Annotation of embedaddon/pcre/sljit/sljitLir.h, revision 1.1.1.3
1.1 misho 1: /*
2: * Stack-less Just-In-Time compiler
3: *
1.1.1.2 misho 4: * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
1.1 misho 5: *
6: * Redistribution and use in source and binary forms, with or without modification, are
7: * permitted provided that the following conditions are met:
8: *
9: * 1. Redistributions of source code must retain the above copyright notice, this list of
10: * conditions and the following disclaimer.
11: *
12: * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13: * of conditions and the following disclaimer in the documentation and/or other materials
14: * provided with the distribution.
15: *
16: * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17: * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18: * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19: * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20: * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21: * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22: * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23: * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24: * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25: */
26:
27: #ifndef _SLJIT_LIR_H_
28: #define _SLJIT_LIR_H_
29:
30: /*
31: ------------------------------------------------------------------------
32: Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33: ------------------------------------------------------------------------
34:
35: Short description
36: Advantages:
37: - The execution can be continued from any LIR instruction
38: In other words, jump into and out of the code is safe
39: - Both target of (conditional) jump and call instructions
40: and constants can be dynamically modified during runtime
41: - although it is not suggested to do it frequently
42: - very effective to cache an important value once
43: - A fixed stack space can be allocated for local variables
44: - The compiler is thread-safe
1.1.1.3 ! misho 45: - The compiler is highly configurable through preprocessor macros.
! 46: You can disable unneeded features (multithreading in single
! 47: threaded applications), and you can use your own system functions
! 48: (including memory allocators). See sljitConfig.h
1.1 misho 49: Disadvantages:
50: - Limited number of registers (only 6+4 integer registers, max 3+2
1.1.1.2 misho 51: temporary, max 3+2 saved and 4 floating point registers)
1.1 misho 52: In practice:
53: - This approach is very effective for interpreters
1.1.1.2 misho 54: - One of the saved registers typically points to a stack interface
1.1 misho 55: - It can jump to any exception handler anytime (even for another
56: function. It is safe for SLJIT.)
57: - Fast paths can be modified during runtime reflecting the changes
58: of the fastest execution path of the dynamic language
59: - SLJIT supports complex memory addressing modes
60: - mainly position independent code
61: - Optimizations (perhaps later)
62: - Only for basic blocks (when no labels inserted between LIR instructions)
63:
64: For valgrind users:
65: - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
66: */
67:
68: #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
69: #include "sljitConfig.h"
70: #endif
1.1.1.2 misho 71:
72: /* The following header file defines useful macros for fine tuning
73: sljit based code generators. They are listed in the begining
74: of sljitConfigInternal.h */
75:
1.1 misho 76: #include "sljitConfigInternal.h"
77:
78: /* --------------------------------------------------------------------- */
79: /* Error codes */
80: /* --------------------------------------------------------------------- */
81:
82: /* Indicates no error. */
83: #define SLJIT_SUCCESS 0
84: /* After the call of sljit_generate_code(), the error code of the compiler
85: is set to this value to avoid future sljit calls (in debug mode at least).
86: The complier should be freed after sljit_generate_code(). */
87: #define SLJIT_ERR_COMPILED 1
88: /* Cannot allocate non executable memory. */
89: #define SLJIT_ERR_ALLOC_FAILED 2
90: /* Cannot allocate executable memory.
91: Only for sljit_generate_code() */
92: #define SLJIT_ERR_EX_ALLOC_FAILED 3
93: /* return value for SLJIT_CONFIG_UNSUPPORTED empty architecture. */
94: #define SLJIT_ERR_UNSUPPORTED 4
95:
96: /* --------------------------------------------------------------------- */
97: /* Registers */
98: /* --------------------------------------------------------------------- */
99:
100: #define SLJIT_UNUSED 0
101:
102: /* Temporary (scratch) registers may not preserve their values across function calls. */
103: #define SLJIT_TEMPORARY_REG1 1
104: #define SLJIT_TEMPORARY_REG2 2
105: #define SLJIT_TEMPORARY_REG3 3
106: /* Note: Extra Registers cannot be used for memory addressing. */
107: /* Note: on x86-32, these registers are emulated (using stack loads & stores). */
108: #define SLJIT_TEMPORARY_EREG1 4
109: #define SLJIT_TEMPORARY_EREG2 5
110:
1.1.1.2 misho 111: /* Saved registers whose preserve their values across function calls. */
112: #define SLJIT_SAVED_REG1 6
113: #define SLJIT_SAVED_REG2 7
114: #define SLJIT_SAVED_REG3 8
1.1 misho 115: /* Note: Extra Registers cannot be used for memory addressing. */
116: /* Note: on x86-32, these registers are emulated (using stack loads & stores). */
1.1.1.2 misho 117: #define SLJIT_SAVED_EREG1 9
118: #define SLJIT_SAVED_EREG2 10
1.1 misho 119:
1.1.1.3 ! misho 120: /* Read-only register (cannot be the destination of an operation).
