File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / pcre / sljit / sljitNativeARM_v5.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 23:05:52 2012 UTC (12 years, 5 months ago) by misho
Branches: pcre, MAIN
CVS tags: v8_21, HEAD
pcre

    1: /*
    2:  *    Stack-less Just-In-Time compiler
    3:  *
    4:  *    Copyright 2009-2010 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
    5:  *
    6:  * Redistribution and use in source and binary forms, with or without modification, are
    7:  * permitted provided that the following conditions are met:
    8:  *
    9:  *   1. Redistributions of source code must retain the above copyright notice, this list of
   10:  *      conditions and the following disclaimer.
   11:  *
   12:  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
   13:  *      of conditions and the following disclaimer in the documentation and/or other materials
   14:  *      provided with the distribution.
   15:  *
   16:  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
   17:  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   18:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
   19:  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   20:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   21:  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
   22:  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   23:  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   24:  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25:  */
   26: 
   27: SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name()
   28: {
   29: #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
   30: 	return "arm-v7";
   31: #elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
   32: 	return "arm-v5";
   33: #else
   34: #error "Internal error: Unknown ARM architecture"
   35: #endif
   36: }
   37: 
   38: /* Last register + 1. */
   39: #define TMP_REG1	(SLJIT_NO_REGISTERS + 1)
   40: #define TMP_REG2	(SLJIT_NO_REGISTERS + 2)
   41: #define TMP_REG3	(SLJIT_NO_REGISTERS + 3)
   42: #define TMP_PC		(SLJIT_NO_REGISTERS + 4)
   43: 
   44: #define TMP_FREG1	(SLJIT_FLOAT_REG4 + 1)
   45: #define TMP_FREG2	(SLJIT_FLOAT_REG4 + 2)
   46: 
   47: /* In ARM instruction words.
   48:    Cache lines are usually 32 byte aligned. */
   49: #define CONST_POOL_ALIGNMENT	8
   50: #define CONST_POOL_EMPTY	0xffffffff
   51: 
   52: #define ALIGN_INSTRUCTION(ptr) \
   53: 	(sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1))
   54: #define MAX_DIFFERENCE(max_diff) \
   55: 	(((max_diff) / (int)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1))
   56: 
   57: /* See sljit_emit_enter if you want to change them. */
   58: static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
   59:   0, 0, 1, 2, 10, 11, 4, 5, 6, 7, 8, 13, 3, 12, 14, 15
   60: };
   61: 
   62: #define RM(rm) (reg_map[rm])
   63: #define RD(rd) (reg_map[rd] << 12)
   64: #define RN(rn) (reg_map[rn] << 16)
   65: 
   66: /* --------------------------------------------------------------------- */
   67: /*  Instrucion forms                                                     */
   68: /* --------------------------------------------------------------------- */
   69: 
   70: /* The instruction includes the AL condition.
   71:    INST_NAME - CONDITIONAL remove this flag. */
   72: #define COND_MASK	0xf0000000
   73: #define CONDITIONAL	0xe0000000
   74: #define PUSH_POOL	0xff000000
   75: 
   76: /* DP - Data Processing instruction (use with EMIT_DATA_PROCESS_INS). */
   77: #define ADC_DP		0x5
   78: #define ADD_DP		0x4
   79: #define AND_DP		0x0
   80: #define B		0xea000000
   81: #define BIC_DP		0xe
   82: #define BL		0xeb000000
   83: #define BLX		0xe12fff30
   84: #define BX		0xe12fff10
   85: #define CLZ		0xe16f0f10
   86: #define CMP_DP		0xa
   87: #define DEBUGGER	0xe1200070
   88: #define EOR_DP		0x1
   89: #define MOV_DP		0xd
   90: #define MUL		0xe0000090
   91: #define MVN_DP		0xf
   92: #define NOP		0xe1a00000
   93: #define ORR_DP		0xc
   94: #define PUSH		0xe92d0000
   95: #define POP		0xe8bd0000
   96: #define RSB_DP		0x3
   97: #define RSC_DP		0x7
   98: #define SBC_DP		0x6
   99: #define SMULL		0xe0c00090
  100: #define SUB_DP		0x2
  101: #define VABS_F64	0xeeb00bc0
  102: #define VADD_F64	0xee300b00
  103: #define VCMP_F64	0xeeb40b40
  104: #define VDIV_F64	0xee800b00
  105: #define VMOV_F64	0xeeb00b40
  106: #define VMRS		0xeef1fa10
  107: #define VMUL_F64	0xee200b00
  108: #define VNEG_F64	0xeeb10b40
  109: #define VSTR		0xed000b00
  110: #define VSUB_F64	0xee300b40
  111: 
  112: #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
  113: /* Arm v7 specific instructions. */
  114: #define MOVW		0xe3000000
  115: #define MOVT		0xe3400000
  116: #define SXTB		0xe6af0070
  117: #define SXTH		0xe6bf0070
  118: #define UXTB		0xe6ef0070
  119: #define UXTH		0xe6ff0070
  120: #endif
  121: 
  122: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  123: 
  124: static int push_cpool(struct sljit_compiler *compiler)
  125: {
  126: 	/* Pushing the constant pool into the instruction stream. */
  127: 	sljit_uw* inst;
  128: 	sljit_uw* cpool_ptr;
  129: 	sljit_uw* cpool_end;
  130: 	int i;
  131: 
  132: 	/* The label could point the address after the constant pool. */
  133: 	if (compiler->last_label && compiler->last_label->size == compiler->size)
  134: 		compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1;
  135: 
  136: 	SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE);
  137: 	inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  138: 	FAIL_IF(!inst);
  139: 	compiler->size++;
  140: 	*inst = 0xff000000 | compiler->cpool_fill;
  141: 
  142: 	for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) {
  143: 		inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  144: 		FAIL_IF(!inst);
  145: 		compiler->size++;
  146: 		*inst = 0;
  147: 	}
  148: 
  149: 	cpool_ptr = compiler->cpool;
  150: 	cpool_end = cpool_ptr + compiler->cpool_fill;
  151: 	while (cpool_ptr < cpool_end) {
  152: 		inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  153: 		FAIL_IF(!inst);
  154: 		compiler->size++;
  155: 		*inst = *cpool_ptr++;
  156: 	}
  157: 	compiler->cpool_diff = CONST_POOL_EMPTY;
  158: 	compiler->cpool_fill = 0;
  159: 	return SLJIT_SUCCESS;
  160: }
  161: 
  162: static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
  163: {
  164: 	sljit_uw* ptr;
  165: 
  166: 	if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
  167: 		FAIL_IF(push_cpool(compiler));
  168: 
  169: 	ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  170: 	FAIL_IF(!ptr);
  171: 	compiler->size++;
  172: 	*ptr = inst;
  173: 	return SLJIT_SUCCESS;
  174: }
  175: 
  176: static int push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
  177: {
  178: 	sljit_uw* ptr;
  179: 	sljit_uw cpool_index = CPOOL_SIZE;
  180: 	sljit_uw* cpool_ptr;
  181: 	sljit_uw* cpool_end;
  182: 	sljit_ub* cpool_unique_ptr;
  183: 
  184: 	if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
  185: 		FAIL_IF(push_cpool(compiler));
  186: 	else if (compiler->cpool_fill > 0) {
  187: 		cpool_ptr = compiler->cpool;
  188: 		cpool_end = cpool_ptr + compiler->cpool_fill;
  189: 		cpool_unique_ptr = compiler->cpool_unique;
  190: 		do {
  191: 			if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) {
  192: 				cpool_index = cpool_ptr - compiler->cpool;
  193: 				break;
  194: 			}
  195: 			cpool_ptr++;
  196: 			cpool_unique_ptr++;
  197: 		} while (cpool_ptr < cpool_end);
  198: 	}
  199: 
  200: 	if (cpool_index == CPOOL_SIZE) {
  201: 		/* Must allocate a new entry in the literal pool. */
  202: 		if (compiler->cpool_fill < CPOOL_SIZE) {
  203: 			cpool_index = compiler->cpool_fill;
  204: 			compiler->cpool_fill++;
  205: 		}
  206: 		else {
  207: 			FAIL_IF(push_cpool(compiler));
  208: 			cpool_index = 0;
  209: 			compiler->cpool_fill = 1;
  210: 		}
  211: 	}
  212: 
  213: 	SLJIT_ASSERT((inst & 0xfff) == 0);
  214: 	ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  215: 	FAIL_IF(!ptr);
  216: 	compiler->size++;
  217: 	*ptr = inst | cpool_index;
  218: 
  219: 	compiler->cpool[cpool_index] = literal;
  220: 	compiler->cpool_unique[cpool_index] = 0;
  221: 	if (compiler->cpool_diff == CONST_POOL_EMPTY)
  222: 		compiler->cpool_diff = compiler->size;
  223: 	return SLJIT_SUCCESS;
  224: }
  225: 
  226: static int push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
  227: {
  228: 	sljit_uw* ptr;
  229: 	if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE))
  230: 		FAIL_IF(push_cpool(compiler));
  231: 
  232: 	SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0);
  233: 	ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  234: 	FAIL_IF(!ptr);
  235: 	compiler->size++;
  236: 	*ptr = inst | compiler->cpool_fill;
  237: 
  238: 	compiler->cpool[compiler->cpool_fill] = literal;
  239: 	compiler->cpool_unique[compiler->cpool_fill] = 1;
  240: 	compiler->cpool_fill++;
  241: 	if (compiler->cpool_diff == CONST_POOL_EMPTY)
  242: 		compiler->cpool_diff = compiler->size;
  243: 	return SLJIT_SUCCESS;
  244: }
  245: 
  246: static SLJIT_INLINE int prepare_blx(struct sljit_compiler *compiler)
  247: {
  248: 	/* Place for at least two instruction (doesn't matter whether the first has a literal). */
  249: 	if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088)))
  250: 		return push_cpool(compiler);
  251: 	return SLJIT_SUCCESS;
  252: }
  253: 
  254: static SLJIT_INLINE int emit_blx(struct sljit_compiler *compiler)
  255: {
  256: 	/* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */
  257: 	SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092));
  258: 	return push_inst(compiler, BLX | RM(TMP_REG1));
  259: }
  260: 
  261: static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size)
  262: {
  263: 	sljit_uw diff;
  264: 	sljit_uw ind;
  265: 	sljit_uw counter = 0;
  266: 	sljit_uw* clear_const_pool = const_pool;
  267: 	sljit_uw* clear_const_pool_end = const_pool + cpool_size;
  268: 
  269: 	SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT);
  270: 	/* Set unused flag for all literals in the constant pool.
  271: 	   I.e.: unused literals can belong to branches, which can be encoded as B or BL.
