ! misho 6065: if (slot[IMM2_SIZE+namelen] == 0)
1.1 misho 6066: {
6067: if (GET2(slot, 0) != cd->bracount + 1 &&
6068: (options & PCRE_DUPNAMES) == 0)
6069: {
6070: *errorcodeptr = ERR43;
6071: goto FAILED;
6072: }
6073: else dupname = TRUE;
6074: }
6075: else crc = -1; /* Current name is a substring */
6076: }
6077:
6078: /* Make space in the table and break the loop for an earlier
6079: name. For a duplicate or later name, carry on. We do this for
6080: duplicates so that in the simple case (when ?(| is not used) they
6081: are in order of their numbers. */
6082:
6083: if (crc < 0)
6084: {
6085: memmove(slot + cd->name_entry_size, slot,
1.1.1.2 ! misho 6086: IN_UCHARS((cd->names_found - i) * cd->name_entry_size));
1.1 misho 6087: break;
6088: }
6089:
6090: /* Continue the loop for a later or duplicate name */
6091:
6092: slot += cd->name_entry_size;
6093: }
6094:
6095: /* For non-duplicate names, check for a duplicate number before
6096: adding the new name. */
6097:
6098: if (!dupname)
6099: {
1.1.1.2 ! misho 6100: pcre_uchar *cslot = cd->name_table;
1.1 misho 6101: for (i = 0; i < cd->names_found; i++)
6102: {
6103: if (cslot != slot)
6104: {
6105: if (GET2(cslot, 0) == cd->bracount + 1)
6106: {
6107: *errorcodeptr = ERR65;
6108: goto FAILED;
6109: }
6110: }
6111: else i--;
6112: cslot += cd->name_entry_size;
6113: }
6114: }
6115:
6116: PUT2(slot, 0, cd->bracount + 1);
1.1.1.2 ! misho 6117: memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen));
! 6118: slot[IMM2_SIZE + namelen] = 0;
1.1 misho 6119: }
6120: }
6121:
6122: /* In both pre-compile and compile, count the number of names we've
6123: encountered. */
6124:
6125: cd->names_found++;
6126: ptr++; /* Move past > or ' */
6127: goto NUMBERED_GROUP;
6128:
6129:
6130: /* ------------------------------------------------------------ */
6131: case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
6132: terminator = CHAR_RIGHT_PARENTHESIS;
6133: is_recurse = TRUE;
6134: /* Fall through */
6135:
6136: /* We come here from the Python syntax above that handles both
6137: references (?P=name) and recursion (?P>name), as well as falling
6138: through from the Perl recursion syntax (?&name). We also come here from
6139: the Perl \k<name> or \k'name' back reference syntax and the \k{name}
6140: .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
6141:
6142: NAMED_REF_OR_RECURSE:
6143: name = ++ptr;
1.1.1.2 ! misho 6144: while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
1.1 misho 6145: namelen = (int)(ptr - name);
6146:
6147: /* In the pre-compile phase, do a syntax check. We used to just set
6148: a dummy reference number, because it was not used in the first pass.
6149: However, with the change of recursive back references to be atomic,
6150: we have to look for the number so that this state can be identified, as
6151: otherwise the incorrect length is computed. If it's not a backwards
6152: reference, the dummy number will do. */
6153:
6154: if (lengthptr != NULL)
6155: {
1.1.1.2 ! misho 6156: const pcre_uchar *temp;
1.1 misho 6157:
6158: if (namelen == 0)
6159: {
6160: *errorcodeptr = ERR62;
6161: goto FAILED;
6162: }
6163: if (*ptr != terminator)
6164: {
6165: *errorcodeptr = ERR42;
6166: goto FAILED;
6167: }
6168: if (namelen > MAX_NAME_SIZE)
6169: {
6170: *errorcodeptr = ERR48;
6171: goto FAILED;
6172: }
6173:
6174: /* The name table does not exist in the first pass, so we cannot
6175: do a simple search as in the code below. Instead, we have to scan the
6176: pattern to find the number. It is important that we scan it only as
6177: far as we have got because the syntax of named subpatterns has not
6178: been checked for the rest of the pattern, and find_parens() assumes
6179: correct syntax. In any case, it's a waste of resources to scan
6180: further. We stop the scan at the current point by temporarily
6181: adjusting the value of cd->endpattern. */
6182:
6183: temp = cd->end_pattern;
6184: cd->end_pattern = ptr;
6185: recno = find_parens(cd, name, namelen,
1.1.1.2 ! misho 6186: (options & PCRE_EXTENDED) != 0, utf);
1.1 misho 6187: cd->end_pattern = temp;
6188: if (recno < 0) recno = 0; /* Forward ref; set dummy number */
6189: }
6190:
6191: /* In the real compile, seek the name in the table. We check the name
6192: first, and then check that we have reached the end of the name in the
6193: table. That way, if the name that is longer than any in the table,
6194: the comparison will fail without reading beyond the table entry. */
6195:
6196: else
6197: {
6198: slot = cd->name_table;
6199: for (i = 0; i < cd->names_found; i++)
6200: {
1.1.1.2 ! misho 6201: if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 &&
! 6202: slot[IMM2_SIZE+namelen] == 0)
1.1 misho 6203: break;
6204: slot += cd->name_entry_size;
6205: }
6206:
6207: if (i < cd->names_found) /* Back reference */
6208: {
6209: recno = GET2(slot, 0);
6210: }
6211: else if ((recno = /* Forward back reference */
6212: find_parens(cd, name, namelen,
1.1.1.2 ! misho 6213: (options & PCRE_EXTENDED) != 0, utf)) <= 0)
1.1 misho 6214: {
6215: *errorcodeptr = ERR15;
6216: goto FAILED;
6217: }
6218: }
6219:
6220: /* In both phases, we can now go to the code than handles numerical
6221: recursion or backreferences. */
6222:
6223: if (is_recurse) goto HANDLE_RECURSION;
6224: else goto HANDLE_REFERENCE;
6225:
6226:
6227: /* ------------------------------------------------------------ */
6228: case CHAR_R: /* Recursion */
6229: ptr++; /* Same as (?0) */
6230: /* Fall through */
6231:
6232:
6233: /* ------------------------------------------------------------ */
6234: case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
6235: case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
6236: case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
6237: {
1.1.1.2 ! misho 6238: const pcre_uchar *called;
1.1 misho 6239: terminator = CHAR_RIGHT_PARENTHESIS;
6240:
6241: /* Come here from the \g<...> and \g'...' code (Oniguruma
6242: compatibility). However, the syntax has been checked to ensure that
6243: the ... are a (signed) number, so that neither ERR63 nor ERR29 will
6244: be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
6245: ever be taken. */
6246:
6247: HANDLE_NUMERICAL_RECURSION:
6248:
6249: if ((refsign = *ptr) == CHAR_PLUS)
6250: {
6251: ptr++;
1.1.1.2 ! misho 6252: if (!IS_DIGIT(*ptr))
1.1 misho 6253: {
6254: *errorcodeptr = ERR63;
6255: goto FAILED;
6256: }
6257: }
6258: else if (refsign == CHAR_MINUS)
6259: {
1.1.1.2 ! misho 6260: if (!IS_DIGIT(ptr[1]))
1.1 misho 6261: goto OTHER_CHAR_AFTER_QUERY;
6262: ptr++;
6263: }
6264:
6265: recno = 0;
1.1.1.2 ! misho 6266: while(IS_DIGIT(*ptr))
1.1 misho 6267: recno = recno * 10 + *ptr++ - CHAR_0;
6268:
6269: if (*ptr != terminator)
6270: {
6271: *errorcodeptr = ERR29;
6272: goto FAILED;
6273: }
6274:
6275: if (refsign == CHAR_MINUS)
6276: {
6277: if (recno == 0)
6278: {
6279: *errorcodeptr = ERR58;
6280: goto FAILED;
6281: }
6282: recno = cd->bracount - recno + 1;
6283: if (recno <= 0)
6284: {
6285: *errorcodeptr = ERR15;
6286: goto FAILED;
6287: }
6288: }
6289: else if (refsign == CHAR_PLUS)
6290: {
6291: if (recno == 0)
6292: {
6293: *errorcodeptr = ERR58;
6294: goto FAILED;
6295: }
6296: recno += cd->bracount;
6297: }
6298:
6299: /* Come here from code above that handles a named recursion */
6300:
6301: HANDLE_RECURSION:
6302:
6303: previous = code;
6304: called = cd->start_code;
6305:
6306: /* When we are actually compiling, find the bracket that is being
6307: referenced. Temporarily end the regex in case it doesn't exist before
6308: this point. If we end up with a forward reference, first check that
6309: the bracket does occur later so we can give the error (and position)
6310: now. Then remember this forward reference in the workspace so it can
6311: be filled in at the end. */
6312:
6313: if (lengthptr == NULL)
6314: {
6315: *code = OP_END;
6316: if (recno != 0)
1.1.1.2 ! misho 6317: called = PRIV(find_bracket)(cd->start_code, utf, recno);
1.1 misho 6318:
6319: /* Forward reference */
6320:
6321: if (called == NULL)
6322: {
6323: if (find_parens(cd, NULL, recno,
1.1.1.2 ! misho 6324: (options & PCRE_EXTENDED) != 0, utf) < 0)
1.1 misho 6325: {
6326: *errorcodeptr = ERR15;
6327: goto FAILED;
6328: }
6329:
6330: /* Fudge the value of "called" so that when it is inserted as an
6331: offset below, what it actually inserted is the reference number
6332: of the group. Then remember the forward reference. */
6333:
6334: called = cd->start_code + recno;
6335: if (cd->hwm >= cd->start_workspace + cd->workspace_size -
6336: WORK_SIZE_SAFETY_MARGIN)
6337: {
6338: *errorcodeptr = expand_workspace(cd);
6339: if (*errorcodeptr != 0) goto FAILED;
6340: }
6341: PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
6342: }
6343:
6344: /* If not a forward reference, and the subpattern is still open,
6345: this is a recursive call. We check to see if this is a left
6346: recursion that could loop for ever, and diagnose that case. We
6347: must not, however, do this check if we are in a conditional
6348: subpattern because the condition might be testing for recursion in
6349: a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid.