! 121: Only SLJIT_MEM1(SLJIT_LOCALS_REG) addressing mode is allowed since
! 122: several ABIs has certain limitations about the stack layout. However
! 123: sljit_get_local_base() can be used to obtain the offset of a value. */
1.1 misho 124: #define SLJIT_LOCALS_REG 11
125:
126: /* Number of registers. */
127: #define SLJIT_NO_TMP_REGISTERS 5
128: #define SLJIT_NO_GEN_REGISTERS 5
129: #define SLJIT_NO_REGISTERS 11
130:
131: /* Return with machine word. */
132:
133: #define SLJIT_RETURN_REG SLJIT_TEMPORARY_REG1
134:
1.1.1.2 misho 135: /* x86 prefers specific registers for special purposes. In case of shift
136: by register it supports only SLJIT_TEMPORARY_REG3 for shift argument
137: (which is the src2 argument of sljit_emit_op2). If another register is
138: used, sljit must exchange data between registers which cause a minor
139: slowdown. Other architectures has no such limitation. */
1.1 misho 140:
141: #define SLJIT_PREF_SHIFT_REG SLJIT_TEMPORARY_REG3
142:
143: /* --------------------------------------------------------------------- */
144: /* Floating point registers */
145: /* --------------------------------------------------------------------- */
146:
147: /* Note: SLJIT_UNUSED as destination is not valid for floating point
148: operations, since they cannot be used for setting flags. */
149:
150: /* Floating point operations are performed on double precision values. */
151:
152: #define SLJIT_FLOAT_REG1 1
153: #define SLJIT_FLOAT_REG2 2
154: #define SLJIT_FLOAT_REG3 3
155: #define SLJIT_FLOAT_REG4 4
156:
157: /* --------------------------------------------------------------------- */
158: /* Main structures and functions */
159: /* --------------------------------------------------------------------- */
160:
161: struct sljit_memory_fragment {
162: struct sljit_memory_fragment *next;
163: sljit_uw used_size;
164: sljit_ub memory[1];
165: };
166:
167: struct sljit_label {
168: struct sljit_label *next;
169: sljit_uw addr;
170: /* The maximum size difference. */
171: sljit_uw size;
172: };
173:
174: struct sljit_jump {
175: struct sljit_jump *next;
176: sljit_uw addr;
177: sljit_w flags;
178: union {
179: sljit_uw target;
180: struct sljit_label* label;
181: } u;
182: };
183:
184: struct sljit_const {
185: struct sljit_const *next;
186: sljit_uw addr;
187: };
188:
189: struct sljit_compiler {
190: int error;
191:
192: struct sljit_label *labels;
193: struct sljit_jump *jumps;
194: struct sljit_const *consts;
195: struct sljit_label *last_label;
196: struct sljit_jump *last_jump;
197: struct sljit_const *last_const;
198:
199: struct sljit_memory_fragment *buf;
200: struct sljit_memory_fragment *abuf;
201:
202: /* Used local registers. */
203: int temporaries;
1.1.1.2 misho 204: /* Used saved registers. */
205: int saveds;
1.1 misho 206: /* Local stack size. */
207: int local_size;
208: /* Code size. */
209: sljit_uw size;
210: /* For statistical purposes. */
211: sljit_uw executable_size;
212:
213: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
214: int args;
1.1.1.3 ! misho 215: int locals_offset;
1.1 misho 216: int temporaries_start;
1.1.1.2 misho 217: int saveds_start;
1.1 misho 218: #endif
219:
220: #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
221: int mode32;
222: #endif
223:
224: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
225: int flags_saved;
226: #endif
227:
228: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
229: /* Constant pool handling. */
230: sljit_uw *cpool;
231: sljit_ub *cpool_unique;
232: sljit_uw cpool_diff;
233: sljit_uw cpool_fill;
1.1.1.2 misho 234: /* Other members. */
1.1 misho 235: /* Contains pointer, "ldr pc, [...]" pairs. */
236: sljit_uw patches;
237: #endif
238:
239: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
240: /* Temporary fields. */
241: sljit_uw shift_imm;
242: int cache_arg;
243: sljit_w cache_argw;
244: #endif
245:
246: #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
247: int cache_arg;
248: sljit_w cache_argw;
249: #endif
250:
251: #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) || (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
252: sljit_w imm;
253: int cache_arg;
254: sljit_w cache_argw;
255: #endif
256:
257: #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
258: int delay_slot;
259: int cache_arg;
260: sljit_w cache_argw;
261: #endif
262:
263: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
264: FILE* verbose;
265: #endif
266:
1.1.1.3 ! misho 267: #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
! 268: /* Local size passed to the functions. */
! 269: int logical_local_size;
! 270: #endif
! 271:
1.1 misho 272: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
273: int skip_checks;
274: #endif
275: };
276:
277: /* --------------------------------------------------------------------- */
278: /* Main functions */
279: /* --------------------------------------------------------------------- */
280:
281: /* Creates an sljit compiler.
