Annotation of embedaddon/pcre/sljit/sljitLir.h, revision 1.1.1.5
1.1 misho 1: /*
2: * Stack-less Just-In-Time compiler
3: *
1.1.1.2 misho 4: * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
1.1 misho 5: *
6: * Redistribution and use in source and binary forms, with or without modification, are
7: * permitted provided that the following conditions are met:
8: *
9: * 1. Redistributions of source code must retain the above copyright notice, this list of
10: * conditions and the following disclaimer.
11: *
12: * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13: * of conditions and the following disclaimer in the documentation and/or other materials
14: * provided with the distribution.
15: *
16: * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17: * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18: * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19: * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20: * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21: * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22: * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23: * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24: * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25: */
26:
27: #ifndef _SLJIT_LIR_H_
28: #define _SLJIT_LIR_H_
29:
30: /*
31: ------------------------------------------------------------------------
32: Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33: ------------------------------------------------------------------------
34:
35: Short description
36: Advantages:
1.1.1.4 misho 37: - The execution can be continued from any LIR instruction. In other
38: words, it is possible to jump to any label from anywhere, even from
39: a code fragment, which is compiled later, if both compiled code
40: shares the same context. See sljit_emit_enter for more details
41: - Supports self modifying code: target of (conditional) jump and call
42: instructions and some constant values can be dynamically modified
43: during runtime
1.1 misho 44: - although it is not suggested to do it frequently
1.1.1.4 misho 45: - can be used for inline caching: save an important value once
46: in the instruction stream
47: - since this feature limits the optimization possibilities, a
48: special flag must be passed at compile time when these
49: instructions are emitted
1.1 misho 50: - A fixed stack space can be allocated for local variables
51: - The compiler is thread-safe
1.1.1.3 misho 52: - The compiler is highly configurable through preprocessor macros.
53: You can disable unneeded features (multithreading in single
54: threaded applications), and you can use your own system functions
55: (including memory allocators). See sljitConfig.h
1.1 misho 56: Disadvantages:
1.1.1.4 misho 57: - No automatic register allocation, and temporary results are
58: not stored on the stack. (hence the name comes)
1.1 misho 59: - Limited number of registers (only 6+4 integer registers, max 3+2
1.1.1.4 misho 60: scratch, max 3+2 saved and 6 floating point registers)
1.1 misho 61: In practice:
62: - This approach is very effective for interpreters
1.1.1.2 misho 63: - One of the saved registers typically points to a stack interface
1.1.1.4 misho 64: - It can jump to any exception handler anytime (even if it belongs
65: to another function)
66: - Hot paths can be modified during runtime reflecting the changes
1.1 misho 67: of the fastest execution path of the dynamic language
68: - SLJIT supports complex memory addressing modes
1.1.1.4 misho 69: - mainly position and context independent code (except some cases)
1.1 misho 70:
71: For valgrind users:
72: - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
73: */
74:
75: #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
76: #include "sljitConfig.h"
77: #endif
1.1.1.2 misho 78:
79: /* The following header file defines useful macros for fine tuning
1.1.1.4 misho 80: sljit based code generators. They are listed in the beginning
1.1.1.2 misho 81: of sljitConfigInternal.h */
82:
1.1 misho 83: #include "sljitConfigInternal.h"
84:
85: /* --------------------------------------------------------------------- */
86: /* Error codes */
87: /* --------------------------------------------------------------------- */
88:
89: /* Indicates no error. */
90: #define SLJIT_SUCCESS 0
91: /* After the call of sljit_generate_code(), the error code of the compiler
92: is set to this value to avoid future sljit calls (in debug mode at least).
93: The complier should be freed after sljit_generate_code(). */
94: #define SLJIT_ERR_COMPILED 1
95: /* Cannot allocate non executable memory. */
96: #define SLJIT_ERR_ALLOC_FAILED 2
97: /* Cannot allocate executable memory.
98: Only for sljit_generate_code() */
99: #define SLJIT_ERR_EX_ALLOC_FAILED 3
100: /* return value for SLJIT_CONFIG_UNSUPPORTED empty architecture. */
101: #define SLJIT_ERR_UNSUPPORTED 4
102:
103: /* --------------------------------------------------------------------- */
104: /* Registers */
105: /* --------------------------------------------------------------------- */
106:
107: #define SLJIT_UNUSED 0
108:
1.1.1.4 misho 109: /* Scratch (temporary) registers whose may not preserve their values
110: across function calls. */
111: #define SLJIT_SCRATCH_REG1 1
112: #define SLJIT_SCRATCH_REG2 2
113: #define SLJIT_SCRATCH_REG3 3
114: /* Note: extra registers cannot be used for memory addressing. */
115: /* Note: on x86-32, these registers are emulated (using stack
116: loads & stores). */
1.1 misho 117: #define SLJIT_TEMPORARY_EREG1 4
118: #define SLJIT_TEMPORARY_EREG2 5
119:
1.1.1.2 misho 120: /* Saved registers whose preserve their values across function calls. */
121: #define SLJIT_SAVED_REG1 6
122: #define SLJIT_SAVED_REG2 7
123: #define SLJIT_SAVED_REG3 8
1.1.1.4 misho 124: /* Note: extra registers cannot be used for memory addressing. */
125: /* Note: on x86-32, these registers are emulated (using stack
126: loads & stores). */
1.1.1.2 misho 127: #define SLJIT_SAVED_EREG1 9
128: #define SLJIT_SAVED_EREG2 10
1.1 misho 129:
1.1.1.3 misho 130: /* Read-only register (cannot be the destination of an operation).