  272: 	   We can "compress" the constant pool by discarding these literals. */
  273: 	while (clear_const_pool < clear_const_pool_end)
  274: 		*clear_const_pool++ = (sljit_uw)(-1);
  275: 
  276: 	while (last_pc_patch < code_ptr) {
  277: 		/* Data transfer instruction with Rn == r15. */
  278: 		if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) {
  279: 			diff = const_pool - last_pc_patch;
  280: 			ind = (*last_pc_patch) & 0xfff;
  281: 
  282: 			/* Must be a load instruction with immediate offset. */
  283: 			SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20)));
  284: 			if ((int)const_pool[ind] < 0) {
  285: 				const_pool[ind] = counter;
  286: 				ind = counter;
  287: 				counter++;
  288: 			}
  289: 			else
  290: 				ind = const_pool[ind];
  291: 
  292: 			SLJIT_ASSERT(diff >= 1);
  293: 			if (diff >= 2 || ind > 0) {
  294: 				diff = (diff + ind - 2) << 2;
  295: 				SLJIT_ASSERT(diff <= 0xfff);
  296: 				*last_pc_patch = (*last_pc_patch & ~0xfff) | diff;
  297: 			}
  298: 			else
  299: 				*last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004;
  300: 		}
  301: 		last_pc_patch++;
  302: 	}
  303: 	return counter;
  304: }
  305: 
  306: /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */
  307: struct future_patch {
  308: 	struct future_patch* next;
  309: 	int index;
  310: 	int value;
  311: };
  312: 
  313: static SLJIT_INLINE int resolve_const_pool_index(struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr)
  314: {
  315: 	int value;
  316: 	struct future_patch *curr_patch, *prev_patch;
  317: 
  318: 	/* Using the values generated by patch_pc_relative_loads. */
  319: 	if (!*first_patch)
  320: 		value = (int)cpool_start_address[cpool_current_index];
  321: 	else {
  322: 		curr_patch = *first_patch;
  323: 		prev_patch = 0;
  324: 		while (1) {
  325: 			if (!curr_patch) {
  326: 				value = (int)cpool_start_address[cpool_current_index];
  327: 				break;
  328: 			}
  329: 			if ((sljit_uw)curr_patch->index == cpool_current_index) {
  330: 				value = curr_patch->value;
  331: 				if (prev_patch)
  332: 					prev_patch->next = curr_patch->next;
  333: 				else
  334: 					*first_patch = curr_patch->next;
  335: 				SLJIT_FREE(curr_patch);
  336: 				break;
  337: 			}
  338: 			prev_patch = curr_patch;
  339: 			curr_patch = curr_patch->next;
  340: 		}
  341: 	}
  342: 
  343: 	if (value >= 0) {
  344: 		if ((sljit_uw)value > cpool_current_index) {
  345: 			curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch));
  346: 			if (!curr_patch) {
  347: 				while (*first_patch) {
  348: 					curr_patch = *first_patch;
  349: 					*first_patch = (*first_patch)->next;
  350: 					SLJIT_FREE(curr_patch);
  351: 				}
  352: 				return SLJIT_ERR_ALLOC_FAILED;
  353: 			}
  354: 			curr_patch->next = *first_patch;
  355: 			curr_patch->index = value;
  356: 			curr_patch->value = cpool_start_address[value];
  357: 			*first_patch = curr_patch;
  358: 		}
  359: 		cpool_start_address[value] = *buf_ptr;
  360: 	}
  361: 	return SLJIT_SUCCESS;
  362: }
  363: 
  364: #else
  365: 
  366: static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
  367: {
  368: 	sljit_uw* ptr;
  369: 
  370: 	ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
  371: 	FAIL_IF(!ptr);
  372: 	compiler->size++;
  373: 	*ptr = inst;
  374: 	return SLJIT_SUCCESS;
  375: }
  376: 
  377: static SLJIT_INLINE int emit_imm(struct sljit_compiler *compiler, int reg, sljit_w imm)
  378: {
  379: 	FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
  380: 	return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
  381: }
  382: 
  383: #endif
  384: 
  385: static SLJIT_INLINE int detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code)
  386: {
  387: 	sljit_w diff;
  388: 
  389: 	if (jump->flags & SLJIT_REWRITABLE_JUMP)
  390: 		return 0;
  391: 
  392: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  393: 	if (jump->flags & IS_BL)
  394: 		code_ptr--;
  395: 
  396: 	if (jump->flags & JUMP_ADDR)
  397: 		diff = ((sljit_w)jump->u.target - (sljit_w)(code_ptr + 2));
  398: 	else {
  399: 		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
  400: 		diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)(code_ptr + 2));
  401: 	}
  402: 
  403: 	/* Branch to Thumb code has not been optimized yet. */
  404: 	if (diff & 0x3)
  405: 		return 0;
  406: 
  407: 	diff >>= 2;
  408: 	if (jump->flags & IS_BL) {
  409: 		if (diff <= 0x01ffffff && diff >= -0x02000000) {
  410: 			*code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK);
  411: 			jump->flags |= PATCH_B;
  412: 			return 1;
  413: 		}
  414: 	}
  415: 	else {
  416: 		if (diff <= 0x01ffffff && diff >= -0x02000000) {
  417: 			*code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK);
  418: 			jump->flags |= PATCH_B;
  419: 		}
  420: 	}
  421: #else
  422: 	if (jump->flags & JUMP_ADDR)
  423: 		diff = ((sljit_w)jump->u.target - (sljit_w)code_ptr);
  424: 	else {
  425: 		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
  426: 		diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)code_ptr);
  427: 	}
  428: 
  429: 	/* Branch to Thumb code has not been optimized yet. */
  430: 	if (diff & 0x3)
  431: 		return 0;
  432: 
  433: 	diff >>= 2;
  434: 	if (diff <= 0x01ffffff && diff >= -0x02000000) {
  435: 		code_ptr -= 2;
  436: 		*code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK);
  437: 		jump->flags |= PATCH_B;
  438: 		return 1;
  439: 	}
  440: #endif
  441: 	return 0;
  442: }
  443: 
  444: static SLJIT_INLINE void inline_set_jump_addr(sljit_uw addr, sljit_uw new_addr, int flush)
  445: {
  446: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  447: 	sljit_uw *ptr = (sljit_uw*)addr;
  448: 	sljit_uw *inst = (sljit_uw*)ptr[0];
  449: 	sljit_uw mov_pc = ptr[1];
  450: 	int bl = (mov_pc & 0x0000f000) != RD(TMP_PC);
  451: 	sljit_w diff = (sljit_w)(((sljit_w)new_addr - (sljit_w)(inst + 2)) >> 2);
  452: 
  453: 	if (diff <= 0x7fffff && diff >= -0x800000) {
  454: 		/* Turn to branch. */
  455: 		if (!bl) {
  456: 			inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff);
  457: 			if (flush) {
  458: 				SLJIT_CACHE_FLUSH(inst, inst + 1);
  459: 			}
  460: 		} else {
  461: 			inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff);
  462: 			inst[1] = NOP;
  463: 			if (flush) {
  464: 				SLJIT_CACHE_FLUSH(inst, inst + 2);
  465: 			}
  466: 		}
  467: 	} else {
  468: 		/* Get the position of the constant. */
  469: 		if (mov_pc & (1 << 23))
  470: 			ptr = inst + ((mov_pc & 0xfff) >> 2) + 2;
  471: 		else
  472: 			ptr = inst + 1;
  473: 
  474: 		if (*inst != mov_pc) {
  475: 			inst[0] = mov_pc;
  476: 			if (!bl) {
  477: 				if (flush) {
  478: 					SLJIT_CACHE_FLUSH(inst, inst + 1);
  479: 				}
  480: 			} else {
  481: 				inst[1] = BLX | RM(TMP_REG1);
  482: 				if (flush) {
  483: 					SLJIT_CACHE_FLUSH(inst, inst + 2);
  484: 				}
  485: 			}
  486: 		}
  487: 		*ptr = new_addr;
  488: 	}
  489: #else
  490: 	sljit_uw *inst = (sljit_uw*)addr;
  491: 	SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
  492: 	inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff);
  493: 	inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff);
  494: 	if (flush) {
  495: 		SLJIT_CACHE_FLUSH(inst, inst + 2);
  496: 	}
  497: #endif
  498: }
  499: 
  500: static sljit_uw get_immediate(sljit_uw imm);
  501: 
  502: static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_w new_constant, int flush)
  503: {
  504: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  505: 	sljit_uw *ptr = (sljit_uw*)addr;
  506: 	sljit_uw *inst = (sljit_uw*)ptr[0];
  507: 	sljit_uw ldr_literal = ptr[1];
  508: 	sljit_uw src2;
  509: 
  510: 	src2 = get_immediate(new_constant);
  511: 	if (src2) {
  512: 		*inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2;
  513: 		if (flush) {
  514: 			SLJIT_CACHE_FLUSH(inst, inst + 1);
  515: 		}
  516: 		return;
  517: 	}
  518: 
  519: 	src2 = get_immediate(~new_constant);
  520: 	if (src2) {
  521: 		*inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2;
  522: 		if (flush) {
  523: 			SLJIT_CACHE_FLUSH(inst, inst + 1);
  524: 		}
  525: 		return;
  526: 	}
  527: 
  528: 	if (ldr_literal & (1 << 23))
  529: 		ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2;
  530: 	else
  531: 		ptr = inst + 1;
  532: 
  533: 	if (*inst != ldr_literal) {
  534: 		*inst = ldr_literal;
  535: 		if (flush) {
  536: 			SLJIT_CACHE_FLUSH(inst, inst + 1);
  537: 		}
  538: 	}
  539: 	*ptr = new_constant;
  540: #else
  541: 	sljit_uw *inst = (sljit_uw*)addr;
  542: 	SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
  543: 	inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff);
  544: 	inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff);
  545: 	if (flush) {
  546: 		SLJIT_CACHE_FLUSH(inst, inst + 2);
  547: 	}
  548: #endif
  549: }
  550: 
  551: SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
  552: {
  553: 	struct sljit_memory_fragment *buf;
  554: 	sljit_uw *code;
  555: 	sljit_uw *code_ptr;
  556: 	sljit_uw *buf_ptr;
  557: 	sljit_uw *buf_end;
  558: 	sljit_uw size;
  559: 	sljit_uw word_count;
  560: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  561: 	sljit_uw cpool_size;
  562: 	sljit_uw cpool_skip_alignment;
  563: 	sljit_uw cpool_current_index;
  564: 	sljit_uw *cpool_start_address;
  565: 	sljit_uw *last_pc_patch;
  566: 	struct future_patch *first_patch;
  567: #endif
  568: 
  569: 	struct sljit_label *label;
  570: 	struct sljit_jump *jump;
  571: 	struct sljit_const *const_;
  572: 
  573: 	CHECK_ERROR_PTR();
  574: 	check_sljit_generate_code(compiler);
  575: 	reverse_buf(compiler);
  576: 
  577: 	/* Second code generation pass. */
  578: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  579: 	size = compiler->size + (compiler->patches << 1);
  580: 	if (compiler->cpool_fill > 0)
  581: 		size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1;
  582: #else
  583: 	size = compiler->size;
  584: #endif
  585: 	code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw));
  586: 	PTR_FAIL_WITH_EXEC_IF(code);
  587: 	buf = compiler->buf;
  588: 
  589: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  590: 	cpool_size = 0;
  591: 	cpool_skip_alignment = 0;
  592: 	cpool_current_index = 0;
  593: 	cpool_start_address = NULL;
  594: 	first_patch = NULL;
  595: 	last_pc_patch = code;
  596: #endif
  597: 
  598: 	code_ptr = code;
  599: 	word_count = 0;
  600: 
  601: 	label = compiler->labels;
  602: 	jump = compiler->jumps;
  603: 	const_ = compiler->consts;
  604: 
  605: 	if (label && label->size == 0) {
  606: 		label->addr = (sljit_uw)code;
  607: 		label->size = 0;
  608: 		label = label->next;
  609: 	}
  610: 
  611: 	do {
  612: 		buf_ptr = (sljit_uw*)buf->memory;
  613: 		buf_end = buf_ptr + (buf->used_size >> 2);
  614: 		do {
  615: 			word_count++;
  616: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  617: 			if (cpool_size > 0) {
  618: 				if (cpool_skip_alignment > 0) {
  619: 					buf_ptr++;
  620: 					cpool_skip_alignment--;
  621: 				}
  622: 				else {
  623: 					if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
  624: 						SLJIT_FREE_EXEC(code);
  625: 						compiler->error = SLJIT_ERR_ALLOC_FAILED;
  626: 						return NULL;
  627: 					}
  628: 					buf_ptr++;
  629: 					if (++cpool_current_index >= cpool_size) {
  630: 						SLJIT_ASSERT(!first_patch);
  631: 						cpool_size = 0;
  632: 						if (label && label->size == word_count) {
  633: 							/* Points after the current instruction. */
  634: 							label->addr = (sljit_uw)code_ptr;
  635: 							label->size = code_ptr - code;