282: Returns NULL if failed. */
283: SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void);
284: /* Free everything except the codes. */
285: SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
286:
287: static SLJIT_INLINE int sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
288:
289: /*
290: Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
291: and <= 128 bytes on 64 bit architectures. The memory area is owned by the compiler,
292: and freed by sljit_free_compiler. The returned pointer is sizeof(sljit_w) aligned.
293: Excellent for allocating small blocks during the compiling, and no need to worry
294: about freeing them. The size is enough to contain at most 16 pointers.
295: If the size is outside of the range, the function will return with NULL,
296: but this return value does not indicate that there is no more memory (does
297: not set the compiler to out-of-memory status).
298: */
299: SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, int size);
300:
301: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
302: /* Passing NULL disables verbose. */
303: SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
304: #endif
305:
306: SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
307: SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
308:
309: /*
310: After the code generation we can retrieve the allocated executable memory size,
311: although this area may not be fully filled with instructions depending on some
312: optimizations. This function is useful only for statistical purposes.
313:
314: Before a successful code generation, this function returns with 0.
315: */
316: static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
317:
318: /* Instruction generation. Returns with error code. */
319:
320: /*
1.1.1.2 misho 321: The executable code is basically a function call from the viewpoint of
322: the C language. The function calls must obey to the ABI (Application
323: Binary Interface) of the platform, which specify the purpose of machine
324: registers and stack handling among other things. The sljit_emit_enter
325: function emits the necessary instructions for setting up a new context
326: for the executable code and moves function arguments to the saved
327: registers. The number of arguments are specified in the "args"
328: parameter and the first argument goes to SLJIT_SAVED_REG1, the second
329: goes to SLJIT_SAVED_REG2 and so on. The number of temporary and
330: saved registers are passed in "temporaries" and "saveds" arguments
331: respectively. Since the saved registers contains the arguments,
332: "args" must be less or equal than "saveds". The sljit_emit_enter
333: is also capable of allocating a stack space for local variables. The
334: "local_size" argument contains the size in bytes of this local area
335: and its staring address is stored in SLJIT_LOCALS_REG. However
336: the SLJIT_LOCALS_REG is not necessary the machine stack pointer.
337: The memory bytes between SLJIT_LOCALS_REG (inclusive) and
338: SLJIT_LOCALS_REG + local_size (exclusive) can be modified freely
339: until the function returns. The stack space is uninitialized.
1.1 misho 340:
1.1.1.2 misho 341: Note: every call of sljit_emit_enter and sljit_set_context overwrites
342: the previous context. */
1.1 misho 343:
344: #define SLJIT_MAX_LOCAL_SIZE 65536
345:
1.1.1.2 misho 346: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler,
347: int args, int temporaries, int saveds, int local_size);
348:
349: /* The machine code has a context (which contains the local stack space size,
350: number of used registers, etc.) which initialized by sljit_emit_enter. Several
351: functions (like sljit_emit_return) requres this context to be able to generate
352: the appropriate code. However, some code fragments (like inline cache) may have
353: no normal entry point so their context is unknown for the compiler. Using the
354: function below we can specify thir context.
1.1 misho 355:
1.1.1.2 misho 356: Note: every call of sljit_emit_enter and sljit_set_context overwrites
357: the previous context. */
1.1 misho 358:
359: /* Note: multiple calls of this function overwrites the previous call. */
360:
1.1.1.2 misho 361: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
362: int args, int temporaries, int saveds, int local_size);
1.1 misho 363:
1.1.1.2 misho 364: /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
365: function does not return with anything or any opcode between SLJIT_MOV and
366: SLJIT_MOV_SI (see sljit_emit_op1). As for src and srcw they must be 0 if op
367: is SLJIT_UNUSED, otherwise see below the description about source and
368: destination arguments. */
369: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int op,
370: int src, sljit_w srcw);
1.1 misho 371:
372: /* Really fast calling method for utility functions inside sljit (see SLJIT_FAST_CALL).