131: Only SLJIT_MEM1(SLJIT_LOCALS_REG) addressing mode is allowed since
132: several ABIs has certain limitations about the stack layout. However
1.1.1.4 misho 133: sljit_get_local_base() can be used to obtain the offset of a value
134: on the stack. */
1.1 misho 135: #define SLJIT_LOCALS_REG 11
136:
137: /* Number of registers. */
138: #define SLJIT_NO_TMP_REGISTERS 5
139: #define SLJIT_NO_GEN_REGISTERS 5
140: #define SLJIT_NO_REGISTERS 11
141:
142: /* Return with machine word. */
143:
1.1.1.4 misho 144: #define SLJIT_RETURN_REG SLJIT_SCRATCH_REG1
1.1 misho 145:
1.1.1.2 misho 146: /* x86 prefers specific registers for special purposes. In case of shift
1.1.1.4 misho 147: by register it supports only SLJIT_SCRATCH_REG3 for shift argument
1.1.1.2 misho 148: (which is the src2 argument of sljit_emit_op2). If another register is
149: used, sljit must exchange data between registers which cause a minor
150: slowdown. Other architectures has no such limitation. */
1.1 misho 151:
1.1.1.4 misho 152: #define SLJIT_PREF_SHIFT_REG SLJIT_SCRATCH_REG3
1.1 misho 153:
154: /* --------------------------------------------------------------------- */
155: /* Floating point registers */
156: /* --------------------------------------------------------------------- */
157:
158: /* Note: SLJIT_UNUSED as destination is not valid for floating point
159: operations, since they cannot be used for setting flags. */
160:
1.1.1.4 misho 161: /* Floating point operations are performed on double or
162: single precision values. */
1.1 misho 163:
1.1.1.4 misho 164: #define SLJIT_FLOAT_REG1 1
165: #define SLJIT_FLOAT_REG2 2
166: #define SLJIT_FLOAT_REG3 3
167: #define SLJIT_FLOAT_REG4 4
168: #define SLJIT_FLOAT_REG5 5
169: #define SLJIT_FLOAT_REG6 6
170:
171: #define SLJIT_NO_FLOAT_REGISTERS 6
1.1 misho 172:
173: /* --------------------------------------------------------------------- */
174: /* Main structures and functions */
175: /* --------------------------------------------------------------------- */
176:
177: struct sljit_memory_fragment {
178: struct sljit_memory_fragment *next;
179: sljit_uw used_size;
1.1.1.4 misho 180: /* Must be aligned to sljit_sw. */
1.1 misho 181: sljit_ub memory[1];
182: };
183:
184: struct sljit_label {
185: struct sljit_label *next;
186: sljit_uw addr;
187: /* The maximum size difference. */
188: sljit_uw size;
189: };
190:
191: struct sljit_jump {
192: struct sljit_jump *next;
193: sljit_uw addr;
1.1.1.4 misho 194: sljit_sw flags;
1.1 misho 195: union {
196: sljit_uw target;
197: struct sljit_label* label;
198: } u;
199: };
200:
201: struct sljit_const {
202: struct sljit_const *next;
203: sljit_uw addr;
204: };
205:
206: struct sljit_compiler {
1.1.1.4 misho 207: sljit_si error;
1.1 misho 208:
209: struct sljit_label *labels;
210: struct sljit_jump *jumps;
211: struct sljit_const *consts;
212: struct sljit_label *last_label;
213: struct sljit_jump *last_jump;
214: struct sljit_const *last_const;
215:
216: struct sljit_memory_fragment *buf;
217: struct sljit_memory_fragment *abuf;
218:
219: /* Used local registers. */
1.1.1.4 misho 220: sljit_si scratches;
1.1.1.2 misho 221: /* Used saved registers. */
1.1.1.4 misho 222: sljit_si saveds;
1.1 misho 223: /* Local stack size. */
1.1.1.4 misho 224: sljit_si local_size;
1.1 misho 225: /* Code size. */
226: sljit_uw size;
227: /* For statistical purposes. */
228: sljit_uw executable_size;
229:
230: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
1.1.1.4 misho 231: sljit_si args;
232: sljit_si locals_offset;
233: sljit_si scratches_start;
234: sljit_si saveds_start;
1.1 misho 235: #endif
236:
237: #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
1.1.1.4 misho 238: sljit_si mode32;
1.1 misho 239: #endif
240:
241: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
1.1.1.4 misho 242: sljit_si flags_saved;
1.1 misho 243: #endif
244:
245: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
246: /* Constant pool handling. */
247: sljit_uw *cpool;
248: sljit_ub *cpool_unique;
249: sljit_uw cpool_diff;
250: sljit_uw cpool_fill;
1.1.1.2 misho 251: /* Other members. */
1.1 misho 252: /* Contains pointer, "ldr pc, [...]" pairs. */
253: sljit_uw patches;
254: #endif
255:
256: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
257: /* Temporary fields. */
258: sljit_uw shift_imm;
1.1.1.4 misho 259: sljit_si cache_arg;
260: sljit_sw cache_argw;
1.1 misho 261: #endif
262:
263: #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
1.1.1.4 misho 264: sljit_si cache_arg;
265: sljit_sw cache_argw;
1.1 misho 266: #endif
267:
268: #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) || (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
1.1.1.4 misho 269: sljit_sw imm;
270: sljit_si cache_arg;
271: sljit_sw cache_argw;
1.1 misho 272: #endif
273:
274: #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
1.1.1.4 misho 275: sljit_si delay_slot;
276: sljit_si cache_arg;
277: sljit_sw cache_argw;
278: #endif
279:
280: #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
281: sljit_si delay_slot;
282: sljit_si cache_arg;
283: sljit_sw cache_argw;
1.1 misho 284: #endif
285:
1.1.1.5 ! misho 286: #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
! 287: sljit_si cache_arg;
! 288: sljit_sw cache_argw;
! 289: #endif
! 290:
1.1 misho 291: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
292: FILE* verbose;
293: #endif
294:
1.1.1.3 misho 295: #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
296: /* Local size passed to the functions. */
1.1.1.4 misho 297: sljit_si logical_local_size;
1.1.1.3 misho 298: #endif
299:
1.1 misho 300: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
1.1.1.4 misho 301: sljit_si skip_checks;
1.1 misho 302: #endif
303: };
304:
305: /* --------------------------------------------------------------------- */
306: /* Main functions */
307: /* --------------------------------------------------------------------- */
308:
309: /* Creates an sljit compiler.