6350: Forever loops are also detected at runtime, so those that occur in
6351: conditional subpatterns will be picked up then. */
6352:
6353: else if (GET(called, 1) == 0 && cond_depth <= 0 &&
1.1.1.2 ! misho 6354: could_be_empty(called, code, bcptr, utf, cd))
1.1 misho 6355: {
6356: *errorcodeptr = ERR40;
6357: goto FAILED;
6358: }
6359: }
6360:
6361: /* Insert the recursion/subroutine item. It does not have a set first
1.1.1.2 ! misho 6362: character (relevant if it is repeated, because it will then be
! 6363: wrapped with ONCE brackets). */
1.1 misho 6364:
6365: *code = OP_RECURSE;
6366: PUT(code, 1, (int)(called - cd->start_code));
6367: code += 1 + LINK_SIZE;
1.1.1.2 ! misho 6368: groupsetfirstchar = FALSE;
1.1 misho 6369: }
6370:
6371: /* Can't determine a first byte now */
6372:
1.1.1.2 ! misho 6373: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
1.1 misho 6374: continue;
6375:
6376:
6377: /* ------------------------------------------------------------ */
6378: default: /* Other characters: check option setting */
6379: OTHER_CHAR_AFTER_QUERY:
6380: set = unset = 0;
6381: optset = &set;
6382:
6383: while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
6384: {
6385: switch (*ptr++)
6386: {
6387: case CHAR_MINUS: optset = &unset; break;
6388:
6389: case CHAR_J: /* Record that it changed in the external options */
6390: *optset |= PCRE_DUPNAMES;
6391: cd->external_flags |= PCRE_JCHANGED;
6392: break;
6393:
6394: case CHAR_i: *optset |= PCRE_CASELESS; break;
6395: case CHAR_m: *optset |= PCRE_MULTILINE; break;
6396: case CHAR_s: *optset |= PCRE_DOTALL; break;
6397: case CHAR_x: *optset |= PCRE_EXTENDED; break;
6398: case CHAR_U: *optset |= PCRE_UNGREEDY; break;
6399: case CHAR_X: *optset |= PCRE_EXTRA; break;
6400:
6401: default: *errorcodeptr = ERR12;
6402: ptr--; /* Correct the offset */
6403: goto FAILED;
6404: }
6405: }
6406:
6407: /* Set up the changed option bits, but don't change anything yet. */
6408:
6409: newoptions = (options | set) & (~unset);
6410:
6411: /* If the options ended with ')' this is not the start of a nested
6412: group with option changes, so the options change at this level. If this
6413: item is right at the start of the pattern, the options can be
6414: abstracted and made external in the pre-compile phase, and ignored in
6415: the compile phase. This can be helpful when matching -- for instance in
6416: caseless checking of required bytes.
6417:
6418: If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
6419: definitely *not* at the start of the pattern because something has been
6420: compiled. In the pre-compile phase, however, the code pointer can have
6421: that value after the start, because it gets reset as code is discarded
6422: during the pre-compile. However, this can happen only at top level - if
6423: we are within parentheses, the starting BRA will still be present. At
6424: any parenthesis level, the length value can be used to test if anything
6425: has been compiled at that level. Thus, a test for both these conditions
6426: is necessary to ensure we correctly detect the start of the pattern in
6427: both phases.
6428:
6429: If we are not at the pattern start, reset the greedy defaults and the
1.1.1.2 ! misho 6430: case value for firstchar and reqchar. */
1.1 misho 6431:
6432: if (*ptr == CHAR_RIGHT_PARENTHESIS)
6433: {
6434: if (code == cd->start_code + 1 + LINK_SIZE &&
6435: (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
6436: {
6437: cd->external_options = newoptions;
6438: }
6439: else
6440: {
6441: greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
6442: greedy_non_default = greedy_default ^ 1;
1.1.1.2 ! misho 6443: req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
1.1 misho 6444: }
6445:
6446: /* Change options at this level, and pass them back for use
6447: in subsequent branches. */
6448:
6449: *optionsptr = options = newoptions;
6450: previous = NULL; /* This item can't be repeated */
6451: continue; /* It is complete */
6452: }
6453:
6454: /* If the options ended with ':' we are heading into a nested group
6455: with possible change of options. Such groups are non-capturing and are
6456: not assertions of any kind. All we need to do is skip over the ':';
6457: the newoptions value is handled below. */
6458:
6459: bravalue = OP_BRA;
6460: ptr++;
6461: } /* End of switch for character following (? */
6462: } /* End of (? handling */
6463:
6464: /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
6465: is set, all unadorned brackets become non-capturing and behave like (?:...)
6466: brackets. */
6467:
6468: else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
6469: {
6470: bravalue = OP_BRA;
6471: }
6472:
6473: /* Else we have a capturing group. */
6474:
6475: else
6476: {
6477: NUMBERED_GROUP:
6478: cd->bracount += 1;
6479: PUT2(code, 1+LINK_SIZE, cd->bracount);
1.1.1.2 ! misho 6480: skipbytes = IMM2_SIZE;
1.1 misho 6481: }
6482:
6483: /* Process nested bracketed regex. Assertions used not to be repeatable,
6484: but this was changed for Perl compatibility, so all kinds can now be
6485: repeated. We copy code into a non-register variable (tempcode) in order to
6486: be able to pass its address because some compilers complain otherwise. */
6487:
6488: previous = code; /* For handling repetition */
6489: *code = bravalue;
6490: tempcode = code;
6491: tempreqvary = cd->req_varyopt; /* Save value before bracket */
6492: tempbracount = cd->bracount; /* Save value before bracket */
6493: length_prevgroup = 0; /* Initialize for pre-compile phase */
6494:
6495: if (!compile_regex(
6496: newoptions, /* The complete new option state */
6497: &tempcode, /* Where to put code (updated) */
6498: &ptr, /* Input pointer (updated) */
6499: errorcodeptr, /* Where to put an error message */
6500: (bravalue == OP_ASSERTBACK ||
6501: bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
6502: reset_bracount, /* True if (?| group */
6503: skipbytes, /* Skip over bracket number */
6504: cond_depth +
6505: ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
1.1.1.2 ! misho 6506: &subfirstchar, /* For possible first char */
! 6507: &subreqchar, /* For possible last char */
1.1 misho 6508: bcptr, /* Current branch chain */
6509: cd, /* Tables block */
6510: (lengthptr == NULL)? NULL : /* Actual compile phase */
6511: &length_prevgroup /* Pre-compile phase */
6512: ))
6513: goto FAILED;
6514:
6515: /* If this was an atomic group and there are no capturing groups within it,
6516: generate OP_ONCE_NC instead of OP_ONCE. */
6517:
6518: if (bravalue == OP_ONCE && cd->bracount <= tempbracount)
6519: *code = OP_ONCE_NC;
6520:
6521: if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
6522: cd->assert_depth -= 1;
6523:
6524: /* At the end of compiling, code is still pointing to the start of the
6525: group, while tempcode has been updated to point past the end of the group.
6526: The pattern pointer (ptr) is on the bracket.
6527:
6528: If this is a conditional bracket, check that there are no more than
6529: two branches in the group, or just one if it's a DEFINE group. We do this
6530: in the real compile phase, not in the pre-pass, where the whole group may
6531: not be available. */
6532:
6533: if (bravalue == OP_COND && lengthptr == NULL)
6534: {
1.1.1.2 ! misho 6535: pcre_uchar *tc = code;
1.1 misho 6536: int condcount = 0;
6537:
6538: do {
6539: condcount++;
6540: tc += GET(tc,1);
6541: }
6542: while (*tc != OP_KET);
6543:
6544: /* A DEFINE group is never obeyed inline (the "condition" is always
6545: false). It must have only one branch. */
6546:
6547: if (code[LINK_SIZE+1] == OP_DEF)
6548: {
6549: if (condcount > 1)
6550: {
6551: *errorcodeptr = ERR54;
6552: goto FAILED;
6553: }
6554: bravalue = OP_DEF; /* Just a flag to suppress char handling below */
6555: }
6556:
6557: /* A "normal" conditional group. If there is just one branch, we must not
1.1.1.2 ! misho 6558: make use of its firstchar or reqchar, because this is equivalent to an
1.1 misho 6559: empty second branch. */
6560:
6561: else
6562: {
6563: if (condcount > 2)
6564: {
6565: *errorcodeptr = ERR27;
6566: goto FAILED;
6567: }
1.1.1.2 ! misho 6568: if (condcount == 1) subfirstchar = subreqchar = REQ_NONE;
1.1 misho 6569: }
6570: }
6571:
6572: /* Error if hit end of pattern */
6573:
6574: if (*ptr != CHAR_RIGHT_PARENTHESIS)
6575: {
6576: *errorcodeptr = ERR14;
6577: goto FAILED;
6578: }
6579:
6580: /* In the pre-compile phase, update the length by the length of the group,
6581: less the brackets at either end. Then reduce the compiled code to just a
6582: set of non-capturing brackets so that it doesn't use much memory if it is
6583: duplicated by a quantifier.*/
6584:
6585: if (lengthptr != NULL)
6586: {
6587: if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
6588: {
6589: *errorcodeptr = ERR20;
6590: goto FAILED;
6591: }
6592: *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
6593: code++; /* This already contains bravalue */
6594: PUTINC(code, 0, 1 + LINK_SIZE);
6595: *code++ = OP_KET;
6596: PUTINC(code, 0, 1 + LINK_SIZE);
6597: break; /* No need to waste time with special character handling */
6598: }
6599:
6600: /* Otherwise update the main code pointer to the end of the group. */
6601:
6602: code = tempcode;
6603:
6604: /* For a DEFINE group, required and first character settings are not
6605: relevant. */
6606:
6607: if (bravalue == OP_DEF) break;
6608:
6609: /* Handle updating of the required and first characters for other types of
6610: group. Update for normal brackets of all kinds, and conditions with two
6611: branches (see code above). If the bracket is followed by a quantifier with
1.1.1.2 ! misho 6612: zero repeat, we have to back off. Hence the definition of zeroreqchar and
! 6613: zerofirstchar outside the main loop so that they can be accessed for the
1.1 misho 6614: back off. */
6615:
1.1.1.2 ! misho 6616: zeroreqchar = reqchar;
! 6617: zerofirstchar = firstchar;
! 6618: groupsetfirstchar = FALSE;
1.1 misho 6619:
6620: if (bravalue >= OP_ONCE)
6621: {
1.1.1.2 ! misho 6622: /* If we have not yet set a firstchar in this branch, take it from the
1.1 misho 6623: subpattern, remembering that it was set here so that a repeat of more