373: All registers and even the stack frame is passed to the callee. The return address is
374: preserved in dst/dstw by sljit_emit_fast_enter, and sljit_emit_fast_return can
375: use this as a return value later. */
376:
377: /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine instructions
1.1.1.2 misho 378: are needed. Excellent for small uility functions, where saving registers and setting up
1.1 misho 379: a new stack frame would cost too much performance. However, it is still possible to return
380: to the address of the caller (or anywhere else). */
381:
382: /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
383:
384: /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
385: since many architectures do clever branch prediction on call / return instruction pairs. */
386:
1.1.1.3 ! misho 387: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw);
1.1 misho 388: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw);
389:
390: /*
391: Source and destination values for arithmetical instructions
392: imm - a simple immediate value (cannot be used as a destination)
393: reg - any of the registers (immediate argument must be 0)
394: [imm] - absolute immediate memory address
395: [reg+imm] - indirect memory address
396: [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
397: useful for (byte, half, int, sljit_w) array access
398: (fully supported by both x86 and ARM architectures, and cheap operation on others)
399: */
400:
401: /*
1.1.1.2 misho 402: IMPORATNT NOTE: memory access MUST be naturally aligned except
403: SLJIT_UNALIGNED macro is defined and its value is 1.
404:
1.1 misho 405: length | alignment
406: ---------+-----------
407: byte | 1 byte (not aligned)
408: half | 2 byte (real_address & 0x1 == 0)
409: int | 4 byte (real_address & 0x3 == 0)
1.1.1.2 misho 410: sljit_w | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
411: | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
1.1 misho 412:
413: Note: different architectures have different addressing limitations
414: Thus sljit may generate several instructions for other addressing modes
415: x86: all addressing modes supported, but write-back is not supported
416: (requires an extra instruction). On x86-64 only 32 bit signed
417: integers are supported by the architecture.
418: arm: [reg+imm] supported for small immediates (-4095 <= imm <= 4095
419: or -255 <= imm <= 255 for loading signed bytes, any halfs or doubles)
420: [reg+(reg<<imm)] are supported or requires only two instructions
421: Write back is limited to small immediates on thumb2
422: ppc: [reg+imm], -65535 <= imm <= 65535. 64 bit moves requires immediates
423: divisible by 4. [reg+reg] supported, write-back supported
424: [reg+(reg<<imm)] (imm != 0) is cheap (requires two instructions)
425: */
426:
427: /* Register output: simply the name of the register.
428: For destination, you can use SLJIT_UNUSED as well. */
429: #define SLJIT_MEM 0x100
430: #define SLJIT_MEM0() (SLJIT_MEM)
431: #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
432: #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 4))
433: #define SLJIT_IMM 0x200
434:
435: /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
436: 32 bit CPUs. The arithmetic instruction uses only the lower 32 bit of the
437: input register(s), and set the flags according to the 32 bit result. If the
438: destination is a register, the higher 32 bit of the result is undefined.
439: The addressing modes (SLJIT_MEM1/SLJIT_MEM2 macros) are unaffected by this flag. */
440: #define SLJIT_INT_OP 0x100
441:
442: /* Common CPU status flags for all architectures (x86, ARM, PPC)
443: - carry flag
444: - overflow flag
445: - zero flag
446: - negative/positive flag (depends on arc)
447: On mips, these flags are emulated by software. */
448:
449: /* By default, the instructions may, or may not set the CPU status flags.
450: Forcing to set or keep status flags can be done with the following flags: */
451:
452: /* Note: sljit tries to emit the minimum number of instructions. Using these
453: flags can increase them, so use them wisely to avoid unnecessary code generation. */
454:
455: /* Set Equal (Zero) status flag (E). */
456: #define SLJIT_SET_E 0x0200
457: /* Set signed status flag (S). */
458: #define SLJIT_SET_S 0x0400
459: /* Set unsgined status flag (U). */
460: #define SLJIT_SET_U 0x0800
461: /* Set signed overflow flag (O). */
462: #define SLJIT_SET_O 0x1000
463: /* Set carry flag (C).
464: Note: Kinda unsigned overflow, but behaves differently on various cpus. */
465: #define SLJIT_SET_C 0x2000
466: /* Do not modify the flags (K).
467: Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
468: #define SLJIT_KEEP_FLAGS 0x4000
469:
470: /* Notes:
471: - you cannot postpone conditional jump instructions except if noted that
472: the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
473: - flag combinations: '|' means 'logical or'. */
474:
475: /* Flags: - (never set any flags)
476: Note: breakpoint instruction is not supported by all architectures (namely ppc)
477: It falls back to SLJIT_NOP in those cases. */
478: #define SLJIT_BREAKPOINT 0
479: /* Flags: - (never set any flags)
480: Note: may or may not cause an extra cycle wait
481: it can even decrease the runtime in a few cases. */
482: #define SLJIT_NOP 1
1.1.1.2 misho 483: /* Flags: may destroy flags
484: Unsigned multiplication of SLJIT_TEMPORARY_REG1 and SLJIT_TEMPORARY_REG2.