310: Returns NULL if failed. */
311: SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void);
1.1.1.4 misho 312:
313: /* Free everything except the compiled machine code. */
1.1 misho 314: SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
315:
1.1.1.4 misho 316: /* Returns the current error code. If an error is occurred, future sljit
317: calls which uses the same compiler argument returns early with the same
318: error code. Thus there is no need for checking the error after every
319: call, it is enough to do it before the code is compiled. Removing
320: these checks increases the performance of the compiling process. */
321: static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
1.1 misho 322:
323: /*
324: Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
1.1.1.4 misho 325: and <= 128 bytes on 64 bit architectures. The memory area is owned by the
326: compiler, and freed by sljit_free_compiler. The returned pointer is
327: sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
328: the compiling, and no need to worry about freeing them. The size is
329: enough to contain at most 16 pointers. If the size is outside of the range,
330: the function will return with NULL. However, this return value does not
331: indicate that there is no more memory (does not set the current error code
332: of the compiler to out-of-memory status).
1.1 misho 333: */
1.1.1.4 misho 334: SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
1.1 misho 335:
336: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
337: /* Passing NULL disables verbose. */
338: SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
339: #endif
340:
341: SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
342: SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
343:
344: /*
1.1.1.4 misho 345: After the machine code generation is finished we can retrieve the allocated
346: executable memory size, although this area may not be fully filled with
347: instructions depending on some optimizations. This function is useful only
348: for statistical purposes.
1.1 misho 349:
350: Before a successful code generation, this function returns with 0.
351: */
352: static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
353:
1.1.1.4 misho 354: /* Instruction generation. Returns with any error code. If there is no
355: error, they return with SLJIT_SUCCESS. */
1.1 misho 356:
357: /*
1.1.1.2 misho 358: The executable code is basically a function call from the viewpoint of
359: the C language. The function calls must obey to the ABI (Application
360: Binary Interface) of the platform, which specify the purpose of machine
361: registers and stack handling among other things. The sljit_emit_enter
362: function emits the necessary instructions for setting up a new context
363: for the executable code and moves function arguments to the saved
364: registers. The number of arguments are specified in the "args"
365: parameter and the first argument goes to SLJIT_SAVED_REG1, the second
1.1.1.4 misho 366: goes to SLJIT_SAVED_REG2 and so on. The number of scratch and
367: saved registers are passed in "scratches" and "saveds" arguments
1.1.1.2 misho 368: respectively. Since the saved registers contains the arguments,
369: "args" must be less or equal than "saveds". The sljit_emit_enter
370: is also capable of allocating a stack space for local variables. The
371: "local_size" argument contains the size in bytes of this local area
372: and its staring address is stored in SLJIT_LOCALS_REG. However
373: the SLJIT_LOCALS_REG is not necessary the machine stack pointer.
374: The memory bytes between SLJIT_LOCALS_REG (inclusive) and
375: SLJIT_LOCALS_REG + local_size (exclusive) can be modified freely
376: until the function returns. The stack space is uninitialized.
1.1 misho 377:
1.1.1.4 misho 378: Note: every call of sljit_emit_enter and sljit_set_context
379: overwrites the previous context. */
1.1 misho 380:
381: #define SLJIT_MAX_LOCAL_SIZE 65536
382:
1.1.1.4 misho 383: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
384: sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size);
1.1.1.2 misho 385:
386: /* The machine code has a context (which contains the local stack space size,
387: number of used registers, etc.) which initialized by sljit_emit_enter. Several
388: functions (like sljit_emit_return) requres this context to be able to generate
389: the appropriate code. However, some code fragments (like inline cache) may have
390: no normal entry point so their context is unknown for the compiler. Using the
1.1.1.4 misho 391: function below we can specify their context.