  636: 							label = label->next;
  637: 						}
  638: 					}
  639: 				}
  640: 			}
  641: 			else if ((*buf_ptr & 0xff000000) != PUSH_POOL) {
  642: #endif
  643: 				*code_ptr = *buf_ptr++;
  644: 				/* These structures are ordered by their address. */
  645: 				SLJIT_ASSERT(!label || label->size >= word_count);
  646: 				SLJIT_ASSERT(!jump || jump->addr >= word_count);
  647: 				SLJIT_ASSERT(!const_ || const_->addr >= word_count);
  648: 				if (jump && jump->addr == word_count) {
  649: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  650: 					if (detect_jump_type(jump, code_ptr, code))
  651: 						code_ptr--;
  652: 					jump->addr = (sljit_uw)code_ptr;
  653: #else
  654: 					jump->addr = (sljit_uw)(code_ptr - 2);
  655: 					if (detect_jump_type(jump, code_ptr, code))
  656: 						code_ptr -= 2;
  657: #endif
  658: 					jump = jump->next;
  659: 				}
  660: 				if (label && label->size == word_count) {
  661: 					/* code_ptr can be affected above. */
  662: 					label->addr = (sljit_uw)(code_ptr + 1);
  663: 					label->size = (code_ptr + 1) - code;
  664: 					label = label->next;
  665: 				}
  666: 				if (const_ && const_->addr == word_count) {
  667: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  668: 					const_->addr = (sljit_uw)code_ptr;
  669: #else
  670: 					const_->addr = (sljit_uw)(code_ptr - 1);
  671: #endif
  672: 					const_ = const_->next;
  673: 				}
  674: 				code_ptr++;
  675: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  676: 			}
  677: 			else {
  678: 				/* Fortunately, no need to shift. */
  679: 				cpool_size = *buf_ptr++ & ~PUSH_POOL;
  680: 				SLJIT_ASSERT(cpool_size > 0);
  681: 				cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1);
  682: 				cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size);
  683: 				if (cpool_current_index > 0) {
  684: 					/* Unconditional branch. */
  685: 					*code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL);
  686: 					code_ptr = cpool_start_address + cpool_current_index;
  687: 				}
  688: 				cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1;
  689: 				cpool_current_index = 0;
  690: 				last_pc_patch = code_ptr;
  691: 			}
  692: #endif
  693: 		} while (buf_ptr < buf_end);
  694: 		buf = buf->next;
  695: 	} while (buf);
  696: 
  697: 	SLJIT_ASSERT(!label);
  698: 	SLJIT_ASSERT(!jump);
  699: 	SLJIT_ASSERT(!const_);
  700: 
  701: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  702: 	SLJIT_ASSERT(cpool_size == 0);
  703: 	if (compiler->cpool_fill > 0) {
  704: 		cpool_start_address = ALIGN_INSTRUCTION(code_ptr);
  705: 		cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill);
  706: 		if (cpool_current_index > 0)
  707: 			code_ptr = cpool_start_address + cpool_current_index;
  708: 
  709: 		buf_ptr = compiler->cpool;
  710: 		buf_end = buf_ptr + compiler->cpool_fill;
  711: 		cpool_current_index = 0;
  712: 		while (buf_ptr < buf_end) {
  713: 			if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
  714: 				SLJIT_FREE_EXEC(code);
  715: 				compiler->error = SLJIT_ERR_ALLOC_FAILED;
  716: 				return NULL;
  717: 			}
  718: 			buf_ptr++;
  719: 			cpool_current_index++;
  720: 		}
  721: 		SLJIT_ASSERT(!first_patch);
  722: 	}
  723: #endif
  724: 
  725: 	jump = compiler->jumps;
  726: 	while (jump) {
  727: 		buf_ptr = (sljit_uw*)jump->addr;
  728: 
  729: 		if (jump->flags & PATCH_B) {
  730: 			if (!(jump->flags & JUMP_ADDR)) {
  731: 				SLJIT_ASSERT(jump->flags & JUMP_LABEL);
  732: 				SLJIT_ASSERT(((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
  733: 				*buf_ptr |= (((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
  734: 			}
  735: 			else {
  736: 				SLJIT_ASSERT(((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
  737: 				*buf_ptr |= (((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
  738: 			}
  739: 		}
  740: 		else if (jump->flags & SLJIT_REWRITABLE_JUMP) {
  741: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  742: 			jump->addr = (sljit_uw)code_ptr;
  743: 			code_ptr[0] = (sljit_uw)buf_ptr;
  744: 			code_ptr[1] = *buf_ptr;
  745: 			inline_set_jump_addr((sljit_uw)code_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
  746: 			code_ptr += 2;
  747: #else
  748: 			inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
  749: #endif
  750: 		}
  751: 		else {
  752: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  753: 			if (jump->flags & IS_BL)
  754: 				buf_ptr--;
  755: 			if (*buf_ptr & (1 << 23))
  756: 				buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
  757: 			else
  758: 				buf_ptr += 1;
  759: 			*buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
  760: #else
  761: 			inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
  762: #endif
  763: 		}
  764: 		jump = jump->next;
  765: 	}
  766: 
  767: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
  768: 	const_ = compiler->consts;
  769: 	while (const_) {
  770: 		buf_ptr = (sljit_uw*)const_->addr;
  771: 		const_->addr = (sljit_uw)code_ptr;
  772: 
  773: 		code_ptr[0] = (sljit_uw)buf_ptr;
  774: 		code_ptr[1] = *buf_ptr;
  775: 		if (*buf_ptr & (1 << 23))
  776: 			buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
  777: 		else
  778: 			buf_ptr += 1;
  779: 		/* Set the value again (can be a simple constant). */
  780: 		inline_set_const((sljit_uw)code_ptr, *buf_ptr, 0);
  781: 		code_ptr += 2;
  782: 
  783: 		const_ = const_->next;
  784: 	}
  785: #endif
  786: 
  787: 	SLJIT_ASSERT(code_ptr - code <= (int)size);
  788: 
  789: 	SLJIT_CACHE_FLUSH(code, code_ptr);
  790: 	compiler->error = SLJIT_ERR_COMPILED;
  791: 	compiler->executable_size = size * sizeof(sljit_uw);
  792: 	return code;
  793: }
  794: 
  795: /* emit_op inp_flags.
  796:    WRITE_BACK must be the first, since it is a flag. */
  797: #define WRITE_BACK	0x01
  798: #define ALLOW_IMM	0x02
  799: #define ALLOW_INV_IMM	0x04
  800: #define ALLOW_ANY_IMM	(ALLOW_IMM | ALLOW_INV_IMM)
  801: #define ARG_TEST	0x08
  802: 
  803: /* Creates an index in data_transfer_insts array. */
  804: #define WORD_DATA	0x00
  805: #define BYTE_DATA	0x10
  806: #define HALF_DATA	0x20
  807: #define SIGNED_DATA	0x40
  808: #define LOAD_DATA	0x80
  809: 
  810: #define EMIT_INSTRUCTION(inst) \
  811: 	FAIL_IF(push_inst(compiler, (inst)))
  812: 
  813: /* Condition: AL. */
  814: #define EMIT_DATA_PROCESS_INS(opcode, set_flags, dst, src1, src2) \
  815: 	(0xe0000000 | ((opcode) << 21) | (set_flags) | RD(dst) | RN(src1) | (src2))
  816: 
  817: static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
  818: 	int dst, sljit_w dstw,
  819: 	int src1, sljit_w src1w,
  820: 	int src2, sljit_w src2w);
  821: 
  822: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
  823: {
  824: 	int size;
  825: 	sljit_uw push;
  826: 
  827: 	CHECK_ERROR();
  828: 	check_sljit_emit_enter(compiler, args, temporaries, generals, local_size);
  829: 
  830: 	compiler->temporaries = temporaries;
  831: 	compiler->generals = generals;
  832: 
  833: 	/* Push general registers, temporary registers
  834: 	   stmdb sp!, {..., lr} */
  835: 	push = PUSH | (1 << 14);
  836: 	if (temporaries >= 5)
  837: 		push |= 1 << 11;
  838: 	if (temporaries >= 4)
  839: 		push |= 1 << 10;
  840: 	if (generals >= 5)
  841: 		push |= 1 << 8;
  842: 	if (generals >= 4)
  843: 		push |= 1 << 7;
  844: 	if (generals >= 3)
  845: 		push |= 1 << 6;
  846: 	if (generals >= 2)
  847: 		push |= 1 << 5;
  848: 	if (generals >= 1)
  849: 		push |= 1 << 4;
  850: 	EMIT_INSTRUCTION(push);
  851: 
  852: 	/* Stack must be aligned to 8 bytes: */
  853: 	size = (1 + generals) * sizeof(sljit_uw);
  854: 	if (temporaries >= 4)
  855: 		size += (temporaries - 3) * sizeof(sljit_uw);
  856: 	local_size += size;
  857: 	local_size = (local_size + 7) & ~7;
  858: 	local_size -= size;
  859: 	compiler->local_size = local_size;
  860: 	if (local_size > 0)
  861: 		FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, local_size));
  862: 
  863: 	if (args >= 1)
  864: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG1)));
  865: 	if (args >= 2)
  866: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG2, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2)));
  867: 	if (args >= 3)
  868: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG3, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG3)));
  869: 
  870: 	return SLJIT_SUCCESS;
  871: }
  872: 
  873: SLJIT_API_FUNC_ATTRIBUTE void sljit_fake_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
  874: {
  875: 	int size;
  876: 
  877: 	CHECK_ERROR_VOID();
  878: 	check_sljit_fake_enter(compiler, args, temporaries, generals, local_size);
  879: 
  880: 	compiler->temporaries = temporaries;
  881: 	compiler->generals = generals;
  882: 
  883: 	size = (1 + generals) * sizeof(sljit_uw);
  884: 	if (temporaries >= 4)
  885: 		size += (temporaries - 3) * sizeof(sljit_uw);
  886: 	local_size += size;
  887: 	local_size = (local_size + 7) & ~7;
  888: 	local_size -= size;
  889: 	compiler->local_size = local_size;
  890: }
  891: 
  892: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
  893: {
  894: 	sljit_uw pop;
  895: 
  896: 	CHECK_ERROR();
  897: 	check_sljit_emit_return(compiler, src, srcw);
  898: 
  899: 	if (src != SLJIT_UNUSED && src != SLJIT_RETURN_REG)
  900: 		FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, SLJIT_RETURN_REG, 0, TMP_REG1, 0, src, srcw));
  901: 
  902: 	if (compiler->local_size > 0)
  903: 		FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, compiler->local_size));
  904: 
  905: 	pop = POP | (1 << 15);
  906: 	/* Push general registers, temporary registers
  907: 	   ldmia sp!, {..., pc} */
  908: 	if (compiler->temporaries >= 5)
  909: 		pop |= 1 << 11;
  910: 	if (compiler->temporaries >= 4)
  911: 		pop |= 1 << 10;
  912: 	if (compiler->generals >= 5)
  913: 		pop |= 1 << 8;
  914: 	if (compiler->generals >= 4)
  915: 		pop |= 1 << 7;
  916: 	if (compiler->generals >= 3)
  917: 		pop |= 1 << 6;
  918: 	if (compiler->generals >= 2)
  919: 		pop |= 1 << 5;
  920: 	if (compiler->generals >= 1)
  921: 		pop |= 1 << 4;
  922: 
  923: 	return push_inst(compiler, pop);
  924: }
  925: 
  926: /* --------------------------------------------------------------------- */
  927: /*  Operators                                                            */
  928: /* --------------------------------------------------------------------- */
  929: 
  930: /* s/l - store/load (1 bit)
  931:    u/s - signed/unsigned (1 bit)
  932:    w/b/h/N - word/byte/half/NOT allowed (2 bit)
  933:    It contans 16 items, but not all are different. */
  934: 
  935: static sljit_w data_transfer_insts[16] = {
  936: /* s u w */ 0xe5000000 /* str */,
  937: /* s u b */ 0xe5400000 /* strb */,
  938: /* s u h */ 0xe10000b0 /* strh */,
  939: /* s u N */ 0x00000000 /* not allowed */,
  940: /* s s w */ 0xe5000000 /* str */,
  941: /* s s b */ 0xe5400000 /* strb */,
  942: /* s s h */ 0xe10000b0 /* strh */,
  943: /* s s N */ 0x00000000 /* not allowed */,
  944: 
  945: /* l u w */ 0xe5100000 /* ldr */,
  946: /* l u b */ 0xe5500000 /* ldrb */,
  947: /* l u h */ 0xe11000b0 /* ldrh */,
  948: /* l u N */ 0x00000000 /* not allowed */,
  949: /* l s w */ 0xe5100000 /* ldr */,
  950: /* l s b */ 0xe11000d0 /* ldrsb */,
  951: /* l s h */ 0xe11000f0 /* ldrsh */,
  952: /* l s N */ 0x00000000 /* not allowed */,
  953: };
  954: 
  955: #define EMIT_DATA_TRANSFER(type, add, wb, target, base1, base2) \
  956: 	(data_transfer_insts[(type) >> 4] | ((add) << 23) | ((wb) << 21) | (reg_map[target] << 12) | (reg_map[base1] << 16) | (base2))
  957: /* Normal ldr/str instruction.