485: Result goes to SLJIT_TEMPORARY_REG2:SLJIT_TEMPORARY_REG1 (high:low) word */
486: #define SLJIT_UMUL 2
487: /* Flags: may destroy flags
488: Signed multiplication of SLJIT_TEMPORARY_REG1 and SLJIT_TEMPORARY_REG2.
489: Result goes to SLJIT_TEMPORARY_REG2:SLJIT_TEMPORARY_REG1 (high:low) word */
490: #define SLJIT_SMUL 3
491: /* Flags: I | may destroy flags
492: Unsigned divide of the value in SLJIT_TEMPORARY_REG1 by the value in SLJIT_TEMPORARY_REG2.
493: The result is placed in SLJIT_TEMPORARY_REG1 and the remainder goes to SLJIT_TEMPORARY_REG2.
494: Note: if SLJIT_TEMPORARY_REG2 contains 0, the behaviour is undefined. */
495: #define SLJIT_UDIV 4
496: /* Flags: I | may destroy flags
497: Signed divide of the value in SLJIT_TEMPORARY_REG1 by the value in SLJIT_TEMPORARY_REG2.
498: The result is placed in SLJIT_TEMPORARY_REG1 and the remainder goes to SLJIT_TEMPORARY_REG2.
499: Note: if SLJIT_TEMPORARY_REG2 contains 0, the behaviour is undefined. */
500: #define SLJIT_SDIV 5
1.1 misho 501:
502: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op);
503:
504: /* Notes for MOV instructions:
505: U = Mov with update (post form). If source or destination defined as SLJIT_MEM1(r1)
506: or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
507: UB = unsigned byte (8 bit)
508: SB = signed byte (8 bit)
509: UH = unsgined half (16 bit)
510: SH = unsgined half (16 bit) */
511:
512: /* Flags: - (never set any flags) */
1.1.1.2 misho 513: #define SLJIT_MOV 6
1.1 misho 514: /* Flags: - (never set any flags) */
1.1.1.2 misho 515: #define SLJIT_MOV_UB 7
1.1 misho 516: /* Flags: - (never set any flags) */
1.1.1.2 misho 517: #define SLJIT_MOV_SB 8
1.1 misho 518: /* Flags: - (never set any flags) */
1.1.1.2 misho 519: #define SLJIT_MOV_UH 9
1.1 misho 520: /* Flags: - (never set any flags) */
1.1.1.2 misho 521: #define SLJIT_MOV_SH 10
1.1 misho 522: /* Flags: - (never set any flags) */
1.1.1.2 misho 523: #define SLJIT_MOV_UI 11
1.1 misho 524: /* Flags: - (never set any flags) */
1.1.1.2 misho 525: #define SLJIT_MOV_SI 12
1.1 misho 526: /* Flags: - (never set any flags) */
1.1.1.2 misho 527: #define SLJIT_MOVU 13
1.1 misho 528: /* Flags: - (never set any flags) */
1.1.1.2 misho 529: #define SLJIT_MOVU_UB 14
1.1 misho 530: /* Flags: - (never set any flags) */
1.1.1.2 misho 531: #define SLJIT_MOVU_SB 15
1.1 misho 532: /* Flags: - (never set any flags) */
1.1.1.2 misho 533: #define SLJIT_MOVU_UH 16
1.1 misho 534: /* Flags: - (never set any flags) */
1.1.1.2 misho 535: #define SLJIT_MOVU_SH 17
1.1 misho 536: /* Flags: - (never set any flags) */
1.1.1.2 misho 537: #define SLJIT_MOVU_UI 18
1.1 misho 538: /* Flags: - (never set any flags) */
1.1.1.2 misho 539: #define SLJIT_MOVU_SI 19
1.1 misho 540: /* Flags: I | E | K */
1.1.1.2 misho 541: #define SLJIT_NOT 20
1.1 misho 542: /* Flags: I | E | O | K */
1.1.1.2 misho 543: #define SLJIT_NEG 21
1.1 misho 544: /* Count leading zeroes
545: Flags: I | E | K */
1.1.1.2 misho 546: #define SLJIT_CLZ 22
1.1 misho 547:
548: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
549: int dst, sljit_w dstw,
550: int src, sljit_w srcw);
551:
552: /* Flags: I | E | O | C | K */
1.1.1.2 misho 553: #define SLJIT_ADD 23
1.1 misho 554: /* Flags: I | C | K */
1.1.1.2 misho 555: #define SLJIT_ADDC 24
1.1 misho 556: /* Flags: I | E | S | U | O | C | K */
1.1.1.2 misho 557: #define SLJIT_SUB 25
1.1 misho 558: /* Flags: I | C | K */
1.1.1.2 misho 559: #define SLJIT_SUBC 26
560: /* Note: integer mul
561: Flags: I | O (see SLJIT_C_MUL_*) | K */
562: #define SLJIT_MUL 27
1.1 misho 563: /* Flags: I | E | K */
1.1.1.2 misho 564: #define SLJIT_AND 28
1.1 misho 565: /* Flags: I | E | K */
1.1.1.2 misho 566: #define SLJIT_OR 29
1.1 misho 567: /* Flags: I | E | K */
1.1.1.2 misho 568: #define SLJIT_XOR 30
569: /* Flags: I | E | K
570: Let bit_length be the length of the shift operation: 32 or 64.
