Annotation of embedaddon/pcre/sljit/sljitNativePPC_64.c, revision 1.1.1.3
1.1 misho 1: /*
2: * Stack-less Just-In-Time compiler
3: *
1.1.1.2 misho 4: * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
1.1 misho 5: *
6: * Redistribution and use in source and binary forms, with or without modification, are
7: * permitted provided that the following conditions are met:
8: *
9: * 1. Redistributions of source code must retain the above copyright notice, this list of
10: * conditions and the following disclaimer.
11: *
12: * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13: * of conditions and the following disclaimer in the documentation and/or other materials
14: * provided with the distribution.
15: *
16: * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17: * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18: * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19: * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20: * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21: * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22: * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23: * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24: * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25: */
26:
27: /* ppc 64-bit arch dependent functions. */
28:
1.1.1.3 ! misho 29: #if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
1.1 misho 30: #define ASM_SLJIT_CLZ(src, dst) \
1.1.1.3 ! misho 31: __asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
! 32: #elif defined(__xlc__)
! 33: #error "Please enable GCC syntax for inline assembly statements"
1.1 misho 34: #else
35: #error "Must implement count leading zeroes"
36: #endif
37:
38: #define RLDI(dst, src, sh, mb, type) \
39: (HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))
40:
41: #define PUSH_RLDICR(reg, shift) \
42: push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
43:
1.1.1.3 ! misho 44: static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si reg, sljit_sw imm)
1.1 misho 45: {
46: sljit_uw tmp;
47: sljit_uw shift;
48: sljit_uw tmp2;
49: sljit_uw shift2;
50:
51: if (imm <= SIMM_MAX && imm >= SIMM_MIN)
52: return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
53:
1.1.1.2 misho 54: if (!(imm & ~0xffff))
55: return push_inst(compiler, ORI | S(ZERO_REG) | A(reg) | IMM(imm));
56:
1.1 misho 57: if (imm <= SLJIT_W(0x7fffffff) && imm >= SLJIT_W(-0x80000000)) {
58: FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
59: return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
60: }
61:
62: /* Count leading zeroes. */
63: tmp = (imm >= 0) ? imm : ~imm;
64: ASM_SLJIT_CLZ(tmp, shift);
65: SLJIT_ASSERT(shift > 0);
66: shift--;
67: tmp = (imm << shift);
68:
69: if ((tmp & ~0xffff000000000000ul) == 0) {
70: FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
71: shift += 15;
72: return PUSH_RLDICR(reg, shift);
73: }
74:
75: if ((tmp & ~0xffffffff00000000ul) == 0) {
76: FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
77: FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
78: shift += 31;
79: return PUSH_RLDICR(reg, shift);
80: }
81:
82: /* Cut out the 16 bit from immediate. */
83: shift += 15;
84: tmp2 = imm & ((1ul << (63 - shift)) - 1);
85:
86: if (tmp2 <= 0xffff) {
87: FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
88: FAIL_IF(PUSH_RLDICR(reg, shift));
89: return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
90: }
91:
92: if (tmp2 <= 0xffffffff) {
93: FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
94: FAIL_IF(PUSH_RLDICR(reg, shift));
95: FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
96: return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
97: }
98:
99: ASM_SLJIT_CLZ(tmp2, shift2);
100: tmp2 <<= shift2;
101:
102: if ((tmp2 & ~0xffff000000000000ul) == 0) {
103: FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
104: shift2 += 15;
105: shift += (63 - shift2);
106: FAIL_IF(PUSH_RLDICR(reg, shift));
107: FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
108: return PUSH_RLDICR(reg, shift2);
109: }
110:
111: /* The general version. */
112: FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
113: FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
114: FAIL_IF(PUSH_RLDICR(reg, 31));
115: FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
116: return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
117: }
118:
119: /* Simplified mnemonics: clrldi. */
120: #define INS_CLEAR_LEFT(dst, src, from) \
121: (RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
122:
123: /* Sign extension for integer operations. */
124: #define UN_EXTS() \
125: if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
126: FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
127: src2 = TMP_REG2; \
128: }
129:
130: #define BIN_EXTS() \
131: if (flags & ALT_SIGN_EXT) { \
132: if (flags & REG1_SOURCE) { \
133: FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
134: src1 = TMP_REG1; \
135: } \
136: if (flags & REG2_SOURCE) { \
137: FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
138: src2 = TMP_REG2; \
139: } \
140: }
141:
142: #define BIN_IMM_EXTS() \