1.1.1.2 ! misho 6624: than one can replicate it as reqchar if necessary. If the subpattern has
! 6625: no firstchar, set "none" for the whole branch. In both cases, a zero
! 6626: repeat forces firstchar to "none". */
1.1 misho 6627:
1.1.1.2 ! misho 6628: if (firstchar == REQ_UNSET)
1.1 misho 6629: {
1.1.1.2 ! misho 6630: if (subfirstchar >= 0)
1.1 misho 6631: {
1.1.1.2 ! misho 6632: firstchar = subfirstchar;
! 6633: groupsetfirstchar = TRUE;
1.1 misho 6634: }
1.1.1.2 ! misho 6635: else firstchar = REQ_NONE;
! 6636: zerofirstchar = REQ_NONE;
1.1 misho 6637: }
6638:
1.1.1.2 ! misho 6639: /* If firstchar was previously set, convert the subpattern's firstchar
! 6640: into reqchar if there wasn't one, using the vary flag that was in
1.1 misho 6641: existence beforehand. */
6642:
1.1.1.2 ! misho 6643: else if (subfirstchar >= 0 && subreqchar < 0)
! 6644: subreqchar = subfirstchar | tempreqvary;
1.1 misho 6645:
6646: /* If the subpattern set a required byte (or set a first byte that isn't
6647: really the first byte - see above), set it. */
6648:
1.1.1.2 ! misho 6649: if (subreqchar >= 0) reqchar = subreqchar;
1.1 misho 6650: }
6651:
1.1.1.2 ! misho 6652: /* For a forward assertion, we take the reqchar, if set. This can be
1.1 misho 6653: helpful if the pattern that follows the assertion doesn't set a different
1.1.1.2 ! misho 6654: char. For example, it's useful for /(?=abcde).+/. We can't set firstchar
1.1 misho 6655: for an assertion, however because it leads to incorrect effect for patterns
1.1.1.2 ! misho 6656: such as /(?=a)a.+/ when the "real" "a" would then become a reqchar instead
! 6657: of a firstchar. This is overcome by a scan at the end if there's no
! 6658: firstchar, looking for an asserted first char. */
1.1 misho 6659:
1.1.1.2 ! misho 6660: else if (bravalue == OP_ASSERT && subreqchar >= 0) reqchar = subreqchar;
1.1 misho 6661: break; /* End of processing '(' */
6662:
6663:
6664: /* ===================================================================*/
6665: /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
6666: are arranged to be the negation of the corresponding OP_values in the
6667: default case when PCRE_UCP is not set. For the back references, the values
6668: are ESC_REF plus the reference number. Only back references and those types
6669: that consume a character may be repeated. We can test for values between
6670: ESC_b and ESC_Z for the latter; this may have to change if any new ones are
6671: ever created. */
6672:
6673: case CHAR_BACKSLASH:
6674: tempptr = ptr;
6675: c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
6676: if (*errorcodeptr != 0) goto FAILED;
6677:
6678: if (c < 0)
6679: {
6680: if (-c == ESC_Q) /* Handle start of quoted string */
6681: {
6682: if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
6683: ptr += 2; /* avoid empty string */
6684: else inescq = TRUE;
6685: continue;
6686: }
6687:
6688: if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
6689:
6690: /* For metasequences that actually match a character, we disable the
6691: setting of a first character if it hasn't already been set. */
6692:
1.1.1.2 ! misho 6693: if (firstchar == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
! 6694: firstchar = REQ_NONE;
1.1 misho 6695:
6696: /* Set values to reset to if this is followed by a zero repeat. */
6697:
1.1.1.2 ! misho 6698: zerofirstchar = firstchar;
! 6699: zeroreqchar = reqchar;
1.1 misho 6700:
6701: /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
6702: is a subroutine call by number (Oniguruma syntax). In fact, the value
6703: -ESC_g is returned only for these cases. So we don't need to check for <
6704: or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is
6705: -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as
6706: that is a synonym for a named back reference). */
6707:
6708: if (-c == ESC_g)
6709: {
1.1.1.2 ! misho 6710: const pcre_uchar *p;
1.1 misho 6711: save_hwm = cd->hwm; /* Normally this is set when '(' is read */
6712: terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6713: CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
6714:
6715: /* These two statements stop the compiler for warning about possibly
6716: unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
6717: fact, because we actually check for a number below, the paths that
6718: would actually be in error are never taken. */
6719:
6720: skipbytes = 0;
6721: reset_bracount = FALSE;
6722:
6723: /* Test for a name */
6724:
6725: if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS)
6726: {
1.1.1.2 ! misho 6727: BOOL is_a_number = TRUE;
1.1 misho 6728: for (p = ptr + 1; *p != 0 && *p != terminator; p++)
6729: {
1.1.1.2 ! misho 6730: if (!MAX_255(*p)) { is_a_number = FALSE; break; }
! 6731: if ((cd->ctypes[*p] & ctype_digit) == 0) is_a_number = FALSE;
1.1 misho 6732: if ((cd->ctypes[*p] & ctype_word) == 0) break;
6733: }
6734: if (*p != terminator)
6735: {
6736: *errorcodeptr = ERR57;
6737: break;
6738: }
1.1.1.2 ! misho 6739: if (is_a_number)
1.1 misho 6740: {
6741: ptr++;
6742: goto HANDLE_NUMERICAL_RECURSION;
6743: }
6744: is_recurse = TRUE;
6745: goto NAMED_REF_OR_RECURSE;
6746: }
6747:
6748: /* Test a signed number in angle brackets or quotes. */
6749:
6750: p = ptr + 2;
1.1.1.2 ! misho 6751: while (IS_DIGIT(*p)) p++;
1.1 misho 6752: if (*p != terminator)
6753: {
6754: *errorcodeptr = ERR57;
6755: break;
6756: }
6757: ptr++;
6758: goto HANDLE_NUMERICAL_RECURSION;
6759: }
6760:
6761: /* \k<name> or \k'name' is a back reference by name (Perl syntax).
6762: We also support \k{name} (.NET syntax). */
6763:
6764: if (-c == ESC_k)
6765: {
6766: if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
6767: ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
6768: {
6769: *errorcodeptr = ERR69;
6770: break;
6771: }
6772: is_recurse = FALSE;
6773: terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6774: CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
6775: CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
6776: goto NAMED_REF_OR_RECURSE;
6777: }
6778:
1.1.1.2 ! misho 6779: /* Back references are handled specially; must disable firstchar if
1.1 misho 6780: not set to cope with cases like (?=(\w+))\1: which would otherwise set
6781: ':' later. */
6782:
6783: if (-c >= ESC_REF)
6784: {
6785: open_capitem *oc;
6786: recno = -c - ESC_REF;
6787:
6788: HANDLE_REFERENCE: /* Come here from named backref handling */
1.1.1.2 ! misho 6789: if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
1.1 misho 6790: previous = code;
6791: *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF;
6792: PUT2INC(code, 0, recno);
6793: cd->backref_map |= (recno < 32)? (1 << recno) : 1;
6794: if (recno > cd->top_backref) cd->top_backref = recno;
6795:
6796: /* Check to see if this back reference is recursive, that it, it
6797: is inside the group that it references. A flag is set so that the
6798: group can be made atomic. */
6799:
6800: for (oc = cd->open_caps; oc != NULL; oc = oc->next)
6801: {
6802: if (oc->number == recno)
6803: {
6804: oc->flag = TRUE;
6805: break;
6806: }
6807: }
6808: }
6809:
6810: /* So are Unicode property matches, if supported. */
6811:
6812: #ifdef SUPPORT_UCP
6813: else if (-c == ESC_P || -c == ESC_p)
6814: {
6815: BOOL negated;
6816: int pdata;
6817: int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
6818: if (ptype < 0) goto FAILED;
6819: previous = code;
6820: *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
6821: *code++ = ptype;
6822: *code++ = pdata;
6823: }
6824: #else
6825:
6826: /* If Unicode properties are not supported, \X, \P, and \p are not
6827: allowed. */
6828:
6829: else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
6830: {
6831: *errorcodeptr = ERR45;
6832: goto FAILED;
6833: }
6834: #endif
6835:
6836: /* For the rest (including \X when Unicode properties are supported), we
6837: can obtain the OP value by negating the escape value in the default
6838: situation when PCRE_UCP is not set. When it *is* set, we substitute
6839: Unicode property tests. */
6840:
6841: else
6842: {
6843: #ifdef SUPPORT_UCP
6844: if (-c >= ESC_DU && -c <= ESC_wu)
6845: {
6846: nestptr = ptr + 1; /* Where to resume */
6847: ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
6848: }
6849: else
6850: #endif
6851: /* In non-UTF-8 mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE
6852: so that it works in DFA mode and in lookbehinds. */
6853:
6854: {
6855: previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
1.1.1.2 ! misho 6856: *code++ = (!utf && c == -ESC_C)? OP_ALLANY : -c;
1.1 misho 6857: }
6858: }
6859: continue;
6860: }
6861:
6862: /* We have a data character whose value is in c. In UTF-8 mode it may have
6863: a value > 127. We set its representation in the length/buffer, and then
6864: handle it as a data character. */
6865:
1.1.1.2 ! misho 6866: #ifdef SUPPORT_UTF
! 6867: if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
! 6868: mclength = PRIV(ord2utf)(c, mcbuffer);
1.1 misho 6869: else
6870: #endif
6871:
6872: {
6873: mcbuffer[0] = c;
6874: mclength = 1;
6875: }
6876: goto ONE_CHAR;
6877:
6878:
6879: /* ===================================================================*/
6880: /* Handle a literal character. It is guaranteed not to be whitespace or #
6881: when the extended flag is set. If we are in UTF-8 mode, it may be a
6882: multi-byte literal character. */
6883:
6884: default:
6885: NORMAL_CHAR:
6886: mclength = 1;
6887: mcbuffer[0] = c;
6888:
1.1.1.2 ! misho 6889: #ifdef SUPPORT_UTF
! 6890: if (utf && HAS_EXTRALEN(c))
! 6891: ACROSSCHAR(TRUE, ptr[1], mcbuffer[mclength++] = *(++ptr));
1.1 misho 6892: #endif
6893:
6894: /* At this point we have the character's bytes in mcbuffer, and the length
6895: in mclength. When not in UTF-8 mode, the length is always 1. */
6896:
6897: ONE_CHAR:
6898: previous = code;
6899: *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR;
6900: for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
6901:
6902: /* Remember if \r or \n were seen */
6903:
6904: if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
6905: cd->external_flags |= PCRE_HASCRORLF;
6906:
6907: /* Set the first and required bytes appropriately. If no previous first
6908: byte, set it from this character, but revert to none on a zero repeat.