571: If src2 is immediate, src2w is masked by (bit_length - 1).
572: Otherwise, if the content of src2 is outside the range from 0
573: to bit_length - 1, the operation is undefined. */
574: #define SLJIT_SHL 31
575: /* Flags: I | E | K
576: Let bit_length be the length of the shift operation: 32 or 64.
577: If src2 is immediate, src2w is masked by (bit_length - 1).
578: Otherwise, if the content of src2 is outside the range from 0
579: to bit_length - 1, the operation is undefined. */
580: #define SLJIT_LSHR 32
581: /* Flags: I | E | K
582: Let bit_length be the length of the shift operation: 32 or 64.
583: If src2 is immediate, src2w is masked by (bit_length - 1).
584: Otherwise, if the content of src2 is outside the range from 0
585: to bit_length - 1, the operation is undefined. */
586: #define SLJIT_ASHR 33
1.1 misho 587:
588: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
589: int dst, sljit_w dstw,
590: int src1, sljit_w src1w,
591: int src2, sljit_w src2w);
592:
1.1.1.2 misho 593: /* The following function is a helper function for sljit_emit_op_custom.
594: It returns with the real machine register index of any SLJIT_TEMPORARY
595: SLJIT_SAVED or SLJIT_LOCALS register.
596: Note: it returns with -1 for virtual registers (all EREGs on x86-32).
597: Note: register returned by SLJIT_LOCALS_REG is not necessary the real
598: stack pointer register of the target architecture. */
599:
600: SLJIT_API_FUNC_ATTRIBUTE int sljit_get_register_index(int reg);
601:
602: /* Any instruction can be inserted into the instruction stream by
603: sljit_emit_op_custom. It has a similar purpose as inline assembly.
604: The size parameter must match to the instruction size of the target
605: architecture:
606:
607: x86: 0 < size <= 15. The instruction argument can be byte aligned.
608: Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
609: if size == 4, the instruction argument must be 4 byte aligned.
610: Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
611:
612: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op_custom(struct sljit_compiler *compiler,
613: void *instruction, int size);
614:
615: /* Returns with non-zero if fpu is available. */
616:
1.1 misho 617: SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void);
618:
619: /* Note: dst is the left and src is the right operand for SLJIT_FCMP.
620: Note: NaN check is always performed. If SLJIT_C_FLOAT_NAN is set,
621: the comparison result is unpredictable.