1.1 misho 392:
1.1.1.2 misho 393: Note: every call of sljit_emit_enter and sljit_set_context overwrites
394: the previous context. */
1.1 misho 395:
1.1.1.2 misho 396: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
1.1.1.4 misho 397: sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size);
1.1 misho 398:
1.1.1.2 misho 399: /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
400: function does not return with anything or any opcode between SLJIT_MOV and
1.1.1.4 misho 401: SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
1.1.1.2 misho 402: is SLJIT_UNUSED, otherwise see below the description about source and
403: destination arguments. */
1.1 misho 404:
1.1.1.4 misho 405: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
406: sljit_si src, sljit_sw srcw);
407:
408: /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
409: even the stack frame is passed to the callee. The return address is preserved in
410: dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
411: is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
412:
413: /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
414: instructions are needed. Excellent for small uility functions, where saving registers
415: and setting up a new stack frame would cost too much performance. However, it is still
416: possible to return to the address of the caller (or anywhere else). */
1.1 misho 417:
418: /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
419:
420: /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
421: since many architectures do clever branch prediction on call / return instruction pairs. */
422:
1.1.1.4 misho 423: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
424: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
1.1 misho 425:
426: /*
427: Source and destination values for arithmetical instructions
428: imm - a simple immediate value (cannot be used as a destination)
429: reg - any of the registers (immediate argument must be 0)
430: [imm] - absolute immediate memory address
431: [reg+imm] - indirect memory address
432: [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
1.1.1.4 misho 433: useful for (byte, half, int, sljit_sw) array access
1.1 misho 434: (fully supported by both x86 and ARM architectures, and cheap operation on others)
435: */
436:
437: /*
1.1.1.2 misho 438: IMPORATNT NOTE: memory access MUST be naturally aligned except
439: SLJIT_UNALIGNED macro is defined and its value is 1.
440:
1.1 misho 441: length | alignment
442: ---------+-----------
1.1.1.4 misho 443: byte | 1 byte (any physical_address is accepted)
444: half | 2 byte (physical_address & 0x1 == 0)
445: int | 4 byte (physical_address & 0x3 == 0)
446: word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
1.1.1.2 misho 447: | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
1.1.1.4 misho 448: pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
449: | on 64 bit machines)
1.1 misho 450:
1.1.1.4 misho 451: Note: Different architectures have different addressing limitations.
452: A single instruction is enough for the following addressing
453: modes. Other adrressing modes are emulated by instruction
454: sequences. This information could help to improve those code
455: generators which focuses only a few architectures.
456:
457: x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
458: [reg+(reg<<imm)] is supported
459: [imm], -2^32+1 <= imm <= 2^32-1 is supported
460: Write-back is not supported
461: arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
462: bytes, any halfs or floating point values)
463: [reg+(reg<<imm)] is supported
464: Write-back is supported
465: arm-t2: [reg+imm], -255 <= imm <= 4095
466: [reg+(reg<<imm)] is supported
467: Write back is supported only for [reg+imm], where -255 <= imm <= 255
468: ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
469: signed load on 64 bit requires immediates divisible by 4.
470: [reg+imm] is not supported for signed 8 bit values.
471: [reg+reg] is supported
472: Write-back is supported except for one instruction: 32 bit signed
473: load with [reg+imm] addressing mode on 64 bit.
474: mips: [reg+imm], -65536 <= imm <= 65535
475: sparc: [reg+imm], -4096 <= imm <= 4095
476: [reg+reg] is supported
1.1 misho 477: */
478:
479: /* Register output: simply the name of the register.
480: For destination, you can use SLJIT_UNUSED as well. */
481: #define SLJIT_MEM 0x100
482: #define SLJIT_MEM0() (SLJIT_MEM)
483: #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
484: #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 4))
485: #define SLJIT_IMM 0x200
486:
487: /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
1.1.1.4 misho 488: 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
489: lower 32 bit of the input register(s), and set the CPU status flags according
490: to the 32 bit result. The higher 32 bits are undefined for both the input and
491: output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
492: expects it to be the sign extension of the lower 32 bit. All 32 bit operations
493: are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
494: is specified, all register arguments must be the result of other operations with
495: the same SLJIT_INT_OP flag. In other words, although a register can hold either
496: a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
497: SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOV_UI/SLJIT_MOVU_SI/SLJIT_MOV_UI
498: with SLJIT_INT_OP flag) which can convert any source argument to SLJIT_INT_OP
499: compatible result. This conversion might be unnecessary on some CPUs like x86-64,
500: since the upper 32 bit is always ignored. In this case SLJIT is clever enough
501: to not generate any instructions if the source and destination operands are the
502: same registers. Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
1.1 misho 503: #define SLJIT_INT_OP 0x100
504:
1.1.1.4 misho 505: /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
506: it applies to floating point registers (it is even the same bit). When
507: this flag is passed, the CPU performs single precision floating point
508: operations. Similar to SLJIT_INT_OP, all register arguments must be the
509: result of other floating point operations with this flag. Affects
510: sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
511: #define SLJIT_SINGLE_OP 0x100
512:
1.1 misho 513: /* Common CPU status flags for all architectures (x86, ARM, PPC)
514: - carry flag
515: - overflow flag
516: - zero flag
517: - negative/positive flag (depends on arc)
518: On mips, these flags are emulated by software. */
519:
520: /* By default, the instructions may, or may not set the CPU status flags.
521: Forcing to set or keep status flags can be done with the following flags: */
522:
523: /* Note: sljit tries to emit the minimum number of instructions. Using these
524: flags can increase them, so use them wisely to avoid unnecessary code generation. */
525:
526: /* Set Equal (Zero) status flag (E). */
527: #define SLJIT_SET_E 0x0200
528: /* Set signed status flag (S). */
529: #define SLJIT_SET_S 0x0400
530: /* Set unsgined status flag (U). */
531: #define SLJIT_SET_U 0x0800
532: /* Set signed overflow flag (O). */
533: #define SLJIT_SET_O 0x1000
534: /* Set carry flag (C).
535: Note: Kinda unsigned overflow, but behaves differently on various cpus. */
536: #define SLJIT_SET_C 0x2000
537: /* Do not modify the flags (K).