1.1.1.2 ! misho 6909: Otherwise, leave the firstchar value alone, and don't change it on a zero
1.1 misho 6910: repeat. */
6911:
1.1.1.2 ! misho 6912: if (firstchar == REQ_UNSET)
1.1 misho 6913: {
1.1.1.2 ! misho 6914: zerofirstchar = REQ_NONE;
! 6915: zeroreqchar = reqchar;
1.1 misho 6916:
1.1.1.2 ! misho 6917: /* If the character is more than one byte long, we can set firstchar
1.1 misho 6918: only if it is not to be matched caselessly. */
6919:
6920: if (mclength == 1 || req_caseopt == 0)
6921: {
1.1.1.2 ! misho 6922: firstchar = mcbuffer[0] | req_caseopt;
! 6923: if (mclength != 1) reqchar = code[-1] | cd->req_varyopt;
1.1 misho 6924: }
1.1.1.2 ! misho 6925: else firstchar = reqchar = REQ_NONE;
1.1 misho 6926: }
6927:
1.1.1.2 ! misho 6928: /* firstchar was previously set; we can set reqchar only if the length is
1.1 misho 6929: 1 or the matching is caseful. */
6930:
6931: else
6932: {
1.1.1.2 ! misho 6933: zerofirstchar = firstchar;
! 6934: zeroreqchar = reqchar;
1.1 misho 6935: if (mclength == 1 || req_caseopt == 0)
1.1.1.2 ! misho 6936: reqchar = code[-1] | req_caseopt | cd->req_varyopt;
1.1 misho 6937: }
6938:
6939: break; /* End of literal character handling */
6940: }
6941: } /* end of big loop */
6942:
6943:
6944: /* Control never reaches here by falling through, only by a goto for all the
6945: error states. Pass back the position in the pattern so that it can be displayed
6946: to the user for diagnosing the error. */
6947:
6948: FAILED:
6949: *ptrptr = ptr;
6950: return FALSE;
6951: }
6952:
6953:
6954:
6955:
6956: /*************************************************
6957: * Compile sequence of alternatives *
6958: *************************************************/
6959:
6960: /* On entry, ptr is pointing past the bracket character, but on return it
6961: points to the closing bracket, or vertical bar, or end of string. The code
6962: variable is pointing at the byte into which the BRA operator has been stored.
6963: This function is used during the pre-compile phase when we are trying to find
6964: out the amount of memory needed, as well as during the real compile phase. The
6965: value of lengthptr distinguishes the two phases.
6966:
6967: Arguments:
6968: options option bits, including any changes for this subpattern
6969: codeptr -> the address of the current code pointer
6970: ptrptr -> the address of the current pattern pointer
6971: errorcodeptr -> pointer to error code variable
6972: lookbehind TRUE if this is a lookbehind assertion
6973: reset_bracount TRUE to reset the count for each branch
6974: skipbytes skip this many bytes at start (for brackets and OP_COND)
6975: cond_depth depth of nesting for conditional subpatterns
1.1.1.2 ! misho 6976: firstcharptr place to put the first required character, or a negative number
! 6977: reqcharptr place to put the last required character, or a negative number
1.1 misho 6978: bcptr pointer to the chain of currently open branches
6979: cd points to the data block with tables pointers etc.
6980: lengthptr NULL during the real compile phase
6981: points to length accumulator during pre-compile phase
6982:
6983: Returns: TRUE on success
6984: */
6985:
6986: static BOOL
1.1.1.2 ! misho 6987: compile_regex(int options, pcre_uchar **codeptr, const pcre_uchar **ptrptr,
1.1 misho 6988: int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
1.1.1.2 ! misho 6989: int cond_depth, pcre_int32 *firstcharptr, pcre_int32 *reqcharptr,
! 6990: branch_chain *bcptr, compile_data *cd, int *lengthptr)
1.1 misho 6991: {
1.1.1.2 ! misho 6992: const pcre_uchar *ptr = *ptrptr;
! 6993: pcre_uchar *code = *codeptr;
! 6994: pcre_uchar *last_branch = code;
! 6995: pcre_uchar *start_bracket = code;
! 6996: pcre_uchar *reverse_count = NULL;
1.1 misho 6997: open_capitem capitem;
6998: int capnumber = 0;
1.1.1.2 ! misho 6999: pcre_int32 firstchar, reqchar;
! 7000: pcre_int32 branchfirstchar, branchreqchar;
1.1 misho 7001: int length;
7002: int orig_bracount;
7003: int max_bracount;
7004: branch_chain bc;
7005:
7006: bc.outer = bcptr;
7007: bc.current_branch = code;
7008:
1.1.1.2 ! misho 7009: firstchar = reqchar = REQ_UNSET;
1.1 misho 7010:
7011: /* Accumulate the length for use in the pre-compile phase. Start with the
7012: length of the BRA and KET and any extra bytes that are required at the
7013: beginning. We accumulate in a local variable to save frequent testing of
7014: lenthptr for NULL. We cannot do this by looking at the value of code at the
7015: start and end of each alternative, because compiled items are discarded during
7016: the pre-compile phase so that the work space is not exceeded. */
7017:
7018: length = 2 + 2*LINK_SIZE + skipbytes;
7019:
7020: /* WARNING: If the above line is changed for any reason, you must also change
7021: the code that abstracts option settings at the start of the pattern and makes
7022: them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
7023: pre-compile phase to find out whether anything has yet been compiled or not. */
7024:
7025: /* If this is a capturing subpattern, add to the chain of open capturing items
7026: so that we can detect them if (*ACCEPT) is encountered. This is also used to
7027: detect groups that contain recursive back references to themselves. Note that
7028: only OP_CBRA need be tested here; changing this opcode to one of its variants,
7029: e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */
7030:
7031: if (*code == OP_CBRA)
7032: {
7033: capnumber = GET2(code, 1 + LINK_SIZE);
7034: capitem.number = capnumber;
7035: capitem.next = cd->open_caps;
7036: capitem.flag = FALSE;
7037: cd->open_caps = &capitem;
7038: }
7039:
7040: /* Offset is set zero to mark that this bracket is still open */
7041:
7042: PUT(code, 1, 0);
7043: code += 1 + LINK_SIZE + skipbytes;
7044:
7045: /* Loop for each alternative branch */
7046:
7047: orig_bracount = max_bracount = cd->bracount;
7048: for (;;)
7049: {
7050: /* For a (?| group, reset the capturing bracket count so that each branch
7051: uses the same numbers. */
7052:
7053: if (reset_bracount) cd->bracount = orig_bracount;
7054:
7055: /* Set up dummy OP_REVERSE if lookbehind assertion */
7056:
7057: if (lookbehind)
7058: {
7059: *code++ = OP_REVERSE;
7060: reverse_count = code;
7061: PUTINC(code, 0, 0);
7062: length += 1 + LINK_SIZE;
7063: }
7064:
7065: /* Now compile the branch; in the pre-compile phase its length gets added
7066: into the length. */
7067:
1.1.1.2 ! misho 7068: if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstchar,
! 7069: &branchreqchar, &bc, cond_depth, cd,
1.1 misho 7070: (lengthptr == NULL)? NULL : &length))
7071: {
7072: *ptrptr = ptr;
7073: return FALSE;
7074: }
7075:
7076: /* Keep the highest bracket count in case (?| was used and some branch
7077: has fewer than the rest. */
7078:
7079: if (cd->bracount > max_bracount) max_bracount = cd->bracount;
7080:
7081: /* In the real compile phase, there is some post-processing to be done. */
7082:
7083: if (lengthptr == NULL)
7084: {
1.1.1.2 ! misho 7085: /* If this is the first branch, the firstchar and reqchar values for the
1.1 misho 7086: branch become the values for the regex. */
7087:
7088: if (*last_branch != OP_ALT)
7089: {
1.1.1.2 ! misho 7090: firstchar = branchfirstchar;
! 7091: reqchar = branchreqchar;
1.1 misho 7092: }
7093:
1.1.1.2 ! misho 7094: /* If this is not the first branch, the first char and reqchar have to
1.1 misho 7095: match the values from all the previous branches, except that if the
1.1.1.2 ! misho 7096: previous value for reqchar didn't have REQ_VARY set, it can still match,
1.1 misho 7097: and we set REQ_VARY for the regex. */
7098:
7099: else
7100: {
1.1.1.2 ! misho 7101: /* If we previously had a firstchar, but it doesn't match the new branch,
! 7102: we have to abandon the firstchar for the regex, but if there was
! 7103: previously no reqchar, it takes on the value of the old firstchar. */
1.1 misho 7104:
1.1.1.2 ! misho 7105: if (firstchar >= 0 && firstchar != branchfirstchar)
1.1 misho 7106: {
1.1.1.2 ! misho 7107: if (reqchar < 0) reqchar = firstchar;
! 7108: firstchar = REQ_NONE;
1.1 misho 7109: }
7110:
1.1.1.2 ! misho 7111: /* If we (now or from before) have no firstchar, a firstchar from the
! 7112: branch becomes a reqchar if there isn't a branch reqchar. */
1.1 misho 7113:
1.1.1.2 ! misho 7114: if (firstchar < 0 && branchfirstchar >= 0 && branchreqchar < 0)
! 7115: branchreqchar = branchfirstchar;
1.1 misho 7116:
1.1.1.2 ! misho 7117: /* Now ensure that the reqchars match */
1.1 misho 7118:
1.1.1.2 ! misho 7119: if ((reqchar & ~REQ_VARY) != (branchreqchar & ~REQ_VARY))
! 7120: reqchar = REQ_NONE;
! 7121: else reqchar |= branchreqchar; /* To "or" REQ_VARY */
1.1 misho 7122: }
7123:
7124: /* If lookbehind, check that this branch matches a fixed-length string, and
7125: put the length into the OP_REVERSE item. Temporarily mark the end of the
7126: branch with OP_END. If the branch contains OP_RECURSE, the result is -3
7127: because there may be forward references that we can't check here. Set a
7128: flag to cause another lookbehind check at the end. Why not do it all at the
7129: end? Because common, erroneous checks are picked up here and the offset of
7130: the problem can be shown. */
7131:
7132: if (lookbehind)
7133: {
7134: int fixed_length;
7135: *code = OP_END;
7136: fixed_length = find_fixedlength(last_branch, (options & PCRE_UTF8) != 0,
7137: FALSE, cd);
7138: DPRINTF(("fixed length = %d\n", fixed_length));
7139: if (fixed_length == -3)
7140: {
7141: cd->check_lookbehind = TRUE;
7142: }
7143: else if (fixed_length < 0)
7144: {
7145: *errorcodeptr = (fixed_length == -2)? ERR36 :
7146: (fixed_length == -4)? ERR70: ERR25;
7147: *ptrptr = ptr;
7148: return FALSE;
7149: }
7150: else { PUT(reverse_count, 0, fixed_length); }
7151: }
7152: }
7153:
7154: /* Reached end of expression, either ')' or end of pattern. In the real
7155: compile phase, go back through the alternative branches and reverse the chain
7156: of offsets, with the field in the BRA item now becoming an offset to the
7157: first alternative. If there are no alternatives, it points to the end of the
7158: group. The length in the terminating ket is always the length of the whole
7159: bracketed item. Return leaving the pointer at the terminating char. */
7160:
7161: if (*ptr != CHAR_VERTICAL_LINE)
7162: {
7163: if (lengthptr == NULL)
7164: {
7165: int branch_length = (int)(code - last_branch);
7166: do
7167: {
7168: int prev_length = GET(last_branch, 1);
7169: PUT(last_branch, 1, branch_length);
7170: branch_length = prev_length;
7171: last_branch -= branch_length;
7172: }
7173: while (branch_length > 0);
7174: }
7175:
7176: /* Fill in the ket */
7177:
7178: *code = OP_KET;
7179: PUT(code, 1, (int)(code - start_bracket));
7180: code += 1 + LINK_SIZE;
7181:
7182: /* If it was a capturing subpattern, check to see if it contained any
7183: recursive back references. If so, we must wrap it in atomic brackets.