622: Flags: E | S (see SLJIT_C_FLOAT_*) */
1.1.1.2 misho 623: #define SLJIT_FCMP 34
1.1 misho 624: /* Flags: - (never set any flags) */
1.1.1.2 misho 625: #define SLJIT_FMOV 35
1.1 misho 626: /* Flags: - (never set any flags) */
1.1.1.2 misho 627: #define SLJIT_FNEG 36
1.1 misho 628: /* Flags: - (never set any flags) */
1.1.1.2 misho 629: #define SLJIT_FABS 37
1.1 misho 630:
631: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
632: int dst, sljit_w dstw,
633: int src, sljit_w srcw);
634:
635: /* Flags: - (never set any flags) */
1.1.1.2 misho 636: #define SLJIT_FADD 38
1.1 misho 637: /* Flags: - (never set any flags) */
1.1.1.2 misho 638: #define SLJIT_FSUB 39
1.1 misho 639: /* Flags: - (never set any flags) */
1.1.1.2 misho 640: #define SLJIT_FMUL 40
1.1 misho 641: /* Flags: - (never set any flags) */
1.1.1.2 misho 642: #define SLJIT_FDIV 41
1.1 misho 643:
644: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
645: int dst, sljit_w dstw,
646: int src1, sljit_w src1w,
647: int src2, sljit_w src2w);
648:
649: /* Label and jump instructions. */
650:
651: SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
652:
653: /* Invert conditional instruction: xor (^) with 0x1 */
654: #define SLJIT_C_EQUAL 0
655: #define SLJIT_C_ZERO 0
656: #define SLJIT_C_NOT_EQUAL 1
657: #define SLJIT_C_NOT_ZERO 1
658:
659: #define SLJIT_C_LESS 2
660: #define SLJIT_C_GREATER_EQUAL 3
661: #define SLJIT_C_GREATER 4
662: #define SLJIT_C_LESS_EQUAL 5
663: #define SLJIT_C_SIG_LESS 6
664: #define SLJIT_C_SIG_GREATER_EQUAL 7
665: #define SLJIT_C_SIG_GREATER 8
666: #define SLJIT_C_SIG_LESS_EQUAL 9
667:
668: #define SLJIT_C_OVERFLOW 10
669: #define SLJIT_C_NOT_OVERFLOW 11
670:
671: #define SLJIT_C_MUL_OVERFLOW 12
672: #define SLJIT_C_MUL_NOT_OVERFLOW 13
673:
674: #define SLJIT_C_FLOAT_EQUAL 14
675: #define SLJIT_C_FLOAT_NOT_EQUAL 15
676: #define SLJIT_C_FLOAT_LESS 16
677: #define SLJIT_C_FLOAT_GREATER_EQUAL 17
678: #define SLJIT_C_FLOAT_GREATER 18
679: #define SLJIT_C_FLOAT_LESS_EQUAL 19
680: #define SLJIT_C_FLOAT_NAN 20
681: #define SLJIT_C_FLOAT_NOT_NAN 21
682:
683: #define SLJIT_JUMP 22
684: #define SLJIT_FAST_CALL 23
685: #define SLJIT_CALL0 24
686: #define SLJIT_CALL1 25
687: #define SLJIT_CALL2 26
688: #define SLJIT_CALL3 27
689:
690: /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
691:
692: /* The target can be changed during runtime (see: sljit_set_jump_addr). */
693: #define SLJIT_REWRITABLE_JUMP 0x1000
694:
695: /* Emit a jump instruction. The destination is not set, only the type of the jump.
696: type must be between SLJIT_C_EQUAL and SLJIT_CALL3
697: type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
698: Flags: - (never set any flags) for both conditional and unconditional jumps.
699: Flags: destroy all flags for calls. */
700: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type);
701:
1.1.1.2 misho 702: /* Basic arithmetic comparison. In most architectures it is implemented as
703: an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
704: appropriate flags) followed by a sljit_emit_jump. However some
705: architectures (i.e: MIPS) may employ special optimizations here. It is
706: suggested to use this comparison form when appropriate.
1.1 misho 707: type must be between SLJIT_C_EQUAL and SLJIT_C_SIG_LESS_EQUAL
708: type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP or SLJIT_INT_OP
709: Flags: destroy flags. */
710: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, int type,
711: int src1, sljit_w src1w,
712: int src2, sljit_w src2w);
713:
1.1.1.2 misho 714: /* Basic floating point comparison. In most architectures it is implemented as
715: an SLJIT_FCMP operation (setting appropriate flags) followed by a
716: sljit_emit_jump. However some architectures (i.e: MIPS) may employ
717: special optimizations here. It is suggested to use this comparison form
718: when appropriate.
719: type must be between SLJIT_C_FLOAT_EQUAL and SLJIT_C_FLOAT_NOT_NAN
720: type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
721: Flags: destroy flags.
722: Note: if either operand is NaN, the behaviour is undefined for
723: type <= SLJIT_C_FLOAT_LESS_EQUAL. */
724: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, int type,
725: int src1, sljit_w src1w,
726: int src2, sljit_w src2w);
727:
1.1 misho 728: /* Set the destination of the jump to this label. */
729: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
730: /* Only for jumps defined with SLJIT_REWRITABLE_JUMP flag.
731: Note: use sljit_emit_ijump for fixed jumps. */
732: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
733:
734: /* Call function or jump anywhere. Both direct and indirect form
735: type must be between SLJIT_JUMP and SLJIT_CALL3
736: Direct form: set src to SLJIT_IMM() and srcw to the address
737: Indirect form: any other valid addressing mode
738: Flags: - (never set any flags) for unconditional jumps.
739: Flags: destroy all flags for calls. */
740: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw);
741:
742: /* If op == SLJIT_MOV:
743: Set dst to 1 if condition is fulfilled, 0 otherwise
744: type must be between SLJIT_C_EQUAL and SLJIT_C_FLOAT_NOT_NAN
745: Flags: - (never set any flags)
746: If op == SLJIT_OR
747: Dst is used as src as well, and set its lowest bit to 1 if
748: the condition is fulfilled. Otherwise it does nothing.