  958:    Type2: ldrsb, ldrh, ldrsh */
  959: #define IS_TYPE1_TRANSFER(type) \
  960: 	(data_transfer_insts[(type) >> 4] & 0x04000000)
  961: #define TYPE2_TRANSFER_IMM(imm) \
  962: 	(((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22))
  963: 
  964: /* flags: */
  965:   /* Arguments are swapped. */
  966: #define ARGS_SWAPPED	0x01
  967:   /* Inverted immediate. */
  968: #define INV_IMM		0x02
  969:   /* Source and destination is register. */
  970: #define REG_DEST	0x04
  971: #define REG_SOURCE	0x08
  972:   /* One instruction is enough. */
  973: #define FAST_DEST	0x10
  974:   /* Multiple instructions are required. */
  975: #define SLOW_DEST	0x20
  976: /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */
  977: #define SET_FLAGS	(1 << 20)
  978: /* dst: reg
  979:    src1: reg
  980:    src2: reg or imm (if allowed)
  981:    SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */
  982: #define SRC2_IMM	(1 << 25)
  983: 
  984: #define EMIT_DATA_PROCESS_INS_AND_RETURN(opcode) \
  985: 	return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, (src2 & SRC2_IMM) ? src2 : RM(src2)))
  986: 
  987: #define EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(opcode, dst, src1, src2) \
  988: 	return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, src2))
  989: 
  990: #define EMIT_SHIFT_INS_AND_RETURN(opcode) \
  991: 	SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \
  992: 	if (compiler->shift_imm != 0x20) { \
  993: 		SLJIT_ASSERT(src1 == TMP_REG1); \
  994: 		SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \
  995: 		return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (compiler->shift_imm << 7) | (opcode << 5) | reg_map[src2])); \
  996: 	} \
  997: 	return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | ((flags & ARGS_SWAPPED) ? reg_map[src2] : reg_map[src1])));
  998: 
  999: static SLJIT_INLINE int emit_single_op(struct sljit_compiler *compiler, int op, int flags,
 1000: 	int dst, int src1, int src2)
 1001: {
 1002: 	sljit_w mul_inst;
 1003: 
 1004: 	switch (GET_OPCODE(op)) {
 1005: 	case SLJIT_ADD:
 1006: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1007: 		EMIT_DATA_PROCESS_INS_AND_RETURN(ADD_DP);
 1008: 
 1009: 	case SLJIT_ADDC:
 1010: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1011: 		EMIT_DATA_PROCESS_INS_AND_RETURN(ADC_DP);
 1012: 
 1013: 	case SLJIT_SUB:
 1014: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1015: 		if (!(flags & ARGS_SWAPPED))
 1016: 			EMIT_DATA_PROCESS_INS_AND_RETURN(SUB_DP);
 1017: 		EMIT_DATA_PROCESS_INS_AND_RETURN(RSB_DP);
 1018: 
 1019: 	case SLJIT_SUBC:
 1020: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1021: 		if (!(flags & ARGS_SWAPPED))
 1022: 			EMIT_DATA_PROCESS_INS_AND_RETURN(SBC_DP);
 1023: 		EMIT_DATA_PROCESS_INS_AND_RETURN(RSC_DP);
 1024: 
 1025: 	case SLJIT_MUL:
 1026: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1027: 		SLJIT_ASSERT(!(src2 & SRC2_IMM));
 1028: 		if (SLJIT_UNLIKELY(op & SLJIT_SET_O))
 1029: 			mul_inst = SMULL | (reg_map[TMP_REG3] << 16) | (reg_map[dst] << 12);
 1030: 		else
 1031: 			mul_inst = MUL | (reg_map[dst] << 16);
 1032: 
 1033: 		if (dst != src2)
 1034: 			FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src1] << 8) | reg_map[src2]));
 1035: 		else if (dst != src1)
 1036: 			FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[src1]));
 1037: 		else {
 1038: 			/* Rm and Rd must not be the same register. */
 1039: 			SLJIT_ASSERT(dst != TMP_REG1);
 1040: 			FAIL_IF(push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, reg_map[src2])));
 1041: 			FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[TMP_REG1]));
 1042: 		}
 1043: 
 1044: 		if (!(op & SLJIT_SET_O))
 1045: 			return SLJIT_SUCCESS;
 1046: 
 1047: 		/* We need to use TMP_REG3. */
 1048: 		compiler->cache_arg = 0;
 1049: 		compiler->cache_argw = 0;
 1050: 		/* cmp TMP_REG2, dst asr #31. */
 1051: 		return push_inst(compiler, EMIT_DATA_PROCESS_INS(CMP_DP, SET_FLAGS, SLJIT_UNUSED, TMP_REG3, RM(dst) | 0xfc0));
 1052: 
 1053: 	case SLJIT_AND:
 1054: 		if (!(flags & INV_IMM))
 1055: 			EMIT_DATA_PROCESS_INS_AND_RETURN(AND_DP);
 1056: 		EMIT_DATA_PROCESS_INS_AND_RETURN(BIC_DP);
 1057: 
 1058: 	case SLJIT_OR:
 1059: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1060: 		EMIT_DATA_PROCESS_INS_AND_RETURN(ORR_DP);
 1061: 
 1062: 	case SLJIT_XOR:
 1063: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1064: 		EMIT_DATA_PROCESS_INS_AND_RETURN(EOR_DP);
 1065: 
 1066: 	case SLJIT_SHL:
 1067: 		EMIT_SHIFT_INS_AND_RETURN(0);
 1068: 
 1069: 	case SLJIT_LSHR:
 1070: 		EMIT_SHIFT_INS_AND_RETURN(1);
 1071: 
 1072: 	case SLJIT_ASHR:
 1073: 		EMIT_SHIFT_INS_AND_RETURN(2);
 1074: 
 1075: 	case SLJIT_MOV:
 1076: 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
 1077: 		if (dst != src2) {
 1078: 			if (src2 & SRC2_IMM) {
 1079: 				if (flags & INV_IMM)
 1080: 					EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
 1081: 				EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
 1082: 			}
 1083: 			EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, reg_map[src2]);
 1084: 		}
 1085: 		return SLJIT_SUCCESS;
 1086: 
 1087: 	case SLJIT_MOV_UB:
 1088: 	case SLJIT_MOV_SB:
 1089: 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
 1090: 		if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
 1091: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 1092: 			if (op == SLJIT_MOV_UB)
 1093: 				return push_inst(compiler, EMIT_DATA_PROCESS_INS(AND_DP, 0, dst, src2, SRC2_IMM | 0xff));
 1094: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | reg_map[src2]));
 1095: 			return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | (op == SLJIT_MOV_UB ? 0x20 : 0x40) | reg_map[dst]));
 1096: #else
 1097: 			return push_inst(compiler, (op == SLJIT_MOV_UB ? UXTB : SXTB) | RD(dst) | RM(src2));
 1098: #endif
 1099: 		}
 1100: 		else if (dst != src2) {
 1101: 			SLJIT_ASSERT(src2 & SRC2_IMM);
 1102: 			if (flags & INV_IMM)
 1103: 				EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
 1104: 			EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
 1105: 		}
 1106: 		return SLJIT_SUCCESS;
 1107: 
 1108: 	case SLJIT_MOV_UH:
 1109: 	case SLJIT_MOV_SH:
 1110: 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
 1111: 		if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
 1112: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 1113: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | reg_map[src2]));
 1114: 			return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | (op == SLJIT_MOV_UH ? 0x20 : 0x40) | reg_map[dst]));
 1115: #else
 1116: 			return push_inst(compiler, (op == SLJIT_MOV_UH ? UXTH : SXTH) | RD(dst) | RM(src2));
 1117: #endif
 1118: 		}
 1119: 		else if (dst != src2) {
 1120: 			SLJIT_ASSERT(src2 & SRC2_IMM);
 1121: 			if (flags & INV_IMM)
 1122: 				EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
 1123: 			EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
 1124: 		}
 1125: 		return SLJIT_SUCCESS;
 1126: 
 1127: 	case SLJIT_NOT:
 1128: 		if (src2 & SRC2_IMM) {
 1129: 			if (flags & INV_IMM)
 1130: 				EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
 1131: 			EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
 1132: 		}
 1133: 		EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, RM(src2));
 1134: 
 1135: 	case SLJIT_CLZ:
 1136: 		SLJIT_ASSERT(!(flags & INV_IMM));
 1137: 		SLJIT_ASSERT(!(src2 & SRC2_IMM));
 1138: 		FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2)));
 1139: 		if (flags & SET_FLAGS)
 1140: 			EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(CMP_DP, SLJIT_UNUSED, dst, SRC2_IMM);
 1141: 		return SLJIT_SUCCESS;
 1142: 	}
 1143: 	SLJIT_ASSERT_STOP();
 1144: 	return SLJIT_SUCCESS;
 1145: }
 1146: 
 1147: #undef EMIT_DATA_PROCESS_INS_AND_RETURN
 1148: #undef EMIT_FULL_DATA_PROCESS_INS_AND_RETURN
 1149: #undef EMIT_SHIFT_INS_AND_RETURN
 1150: 
 1151: /* Tests whether the immediate can be stored in the 12 bit imm field.