7184: In any event, remove the block from the chain. */
7185:
7186: if (capnumber > 0)
7187: {
7188: if (cd->open_caps->flag)
7189: {
7190: memmove(start_bracket + 1 + LINK_SIZE, start_bracket,
1.1.1.2 ! misho 7191: IN_UCHARS(code - start_bracket));
1.1 misho 7192: *start_bracket = OP_ONCE;
7193: code += 1 + LINK_SIZE;
7194: PUT(start_bracket, 1, (int)(code - start_bracket));
7195: *code = OP_KET;
7196: PUT(code, 1, (int)(code - start_bracket));
7197: code += 1 + LINK_SIZE;
7198: length += 2 + 2*LINK_SIZE;
7199: }
7200: cd->open_caps = cd->open_caps->next;
7201: }
7202:
7203: /* Retain the highest bracket number, in case resetting was used. */
7204:
7205: cd->bracount = max_bracount;
7206:
7207: /* Set values to pass back */
7208:
7209: *codeptr = code;
7210: *ptrptr = ptr;
1.1.1.2 ! misho 7211: *firstcharptr = firstchar;
! 7212: *reqcharptr = reqchar;
1.1 misho 7213: if (lengthptr != NULL)
7214: {
7215: if (OFLOW_MAX - *lengthptr < length)
7216: {
7217: *errorcodeptr = ERR20;
7218: return FALSE;
7219: }
7220: *lengthptr += length;
7221: }
7222: return TRUE;
7223: }
7224:
7225: /* Another branch follows. In the pre-compile phase, we can move the code
7226: pointer back to where it was for the start of the first branch. (That is,
7227: pretend that each branch is the only one.)
7228:
7229: In the real compile phase, insert an ALT node. Its length field points back
7230: to the previous branch while the bracket remains open. At the end the chain
7231: is reversed. It's done like this so that the start of the bracket has a
7232: zero offset until it is closed, making it possible to detect recursion. */
7233:
7234: if (lengthptr != NULL)
7235: {
7236: code = *codeptr + 1 + LINK_SIZE + skipbytes;
7237: length += 1 + LINK_SIZE;
7238: }
7239: else
7240: {
7241: *code = OP_ALT;
7242: PUT(code, 1, (int)(code - last_branch));
7243: bc.current_branch = last_branch = code;
7244: code += 1 + LINK_SIZE;
7245: }
7246:
7247: ptr++;
7248: }
7249: /* Control never reaches here */
7250: }
7251:
7252:
7253:
7254:
7255: /*************************************************
7256: * Check for anchored expression *
7257: *************************************************/
7258:
7259: /* Try to find out if this is an anchored regular expression. Consider each
7260: alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
7261: all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
7262: it's anchored. However, if this is a multiline pattern, then only OP_SOD will
7263: be found, because ^ generates OP_CIRCM in that mode.
7264:
7265: We can also consider a regex to be anchored if OP_SOM starts all its branches.
7266: This is the code for \G, which means "match at start of match position, taking
7267: into account the match offset".
7268:
7269: A branch is also implicitly anchored if it starts with .* and DOTALL is set,
7270: because that will try the rest of the pattern at all possible matching points,
7271: so there is no point trying again.... er ....
7272:
7273: .... except when the .* appears inside capturing parentheses, and there is a
7274: subsequent back reference to those parentheses. We haven't enough information
7275: to catch that case precisely.
7276:
7277: At first, the best we could do was to detect when .* was in capturing brackets
7278: and the highest back reference was greater than or equal to that level.
7279: However, by keeping a bitmap of the first 31 back references, we can catch some
7280: of the more common cases more precisely.
7281:
7282: Arguments:
7283: code points to start of expression (the bracket)
7284: bracket_map a bitmap of which brackets we are inside while testing; this
7285: handles up to substring 31; after that we just have to take
7286: the less precise approach
7287: backref_map the back reference bitmap
7288:
7289: Returns: TRUE or FALSE
7290: */
7291:
7292: static BOOL
1.1.1.2 ! misho 7293: is_anchored(register const pcre_uchar *code, unsigned int bracket_map,
1.1 misho 7294: unsigned int backref_map)
7295: {
7296: do {
1.1.1.2 ! misho 7297: const pcre_uchar *scode = first_significant_code(
! 7298: code + PRIV(OP_lengths)[*code], FALSE);
1.1 misho 7299: register int op = *scode;
7300:
7301: /* Non-capturing brackets */
7302:
7303: if (op == OP_BRA || op == OP_BRAPOS ||
7304: op == OP_SBRA || op == OP_SBRAPOS)
7305: {
7306: if (!is_anchored(scode, bracket_map, backref_map)) return FALSE;
7307: }
7308:
7309: /* Capturing brackets */
7310:
7311: else if (op == OP_CBRA || op == OP_CBRAPOS ||
7312: op == OP_SCBRA || op == OP_SCBRAPOS)
7313: {
7314: int n = GET2(scode, 1+LINK_SIZE);
7315: int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
7316: if (!is_anchored(scode, new_map, backref_map)) return FALSE;
7317: }
7318:
7319: /* Other brackets */
7320:
7321: else if (op == OP_ASSERT || op == OP_ONCE || op == OP_ONCE_NC ||
7322: op == OP_COND)
7323: {
7324: if (!is_anchored(scode, bracket_map, backref_map)) return FALSE;
7325: }
7326:
7327: /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
7328: it isn't in brackets that are or may be referenced. */
7329:
7330: else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
7331: op == OP_TYPEPOSSTAR))
7332: {
7333: if (scode[1] != OP_ALLANY || (bracket_map & backref_map) != 0)
7334: return FALSE;
7335: }
7336:
7337: /* Check for explicit anchoring */
7338:
7339: else if (op != OP_SOD && op != OP_SOM && op != OP_CIRC) return FALSE;
7340: code += GET(code, 1);
7341: }
7342: while (*code == OP_ALT); /* Loop for each alternative */
7343: return TRUE;
7344: }
7345:
7346:
7347:
7348: /*************************************************
7349: * Check for starting with ^ or .* *
7350: *************************************************/
7351:
7352: /* This is called to find out if every branch starts with ^ or .* so that
7353: "first char" processing can be done to speed things up in multiline
7354: matching and for non-DOTALL patterns that start with .* (which must start at
7355: the beginning or after \n). As in the case of is_anchored() (see above), we
7356: have to take account of back references to capturing brackets that contain .*
7357: because in that case we can't make the assumption.
7358:
7359: Arguments:
7360: code points to start of expression (the bracket)
7361: bracket_map a bitmap of which brackets we are inside while testing; this
7362: handles up to substring 31; after that we just have to take
7363: the less precise approach
7364: backref_map the back reference bitmap
7365:
7366: Returns: TRUE or FALSE
7367: */
7368:
7369: static BOOL
1.1.1.2 ! misho 7370: is_startline(const pcre_uchar *code, unsigned int bracket_map,
1.1 misho 7371: unsigned int backref_map)
7372: {
7373: do {
1.1.1.2 ! misho 7374: const pcre_uchar *scode = first_significant_code(
! 7375: code + PRIV(OP_lengths)[*code], FALSE);
1.1 misho 7376: register int op = *scode;
7377:
7378: /* If we are at the start of a conditional assertion group, *both* the
7379: conditional assertion *and* what follows the condition must satisfy the test
7380: for start of line. Other kinds of condition fail. Note that there may be an
7381: auto-callout at the start of a condition. */
7382:
7383: if (op == OP_COND)
7384: {
7385: scode += 1 + LINK_SIZE;
1.1.1.2 ! misho 7386: if (*scode == OP_CALLOUT) scode += PRIV(OP_lengths)[OP_CALLOUT];
1.1 misho 7387: switch (*scode)
7388: {
7389: case OP_CREF:
7390: case OP_NCREF:
7391: case OP_RREF:
7392: case OP_NRREF:
7393: case OP_DEF:
7394: return FALSE;
7395:
7396: default: /* Assertion */
7397: if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
7398: do scode += GET(scode, 1); while (*scode == OP_ALT);
7399: scode += 1 + LINK_SIZE;
7400: break;
7401: }
7402: scode = first_significant_code(scode, FALSE);
7403: op = *scode;
7404: }
7405:
7406: /* Non-capturing brackets */
7407:
7408: if (op == OP_BRA || op == OP_BRAPOS ||
7409: op == OP_SBRA || op == OP_SBRAPOS)
7410: {
7411: if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
7412: }
7413:
7414: /* Capturing brackets */
7415:
7416: else if (op == OP_CBRA || op == OP_CBRAPOS ||
7417: op == OP_SCBRA || op == OP_SCBRAPOS)
7418: {
7419: int n = GET2(scode, 1+LINK_SIZE);
7420: int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
7421: if (!is_startline(scode, new_map, backref_map)) return FALSE;
7422: }
7423:
7424: /* Other brackets */
7425:
7426: else if (op == OP_ASSERT || op == OP_ONCE || op == OP_ONCE_NC)
7427: {
7428: if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
7429: }
7430:
7431: /* .* means "start at start or after \n" if it isn't in brackets that
7432: may be referenced. */
7433:
7434: else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
7435: {
7436: if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
7437: }
7438:
7439: /* Check for explicit circumflex */
7440:
7441: else if (op != OP_CIRC && op != OP_CIRCM) return FALSE;
7442:
7443: /* Move on to the next alternative */
7444:
7445: code += GET(code, 1);
7446: }
7447: while (*code == OP_ALT); /* Loop for each alternative */
7448: return TRUE;
7449: }
7450:
7451:
7452:
7453: /*************************************************
7454: * Check for asserted fixed first char *
7455: *************************************************/
7456:
7457: /* During compilation, the "first char" settings from forward assertions are
7458: discarded, because they can cause conflicts with actual literals that follow.