538: Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
539: #define SLJIT_KEEP_FLAGS 0x4000
540:
541: /* Notes:
542: - you cannot postpone conditional jump instructions except if noted that
543: the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
544: - flag combinations: '|' means 'logical or'. */
545:
546: /* Flags: - (never set any flags)
547: Note: breakpoint instruction is not supported by all architectures (namely ppc)
548: It falls back to SLJIT_NOP in those cases. */
549: #define SLJIT_BREAKPOINT 0
550: /* Flags: - (never set any flags)
551: Note: may or may not cause an extra cycle wait
552: it can even decrease the runtime in a few cases. */
553: #define SLJIT_NOP 1
1.1.1.4 misho 554: /* Flags: - (may destroy flags)
555: Unsigned multiplication of SLJIT_SCRATCH_REG1 and SLJIT_SCRATCH_REG2.
556: Result goes to SLJIT_SCRATCH_REG2:SLJIT_SCRATCH_REG1 (high:low) word */
1.1.1.2 misho 557: #define SLJIT_UMUL 2
1.1.1.4 misho 558: /* Flags: - (may destroy flags)
559: Signed multiplication of SLJIT_SCRATCH_REG1 and SLJIT_SCRATCH_REG2.
560: Result goes to SLJIT_SCRATCH_REG2:SLJIT_SCRATCH_REG1 (high:low) word */
1.1.1.2 misho 561: #define SLJIT_SMUL 3
1.1.1.4 misho 562: /* Flags: I - (may destroy flags)
563: Unsigned divide of the value in SLJIT_SCRATCH_REG1 by the value in SLJIT_SCRATCH_REG2.
564: The result is placed in SLJIT_SCRATCH_REG1 and the remainder goes to SLJIT_SCRATCH_REG2.
565: Note: if SLJIT_SCRATCH_REG2 contains 0, the behaviour is undefined. */
1.1.1.2 misho 566: #define SLJIT_UDIV 4
1.1.1.4 misho 567: #define SLJIT_IUDIV (SLJIT_UDIV | SLJIT_INT_OP)
568: /* Flags: I - (may destroy flags)
569: Signed divide of the value in SLJIT_SCRATCH_REG1 by the value in SLJIT_SCRATCH_REG2.
570: The result is placed in SLJIT_SCRATCH_REG1 and the remainder goes to SLJIT_SCRATCH_REG2.
571: Note: if SLJIT_SCRATCH_REG2 contains 0, the behaviour is undefined. */
1.1.1.2 misho 572: #define SLJIT_SDIV 5
1.1.1.4 misho 573: #define SLJIT_ISDIV (SLJIT_SDIV | SLJIT_INT_OP)
1.1 misho 574:
1.1.1.4 misho 575: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
1.1 misho 576:
577: /* Notes for MOV instructions:
578: U = Mov with update (post form). If source or destination defined as SLJIT_MEM1(r1)
579: or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
580: UB = unsigned byte (8 bit)
581: SB = signed byte (8 bit)
1.1.1.4 misho 582: UH = unsigned half (16 bit)
583: SH = signed half (16 bit)
584: UI = unsigned int (32 bit)
585: SI = signed int (32 bit)
586: P = pointer (sljit_p) size */
1.1 misho 587:
588: /* Flags: - (never set any flags) */
1.1.1.2 misho 589: #define SLJIT_MOV 6
1.1.1.4 misho 590: /* Flags: I - (never set any flags) */
1.1.1.2 misho 591: #define SLJIT_MOV_UB 7
1.1.1.4 misho 592: #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
593: /* Flags: I - (never set any flags) */
1.1.1.2 misho 594: #define SLJIT_MOV_SB 8
1.1.1.4 misho 595: #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
596: /* Flags: I - (never set any flags) */
1.1.1.2 misho 597: #define SLJIT_MOV_UH 9
1.1.1.4 misho 598: #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
599: /* Flags: I - (never set any flags) */
1.1.1.2 misho 600: #define SLJIT_MOV_SH 10
1.1.1.4 misho 601: #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
602: /* Flags: I - (never set any flags)
603: Note: see SLJIT_INT_OP for further details. */
1.1.1.2 misho 604: #define SLJIT_MOV_UI 11
1.1.1.4 misho 605: /* No SLJIT_INT_OP form, since it the same as SLJIT_IMOVU. */
606: /* Flags: I - (never set any flags)
607: Note: see SLJIT_INT_OP for further details. */
1.1.1.2 misho 608: #define SLJIT_MOV_SI 12
1.1.1.4 misho 609: #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
1.1 misho 610: /* Flags: - (never set any flags) */
1.1.1.4 misho 611: #define SLJIT_MOV_P 13
1.1 misho 612: /* Flags: - (never set any flags) */
1.1.1.4 misho 613: #define SLJIT_MOVU 14
614: /* Flags: I - (never set any flags) */
615: #define SLJIT_MOVU_UB 15
616: #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
617: /* Flags: I - (never set any flags) */
618: #define SLJIT_MOVU_SB 16
619: #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
620: /* Flags: I - (never set any flags) */
621: #define SLJIT_MOVU_UH 17
622: #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
623: /* Flags: I - (never set any flags) */
624: #define SLJIT_MOVU_SH 18
625: #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
626: /* Flags: I - (never set any flags)
627: Note: see SLJIT_INT_OP for further details. */
628: #define SLJIT_MOVU_UI 19
629: /* No SLJIT_INT_OP form, since it the same as SLJIT_IMOVU. */
630: /* Flags: I - (never set any flags)
631: Note: see SLJIT_INT_OP for further details. */
632: #define SLJIT_MOVU_SI 20
633: #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
1.1 misho 634: /* Flags: - (never set any flags) */
1.1.1.4 misho 635: #define SLJIT_MOVU_P 21
1.1 misho 636: /* Flags: I | E | K */