143: if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
144: FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
145: src1 = TMP_REG1; \
146: }
147:
1.1.1.3 ! misho 148: static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
! 149: sljit_si dst, sljit_si src1, sljit_si src2)
1.1 misho 150: {
151: switch (op) {
1.1.1.3 ! misho 152: case SLJIT_MOV:
! 153: case SLJIT_MOV_P:
! 154: SLJIT_ASSERT(src1 == TMP_REG1);
! 155: if (dst != src2)
! 156: return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
! 157: return SLJIT_SUCCESS;
! 158:
! 159: case SLJIT_MOV_UI:
! 160: case SLJIT_MOV_SI:
! 161: SLJIT_ASSERT(src1 == TMP_REG1);
! 162: if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
! 163: if (op == SLJIT_MOV_SI)
! 164: return push_inst(compiler, EXTSW | S(src2) | A(dst));
! 165: return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
! 166: }
! 167: else {
! 168: SLJIT_ASSERT(dst == src2);
! 169: }
! 170: return SLJIT_SUCCESS;
! 171:
! 172: case SLJIT_MOV_UB:
! 173: case SLJIT_MOV_SB:
! 174: SLJIT_ASSERT(src1 == TMP_REG1);
! 175: if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
! 176: if (op == SLJIT_MOV_SB)
! 177: return push_inst(compiler, EXTSB | S(src2) | A(dst));
! 178: return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
! 179: }
! 180: else if ((flags & REG_DEST) && op == SLJIT_MOV_SB)
! 181: return push_inst(compiler, EXTSB | S(src2) | A(dst));
! 182: else {
! 183: SLJIT_ASSERT(dst == src2);
! 184: }
! 185: return SLJIT_SUCCESS;
! 186:
! 187: case SLJIT_MOV_UH:
! 188: case SLJIT_MOV_SH:
! 189: SLJIT_ASSERT(src1 == TMP_REG1);
! 190: if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
! 191: if (op == SLJIT_MOV_SH)
! 192: return push_inst(compiler, EXTSH | S(src2) | A(dst));
! 193: return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
! 194: }
! 195: else {
! 196: SLJIT_ASSERT(dst == src2);
! 197: }
! 198: return SLJIT_SUCCESS;
! 199:
! 200: case SLJIT_NOT:
! 201: SLJIT_ASSERT(src1 == TMP_REG1);
! 202: UN_EXTS();
! 203: return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
! 204:
! 205: case SLJIT_NEG:
! 206: SLJIT_ASSERT(src1 == TMP_REG1);
! 207: UN_EXTS();
! 208: return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));
! 209:
! 210: case SLJIT_CLZ:
! 211: SLJIT_ASSERT(src1 == TMP_REG1);
! 212: if (flags & ALT_FORM1)
! 213: return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
! 214: return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));
! 215:
1.1 misho 216: case SLJIT_ADD:
217: if (flags & ALT_FORM1) {
1.1.1.2 misho 218: /* Flags does not set: BIN_IMM_EXTS unnecessary. */
1.1 misho 219: SLJIT_ASSERT(src2 == TMP_REG2);
220: return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
221: }
222: if (flags & ALT_FORM2) {
1.1.1.2 misho 223: /* Flags does not set: BIN_IMM_EXTS unnecessary. */
1.1 misho 224: SLJIT_ASSERT(src2 == TMP_REG2);
225: return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
226: }
227: if (flags & ALT_FORM3) {
228: SLJIT_ASSERT(src2 == TMP_REG2);
229: BIN_IMM_EXTS();
230: return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
231: }
1.1.1.2 misho 232: if (flags & ALT_FORM4) {
233: /* Flags does not set: BIN_IMM_EXTS unnecessary. */
234: FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
235: return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
236: }
1.1 misho 237: if (!(flags & ALT_SET_FLAGS))
238: return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
239: BIN_EXTS();
240: return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
241:
242: case SLJIT_ADDC:
243: if (flags & ALT_FORM1) {
1.1.1.3 ! misho 244: FAIL_IF(push_inst(compiler, MFXER | D(0)));
1.1 misho 245: FAIL_IF(push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2)));
246: return push_inst(compiler, MTXER | S(0));
247: }
248: BIN_EXTS();
249: return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
250:
251: case SLJIT_SUB:
252: if (flags & ALT_FORM1) {
1.1.1.2 misho 253: /* Flags does not set: BIN_IMM_EXTS unnecessary. */
1.1 misho 254: SLJIT_ASSERT(src2 == TMP_REG2);
255: return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
256: }
1.1.1.2 misho 257: if (flags & (ALT_FORM2 | ALT_FORM3)) {
1.1 misho 258: SLJIT_ASSERT(src2 == TMP_REG2);
1.1.1.2 misho 259: if (flags & ALT_FORM2)
260: FAIL_IF(push_inst(compiler, CMPI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
261: if (flags & ALT_FORM3)
262: return push_inst(compiler, CMPLI | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
263: return SLJIT_SUCCESS;
264: }
265: if (flags & (ALT_FORM4 | ALT_FORM5)) {
266: if (flags & ALT_FORM4)
267: FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
268: if (flags & ALT_FORM5)
269: return push_inst(compiler, CMP | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
270: return SLJIT_SUCCESS;
1.1 misho 271: }
272: if (!(flags & ALT_SET_FLAGS))
273: return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
274: BIN_EXTS();
1.1.1.2 misho 275: if (flags & ALT_FORM6)
1.1 misho 276: FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
277: return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
278:
279: case SLJIT_SUBC:
280: if (flags & ALT_FORM1) {