7459: However, if we end up without a first char setting for an unanchored pattern,
7460: it is worth scanning the regex to see if there is an initial asserted first
7461: char. If all branches start with the same asserted char, or with a bracket all
7462: of whose alternatives start with the same asserted char (recurse ad lib), then
7463: we return that char, otherwise -1.
7464:
7465: Arguments:
7466: code points to start of expression (the bracket)
7467: inassert TRUE if in an assertion
7468:
7469: Returns: -1 or the fixed first char
7470: */
7471:
7472: static int
1.1.1.2 ! misho 7473: find_firstassertedchar(const pcre_uchar *code, BOOL inassert)
1.1 misho 7474: {
7475: register int c = -1;
7476: do {
7477: int d;
7478: int xl = (*code == OP_CBRA || *code == OP_SCBRA ||
1.1.1.2 ! misho 7479: *code == OP_CBRAPOS || *code == OP_SCBRAPOS)? IMM2_SIZE:0;
! 7480: const pcre_uchar *scode = first_significant_code(code + 1+LINK_SIZE + xl,
! 7481: TRUE);
1.1 misho 7482: register int op = *scode;
7483:
7484: switch(op)
7485: {
7486: default:
7487: return -1;
7488:
7489: case OP_BRA:
7490: case OP_BRAPOS:
7491: case OP_CBRA:
7492: case OP_SCBRA:
7493: case OP_CBRAPOS:
7494: case OP_SCBRAPOS:
7495: case OP_ASSERT:
7496: case OP_ONCE:
7497: case OP_ONCE_NC:
7498: case OP_COND:
7499: if ((d = find_firstassertedchar(scode, op == OP_ASSERT)) < 0)
7500: return -1;
7501: if (c < 0) c = d; else if (c != d) return -1;
7502: break;
7503:
7504: case OP_EXACT:
1.1.1.2 ! misho 7505: scode += IMM2_SIZE;
1.1 misho 7506: /* Fall through */
7507:
7508: case OP_CHAR:
7509: case OP_PLUS:
7510: case OP_MINPLUS:
7511: case OP_POSPLUS:
7512: if (!inassert) return -1;
7513: if (c < 0) c = scode[1];
7514: else if (c != scode[1]) return -1;
7515: break;
7516:
7517: case OP_EXACTI:
1.1.1.2 ! misho 7518: scode += IMM2_SIZE;
1.1 misho 7519: /* Fall through */
7520:
7521: case OP_CHARI:
7522: case OP_PLUSI:
7523: case OP_MINPLUSI:
7524: case OP_POSPLUSI:
7525: if (!inassert) return -1;
7526: if (c < 0) c = scode[1] | REQ_CASELESS;
7527: else if (c != scode[1]) return -1;
7528: break;
7529: }
7530:
7531: code += GET(code, 1);
7532: }
7533: while (*code == OP_ALT);
7534: return c;
7535: }
7536:
7537:
7538:
7539: /*************************************************
7540: * Compile a Regular Expression *
7541: *************************************************/
7542:
7543: /* This function takes a string and returns a pointer to a block of store
7544: holding a compiled version of the expression. The original API for this
7545: function had no error code return variable; it is retained for backwards
7546: compatibility. The new function is given a new name.
7547:
7548: Arguments:
7549: pattern the regular expression
7550: options various option bits
7551: errorcodeptr pointer to error code variable (pcre_compile2() only)
7552: can be NULL if you don't want a code value
7553: errorptr pointer to pointer to error text
7554: erroroffset ptr offset in pattern where error was detected
7555: tables pointer to character tables or NULL
7556:
7557: Returns: pointer to compiled data block, or NULL on error,
7558: with errorptr and erroroffset set
7559: */
7560:
1.1.1.2 ! misho 7561: #ifdef COMPILE_PCRE8
1.1 misho 7562: PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
7563: pcre_compile(const char *pattern, int options, const char **errorptr,
7564: int *erroroffset, const unsigned char *tables)
1.1.1.2 ! misho 7565: #else
! 7566: PCRE_EXP_DEFN pcre16 * PCRE_CALL_CONVENTION
! 7567: pcre16_compile(PCRE_SPTR16 pattern, int options, const char **errorptr,
! 7568: int *erroroffset, const unsigned char *tables)
! 7569: #endif
1.1 misho 7570: {
1.1.1.2 ! misho 7571: #ifdef COMPILE_PCRE8
1.1 misho 7572: return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
1.1.1.2 ! misho 7573: #else
! 7574: return pcre16_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
! 7575: #endif
1.1 misho 7576: }
7577:
7578:
1.1.1.2 ! misho 7579: #ifdef COMPILE_PCRE8
1.1 misho 7580: PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
7581: pcre_compile2(const char *pattern, int options, int *errorcodeptr,
7582: const char **errorptr, int *erroroffset, const unsigned char *tables)
1.1.1.2 ! misho 7583: #else
! 7584: PCRE_EXP_DEFN pcre16 * PCRE_CALL_CONVENTION
! 7585: pcre16_compile2(PCRE_SPTR16 pattern, int options, int *errorcodeptr,
! 7586: const char **errorptr, int *erroroffset, const unsigned char *tables)
! 7587: #endif
1.1 misho 7588: {
1.1.1.2 ! misho 7589: REAL_PCRE *re;
1.1 misho 7590: int length = 1; /* For final END opcode */
1.1.1.2 ! misho 7591: pcre_int32 firstchar, reqchar;
! 7592: int newline;
1.1 misho 7593: int errorcode = 0;
7594: int skipatstart = 0;
1.1.1.2 ! misho 7595: BOOL utf;
1.1 misho 7596: size_t size;
1.1.1.2 ! misho 7597: pcre_uchar *code;
! 7598: const pcre_uchar *codestart;
! 7599: const pcre_uchar *ptr;
1.1 misho 7600: compile_data compile_block;
7601: compile_data *cd = &compile_block;
7602:
7603: /* This space is used for "compiling" into during the first phase, when we are
7604: computing the amount of memory that is needed. Compiled items are thrown away
7605: as soon as possible, so that a fairly large buffer should be sufficient for
7606: this purpose. The same space is used in the second phase for remembering where
7607: to fill in forward references to subpatterns. That may overflow, in which case
7608: new memory is obtained from malloc(). */
7609:
1.1.1.2 ! misho 7610: pcre_uchar cworkspace[COMPILE_WORK_SIZE];
1.1 misho 7611:
7612: /* Set this early so that early errors get offset 0. */
7613:
1.1.1.2 ! misho 7614: ptr = (const pcre_uchar *)pattern;
1.1 misho 7615:
7616: /* We can't pass back an error message if errorptr is NULL; I guess the best we
7617: can do is just return NULL, but we can set a code value if there is a code
7618: pointer. */
7619:
7620: if (errorptr == NULL)
7621: {
7622: if (errorcodeptr != NULL) *errorcodeptr = 99;
7623: return NULL;
7624: }
7625:
7626: *errorptr = NULL;
7627: if (errorcodeptr != NULL) *errorcodeptr = ERR0;
7628:
7629: /* However, we can give a message for this error */
7630:
7631: if (erroroffset == NULL)
7632: {
7633: errorcode = ERR16;
7634: goto PCRE_EARLY_ERROR_RETURN2;
7635: }
7636:
7637: *erroroffset = 0;
7638:
7639: /* Set up pointers to the individual character tables */
7640:
1.1.1.2 ! misho 7641: if (tables == NULL) tables = PRIV(default_tables);
1.1 misho 7642: cd->lcc = tables + lcc_offset;
7643: cd->fcc = tables + fcc_offset;
7644: cd->cbits = tables + cbits_offset;
7645: cd->ctypes = tables + ctypes_offset;
7646:
7647: /* Check that all undefined public option bits are zero */
7648:
7649: if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0)
7650: {
7651: errorcode = ERR17;
7652: goto PCRE_EARLY_ERROR_RETURN;
7653: }
7654:
7655: /* Check for global one-time settings at the start of the pattern, and remember
7656: the offset for later. */
7657:
7658: while (ptr[skipatstart] == CHAR_LEFT_PARENTHESIS &&
7659: ptr[skipatstart+1] == CHAR_ASTERISK)
7660: {
7661: int newnl = 0;
7662: int newbsr = 0;
7663:
1.1.1.2 ! misho 7664: #ifdef COMPILE_PCRE8
! 7665: if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF_RIGHTPAR, 5) == 0)
1.1 misho 7666: { skipatstart += 7; options |= PCRE_UTF8; continue; }
1.1.1.2 ! misho 7667: #endif
! 7668: #ifdef COMPILE_PCRE16
! 7669: if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF_RIGHTPAR, 6) == 0)
! 7670: { skipatstart += 8; options |= PCRE_UTF16; continue; }
! 7671: #endif
! 7672: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UCP_RIGHTPAR, 4) == 0)
1.1 misho 7673: { skipatstart += 6; options |= PCRE_UCP; continue; }
1.1.1.2 ! misho 7674: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_NO_START_OPT_RIGHTPAR, 13) == 0)
1.1 misho 7675: { skipatstart += 15; options |= PCRE_NO_START_OPTIMIZE; continue; }
7676:
1.1.1.2 ! misho 7677: if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_CR_RIGHTPAR, 3) == 0)
1.1 misho 7678: { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
1.1.1.2 ! misho 7679: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LF_RIGHTPAR, 3) == 0)
1.1 misho 7680: { skipatstart += 5; newnl = PCRE_NEWLINE_LF; }