 1152:    Returns with 0 if not possible. */
 1153: static sljit_uw get_immediate(sljit_uw imm)
 1154: {
 1155: 	int rol;
 1156: 
 1157: 	if (imm <= 0xff)
 1158: 		return SRC2_IMM | imm;
 1159: 
 1160: 	if (!(imm & 0xff000000)) {
 1161: 		imm <<= 8;
 1162: 		rol = 8;
 1163: 	}
 1164: 	else {
 1165: 		imm = (imm << 24) | (imm >> 8);
 1166: 		rol = 0;
 1167: 	}
 1168: 
 1169: 	if (!(imm & 0xff000000)) {
 1170: 		imm <<= 8;
 1171: 		rol += 4;
 1172: 	}
 1173: 
 1174: 	if (!(imm & 0xf0000000)) {
 1175: 		imm <<= 4;
 1176: 		rol += 2;
 1177: 	}
 1178: 
 1179: 	if (!(imm & 0xc0000000)) {
 1180: 		imm <<= 2;
 1181: 		rol += 1;
 1182: 	}
 1183: 
 1184: 	if (!(imm & 0x00ffffff))
 1185: 		return SRC2_IMM | (imm >> 24) | (rol << 8);
 1186: 	else
 1187: 		return 0;
 1188: }
 1189: 
 1190: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 1191: static int generate_int(struct sljit_compiler *compiler, int reg, sljit_uw imm, int positive)
 1192: {
 1193: 	sljit_uw mask;
 1194: 	sljit_uw imm1;
 1195: 	sljit_uw imm2;
 1196: 	int rol;
 1197: 
 1198: 	/* Step1: Search a zero byte (8 continous zero bit). */
 1199: 	mask = 0xff000000;
 1200: 	rol = 8;
 1201: 	while(1) {
 1202: 		if (!(imm & mask)) {
 1203: 			/* Rol imm by rol. */
 1204: 			imm = (imm << rol) | (imm >> (32 - rol));
 1205: 			/* Calculate arm rol. */
 1206: 			rol = 4 + (rol >> 1);
 1207: 			break;
 1208: 		}
 1209: 		rol += 2;
 1210: 		mask >>= 2;
 1211: 		if (mask & 0x3) {
 1212: 			/* rol by 8. */
 1213: 			imm = (imm << 8) | (imm >> 24);
 1214: 			mask = 0xff00;
 1215: 			rol = 24;
 1216: 			while (1) {
 1217: 				if (!(imm & mask)) {
 1218: 					/* Rol imm by rol. */
 1219: 					imm = (imm << rol) | (imm >> (32 - rol));
 1220: 					/* Calculate arm rol. */
 1221: 					rol = (rol >> 1) - 8;
 1222: 					break;
 1223: 				}
 1224: 				rol += 2;
 1225: 				mask >>= 2;
 1226: 				if (mask & 0x3)
 1227: 					return 0;
 1228: 			}
 1229: 			break;
 1230: 		}
 1231: 	}
 1232: 
 1233: 	/* The low 8 bit must be zero. */
 1234: 	SLJIT_ASSERT(!(imm & 0xff));
 1235: 
 1236: 	if (!(imm & 0xff000000)) {
 1237: 		imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
 1238: 		imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
 1239: 	}
 1240: 	else if (imm & 0xc0000000) {
 1241: 		imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
 1242: 		imm <<= 8;
 1243: 		rol += 4;
 1244: 
 1245: 		if (!(imm & 0xff000000)) {
 1246: 			imm <<= 8;
 1247: 			rol += 4;
 1248: 		}
 1249: 
 1250: 		if (!(imm & 0xf0000000)) {
 1251: 			imm <<= 4;
 1252: 			rol += 2;
 1253: 		}
 1254: 
 1255: 		if (!(imm & 0xc0000000)) {
 1256: 			imm <<= 2;
 1257: 			rol += 1;
 1258: 		}
 1259: 
 1260: 		if (!(imm & 0x00ffffff))
 1261: 			imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
 1262: 		else
 1263: 			return 0;
 1264: 	}
 1265: 	else {
 1266: 		if (!(imm & 0xf0000000)) {
 1267: 			imm <<= 4;
 1268: 			rol += 2;
 1269: 		}
 1270: 
 1271: 		if (!(imm & 0xc0000000)) {
 1272: 			imm <<= 2;
 1273: 			rol += 1;
 1274: 		}
 1275: 
 1276: 		imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
 1277: 		imm <<= 8;
 1278: 		rol += 4;
 1279: 
 1280: 		if (!(imm & 0xf0000000)) {
 1281: 			imm <<= 4;
 1282: 			rol += 2;
 1283: 		}
 1284: 
 1285: 		if (!(imm & 0xc0000000)) {
 1286: 			imm <<= 2;
 1287: 			rol += 1;
 1288: 		}
 1289: 
 1290: 		if (!(imm & 0x00ffffff))
 1291: 			imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
 1292: 		else
 1293: 			return 0;
 1294: 	}
 1295: 
 1296: 	EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? MOV_DP : MVN_DP, 0, reg, SLJIT_UNUSED, imm1));
 1297: 	EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? ORR_DP : BIC_DP, 0, reg, reg, imm2));
 1298: 	return 1;
 1299: }
 1300: #endif
 1301: 
 1302: static int load_immediate(struct sljit_compiler *compiler, int reg, sljit_uw imm)
 1303: {
 1304: 	sljit_uw tmp;
 1305: 
 1306: #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
 1307: 	if (!(imm & ~0xffff))
 1308: 		return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff));
 1309: #endif
 1310: 
 1311: 	/* Create imm by 1 inst. */
 1312: 	tmp = get_immediate(imm);
 1313: 	if (tmp) {
 1314: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, tmp));
 1315: 		return SLJIT_SUCCESS;
 1316: 	}
 1317: 
 1318: 	tmp = get_immediate(~imm);
 1319: 	if (tmp) {
 1320: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, tmp));
 1321: 		return SLJIT_SUCCESS;
 1322: 	}
 1323: 
 1324: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 1325: 	/* Create imm by 2 inst. */
 1326: 	FAIL_IF(generate_int(compiler, reg, imm, 1));
 1327: 	FAIL_IF(generate_int(compiler, reg, ~imm, 0));
 1328: 
 1329: 	/* Load integer. */
 1330: 	return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), imm);
 1331: #else
 1332: 	return emit_imm(compiler, reg, imm);
 1333: #endif
 1334: }
 1335: 
 1336: /* Can perform an operation using at most 1 instruction. */
 1337: static int getput_arg_fast(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw)
 1338: {
 1339: 	sljit_uw imm;
 1340: 
 1341: 	if (arg & SLJIT_IMM) {
 1342: 		imm = get_immediate(argw);
 1343: 		if (imm) {
 1344: 			if (inp_flags & ARG_TEST)
 1345: 				return 1;
 1346: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, imm));
 1347: 			return -1;
 1348: 		}
 1349: 		imm = get_immediate(~argw);
 1350: 		if (imm) {
 1351: 			if (inp_flags & ARG_TEST)
 1352: 				return 1;
 1353: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, imm));
 1354: 			return -1;
 1355: 		}
 1356: 		return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
 1357: 	}
 1358: 
 1359: 	SLJIT_ASSERT(arg & SLJIT_MEM);
 1360: 
 1361: 	/* Fast loads/stores. */
 1362: 	if (arg & 0xf) {
 1363: 		if (!(arg & 0xf0)) {
 1364: 			if (IS_TYPE1_TRANSFER(inp_flags)) {
 1365: 				if (argw >= 0 && argw <= 0xfff) {
 1366: 					if (inp_flags & ARG_TEST)
 1367: 						return 1;
 1368: 					EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, argw));
 1369: 					return -1;
 1370: 				}
 1371: 				if (argw < 0 && argw >= -0xfff) {
 1372: 					if (inp_flags & ARG_TEST)
 1373: 						return 1;
 1374: 					EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, -argw));
 1375: 					return -1;
 1376: 				}
 1377: 			}
 1378: 			else {
 1379: 				if (argw >= 0 && argw <= 0xff) {
 1380: 					if (inp_flags & ARG_TEST)
 1381: 						return 1;
 1382: 					EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
 1383: 					return -1;
 1384: 				}
 1385: 				if (argw < 0 && argw >= -0xff) {
 1386: 					if (inp_flags & ARG_TEST)
 1387: 						return 1;
 1388: 					argw = -argw;
 1389: 					EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
 1390: 					return -1;
 1391: 				}
 1392: 			}
 1393: 		}
 1394: 		else if ((argw & 0x3) == 0 || IS_TYPE1_TRANSFER(inp_flags)) {
 1395: 			if (inp_flags & ARG_TEST)
 1396: 				return 1;
 1397: 			EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf,
 1398: 				RM((arg >> 4) & 0xf) | (IS_TYPE1_TRANSFER(inp_flags) ? SRC2_IMM : 0) | ((argw & 0x3) << 7)));
 1399: 			return -1;
 1400: 		}
 1401: 	}
 1402: 
 1403: 	return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
 1404: }
 1405: 
 1406: /* See getput_arg below.