1.1.1.4 misho 637: #define SLJIT_NOT 22
638: #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
1.1 misho 639: /* Flags: I | E | O | K */
1.1.1.4 misho 640: #define SLJIT_NEG 23
641: #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
1.1 misho 642: /* Count leading zeroes
1.1.1.4 misho 643: Flags: I | E | K
644: Important note! Sparc 32 does not support K flag, since
645: the required popc instruction is introduced only in sparc 64. */
646: #define SLJIT_CLZ 24
647: #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
648:
649: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
650: sljit_si dst, sljit_sw dstw,
651: sljit_si src, sljit_sw srcw);
1.1 misho 652:
653: /* Flags: I | E | O | C | K */
1.1.1.4 misho 654: #define SLJIT_ADD 25
655: #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
1.1 misho 656: /* Flags: I | C | K */
1.1.1.4 misho 657: #define SLJIT_ADDC 26
658: #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
1.1 misho 659: /* Flags: I | E | S | U | O | C | K */
1.1.1.4 misho 660: #define SLJIT_SUB 27
661: #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
1.1 misho 662: /* Flags: I | C | K */
1.1.1.4 misho 663: #define SLJIT_SUBC 28
664: #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
1.1.1.2 misho 665: /* Note: integer mul
666: Flags: I | O (see SLJIT_C_MUL_*) | K */
1.1.1.4 misho 667: #define SLJIT_MUL 29
668: #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
1.1 misho 669: /* Flags: I | E | K */
1.1.1.4 misho 670: #define SLJIT_AND 30
671: #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
1.1 misho 672: /* Flags: I | E | K */
1.1.1.4 misho 673: #define SLJIT_OR 31
674: #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
1.1 misho 675: /* Flags: I | E | K */
1.1.1.4 misho 676: #define SLJIT_XOR 32
677: #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
1.1.1.2 misho 678: /* Flags: I | E | K
679: Let bit_length be the length of the shift operation: 32 or 64.
680: If src2 is immediate, src2w is masked by (bit_length - 1).
681: Otherwise, if the content of src2 is outside the range from 0
682: to bit_length - 1, the operation is undefined. */
1.1.1.4 misho 683: #define SLJIT_SHL 33
684: #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
1.1.1.2 misho 685: /* Flags: I | E | K
686: Let bit_length be the length of the shift operation: 32 or 64.
687: If src2 is immediate, src2w is masked by (bit_length - 1).
688: Otherwise, if the content of src2 is outside the range from 0
689: to bit_length - 1, the operation is undefined. */
1.1.1.4 misho 690: #define SLJIT_LSHR 34
691: #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
1.1.1.2 misho 692: /* Flags: I | E | K
693: Let bit_length be the length of the shift operation: 32 or 64.
694: If src2 is immediate, src2w is masked by (bit_length - 1).
695: Otherwise, if the content of src2 is outside the range from 0
696: to bit_length - 1, the operation is undefined. */
1.1.1.4 misho 697: #define SLJIT_ASHR 35
698: #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
1.1 misho 699:
1.1.1.4 misho 700: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
701: sljit_si dst, sljit_sw dstw,
702: sljit_si src1, sljit_sw src1w,
703: sljit_si src2, sljit_sw src2w);
1.1 misho 704:
1.1.1.2 misho 705: /* The following function is a helper function for sljit_emit_op_custom.
1.1.1.4 misho 706: It returns with the real machine register index of any SLJIT_SCRATCH
1.1.1.2 misho 707: SLJIT_SAVED or SLJIT_LOCALS register.
1.1.1.4 misho 708: Note: it returns with -1 for virtual registers (all EREGs on x86-32). */
1.1.1.2 misho 709:
1.1.1.4 misho 710: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
711:
712: /* The following function is a helper function for sljit_emit_op_custom.
713: It returns with the real machine register index of any SLJIT_FLOAT register.
714: Note: the index is divided by 2 on ARM 32 bit architectures. */
715:
716: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
1.1.1.2 misho 717:
718: /* Any instruction can be inserted into the instruction stream by
719: sljit_emit_op_custom. It has a similar purpose as inline assembly.
720: The size parameter must match to the instruction size of the target
721: architecture:
722:
723: x86: 0 < size <= 15. The instruction argument can be byte aligned.
724: Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
725: if size == 4, the instruction argument must be 4 byte aligned.
726: Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
727:
1.1.1.4 misho 728: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
729: void *instruction, sljit_si size);
1.1.1.2 misho 730:
731: /* Returns with non-zero if fpu is available. */
732:
1.1.1.4 misho 733: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
1.1 misho 734:
735: /* Note: dst is the left and src is the right operand for SLJIT_FCMP.
1.1.1.4 misho 736: Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED is set,
1.1 misho 737: the comparison result is unpredictable.