1.1.1.2 ! misho 7681: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_CRLF_RIGHTPAR, 5) == 0)
1.1 misho 7682: { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; }
1.1.1.2 ! misho 7683: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_ANY_RIGHTPAR, 4) == 0)
1.1 misho 7684: { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; }
1.1.1.2 ! misho 7685: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_ANYCRLF_RIGHTPAR, 8) == 0)
1.1 misho 7686: { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; }
7687:
1.1.1.2 ! misho 7688: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_BSR_ANYCRLF_RIGHTPAR, 12) == 0)
1.1 misho 7689: { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; }
1.1.1.2 ! misho 7690: else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_BSR_UNICODE_RIGHTPAR, 12) == 0)
1.1 misho 7691: { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; }
7692:
7693: if (newnl != 0)
7694: options = (options & ~PCRE_NEWLINE_BITS) | newnl;
7695: else if (newbsr != 0)
7696: options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr;
7697: else break;
7698: }
7699:
1.1.1.2 ! misho 7700: /* PCRE_UTF16 has the same value as PCRE_UTF8. */
! 7701: utf = (options & PCRE_UTF8) != 0;
1.1 misho 7702:
1.1.1.2 ! misho 7703: /* Can't support UTF unless PCRE has been compiled to include the code. The
! 7704: return of an error code from PRIV(valid_utf)() is a new feature, introduced in
1.1 misho 7705: release 8.13. It is passed back from pcre_[dfa_]exec(), but at the moment is
7706: not used here. */
7707:
1.1.1.2 ! misho 7708: #ifdef SUPPORT_UTF
! 7709: if (utf && (options & PCRE_NO_UTF8_CHECK) == 0 &&
! 7710: (errorcode = PRIV(valid_utf)((PCRE_PUCHAR)pattern, -1, erroroffset)) != 0)
1.1 misho 7711: {
1.1.1.2 ! misho 7712: #ifdef COMPILE_PCRE8
1.1 misho 7713: errorcode = ERR44;
1.1.1.2 ! misho 7714: #else
! 7715: errorcode = ERR74;
! 7716: #endif
1.1 misho 7717: goto PCRE_EARLY_ERROR_RETURN2;
7718: }
7719: #else
1.1.1.2 ! misho 7720: if (utf)
1.1 misho 7721: {
7722: errorcode = ERR32;
7723: goto PCRE_EARLY_ERROR_RETURN;
7724: }
7725: #endif
7726:
7727: /* Can't support UCP unless PCRE has been compiled to include the code. */
7728:
7729: #ifndef SUPPORT_UCP
7730: if ((options & PCRE_UCP) != 0)
7731: {
7732: errorcode = ERR67;
7733: goto PCRE_EARLY_ERROR_RETURN;
7734: }
7735: #endif
7736:
7737: /* Check validity of \R options. */
7738:
7739: if ((options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) ==
7740: (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
7741: {
7742: errorcode = ERR56;
7743: goto PCRE_EARLY_ERROR_RETURN;
7744: }
7745:
7746: /* Handle different types of newline. The three bits give seven cases. The
7747: current code allows for fixed one- or two-byte sequences, plus "any" and
7748: "anycrlf". */
7749:
7750: switch (options & PCRE_NEWLINE_BITS)
7751: {
7752: case 0: newline = NEWLINE; break; /* Build-time default */
7753: case PCRE_NEWLINE_CR: newline = CHAR_CR; break;
7754: case PCRE_NEWLINE_LF: newline = CHAR_NL; break;
7755: case PCRE_NEWLINE_CR+
7756: PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break;
7757: case PCRE_NEWLINE_ANY: newline = -1; break;
7758: case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
7759: default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
7760: }
7761:
7762: if (newline == -2)
7763: {
7764: cd->nltype = NLTYPE_ANYCRLF;
7765: }
7766: else if (newline < 0)
7767: {
7768: cd->nltype = NLTYPE_ANY;
7769: }
7770: else
7771: {
7772: cd->nltype = NLTYPE_FIXED;
7773: if (newline > 255)
7774: {
7775: cd->nllen = 2;
7776: cd->nl[0] = (newline >> 8) & 255;
7777: cd->nl[1] = newline & 255;
7778: }
7779: else
7780: {
7781: cd->nllen = 1;
7782: cd->nl[0] = newline;
7783: }
7784: }
7785:
7786: /* Maximum back reference and backref bitmap. The bitmap records up to 31 back
7787: references to help in deciding whether (.*) can be treated as anchored or not.
7788: */
7789:
7790: cd->top_backref = 0;
7791: cd->backref_map = 0;
7792:
7793: /* Reflect pattern for debugging output */
7794:
7795: DPRINTF(("------------------------------------------------------------------\n"));
1.1.1.2 ! misho 7796: #ifdef PCRE_DEBUG
! 7797: print_puchar(stdout, (PCRE_PUCHAR)pattern);
! 7798: #endif
! 7799: DPRINTF(("\n"));
1.1 misho 7800:
7801: /* Pretend to compile the pattern while actually just accumulating the length
7802: of memory required. This behaviour is triggered by passing a non-NULL final
7803: argument to compile_regex(). We pass a block of workspace (cworkspace) for it
7804: to compile parts of the pattern into; the compiled code is discarded when it is
7805: no longer needed, so hopefully this workspace will never overflow, though there
7806: is a test for its doing so. */
7807:
7808: cd->bracount = cd->final_bracount = 0;
7809: cd->names_found = 0;
7810: cd->name_entry_size = 0;
7811: cd->name_table = NULL;
7812: cd->start_code = cworkspace;
7813: cd->hwm = cworkspace;
7814: cd->start_workspace = cworkspace;
7815: cd->workspace_size = COMPILE_WORK_SIZE;
1.1.1.2 ! misho 7816: cd->start_pattern = (const pcre_uchar *)pattern;
! 7817: cd->end_pattern = (const pcre_uchar *)(pattern + STRLEN_UC((const pcre_uchar *)pattern));
1.1 misho 7818: cd->req_varyopt = 0;
1.1.1.2 ! misho 7819: cd->assert_depth = 0;
1.1 misho 7820: cd->external_options = options;
7821: cd->external_flags = 0;
7822: cd->open_caps = NULL;
7823:
7824: /* Now do the pre-compile. On error, errorcode will be set non-zero, so we
7825: don't need to look at the result of the function here. The initial options have
7826: been put into the cd block so that they can be changed if an option setting is
7827: found within the regex right at the beginning. Bringing initial option settings
7828: outside can help speed up starting point checks. */
7829:
7830: ptr += skipatstart;
7831: code = cworkspace;
7832: *code = OP_BRA;
7833: (void)compile_regex(cd->external_options, &code, &ptr, &errorcode, FALSE,
1.1.1.2 ! misho 7834: FALSE, 0, 0, &firstchar, &reqchar, NULL, cd, &length);
1.1 misho 7835: if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
7836:
7837: DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
1.1.1.2 ! misho 7838: (int)(cd->hwm - cworkspace)));
1.1 misho 7839:
7840: if (length > MAX_PATTERN_SIZE)
7841: {
7842: errorcode = ERR20;
7843: goto PCRE_EARLY_ERROR_RETURN;
7844: }
7845:
7846: /* Compute the size of data block needed and get it, either from malloc or
7847: externally provided function. Integer overflow should no longer be possible
7848: because nowadays we limit the maximum value of cd->names_found and
7849: cd->name_entry_size. */
7850:
1.1.1.2 ! misho 7851: size = sizeof(REAL_PCRE) + (length + cd->names_found * cd->name_entry_size) * sizeof(pcre_uchar);
! 7852: re = (REAL_PCRE *)(PUBL(malloc))(size);
1.1 misho 7853:
7854: if (re == NULL)
7855: {
7856: errorcode = ERR21;
7857: goto PCRE_EARLY_ERROR_RETURN;
7858: }
7859:
7860: /* Put in the magic number, and save the sizes, initial options, internal
7861: flags, and character table pointer. NULL is used for the default character
7862: tables. The nullpad field is at the end; it's there to help in the case when a
7863: regex compiled on a system with 4-byte pointers is run on another with 8-byte
7864: pointers. */
7865:
7866: re->magic_number = MAGIC_NUMBER;
7867: re->size = (int)size;
7868: re->options = cd->external_options;
7869: re->flags = cd->external_flags;
7870: re->dummy1 = 0;
1.1.1.2 ! misho 7871: re->first_char = 0;
! 7872: re->req_char = 0;
! 7873: re->name_table_offset = sizeof(REAL_PCRE) / sizeof(pcre_uchar);
1.1 misho 7874: re->name_entry_size = cd->name_entry_size;
7875: re->name_count = cd->names_found;
7876: re->ref_count = 0;
1.1.1.2 ! misho 7877: re->tables = (tables == PRIV(default_tables))? NULL : tables;
1.1 misho 7878: re->nullpad = NULL;
7879:
7880: /* The starting points of the name/number translation table and of the code are
7881: passed around in the compile data block. The start/end pattern and initial
7882: options are already set from the pre-compile phase, as is the name_entry_size
7883: field. Reset the bracket count and the names_found field. Also reset the hwm
7884: field; this time it's used for remembering forward references to subpatterns.