 1407:    Note: can_cache is called only for binary operators. Those
 1408:    operators always uses word arguments without write back. */
 1409: static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw)
 1410: {
 1411: 	/* Immediate caching is not supported as it would be an operation on constant arguments. */
 1412: 	if (arg & SLJIT_IMM)
 1413: 		return 0;
 1414: 
 1415: 	/* Always a simple operation. */
 1416: 	if (arg & 0xf0)
 1417: 		return 0;
 1418: 
 1419: 	if (!(arg & 0xf)) {
 1420: 		/* Immediate access. */
 1421: 		if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
 1422: 			return 1;
 1423: 		return 0;
 1424: 	}
 1425: 
 1426: 	if (argw <= 0xfffff && argw >= -0xfffff)
 1427: 		return 0;
 1428: 
 1429: 	if (argw == next_argw && (next_arg & SLJIT_MEM))
 1430: 		return 1;
 1431: 
 1432: 	if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
 1433: 		return 1;
 1434: 
 1435: 	return 0;
 1436: }
 1437: 
 1438: #define GETPUT_ARG_DATA_TRANSFER(add, wb, target, base, imm) \
 1439: 	if (max_delta & 0xf00) \
 1440: 		FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, imm))); \
 1441: 	else \
 1442: 		FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, TYPE2_TRANSFER_IMM(imm))));
 1443: 
 1444: #define TEST_WRITE_BACK() \
 1445: 	if (inp_flags & WRITE_BACK) { \
 1446: 		tmp_r = arg & 0xf; \
 1447: 		if (reg == tmp_r) { \
 1448: 			/* This can only happen for stores */ \
 1449: 			/* since ldr reg, [reg, ...]! has no meaning */ \
 1450: 			SLJIT_ASSERT(!(inp_flags & LOAD_DATA)); \
 1451: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(reg))); \
 1452: 			reg = TMP_REG3; \
 1453: 		} \
 1454: 	}
 1455: 
 1456: /* Emit the necessary instructions. See can_cache above. */
 1457: static int getput_arg(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw, int next_arg, sljit_w next_argw)
 1458: {
 1459: 	int tmp_r;
 1460: 	sljit_w max_delta;
 1461: 	sljit_w sign;
 1462: 
 1463: 	if (arg & SLJIT_IMM) {
 1464: 		SLJIT_ASSERT(inp_flags & LOAD_DATA);
 1465: 		return load_immediate(compiler, reg, argw);
 1466: 	}
 1467: 
 1468: 	SLJIT_ASSERT(arg & SLJIT_MEM);
 1469: 
 1470: 	tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3;
 1471: 	max_delta = IS_TYPE1_TRANSFER(inp_flags) ? 0xfff : 0xff;
 1472: 
 1473: 	if ((arg & 0xf) == SLJIT_UNUSED) {
 1474: 		/* Write back is not used. */
 1475: 		if ((compiler->cache_arg & SLJIT_IMM) && (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta || ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta)) {
 1476: 			if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
 1477: 				sign = 1;
 1478: 				argw = argw - compiler->cache_argw;
 1479: 			}
 1480: 			else {
 1481: 				sign = 0;
 1482: 				argw = compiler->cache_argw - argw;
 1483: 			}
 1484: 
 1485: 			if (max_delta & 0xf00) {
 1486: 				EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, argw));
 1487: 			}
 1488: 			else {
 1489: 				EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, TYPE2_TRANSFER_IMM(argw)));
 1490: 			}
 1491: 			return SLJIT_SUCCESS;
 1492: 		}
 1493: 
 1494: 		/* With write back, we can create some sophisticated loads, but
 1495: 		   it is hard to decide whether we should convert downward (0s) or upward (1s). */
 1496: 		if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
 1497: 			SLJIT_ASSERT(inp_flags & LOAD_DATA);
 1498: 
 1499: 			compiler->cache_arg = SLJIT_IMM;
 1500: 			compiler->cache_argw = argw;
 1501: 			tmp_r = TMP_REG3;
 1502: 		}
 1503: 
 1504: 		FAIL_IF(load_immediate(compiler, tmp_r, argw));
 1505: 		GETPUT_ARG_DATA_TRANSFER(1, 0, reg, tmp_r, 0);
 1506: 		return SLJIT_SUCCESS;
 1507: 	}
 1508: 
 1509: 	/* Extended imm addressing for [reg+imm] format. */
 1510: 	sign = (max_delta << 8) | 0xff;
 1511: 	if (!(arg & 0xf0) && argw <= sign && argw >= -sign) {
 1512: 		TEST_WRITE_BACK();
 1513: 		if (argw >= 0) {
 1514: 			sign = 1;
 1515: 		}
 1516: 		else {
 1517: 			sign = 0;
 1518: 			argw = -argw;
 1519: 		}
 1520: 
 1521: 		/* Optimization: add is 0x4, sub is 0x2. Sign is 1 for add and 0 for sub. */
 1522: 		if (max_delta & 0xf00)
 1523: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 12) | 0xa00));
 1524: 		else
 1525: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 8) | 0xc00));
 1526: 
 1527: 		argw &= max_delta;
 1528: 		GETPUT_ARG_DATA_TRANSFER(sign, inp_flags & WRITE_BACK, reg, tmp_r, argw);
 1529: 		return SLJIT_SUCCESS;
 1530: 	}
 1531: 
 1532: 	if (arg & 0xf0) {
 1533: 		SLJIT_ASSERT((argw & 0x3) && !(max_delta & 0xf00));
 1534: 		if (inp_flags & WRITE_BACK)
 1535: 			tmp_r = arg & 0xf;
 1536: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
 1537: 		EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, 0, reg, tmp_r, TYPE2_TRANSFER_IMM(0)));
 1538: 		return SLJIT_SUCCESS;
 1539: 	}
 1540: 
 1541: 	if (compiler->cache_arg == arg && ((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
 1542: 		SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
 1543: 		argw = argw - compiler->cache_argw;
 1544: 		GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, argw);
 1545: 		return SLJIT_SUCCESS;
 1546: 	}
 1547: 
 1548: 	if (compiler->cache_arg == arg && ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta) {
 1549: 		SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
 1550: 		argw = compiler->cache_argw - argw;
 1551: 		GETPUT_ARG_DATA_TRANSFER(0, 0, reg, TMP_REG3, argw);
 1552: 		return SLJIT_SUCCESS;
 1553: 	}
 1554: 
 1555: 	if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) {
 1556: 		TEST_WRITE_BACK();
 1557: 		EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
 1558: 		return SLJIT_SUCCESS;
 1559: 	}
 1560: 
 1561: 	if (argw == next_argw && (next_arg & SLJIT_MEM)) {
 1562: 		SLJIT_ASSERT(inp_flags & LOAD_DATA);
 1563: 		FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
 1564: 
 1565: 		compiler->cache_arg = SLJIT_IMM;
 1566: 		compiler->cache_argw = argw;
 1567: 
 1568: 		TEST_WRITE_BACK();
 1569: 		EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
 1570: 		return SLJIT_SUCCESS;
 1571: 	}
 1572: 
 1573: 	if (arg == next_arg && !(inp_flags & WRITE_BACK) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
 1574: 		SLJIT_ASSERT(inp_flags & LOAD_DATA);
 1575: 		FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
 1576: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, TMP_REG3, reg_map[arg & 0xf]));
 1577: 
 1578: 		compiler->cache_arg = arg;
 1579: 		compiler->cache_argw = argw;
 1580: 
 1581: 		GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, 0);
 1582: 		return SLJIT_SUCCESS;
 1583: 	}
 1584: 
 1585: 	if ((arg & 0xf) == tmp_r) {
 1586: 		compiler->cache_arg = SLJIT_IMM;
 1587: 		compiler->cache_argw = argw;
 1588: 		tmp_r = TMP_REG3;
 1589: 	}
 1590: 
 1591: 	FAIL_IF(load_immediate(compiler, tmp_r, argw));
 1592: 	EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, reg_map[tmp_r] | (max_delta & 0xf00 ? SRC2_IMM : 0)));
 1593: 	return SLJIT_SUCCESS;
 1594: }
 1595: 
 1596: static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
 1597: 	int dst, sljit_w dstw,
 1598: 	int src1, sljit_w src1w,
 1599: 	int src2, sljit_w src2w)
 1600: {
 1601: 	/* arg1 goes to TMP_REG1 or src reg
 1602: 	   arg2 goes to TMP_REG2, imm or src reg
 1603: 	   TMP_REG3 can be used for caching
 1604: 	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
 1605: 
 1606: 	/* We prefers register and simple consts. */
 1607: 	int dst_r;
 1608: 	int src1_r;
 1609: 	int src2_r = 0;
 1610: 	int sugg_src2_r = TMP_REG2;
 1611: 	int flags = GET_FLAGS(op) ? SET_FLAGS : 0;
 1612: 
 1613: 	compiler->cache_arg = 0;
 1614: 	compiler->cache_argw = 0;
 1615: 
 1616: 	/* Destination check. */
 1617: 	if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REG3) {
 1618: 		dst_r = dst;
 1619: 		flags |= REG_DEST;
 1620: 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
 1621: 			sugg_src2_r = dst_r;
 1622: 	}
 1623: 	else if (dst == SLJIT_UNUSED) {
 1624: 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
 1625: 			return SLJIT_SUCCESS;
 1626: 		dst_r = TMP_REG2;
 1627: 	}
 1628: 	else {
 1629: 		SLJIT_ASSERT(dst & SLJIT_MEM);
 1630: 		if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
 1631: 			flags |= FAST_DEST;
 1632: 			dst_r = TMP_REG2;
 1633: 		}
 1634: 		else {
 1635: 			flags |= SLOW_DEST;
 1636: 			dst_r = 0;
 1637: 		}
 1638: 	}
 1639: 
 1640: 	/* Source 1. */
 1641: 	if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= TMP_REG3)
 1642: 		src1_r = src1;
 1643: 	else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
 1644: 		flags |= ARGS_SWAPPED;
 1645: 		src1_r = src2;
 1646: 		src2 = src1;
 1647: 		src2w = src1w;
 1648: 	}
 1649: 	else {
 1650: 		if ((inp_flags & ALLOW_ANY_IMM) && (src1 & SLJIT_IMM)) {
 1651: 			/* The second check will generate a hit. */
 1652: 			src2_r = get_immediate(src1w);
 1653: 			if (src2_r) {
 1654: 				flags |= ARGS_SWAPPED;
 1655: 				src1 = src2;
 1656: 				src1w = src2w;
 1657: 			}
 1658: 			if (inp_flags & ALLOW_INV_IMM) {
 1659: 				src2_r = get_immediate(~src1w);
 1660: 				if (src2_r) {
 1661: 					flags |= ARGS_SWAPPED | INV_IMM;
 1662: 					src1 = src2;
 1663: 					src1w = src2w;
 1664: 				}
 1665: 			}
 1666: 		}
 1667: 
 1668: 		src1_r = 0;
 1669: 		if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
 1670: 			FAIL_IF(compiler->error);
 1671: 			src1_r = TMP_REG1;
 1672: 		}
 1673: 	}
 1674: 
 1675: 	/* Source 2. */
 1676: 	if (src2_r == 0) {
 1677: 		if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
 1678: 			src2_r = src2;
 1679: 			flags |= REG_SOURCE;
 1680: 			if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
 1681: 				dst_r = src2_r;
 1682: 		}
 1683: 		else do { /* do { } while(0) is used because of breaks. */
 1684: 			if ((inp_flags & ALLOW_ANY_IMM) && (src2 & SLJIT_IMM)) {
 1685: 				src2_r = get_immediate(src2w);
 1686: 				if (src2_r)
 1687: 					break;
 1688: 				if (inp_flags & ALLOW_INV_IMM) {
 1689: 					src2_r = get_immediate(~src2w);
 1690: 					if (src2_r) {
 1691: 						flags |= INV_IMM;
 1692: 						break;
 1693: 					}
 1694: 				}
 1695: 			}
 1696: 
 1697: 			/* src2_r is 0. */
 1698: 			if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
 1699: 				FAIL_IF(compiler->error);
 1700: 				src2_r = sugg_src2_r;
 1701: 			}
 1702: 		} while (0);
 1703: 	}
 1704: 
 1705: 	/* src1_r, src2_r and dst_r can be zero (=unprocessed) or non-zero.