1.1.1.4 misho 738: Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
739: #define SLJIT_CMPD 36
740: #define SLJIT_CMPS (SLJIT_CMPD | SLJIT_SINGLE_OP)
741: /* Flags: SP - (never set any flags) */
742: #define SLJIT_MOVD 37
743: #define SLJIT_MOVS (SLJIT_MOVD | SLJIT_SINGLE_OP)
744: /* Flags: SP - (never set any flags) */
745: #define SLJIT_NEGD 38
746: #define SLJIT_NEGS (SLJIT_NEGD | SLJIT_SINGLE_OP)
747: /* Flags: SP - (never set any flags) */
748: #define SLJIT_ABSD 39
749: #define SLJIT_ABSS (SLJIT_ABSD | SLJIT_SINGLE_OP)
750:
751: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
752: sljit_si dst, sljit_sw dstw,
753: sljit_si src, sljit_sw srcw);
754:
755: /* Flags: SP - (never set any flags) */
756: #define SLJIT_ADDD 40
757: #define SLJIT_ADDS (SLJIT_ADDD | SLJIT_SINGLE_OP)
758: /* Flags: SP - (never set any flags) */
759: #define SLJIT_SUBD 41
760: #define SLJIT_SUBS (SLJIT_SUBD | SLJIT_SINGLE_OP)
761: /* Flags: SP - (never set any flags) */
762: #define SLJIT_MULD 42
763: #define SLJIT_MULS (SLJIT_MULD | SLJIT_SINGLE_OP)
764: /* Flags: SP - (never set any flags) */
765: #define SLJIT_DIVD 43
766: #define SLJIT_DIVS (SLJIT_DIVD | SLJIT_SINGLE_OP)
767:
768: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
769: sljit_si dst, sljit_sw dstw,
770: sljit_si src1, sljit_sw src1w,
771: sljit_si src2, sljit_sw src2w);
1.1 misho 772:
773: /* Label and jump instructions. */
774:
775: SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
776:
777: /* Invert conditional instruction: xor (^) with 0x1 */
778: #define SLJIT_C_EQUAL 0
779: #define SLJIT_C_ZERO 0
780: #define SLJIT_C_NOT_EQUAL 1
781: #define SLJIT_C_NOT_ZERO 1
782:
783: #define SLJIT_C_LESS 2
784: #define SLJIT_C_GREATER_EQUAL 3
785: #define SLJIT_C_GREATER 4
786: #define SLJIT_C_LESS_EQUAL 5
787: #define SLJIT_C_SIG_LESS 6
788: #define SLJIT_C_SIG_GREATER_EQUAL 7
789: #define SLJIT_C_SIG_GREATER 8
790: #define SLJIT_C_SIG_LESS_EQUAL 9
791:
792: #define SLJIT_C_OVERFLOW 10
793: #define SLJIT_C_NOT_OVERFLOW 11
794:
795: #define SLJIT_C_MUL_OVERFLOW 12
796: #define SLJIT_C_MUL_NOT_OVERFLOW 13
797:
798: #define SLJIT_C_FLOAT_EQUAL 14
799: #define SLJIT_C_FLOAT_NOT_EQUAL 15
800: #define SLJIT_C_FLOAT_LESS 16
801: #define SLJIT_C_FLOAT_GREATER_EQUAL 17
802: #define SLJIT_C_FLOAT_GREATER 18
803: #define SLJIT_C_FLOAT_LESS_EQUAL 19
1.1.1.4 misho 804: #define SLJIT_C_FLOAT_UNORDERED 20
805: #define SLJIT_C_FLOAT_ORDERED 21
1.1 misho 806:
807: #define SLJIT_JUMP 22
808: #define SLJIT_FAST_CALL 23
809: #define SLJIT_CALL0 24
810: #define SLJIT_CALL1 25
811: #define SLJIT_CALL2 26
812: #define SLJIT_CALL3 27
813:
814: /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
815:
816: /* The target can be changed during runtime (see: sljit_set_jump_addr). */
817: #define SLJIT_REWRITABLE_JUMP 0x1000
818:
819: /* Emit a jump instruction. The destination is not set, only the type of the jump.
820: type must be between SLJIT_C_EQUAL and SLJIT_CALL3
821: type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
822: Flags: - (never set any flags) for both conditional and unconditional jumps.
823: Flags: destroy all flags for calls. */
1.1.1.4 misho 824: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
1.1 misho 825:
1.1.1.2 misho 826: /* Basic arithmetic comparison. In most architectures it is implemented as
827: an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
828: appropriate flags) followed by a sljit_emit_jump. However some
829: architectures (i.e: MIPS) may employ special optimizations here. It is
830: suggested to use this comparison form when appropriate.
1.1 misho 831: type must be between SLJIT_C_EQUAL and SLJIT_C_SIG_LESS_EQUAL
832: type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP or SLJIT_INT_OP
833: Flags: destroy flags. */
1.1.1.4 misho 834: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
835: sljit_si src1, sljit_sw src1w,
836: sljit_si src2, sljit_sw src2w);
1.1 misho 837:
1.1.1.2 misho 838: /* Basic floating point comparison. In most architectures it is implemented as
839: an SLJIT_FCMP operation (setting appropriate flags) followed by a
840: sljit_emit_jump. However some architectures (i.e: MIPS) may employ
841: special optimizations here. It is suggested to use this comparison form
842: when appropriate.
1.1.1.4 misho 843: type must be between SLJIT_C_FLOAT_EQUAL and SLJIT_C_FLOAT_ORDERED
844: type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_SINGLE_OP
1.1.1.2 misho 845: Flags: destroy flags.
846: Note: if either operand is NaN, the behaviour is undefined for
847: type <= SLJIT_C_FLOAT_LESS_EQUAL. */
1.1.1.4 misho 848: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
849: sljit_si src1, sljit_sw src1w,
850: sljit_si src2, sljit_sw src2w);
1.1.1.2 misho 851:
1.1 misho 852: /* Set the destination of the jump to this label. */
853: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
854: /* Only for jumps defined with SLJIT_REWRITABLE_JUMP flag.