7885: */
7886:
7887: cd->final_bracount = cd->bracount; /* Save for checking forward references */
7888: cd->assert_depth = 0;
7889: cd->bracount = 0;
7890: cd->names_found = 0;
1.1.1.2 ! misho 7891: cd->name_table = (pcre_uchar *)re + re->name_table_offset;
1.1 misho 7892: codestart = cd->name_table + re->name_entry_size * re->name_count;
7893: cd->start_code = codestart;
1.1.1.2 ! misho 7894: cd->hwm = (pcre_uchar *)(cd->start_workspace);
1.1 misho 7895: cd->req_varyopt = 0;
7896: cd->had_accept = FALSE;
7897: cd->check_lookbehind = FALSE;
7898: cd->open_caps = NULL;
7899:
7900: /* Set up a starting, non-extracting bracket, then compile the expression. On
7901: error, errorcode will be set non-zero, so we don't need to look at the result
7902: of the function here. */
7903:
1.1.1.2 ! misho 7904: ptr = (const pcre_uchar *)pattern + skipatstart;
! 7905: code = (pcre_uchar *)codestart;
1.1 misho 7906: *code = OP_BRA;
7907: (void)compile_regex(re->options, &code, &ptr, &errorcode, FALSE, FALSE, 0, 0,
1.1.1.2 ! misho 7908: &firstchar, &reqchar, NULL, cd, NULL);
1.1 misho 7909: re->top_bracket = cd->bracount;
7910: re->top_backref = cd->top_backref;
1.1.1.2 ! misho 7911: re->flags = cd->external_flags | PCRE_MODE;
1.1 misho 7912:
1.1.1.2 ! misho 7913: if (cd->had_accept) reqchar = REQ_NONE; /* Must disable after (*ACCEPT) */
1.1 misho 7914:
7915: /* If not reached end of pattern on success, there's an excess bracket. */
7916:
7917: if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
7918:
7919: /* Fill in the terminating state and check for disastrous overflow, but
7920: if debugging, leave the test till after things are printed out. */
7921:
7922: *code++ = OP_END;
7923:
7924: #ifndef PCRE_DEBUG
7925: if (code - codestart > length) errorcode = ERR23;
7926: #endif
7927:
7928: /* Fill in any forward references that are required. There may be repeated
7929: references; optimize for them, as searching a large regex takes time. */
7930:
7931: if (cd->hwm > cd->start_workspace)
7932: {
7933: int prev_recno = -1;
1.1.1.2 ! misho 7934: const pcre_uchar *groupptr = NULL;
1.1 misho 7935: while (errorcode == 0 && cd->hwm > cd->start_workspace)
7936: {
7937: int offset, recno;
7938: cd->hwm -= LINK_SIZE;
7939: offset = GET(cd->hwm, 0);
7940: recno = GET(codestart, offset);
7941: if (recno != prev_recno)
7942: {
1.1.1.2 ! misho 7943: groupptr = PRIV(find_bracket)(codestart, utf, recno);
1.1 misho 7944: prev_recno = recno;
7945: }
7946: if (groupptr == NULL) errorcode = ERR53;
1.1.1.2 ! misho 7947: else PUT(((pcre_uchar *)codestart), offset, (int)(groupptr - codestart));
1.1 misho 7948: }
7949: }
7950:
7951: /* If the workspace had to be expanded, free the new memory. */
7952:
7953: if (cd->workspace_size > COMPILE_WORK_SIZE)
1.1.1.2 ! misho 7954: (PUBL(free))((void *)cd->start_workspace);
1.1 misho 7955:
7956: /* Give an error if there's back reference to a non-existent capturing
7957: subpattern. */
7958:
7959: if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
7960:
7961: /* If there were any lookbehind assertions that contained OP_RECURSE
7962: (recursions or subroutine calls), a flag is set for them to be checked here,
7963: because they may contain forward references. Actual recursions can't be fixed
7964: length, but subroutine calls can. It is done like this so that those without
7965: OP_RECURSE that are not fixed length get a diagnosic with a useful offset. The
7966: exceptional ones forgo this. We scan the pattern to check that they are fixed
7967: length, and set their lengths. */
7968:
7969: if (cd->check_lookbehind)
7970: {
1.1.1.2 ! misho 7971: pcre_uchar *cc = (pcre_uchar *)codestart;
1.1 misho 7972:
7973: /* Loop, searching for OP_REVERSE items, and process those that do not have
7974: their length set. (Actually, it will also re-process any that have a length
7975: of zero, but that is a pathological case, and it does no harm.) When we find
7976: one, we temporarily terminate the branch it is in while we scan it. */
7977:
1.1.1.2 ! misho 7978: for (cc = (pcre_uchar *)PRIV(find_bracket)(codestart, utf, -1);
1.1 misho 7979: cc != NULL;
1.1.1.2 ! misho 7980: cc = (pcre_uchar *)PRIV(find_bracket)(cc, utf, -1))
1.1 misho 7981: {
7982: if (GET(cc, 1) == 0)
7983: {
7984: int fixed_length;
1.1.1.2 ! misho 7985: pcre_uchar *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE);
1.1 misho 7986: int end_op = *be;
7987: *be = OP_END;
7988: fixed_length = find_fixedlength(cc, (re->options & PCRE_UTF8) != 0, TRUE,
7989: cd);
7990: *be = end_op;
7991: DPRINTF(("fixed length = %d\n", fixed_length));
7992: if (fixed_length < 0)
7993: {
7994: errorcode = (fixed_length == -2)? ERR36 :
7995: (fixed_length == -4)? ERR70 : ERR25;
7996: break;
7997: }
7998: PUT(cc, 1, fixed_length);
7999: }
8000: cc += 1 + LINK_SIZE;
8001: }
8002: }
8003:
8004: /* Failed to compile, or error while post-processing */
8005:
8006: if (errorcode != 0)
8007: {
1.1.1.2 ! misho 8008: (PUBL(free))(re);
1.1 misho 8009: PCRE_EARLY_ERROR_RETURN:
1.1.1.2 ! misho 8010: *erroroffset = (int)(ptr - (const pcre_uchar *)pattern);
1.1 misho 8011: PCRE_EARLY_ERROR_RETURN2:
8012: *errorptr = find_error_text(errorcode);
8013: if (errorcodeptr != NULL) *errorcodeptr = errorcode;
8014: return NULL;
8015: }
8016:
8017: /* If the anchored option was not passed, set the flag if we can determine that
8018: the pattern is anchored by virtue of ^ characters or \A or anything else (such
8019: as starting with .* when DOTALL is set).
8020:
8021: Otherwise, if we know what the first byte has to be, save it, because that
8022: speeds up unanchored matches no end. If not, see if we can set the
8023: PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
8024: start with ^. and also when all branches start with .* for non-DOTALL matches.
8025: */
8026:
8027: if ((re->options & PCRE_ANCHORED) == 0)
8028: {
8029: if (is_anchored(codestart, 0, cd->backref_map))
8030: re->options |= PCRE_ANCHORED;
8031: else
8032: {
1.1.1.2 ! misho 8033: if (firstchar < 0)
! 8034: firstchar = find_firstassertedchar(codestart, FALSE);
! 8035: if (firstchar >= 0) /* Remove caseless flag for non-caseable chars */
! 8036: {
! 8037: #ifdef COMPILE_PCRE8
! 8038: re->first_char = firstchar & 0xff;
! 8039: #else
! 8040: #ifdef COMPILE_PCRE16
! 8041: re->first_char = firstchar & 0xffff;
! 8042: #endif
! 8043: #endif
! 8044: if ((firstchar & REQ_CASELESS) != 0)
! 8045: {
! 8046: #if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
! 8047: /* We ignore non-ASCII first chars in 8 bit mode. */
! 8048: if (utf)
! 8049: {
! 8050: if (re->first_char < 128)
! 8051: {
! 8052: if (cd->fcc[re->first_char] != re->first_char)
! 8053: re->flags |= PCRE_FCH_CASELESS;
! 8054: }
! 8055: else if (UCD_OTHERCASE(re->first_char) != re->first_char)
! 8056: re->flags |= PCRE_FCH_CASELESS;
! 8057: }
! 8058: else
! 8059: #endif
! 8060: if (MAX_255(re->first_char)
! 8061: && cd->fcc[re->first_char] != re->first_char)
! 8062: re->flags |= PCRE_FCH_CASELESS;
! 8063: }
! 8064:
1.1 misho 8065: re->flags |= PCRE_FIRSTSET;
8066: }
8067: else if (is_startline(codestart, 0, cd->backref_map))
8068: re->flags |= PCRE_STARTLINE;
8069: }
8070: }
8071:
8072: /* For an anchored pattern, we use the "required byte" only if it follows a
8073: variable length item in the regex. Remove the caseless flag for non-caseable
8074: bytes. */
8075:
1.1.1.2 ! misho 8076: if (reqchar >= 0 &&
! 8077: ((re->options & PCRE_ANCHORED) == 0 || (reqchar & REQ_VARY) != 0))
1.1 misho 8078: {
1.1.1.2 ! misho 8079: #ifdef COMPILE_PCRE8
! 8080: re->req_char = reqchar & 0xff;
! 8081: #else
! 8082: #ifdef COMPILE_PCRE16
! 8083: re->req_char = reqchar & 0xffff;
! 8084: #endif
! 8085: #endif
! 8086: if ((reqchar & REQ_CASELESS) != 0)
! 8087: {
! 8088: #if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
! 8089: /* We ignore non-ASCII first chars in 8 bit mode. */
! 8090: if (utf)
! 8091: {
! 8092: if (re->req_char < 128)
! 8093: {
! 8094: if (cd->fcc[re->req_char] != re->req_char)
! 8095: re->flags |= PCRE_RCH_CASELESS;
! 8096: }
! 8097: else if (UCD_OTHERCASE(re->req_char) != re->req_char)
! 8098: re->flags |= PCRE_RCH_CASELESS;
! 8099: }
! 8100: else
! 8101: #endif
! 8102: if (MAX_255(re->req_char) && cd->fcc[re->req_char] != re->req_char)
! 8103: re->flags |= PCRE_RCH_CASELESS;
! 8104: }
! 8105:
1.1 misho 8106: re->flags |= PCRE_REQCHSET;
8107: }
8108:
8109: /* Print out the compiled data if debugging is enabled. This is never the
8110: case when building a production library. */
8111:
8112: #ifdef PCRE_DEBUG
8113: printf("Length = %d top_bracket = %d top_backref = %d\n",
8114: length, re->top_bracket, re->top_backref);
8115:
8116: printf("Options=%08x\n", re->options);
8117:
8118: if ((re->flags & PCRE_FIRSTSET) != 0)
8119: {
1.1.1.2 ! misho 8120: pcre_uchar ch = re->first_char;
! 8121: const char *caseless =
! 8122: ((re->flags & PCRE_FCH_CASELESS) == 0)? "" : " (caseless)";
! 8123: if (PRINTABLE(ch)) printf("First char = %c%s\n", ch, caseless);
1.1 misho 8124: else printf("First char = \\x%02x%s\n", ch, caseless);
8125: }
8126:
8127: if ((re->flags & PCRE_REQCHSET) != 0)
8128: {
1.1.1.2 ! misho 8129: pcre_uchar ch = re->req_char;
! 8130: const char *caseless =
! 8131: ((re->flags & PCRE_RCH_CASELESS) == 0)? "" : " (caseless)";
! 8132: if (PRINTABLE(ch)) printf("Req char = %c%s\n", ch, caseless);
1.1 misho 8133: else printf("Req char = \\x%02x%s\n", ch, caseless);
8134: }
8135:
1.1.1.2 ! misho 8136: #ifdef COMPILE_PCRE8
! 8137: pcre_printint((pcre *)re, stdout, TRUE);
! 8138: #else
! 8139: pcre16_printint((pcre *)re, stdout, TRUE);
! 8140: #endif
1.1 misho 8141:
8142: /* This check is done here in the debugging case so that the code that
8143: was compiled can be seen. */
8144:
8145: if (code - codestart > length)
8146: {
1.1.1.2 ! misho 8147: (PUBL(free))(re);
1.1 misho 8148: *errorptr = find_error_text(ERR23);
1.1.1.2 ! misho 8149: *erroroffset = ptr - (pcre_uchar *)pattern;
1.1 misho 8150: if (errorcodeptr != NULL) *errorcodeptr = ERR23;
8151: return NULL;
8152: }
8153: #endif /* PCRE_DEBUG */
8154:
1.1.1.2 ! misho 8155: #ifdef COMPILE_PCRE8
1.1 misho 8156: return (pcre *)re;
1.1.1.2 ! misho 8157: #else
! 8158: return (pcre16 *)re;
! 8159: #endif
1.1 misho 8160: }
8161:
8162: /* End of pcre_compile.c */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>