 1706: 	   If they are zero, they must not be registers. */
 1707: 	if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
 1708: 		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
 1709: 			SLJIT_ASSERT(!(flags & ARGS_SWAPPED));
 1710: 			flags |= ARGS_SWAPPED;
 1711: 			FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src2, src2w, src1, src1w));
 1712: 			FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src1, src1w, dst, dstw));
 1713: 		}
 1714: 		else {
 1715: 			FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
 1716: 			FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
 1717: 		}
 1718: 		src1_r = TMP_REG1;
 1719: 		src2_r = TMP_REG2;
 1720: 	}
 1721: 	else if (src1_r == 0 && src2_r == 0) {
 1722: 		FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
 1723: 		src1_r = TMP_REG1;
 1724: 	}
 1725: 	else if (src1_r == 0 && dst_r == 0) {
 1726: 		FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
 1727: 		src1_r = TMP_REG1;
 1728: 	}
 1729: 	else if (src2_r == 0 && dst_r == 0) {
 1730: 		FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
 1731: 		src2_r = sugg_src2_r;
 1732: 	}
 1733: 
 1734: 	if (dst_r == 0)
 1735: 		dst_r = TMP_REG2;
 1736: 
 1737: 	if (src1_r == 0) {
 1738: 		FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
 1739: 		src1_r = TMP_REG1;
 1740: 	}
 1741: 
 1742: 	if (src2_r == 0) {
 1743: 		FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
 1744: 		src2_r = sugg_src2_r;
 1745: 	}
 1746: 
 1747: 	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
 1748: 
 1749: 	if (flags & (FAST_DEST | SLOW_DEST)) {
 1750: 		if (flags & FAST_DEST)
 1751: 			FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw));
 1752: 		else
 1753: 			FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0));
 1754: 	}
 1755: 	return SLJIT_SUCCESS;
 1756: }
 1757: 
 1758: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op)
 1759: {
 1760: 	CHECK_ERROR();
 1761: 	check_sljit_emit_op0(compiler, op);
 1762: 
 1763: 	op = GET_OPCODE(op);
 1764: 	switch (op) {
 1765: 	case SLJIT_BREAKPOINT:
 1766: 		EMIT_INSTRUCTION(DEBUGGER);
 1767: 		break;
 1768: 	case SLJIT_NOP:
 1769: 		EMIT_INSTRUCTION(NOP);
 1770: 		break;
 1771: 	}
 1772: 
 1773: 	return SLJIT_SUCCESS;
 1774: }
 1775: 
 1776: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
 1777: 	int dst, sljit_w dstw,
 1778: 	int src, sljit_w srcw)
 1779: {
 1780: 	CHECK_ERROR();
 1781: 	check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
 1782: 
 1783: 	switch (GET_OPCODE(op)) {
 1784: 	case SLJIT_MOV:
 1785: 	case SLJIT_MOV_UI:
 1786: 	case SLJIT_MOV_SI:
 1787: 		return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
 1788: 
 1789: 	case SLJIT_MOV_UB:
 1790: 		return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
 1791: 
 1792: 	case SLJIT_MOV_SB:
 1793: 		return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
 1794: 
 1795: 	case SLJIT_MOV_UH:
 1796: 		return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
 1797: 
 1798: 	case SLJIT_MOV_SH:
 1799: 		return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
 1800: 
 1801: 	case SLJIT_MOVU:
 1802: 	case SLJIT_MOVU_UI:
 1803: 	case SLJIT_MOVU_SI:
 1804: 		return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
 1805: 
 1806: 	case SLJIT_MOVU_UB:
 1807: 		return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
 1808: 
 1809: 	case SLJIT_MOVU_SB:
 1810: 		return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
 1811: 
 1812: 	case SLJIT_MOVU_UH:
 1813: 		return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
 1814: 
 1815: 	case SLJIT_MOVU_SH:
 1816: 		return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
 1817: 
 1818: 	case SLJIT_NOT:
 1819: 		return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
 1820: 
 1821: 	case SLJIT_NEG:
 1822: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
 1823: 		compiler->skip_checks = 1;
 1824: #endif
 1825: 		return sljit_emit_op2(compiler, SLJIT_SUB | GET_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw);
 1826: 
 1827: 	case SLJIT_CLZ:
 1828: 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
 1829: 	}
 1830: 
 1831: 	return SLJIT_SUCCESS;
 1832: }
 1833: 
 1834: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
 1835: 	int dst, sljit_w dstw,
 1836: 	int src1, sljit_w src1w,
 1837: 	int src2, sljit_w src2w)
 1838: {
 1839: 	CHECK_ERROR();
 1840: 	check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
 1841: 
 1842: 	switch (GET_OPCODE(op)) {
 1843: 	case SLJIT_ADD:
 1844: 	case SLJIT_ADDC:
 1845: 	case SLJIT_SUB:
 1846: 	case SLJIT_SUBC:
 1847: 	case SLJIT_OR:
 1848: 	case SLJIT_XOR:
 1849: 		return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w);
 1850: 
 1851: 	case SLJIT_MUL:
 1852: 		return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
 1853: 
 1854: 	case SLJIT_AND:
 1855: 		return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w);
 1856: 
 1857: 	case SLJIT_SHL:
 1858: 	case SLJIT_LSHR:
 1859: 	case SLJIT_ASHR:
 1860: 		if (src2 & SLJIT_IMM) {
 1861: 			compiler->shift_imm = src2w & 0x1f;
 1862: 			return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w);
 1863: 		}
 1864: 		else {
 1865: 			compiler->shift_imm = 0x20;
 1866: 			return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
 1867: 		}
 1868: 	}
 1869: 
 1870: 	return SLJIT_SUCCESS;
 1871: }
 1872: 
 1873: /* --------------------------------------------------------------------- */
 1874: /*  Floating point operators                                             */
 1875: /* --------------------------------------------------------------------- */
 1876: 
 1877: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 1878: 
 1879: /* 0 - no fpu
 1880:    1 - vfp */
 1881: static int arm_fpu_type = -1;
 1882: 
 1883: static void init_compiler()
 1884: {
 1885: 	if (arm_fpu_type != -1)
 1886: 		return;
 1887: 
 1888: 	/* TODO: Only the OS can help to determine the correct fpu type. */
 1889: 	arm_fpu_type = 1;
 1890: }
 1891: 
 1892: SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
 1893: {
 1894: 	if (arm_fpu_type == -1)
 1895: 		init_compiler();
 1896: 	return arm_fpu_type;
 1897: }
 1898: 
 1899: #else
 1900: 
 1901: #define arm_fpu_type 1
 1902: 
 1903: SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
 1904: {
 1905: 	/* Always available. */
 1906: 	return 1;
 1907: }
 1908: 
 1909: #endif
 1910: 
 1911: #define EMIT_FPU_DATA_TRANSFER(add, load, base, freg, offs) \
 1912: 	(VSTR | ((add) << 23) | ((load) << 20) | (reg_map[base] << 16) | (freg << 12) | (offs))
 1913: #define EMIT_FPU_OPERATION(opcode, dst, src1, src2) \
 1914: 	((opcode) | ((dst) << 12) | (src1) | ((src2) << 16))
 1915: 
 1916: static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw)
 1917: {
 1918: 	SLJIT_ASSERT(arg & SLJIT_MEM);
 1919: 
 1920: 	/* Fast loads and stores. */
 1921: 	if ((arg & 0xf) && !(arg & 0xf0) && (argw & 0x3) == 0) {
 1922: 		if (argw >= 0 && argw <= 0x3ff) {
 1923: 			EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, arg & 0xf, fpu_reg, argw >> 2));
 1924: 			return SLJIT_SUCCESS;
 1925: 		}
 1926: 		if (argw < 0 && argw >= -0x3ff) {
 1927: 			EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, arg & 0xf, fpu_reg, (-argw) >> 2));
 1928: 			return SLJIT_SUCCESS;
 1929: 		}
 1930: 		if (argw >= 0 && argw <= 0x3ffff) {
 1931: 			SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
 1932: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
 1933: 			argw &= 0x3ff;
 1934: 			EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, argw >> 2));
 1935: 			return SLJIT_SUCCESS;
 1936: 		}
 1937: 		if (argw < 0 && argw >= -0x3ffff) {
 1938: 			argw = -argw;
 1939: 			SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
 1940: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
 1941: 			argw &= 0x3ff;
 1942: 			EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG1, fpu_reg, argw >> 2));
 1943: 			return SLJIT_SUCCESS;
 1944: 		}
 1945: 	}
 1946: 
 1947: 	if (arg & 0xf0) {
 1948: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
 1949: 		EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, 0));
 1950: 		return SLJIT_SUCCESS;
 1951: 	}
 1952: 
 1953: 	if (compiler->cache_arg == arg && ((argw - compiler->cache_argw) & 0x3) == 0) {
 1954: 		if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= 0x3ff) {
 1955: 			EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, (argw - compiler->cache_argw) >> 2));
 1956: 			return SLJIT_SUCCESS;
 1957: 		}
 1958: 		if (((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= 0x3ff) {
 1959: 			EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG3, fpu_reg, (compiler->cache_argw - argw) >> 2));
 1960: 			return SLJIT_SUCCESS;
 1961: 		}
 1962: 	}
 1963: 
 1964: 	compiler->cache_arg = arg;
 1965: 	compiler->cache_argw = argw;
 1966: 	if (arg & 0xf) {
 1967: 		FAIL_IF(load_immediate(compiler, TMP_REG1, argw));
 1968: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, arg & 0xf, reg_map[TMP_REG1]));
 1969: 	}
 1970: 	else
 1971: 		FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
 1972: 
 1973: 	EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, 0));
 1974: 	return SLJIT_SUCCESS;
 1975: }
 1976: 
 1977: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
 1978: 	int dst, sljit_w dstw,
 1979: 	int src, sljit_w srcw)
 1980: {
 1981: 	int dst_freg;
 1982: 
 1983: 	CHECK_ERROR();
 1984: 	check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
 1985: 
 1986: 	compiler->cache_arg = 0;
 1987: 	compiler->cache_argw = 0;
 1988: 
 1989: 	if (GET_OPCODE(op) == SLJIT_FCMP) {
 1990: 		if (dst > SLJIT_FLOAT_REG4) {
 1991: 			FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw));
 1992: 			dst = TMP_FREG1;
 1993: 		}
 1994: 		if (src > SLJIT_FLOAT_REG4) {
 1995: 			FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw));
 1996: 			src = TMP_FREG2;
 1997: 		}
 1998: 		EMIT_INSTRUCTION(VCMP_F64 | (dst << 12) | src);
 1999: 		EMIT_INSTRUCTION(VMRS);
 2000: 		return SLJIT_SUCCESS;
 2001: 	}
 2002: 
 2003: 	dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
 2004: 
 2005: 	if (src > SLJIT_FLOAT_REG4) {
 2006: 		FAIL_IF(emit_fpu_data_transfer(compiler, dst_freg, 1, src, srcw));
 2007: 		src = dst_freg;
 2008: 	}
 2009: 
 2010: 	switch (op) {
 2011: 		case SLJIT_FMOV:
 2012: 			if (src != dst_freg && dst_freg != TMP_FREG1)
 2013: 				EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMOV_F64, dst_freg, src, 0));
 2014: 			break;
 2015: 		case SLJIT_FNEG:
 2016: 			EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VNEG_F64, dst_freg, src, 0));
 2017: 			break;
 2018: 		case SLJIT_FABS:
 2019: 			EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VABS_F64, dst_freg, src, 0));
 2020: 			break;
 2021: 	}
 2022: 
 2023: 	if (dst_freg == TMP_FREG1)
 2024: 		FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw));
 2025: 
 2026: 	return SLJIT_SUCCESS;
 2027: }
 2028: 
 2029: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
 2030: 	int dst, sljit_w dstw,
 2031: 	int src1, sljit_w src1w,
 2032: 	int src2, sljit_w src2w)
 2033: {
 2034: 	int dst_freg;
 2035: 
 2036: 	CHECK_ERROR();
 2037: 	check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