749: Flags: E | K
750: Note: sljit_emit_cond_value does nothing, if dst is SLJIT_UNUSED (regardless of op). */
751: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type);
752:
1.1.1.3 ! misho 753: /* Copies the base address of SLJIT_MEM1(SLJIT_LOCALS_REG)+offset to dst.
! 754: Flags: - (never set any flags) */
! 755: SLJIT_API_FUNC_ATTRIBUTE int sljit_get_local_base(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w offset);
! 756:
1.1 misho 757: /* The constant can be changed runtime (see: sljit_set_const)
758: Flags: - (never set any flags) */
759: SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value);
760:
761: /* After the code generation the address for label, jump and const instructions
762: are computed. Since these structures are freed sljit_free_compiler, the
763: addresses must be preserved by the user program elsewere. */
764: static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
765: static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
766: static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
767:
768: /* Only the address is required to rewrite the code. */
769: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
770: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant);
771:
772: /* --------------------------------------------------------------------- */
773: /* Miscellaneous utility functions */
774: /* --------------------------------------------------------------------- */
775:
776: #define SLJIT_MAJOR_VERSION 0
1.1.1.3 ! misho 777: #define SLJIT_MINOR_VERSION 88
1.1 misho 778:
779: /* Get the human readable name of the platfrom.
780: Can be useful for debugging on platforms like ARM, where ARM and
781: Thumb2 functions can be mixed. */
782: SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
783:
784: /* Portble helper function to get an offset of a member. */
1.1.1.2 misho 785: #define SLJIT_OFFSETOF(base, member) ((sljit_w)(&((base*)0x10)->member) - 0x10)
1.1 misho 786:
787: #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
788: /* This global lock is useful to compile common functions. */
789: SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
790: SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
791: #endif
792:
793: #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
794:
795: /* The sljit_stack is a utiliy feature of sljit, which allocates a
796: writable memory region between base (inclusive) and limit (exclusive).
797: Both base and limit is a pointer, and base is always <= than limit.
798: This feature uses the "address space reserve" feature
799: of modern operating systems. Basically we don't need to allocate a
800: huge memory block in one step for the worst case, we can start with
801: a smaller chunk and extend it later. Since the address space is
802: reserved, the data never copied to other regions, thus it is safe
803: to store pointers here. */
804:
805: /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
806: Note: stack growing should not happen in small steps: 4k, 16k or even
807: bigger growth is better.
808: Note: this structure may not be supported by all operating systems.
809: Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
810: is not defined. */
811:
812: struct sljit_stack {
813: /* User data, anything can be stored here.
814: Starting with the same value as base. */
815: sljit_uw top;
816: /* These members are read only. */
817: sljit_uw base;
818: sljit_uw limit;
819: sljit_uw max_limit;
820: };
821:
822: /* Returns NULL if unsuccessful.
823: Note: limit and max_limit contains the size for stack allocation
824: Note: the top field is initialized to base. */
825: SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit);
826: SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack* stack);
827:
828: /* Can be used to increase (allocate) or decrease (free) the memory area.
829: Returns with a non-zero value if unsuccessful. If new_limit is greater than
830: max_limit, it will fail. It is very easy to implement a stack data structure,
831: since the growth ratio can be added to the current limit, and sljit_stack_resize
832: will do all the necessary checks. The fields of the stack are not changed if
833: sljit_stack_resize fails. */
834: SLJIT_API_FUNC_ATTRIBUTE sljit_w SLJIT_CALL sljit_stack_resize(struct sljit_stack* stack, sljit_uw new_limit);
835:
836: #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
837:
838: #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
839:
840: /* Get the entry address of a given function. */
841: #define SLJIT_FUNC_OFFSET(func_name) ((sljit_w)func_name)
842:
843: #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
844:
845: /* All JIT related code should be placed in the same context (library, binary, etc.). */
846:
847: #define SLJIT_FUNC_OFFSET(func_name) ((sljit_w)*(void**)func_name)
848:
849: /* For powerpc64, the function pointers point to a context descriptor. */
850: struct sljit_function_context {
851: sljit_w addr;
852: sljit_w r2;
853: sljit_w r11;
854: };
855:
856: /* Fill the context arguments using the addr and the function.
857: If func_ptr is NULL, it will not be set to the address of context
858: If addr is NULL, the function address also comes from the func pointer. */
859: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_w addr, void* func);
860:
861: #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
862:
863: #endif /* _SLJIT_LIR_H_ */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>