855: Note: use sljit_emit_ijump for fixed jumps. */
856: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
857:
858: /* Call function or jump anywhere. Both direct and indirect form
859: type must be between SLJIT_JUMP and SLJIT_CALL3
860: Direct form: set src to SLJIT_IMM() and srcw to the address
861: Indirect form: any other valid addressing mode
862: Flags: - (never set any flags) for unconditional jumps.
863: Flags: destroy all flags for calls. */
1.1.1.4 misho 864: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
1.1 misho 865:
1.1.1.4 misho 866: /* Perform the operation using the conditional flags as the second argument.
867: Type must always be between SLJIT_C_EQUAL and SLJIT_C_FLOAT_ORDERED. The
868: value represented by the type is 1, if the condition represented by the type
869: is fulfilled, and 0 otherwise.
870:
871: If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
872: Set dst to the value represented by the type (0 or 1).
873: Src must be SLJIT_UNUSED, and srcw must be 0
1.1 misho 874: Flags: - (never set any flags)
1.1.1.4 misho 875: If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
876: Performs the binary operation using src as the first, and the value
877: represented by type as the second argument.
878: Important note: only dst=src and dstw=srcw is supported at the moment!
879: Flags: I | E | K
880: Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
881: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
882: sljit_si dst, sljit_sw dstw,
883: sljit_si src, sljit_sw srcw,
884: sljit_si type);
1.1 misho 885:
1.1.1.4 misho 886: /* Copies the base address of SLJIT_LOCALS_REG+offset to dst.
1.1.1.3 misho 887: Flags: - (never set any flags) */
1.1.1.4 misho 888: SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
1.1.1.3 misho 889:
1.1 misho 890: /* The constant can be changed runtime (see: sljit_set_const)
891: Flags: - (never set any flags) */
1.1.1.4 misho 892: SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
1.1 misho 893:
894: /* After the code generation the address for label, jump and const instructions
1.1.1.4 misho 895: are computed. Since these structures are freed by sljit_free_compiler, the
1.1 misho 896: addresses must be preserved by the user program elsewere. */
897: static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
898: static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
899: static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
900:
901: /* Only the address is required to rewrite the code. */
902: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1.1.1.4 misho 903: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1.1 misho 904:
905: /* --------------------------------------------------------------------- */
906: /* Miscellaneous utility functions */
907: /* --------------------------------------------------------------------- */
908:
909: #define SLJIT_MAJOR_VERSION 0
1.1.1.4 misho 910: #define SLJIT_MINOR_VERSION 91
1.1 misho 911:
1.1.1.4 misho 912: /* Get the human readable name of the platform. Can be useful on platforms
913: like ARM, where ARM and Thumb2 functions can be mixed, and
914: it is useful to know the type of the code generator. */
1.1 misho 915: SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
916:
1.1.1.4 misho 917: /* Portable helper function to get an offset of a member. */
918: #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1.1 misho 919:
920: #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
921: /* This global lock is useful to compile common functions. */
922: SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
923: SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
924: #endif
925:
926: #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
927:
928: /* The sljit_stack is a utiliy feature of sljit, which allocates a
929: writable memory region between base (inclusive) and limit (exclusive).
930: Both base and limit is a pointer, and base is always <= than limit.
931: This feature uses the "address space reserve" feature
932: of modern operating systems. Basically we don't need to allocate a
933: huge memory block in one step for the worst case, we can start with
934: a smaller chunk and extend it later. Since the address space is
935: reserved, the data never copied to other regions, thus it is safe
936: to store pointers here. */
937:
938: /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
939: Note: stack growing should not happen in small steps: 4k, 16k or even
940: bigger growth is better.
941: Note: this structure may not be supported by all operating systems.
942: Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
943: is not defined. */
944:
945: struct sljit_stack {
946: /* User data, anything can be stored here.
947: Starting with the same value as base. */
948: sljit_uw top;
949: /* These members are read only. */
950: sljit_uw base;
951: sljit_uw limit;
952: sljit_uw max_limit;
953: };
954:
955: /* Returns NULL if unsuccessful.
956: Note: limit and max_limit contains the size for stack allocation
957: Note: the top field is initialized to base. */
958: SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit);
959: SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack* stack);
960:
961: /* Can be used to increase (allocate) or decrease (free) the memory area.
962: Returns with a non-zero value if unsuccessful. If new_limit is greater than
963: max_limit, it will fail. It is very easy to implement a stack data structure,
964: since the growth ratio can be added to the current limit, and sljit_stack_resize
965: will do all the necessary checks. The fields of the stack are not changed if
966: sljit_stack_resize fails. */
1.1.1.4 misho 967: SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack* stack, sljit_uw new_limit);
1.1 misho 968:
969: #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
970:
971: #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
972:
973: /* Get the entry address of a given function. */
1.1.1.4 misho 974: #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1.1 misho 975:
976: #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
977:
978: /* All JIT related code should be placed in the same context (library, binary, etc.). */
979:
1.1.1.4 misho 980: #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1.1 misho 981:
982: /* For powerpc64, the function pointers point to a context descriptor. */
983: struct sljit_function_context {
1.1.1.4 misho 984: sljit_sw addr;
985: sljit_sw r2;
986: sljit_sw r11;
1.1 misho 987: };
988:
989: /* Fill the context arguments using the addr and the function.
990: If func_ptr is NULL, it will not be set to the address of context
991: If addr is NULL, the function address also comes from the func pointer. */
1.1.1.4 misho 992: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1.1 misho 993:
994: #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
995:
996: #endif /* _SLJIT_LIR_H_ */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>