 2038: 
 2039: 	compiler->cache_arg = 0;
 2040: 	compiler->cache_argw = 0;
 2041: 
 2042: 	dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
 2043: 
 2044: 	if (src2 > SLJIT_FLOAT_REG4) {
 2045: 		FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w));
 2046: 		src2 = TMP_FREG2;
 2047: 	}
 2048: 
 2049: 	if (src1 > SLJIT_FLOAT_REG4) {
 2050: 		FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w));
 2051: 		src1 = TMP_FREG1;
 2052: 	}
 2053: 
 2054: 	switch (op) {
 2055: 	case SLJIT_FADD:
 2056: 		EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VADD_F64, dst_freg, src2, src1));
 2057: 		break;
 2058: 
 2059: 	case SLJIT_FSUB:
 2060: 		EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VSUB_F64, dst_freg, src2, src1));
 2061: 		break;
 2062: 
 2063: 	case SLJIT_FMUL:
 2064: 		EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMUL_F64, dst_freg, src2, src1));
 2065: 		break;
 2066: 
 2067: 	case SLJIT_FDIV:
 2068: 		EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VDIV_F64, dst_freg, src2, src1));
 2069: 		break;
 2070: 	}
 2071: 
 2072: 	if (dst_freg == TMP_FREG1)
 2073: 		FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw));
 2074: 
 2075: 	return SLJIT_SUCCESS;
 2076: }
 2077: 
 2078: /* --------------------------------------------------------------------- */
 2079: /*  Other instructions                                                   */
 2080: /* --------------------------------------------------------------------- */
 2081: 
 2082: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int generals, int local_size)
 2083: {
 2084: 	int size;
 2085: 
 2086: 	CHECK_ERROR();
 2087: 	check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, generals, local_size);
 2088: 
 2089: 	compiler->temporaries = temporaries;
 2090: 	compiler->generals = generals;
 2091: 
 2092: 	size = (1 + generals) * sizeof(sljit_uw);
 2093: 	if (temporaries >= 4)
 2094: 		size += (temporaries - 3) * sizeof(sljit_uw);
 2095: 	local_size += size;
 2096: 	local_size = (local_size + 7) & ~7;
 2097: 	local_size -= size;
 2098: 	compiler->local_size = local_size;
 2099: 
 2100: 	if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)
 2101: 		return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, RM(TMP_REG3)));
 2102: 	else if (dst & SLJIT_MEM) {
 2103: 		if (getput_arg_fast(compiler, WORD_DATA, TMP_REG3, dst, dstw))
 2104: 			return compiler->error;
 2105: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG2, SLJIT_UNUSED, RM(TMP_REG3)));
 2106: 		compiler->cache_arg = 0;
 2107: 		compiler->cache_argw = 0;
 2108: 		return getput_arg(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0);
 2109: 	}
 2110: 
 2111: 	return SLJIT_SUCCESS;
 2112: }
 2113: 
 2114: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
 2115: {
 2116: 	CHECK_ERROR();
 2117: 	check_sljit_emit_fast_return(compiler, src, srcw);
 2118: 
 2119: 	if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
 2120: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(src)));
 2121: 	else if (src & SLJIT_MEM) {
 2122: 		if (getput_arg_fast(compiler, WORD_DATA | LOAD_DATA, TMP_REG3, src, srcw))
 2123: 			FAIL_IF(compiler->error);
 2124: 		else {
 2125: 			compiler->cache_arg = 0;
 2126: 			compiler->cache_argw = 0;
 2127: 			FAIL_IF(getput_arg(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw, 0, 0));
 2128: 			EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(TMP_REG2)));
 2129: 		}
 2130: 	}
 2131: 	else if (src & SLJIT_IMM)
 2132: 		FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
 2133: 	return push_inst(compiler, BLX | RM(TMP_REG3));
 2134: }
 2135: 
 2136: /* --------------------------------------------------------------------- */
 2137: /*  Conditional instructions                                             */
 2138: /* --------------------------------------------------------------------- */
 2139: 
 2140: static sljit_uw get_cc(int type)
 2141: {
 2142: 	switch (type) {
 2143: 	case SLJIT_C_EQUAL:
 2144: 	case SLJIT_C_MUL_NOT_OVERFLOW:
 2145: 	case SLJIT_C_FLOAT_EQUAL:
 2146: 		return 0x00000000;
 2147: 
 2148: 	case SLJIT_C_NOT_EQUAL:
 2149: 	case SLJIT_C_MUL_OVERFLOW:
 2150: 	case SLJIT_C_FLOAT_NOT_EQUAL:
 2151: 		return 0x10000000;
 2152: 
 2153: 	case SLJIT_C_LESS:
 2154: 	case SLJIT_C_FLOAT_LESS:
 2155: 		return 0x30000000;
 2156: 
 2157: 	case SLJIT_C_GREATER_EQUAL:
 2158: 	case SLJIT_C_FLOAT_GREATER_EQUAL:
 2159: 		return 0x20000000;
 2160: 
 2161: 	case SLJIT_C_GREATER:
 2162: 	case SLJIT_C_FLOAT_GREATER:
 2163: 		return 0x80000000;
 2164: 
 2165: 	case SLJIT_C_LESS_EQUAL:
 2166: 	case SLJIT_C_FLOAT_LESS_EQUAL:
 2167: 		return 0x90000000;
 2168: 
 2169: 	case SLJIT_C_SIG_LESS:
 2170: 		return 0xb0000000;
 2171: 
 2172: 	case SLJIT_C_SIG_GREATER_EQUAL:
 2173: 		return 0xa0000000;
 2174: 
 2175: 	case SLJIT_C_SIG_GREATER:
 2176: 		return 0xc0000000;
 2177: 
 2178: 	case SLJIT_C_SIG_LESS_EQUAL:
 2179: 		return 0xd0000000;
 2180: 
 2181: 	case SLJIT_C_OVERFLOW:
 2182: 	case SLJIT_C_FLOAT_NAN:
 2183: 		return 0x60000000;
 2184: 
 2185: 	case SLJIT_C_NOT_OVERFLOW:
 2186: 	case SLJIT_C_FLOAT_NOT_NAN:
 2187: 		return 0x70000000;
 2188: 
 2189: 	default: /* SLJIT_JUMP */
 2190: 		return 0xe0000000;
 2191: 	}
 2192: }
 2193: 
 2194: SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
 2195: {
 2196: 	struct sljit_label *label;
 2197: 
 2198: 	CHECK_ERROR_PTR();
 2199: 	check_sljit_emit_label(compiler);
 2200: 
 2201: 	if (compiler->last_label && compiler->last_label->size == compiler->size)
 2202: 		return compiler->last_label;
 2203: 
 2204: 	label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
 2205: 	PTR_FAIL_IF(!label);
 2206: 	set_label(label, compiler);
 2207: 	return label;
 2208: }
 2209: 
 2210: SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
 2211: {
 2212: 	struct sljit_jump *jump;
 2213: 
 2214: 	CHECK_ERROR_PTR();
 2215: 	check_sljit_emit_jump(compiler, type);
 2216: 
 2217: 	jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
 2218: 	PTR_FAIL_IF(!jump);
 2219: 	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
 2220: 	type &= 0xff;
 2221: 
 2222: 	/* In ARM, we don't need to touch the arguments. */
 2223: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 2224: 	if (type >= SLJIT_FAST_CALL)
 2225: 		PTR_FAIL_IF(prepare_blx(compiler));
 2226: 	PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0,
 2227: 		type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0));
 2228: 
 2229: 	if (jump->flags & SLJIT_REWRITABLE_JUMP) {
 2230: 		jump->addr = compiler->size;
 2231: 		compiler->patches++;
 2232: 	}
 2233: 
 2234: 	if (type >= SLJIT_FAST_CALL) {
 2235: 		jump->flags |= IS_BL;
 2236: 		PTR_FAIL_IF(emit_blx(compiler));
 2237: 	}
 2238: 
 2239: 	if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
 2240: 		jump->addr = compiler->size;
 2241: #else
 2242: 	if (type >= SLJIT_FAST_CALL)
 2243: 		jump->flags |= IS_BL;
 2244: 	PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
 2245: 	PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type)));
 2246: 	jump->addr = compiler->size;
 2247: #endif
 2248: 	return jump;
 2249: }
 2250: 
 2251: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
 2252: {
 2253: 	struct sljit_jump *jump;
 2254: 
 2255: 	CHECK_ERROR();
 2256: 	check_sljit_emit_ijump(compiler, type, src, srcw);
 2257: 
 2258: 	/* In ARM, we don't need to touch the arguments. */
 2259: 	if (src & SLJIT_IMM) {
 2260: 		jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
 2261: 		FAIL_IF(!jump);
 2262: 		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
 2263: 		jump->u.target = srcw;
 2264: 
 2265: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 2266: 		if (type >= SLJIT_FAST_CALL)
 2267: 			FAIL_IF(prepare_blx(compiler));
 2268: 		FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0));
 2269: 		if (type >= SLJIT_FAST_CALL)
 2270: 			FAIL_IF(emit_blx(compiler));
 2271: #else
 2272: 		FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
 2273: 		FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)));
 2274: #endif
 2275: 		jump->addr = compiler->size;
 2276: 	}
 2277: 	else {
 2278: 		if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
 2279: 			return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src));
 2280: 
 2281: 		SLJIT_ASSERT(src & SLJIT_MEM);
 2282: 		FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
 2283: 		return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG2));
 2284: 	}
 2285: 
 2286: 	return SLJIT_SUCCESS;
 2287: }
 2288: 
 2289: SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
 2290: {
 2291: 	int reg;
 2292: 	sljit_uw cc;
 2293: 
 2294: 	CHECK_ERROR();
 2295: 	check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
 2296: 
 2297: 	if (dst == SLJIT_UNUSED)
 2298: 		return SLJIT_SUCCESS;
 2299: 
 2300: 	cc = get_cc(type);
 2301: 	if (GET_OPCODE(op) == SLJIT_OR) {
 2302: 		if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
 2303: 			EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ORR_DP, 0, dst, dst, SRC2_IMM | 1) & ~COND_MASK) | cc);
 2304: 			if (op & SLJIT_SET_E)
 2305: 				return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst)));
 2306: 			return SLJIT_SUCCESS;
 2307: 		}
 2308: 
 2309: 		EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 0));
 2310: 		EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
 2311: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
 2312: 		compiler->skip_checks = 1;
 2313: #endif
 2314: 		return emit_op(compiler, op, ALLOW_IMM, dst, dstw, TMP_REG1, 0, dst, dstw);
 2315: 	}
 2316: 
 2317: 	reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
 2318: 
 2319: 	EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 0));
 2320: 	EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
 2321: 
 2322: 	if (reg == TMP_REG2)
 2323: 		return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
 2324: 	return SLJIT_SUCCESS;
 2325: }
 2326: 
 2327: SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
 2328: {
 2329: 	struct sljit_const *const_;
 2330: 	int reg;
 2331: 
 2332: 	CHECK_ERROR_PTR();
 2333: 	check_sljit_emit_const(compiler, dst, dstw, init_value);
 2334: 
 2335: 	const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
 2336: 	PTR_FAIL_IF(!const_);
 2337: 
 2338: 	reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
 2339: 
 2340: #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
 2341: 	PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), init_value));
 2342: 	compiler->patches++;
 2343: #else
 2344: 	PTR_FAIL_IF(emit_imm(compiler, reg, init_value));
 2345: #endif
 2346: 	set_const(const_, compiler);
 2347: 
 2348: 	if (reg == TMP_REG2 && dst != SLJIT_UNUSED)
 2349: 		if (emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0))
 2350: 			return NULL;
 2351: 	return const_;
 2352: }
 2353: 
 2354: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
 2355: {
 2356: 	inline_set_jump_addr(addr, new_addr, 1);
 2357: }
 2358: 
 2359: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant)
 2360: {
 2361: 	inline_set_const(addr, new_constant, 1);
 2362: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>