1.1.1.3 ! misho 281: FAIL_IF(push_inst(compiler, MFXER | D(0)));
1.1 misho 282: FAIL_IF(push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1)));
283: return push_inst(compiler, MTXER | S(0));
284: }
285: BIN_EXTS();
286: return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
287:
288: case SLJIT_MUL:
289: if (flags & ALT_FORM1) {
290: SLJIT_ASSERT(src2 == TMP_REG2);
291: return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
292: }
293: BIN_EXTS();
294: if (flags & ALT_FORM2)
295: return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
296: return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));
297:
298: case SLJIT_AND:
299: if (flags & ALT_FORM1) {
300: SLJIT_ASSERT(src2 == TMP_REG2);
301: return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
302: }
303: if (flags & ALT_FORM2) {
304: SLJIT_ASSERT(src2 == TMP_REG2);
305: return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
306: }
307: return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
308:
309: case SLJIT_OR:
310: if (flags & ALT_FORM1) {
311: SLJIT_ASSERT(src2 == TMP_REG2);
312: return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
313: }
314: if (flags & ALT_FORM2) {
315: SLJIT_ASSERT(src2 == TMP_REG2);
316: return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
317: }
318: if (flags & ALT_FORM3) {
319: SLJIT_ASSERT(src2 == TMP_REG2);
320: FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
321: return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
322: }
323: return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
324:
325: case SLJIT_XOR:
326: if (flags & ALT_FORM1) {
327: SLJIT_ASSERT(src2 == TMP_REG2);
328: return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
329: }
330: if (flags & ALT_FORM2) {
331: SLJIT_ASSERT(src2 == TMP_REG2);
332: return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
333: }
334: if (flags & ALT_FORM3) {
335: SLJIT_ASSERT(src2 == TMP_REG2);
336: FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
337: return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
338: }
339: return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
340:
341: case SLJIT_SHL:
342: if (flags & ALT_FORM1) {
343: SLJIT_ASSERT(src2 == TMP_REG2);
344: if (flags & ALT_FORM2) {
345: compiler->imm &= 0x1f;
346: return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
347: }
348: else {
349: compiler->imm &= 0x3f;
350: return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
351: }
352: }
1.1.1.3 ! misho 353: return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
1.1 misho 354:
355: case SLJIT_LSHR:
356: if (flags & ALT_FORM1) {
357: SLJIT_ASSERT(src2 == TMP_REG2);
358: if (flags & ALT_FORM2) {
359: compiler->imm &= 0x1f;
360: return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
361: }
362: else {
363: compiler->imm &= 0x3f;
364: return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
365: }
366: }
1.1.1.3 ! misho 367: return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
1.1 misho 368:
369: case SLJIT_ASHR:
1.1.1.3 ! misho 370: if (flags & ALT_FORM3)
! 371: FAIL_IF(push_inst(compiler, MFXER | D(0)));
1.1 misho 372: if (flags & ALT_FORM1) {
373: SLJIT_ASSERT(src2 == TMP_REG2);
374: if (flags & ALT_FORM2) {
375: compiler->imm &= 0x1f;
1.1.1.3 ! misho 376: FAIL_IF(push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11)));
1.1 misho 377: }
378: else {
379: compiler->imm &= 0x3f;
1.1.1.3 ! misho 380: FAIL_IF(push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4)));
1.1 misho 381: }
382: }
1.1.1.3 ! misho 383: else
! 384: FAIL_IF(push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2)));
! 385: return (flags & ALT_FORM3) ? push_inst(compiler, MTXER | S(0)) : SLJIT_SUCCESS;
1.1 misho 386: }
387:
388: SLJIT_ASSERT_STOP();
389: return SLJIT_SUCCESS;
390: }
391:
1.1.1.3 ! misho 392: static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si reg, sljit_sw init_value)
1.1 misho 393: {
394: FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
395: FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
396: FAIL_IF(PUSH_RLDICR(reg, 31));
397: FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
398: return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
399: }
400:
401: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
402: {
403: sljit_ins *inst = (sljit_ins*)addr;
404:
405: inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff);
406: inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff);
407: inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
408: inst[4] = (inst[4] & 0xffff0000) | (new_addr & 0xffff);
409: SLJIT_CACHE_FLUSH(inst, inst + 5);
410: }
411:
1.1.1.3 ! misho 412: SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
1.1 misho 413: {
414: sljit_ins *inst = (sljit_ins*)addr;
415:
416: inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
417: inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
418: inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
419: inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
420: SLJIT_CACHE_FLUSH(inst, inst + 5);
421: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>